xref: /openbmc/linux/mm/rmap.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  *
40  * (code doesn't rely on that order so it could be switched around)
41  * ->tasklist_lock
42  *   anon_vma->lock      (memory_failure, collect_procs_anon)
43  *     pte map lock
44  */
45 
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
71 }
72 
73 void anon_vma_free(struct anon_vma *anon_vma)
74 {
75 	kmem_cache_free(anon_vma_cachep, anon_vma);
76 }
77 
78 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
79 {
80 	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
81 }
82 
83 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
84 {
85 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
86 }
87 
88 /**
89  * anon_vma_prepare - attach an anon_vma to a memory region
90  * @vma: the memory region in question
91  *
92  * This makes sure the memory mapping described by 'vma' has
93  * an 'anon_vma' attached to it, so that we can associate the
94  * anonymous pages mapped into it with that anon_vma.
95  *
96  * The common case will be that we already have one, but if
97  * if not we either need to find an adjacent mapping that we
98  * can re-use the anon_vma from (very common when the only
99  * reason for splitting a vma has been mprotect()), or we
100  * allocate a new one.
101  *
102  * Anon-vma allocations are very subtle, because we may have
103  * optimistically looked up an anon_vma in page_lock_anon_vma()
104  * and that may actually touch the spinlock even in the newly
105  * allocated vma (it depends on RCU to make sure that the
106  * anon_vma isn't actually destroyed).
107  *
108  * As a result, we need to do proper anon_vma locking even
109  * for the new allocation. At the same time, we do not want
110  * to do any locking for the common case of already having
111  * an anon_vma.
112  *
113  * This must be called with the mmap_sem held for reading.
114  */
115 int anon_vma_prepare(struct vm_area_struct *vma)
116 {
117 	struct anon_vma *anon_vma = vma->anon_vma;
118 	struct anon_vma_chain *avc;
119 
120 	might_sleep();
121 	if (unlikely(!anon_vma)) {
122 		struct mm_struct *mm = vma->vm_mm;
123 		struct anon_vma *allocated;
124 
125 		avc = anon_vma_chain_alloc();
126 		if (!avc)
127 			goto out_enomem;
128 
129 		anon_vma = find_mergeable_anon_vma(vma);
130 		allocated = NULL;
131 		if (!anon_vma) {
132 			anon_vma = anon_vma_alloc();
133 			if (unlikely(!anon_vma))
134 				goto out_enomem_free_avc;
135 			allocated = anon_vma;
136 			/*
137 			 * This VMA had no anon_vma yet.  This anon_vma is
138 			 * the root of any anon_vma tree that might form.
139 			 */
140 			anon_vma->root = anon_vma;
141 		}
142 
143 		anon_vma_lock(anon_vma);
144 		/* page_table_lock to protect against threads */
145 		spin_lock(&mm->page_table_lock);
146 		if (likely(!vma->anon_vma)) {
147 			vma->anon_vma = anon_vma;
148 			avc->anon_vma = anon_vma;
149 			avc->vma = vma;
150 			list_add(&avc->same_vma, &vma->anon_vma_chain);
151 			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
152 			allocated = NULL;
153 			avc = NULL;
154 		}
155 		spin_unlock(&mm->page_table_lock);
156 		anon_vma_unlock(anon_vma);
157 
158 		if (unlikely(allocated))
159 			anon_vma_free(allocated);
160 		if (unlikely(avc))
161 			anon_vma_chain_free(avc);
162 	}
163 	return 0;
164 
165  out_enomem_free_avc:
166 	anon_vma_chain_free(avc);
167  out_enomem:
168 	return -ENOMEM;
169 }
170 
171 static void anon_vma_chain_link(struct vm_area_struct *vma,
172 				struct anon_vma_chain *avc,
173 				struct anon_vma *anon_vma)
174 {
175 	avc->vma = vma;
176 	avc->anon_vma = anon_vma;
177 	list_add(&avc->same_vma, &vma->anon_vma_chain);
178 
179 	anon_vma_lock(anon_vma);
180 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
181 	anon_vma_unlock(anon_vma);
182 }
183 
184 /*
185  * Attach the anon_vmas from src to dst.
186  * Returns 0 on success, -ENOMEM on failure.
187  */
188 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
189 {
190 	struct anon_vma_chain *avc, *pavc;
191 
192 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
193 		avc = anon_vma_chain_alloc();
194 		if (!avc)
195 			goto enomem_failure;
196 		anon_vma_chain_link(dst, avc, pavc->anon_vma);
197 	}
198 	return 0;
199 
200  enomem_failure:
201 	unlink_anon_vmas(dst);
202 	return -ENOMEM;
203 }
204 
205 /*
206  * Attach vma to its own anon_vma, as well as to the anon_vmas that
207  * the corresponding VMA in the parent process is attached to.
208  * Returns 0 on success, non-zero on failure.
209  */
210 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
211 {
212 	struct anon_vma_chain *avc;
213 	struct anon_vma *anon_vma;
214 
215 	/* Don't bother if the parent process has no anon_vma here. */
216 	if (!pvma->anon_vma)
217 		return 0;
218 
219 	/*
220 	 * First, attach the new VMA to the parent VMA's anon_vmas,
221 	 * so rmap can find non-COWed pages in child processes.
222 	 */
223 	if (anon_vma_clone(vma, pvma))
224 		return -ENOMEM;
225 
226 	/* Then add our own anon_vma. */
227 	anon_vma = anon_vma_alloc();
228 	if (!anon_vma)
229 		goto out_error;
230 	avc = anon_vma_chain_alloc();
231 	if (!avc)
232 		goto out_error_free_anon_vma;
233 
234 	/*
235 	 * The root anon_vma's spinlock is the lock actually used when we
236 	 * lock any of the anon_vmas in this anon_vma tree.
237 	 */
238 	anon_vma->root = pvma->anon_vma->root;
239 	/*
240 	 * With KSM refcounts, an anon_vma can stay around longer than the
241 	 * process it belongs to.  The root anon_vma needs to be pinned
242 	 * until this anon_vma is freed, because the lock lives in the root.
243 	 */
244 	get_anon_vma(anon_vma->root);
245 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
246 	vma->anon_vma = anon_vma;
247 	anon_vma_chain_link(vma, avc, anon_vma);
248 
249 	return 0;
250 
251  out_error_free_anon_vma:
252 	anon_vma_free(anon_vma);
253  out_error:
254 	unlink_anon_vmas(vma);
255 	return -ENOMEM;
256 }
257 
258 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
259 {
260 	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
261 	int empty;
262 
263 	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
264 	if (!anon_vma)
265 		return;
266 
267 	anon_vma_lock(anon_vma);
268 	list_del(&anon_vma_chain->same_anon_vma);
269 
270 	/* We must garbage collect the anon_vma if it's empty */
271 	empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
272 	anon_vma_unlock(anon_vma);
273 
274 	if (empty) {
275 		/* We no longer need the root anon_vma */
276 		if (anon_vma->root != anon_vma)
277 			drop_anon_vma(anon_vma->root);
278 		anon_vma_free(anon_vma);
279 	}
280 }
281 
282 void unlink_anon_vmas(struct vm_area_struct *vma)
283 {
284 	struct anon_vma_chain *avc, *next;
285 
286 	/*
287 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
288 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
289 	 */
290 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
291 		anon_vma_unlink(avc);
292 		list_del(&avc->same_vma);
293 		anon_vma_chain_free(avc);
294 	}
295 }
296 
297 static void anon_vma_ctor(void *data)
298 {
299 	struct anon_vma *anon_vma = data;
300 
301 	spin_lock_init(&anon_vma->lock);
302 	anonvma_external_refcount_init(anon_vma);
303 	INIT_LIST_HEAD(&anon_vma->head);
304 }
305 
306 void __init anon_vma_init(void)
307 {
308 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
309 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
310 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
311 }
312 
313 /*
314  * Getting a lock on a stable anon_vma from a page off the LRU is
315  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
316  */
317 struct anon_vma *__page_lock_anon_vma(struct page *page)
318 {
319 	struct anon_vma *anon_vma, *root_anon_vma;
320 	unsigned long anon_mapping;
321 
322 	rcu_read_lock();
323 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
324 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
325 		goto out;
326 	if (!page_mapped(page))
327 		goto out;
328 
329 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
330 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
331 	spin_lock(&root_anon_vma->lock);
332 
333 	/*
334 	 * If this page is still mapped, then its anon_vma cannot have been
335 	 * freed.  But if it has been unmapped, we have no security against
336 	 * the anon_vma structure being freed and reused (for another anon_vma:
337 	 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
338 	 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
339 	 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
340 	 */
341 	if (page_mapped(page))
342 		return anon_vma;
343 
344 	spin_unlock(&root_anon_vma->lock);
345 out:
346 	rcu_read_unlock();
347 	return NULL;
348 }
349 
350 void page_unlock_anon_vma(struct anon_vma *anon_vma)
351 	__releases(&anon_vma->root->lock)
352 	__releases(RCU)
353 {
354 	anon_vma_unlock(anon_vma);
355 	rcu_read_unlock();
356 }
357 
358 /*
359  * At what user virtual address is page expected in @vma?
360  * Returns virtual address or -EFAULT if page's index/offset is not
361  * within the range mapped the @vma.
362  */
363 static inline unsigned long
364 vma_address(struct page *page, struct vm_area_struct *vma)
365 {
366 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
367 	unsigned long address;
368 
369 	if (unlikely(is_vm_hugetlb_page(vma)))
370 		pgoff = page->index << huge_page_order(page_hstate(page));
371 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
372 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
373 		/* page should be within @vma mapping range */
374 		return -EFAULT;
375 	}
376 	return address;
377 }
378 
379 /*
380  * At what user virtual address is page expected in vma?
381  * Caller should check the page is actually part of the vma.
382  */
383 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
384 {
385 	if (PageAnon(page)) {
386 		struct anon_vma *page__anon_vma = page_anon_vma(page);
387 		/*
388 		 * Note: swapoff's unuse_vma() is more efficient with this
389 		 * check, and needs it to match anon_vma when KSM is active.
390 		 */
391 		if (!vma->anon_vma || !page__anon_vma ||
392 		    vma->anon_vma->root != page__anon_vma->root)
393 			return -EFAULT;
394 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
395 		if (!vma->vm_file ||
396 		    vma->vm_file->f_mapping != page->mapping)
397 			return -EFAULT;
398 	} else
399 		return -EFAULT;
400 	return vma_address(page, vma);
401 }
402 
403 /*
404  * Check that @page is mapped at @address into @mm.
405  *
406  * If @sync is false, page_check_address may perform a racy check to avoid
407  * the page table lock when the pte is not present (helpful when reclaiming
408  * highly shared pages).
409  *
410  * On success returns with pte mapped and locked.
411  */
412 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
413 			  unsigned long address, spinlock_t **ptlp, int sync)
414 {
415 	pgd_t *pgd;
416 	pud_t *pud;
417 	pmd_t *pmd;
418 	pte_t *pte;
419 	spinlock_t *ptl;
420 
421 	if (unlikely(PageHuge(page))) {
422 		pte = huge_pte_offset(mm, address);
423 		ptl = &mm->page_table_lock;
424 		goto check;
425 	}
426 
427 	pgd = pgd_offset(mm, address);
428 	if (!pgd_present(*pgd))
429 		return NULL;
430 
431 	pud = pud_offset(pgd, address);
432 	if (!pud_present(*pud))
433 		return NULL;
434 
435 	pmd = pmd_offset(pud, address);
436 	if (!pmd_present(*pmd))
437 		return NULL;
438 
439 	pte = pte_offset_map(pmd, address);
440 	/* Make a quick check before getting the lock */
441 	if (!sync && !pte_present(*pte)) {
442 		pte_unmap(pte);
443 		return NULL;
444 	}
445 
446 	ptl = pte_lockptr(mm, pmd);
447 check:
448 	spin_lock(ptl);
449 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
450 		*ptlp = ptl;
451 		return pte;
452 	}
453 	pte_unmap_unlock(pte, ptl);
454 	return NULL;
455 }
456 
457 /**
458  * page_mapped_in_vma - check whether a page is really mapped in a VMA
459  * @page: the page to test
460  * @vma: the VMA to test
461  *
462  * Returns 1 if the page is mapped into the page tables of the VMA, 0
463  * if the page is not mapped into the page tables of this VMA.  Only
464  * valid for normal file or anonymous VMAs.
465  */
466 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
467 {
468 	unsigned long address;
469 	pte_t *pte;
470 	spinlock_t *ptl;
471 
472 	address = vma_address(page, vma);
473 	if (address == -EFAULT)		/* out of vma range */
474 		return 0;
475 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
476 	if (!pte)			/* the page is not in this mm */
477 		return 0;
478 	pte_unmap_unlock(pte, ptl);
479 
480 	return 1;
481 }
482 
483 /*
484  * Subfunctions of page_referenced: page_referenced_one called
485  * repeatedly from either page_referenced_anon or page_referenced_file.
486  */
487 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
488 			unsigned long address, unsigned int *mapcount,
489 			unsigned long *vm_flags)
490 {
491 	struct mm_struct *mm = vma->vm_mm;
492 	pte_t *pte;
493 	spinlock_t *ptl;
494 	int referenced = 0;
495 
496 	pte = page_check_address(page, mm, address, &ptl, 0);
497 	if (!pte)
498 		goto out;
499 
500 	/*
501 	 * Don't want to elevate referenced for mlocked page that gets this far,
502 	 * in order that it progresses to try_to_unmap and is moved to the
503 	 * unevictable list.
504 	 */
505 	if (vma->vm_flags & VM_LOCKED) {
506 		*mapcount = 1;	/* break early from loop */
507 		*vm_flags |= VM_LOCKED;
508 		goto out_unmap;
509 	}
510 
511 	if (ptep_clear_flush_young_notify(vma, address, pte)) {
512 		/*
513 		 * Don't treat a reference through a sequentially read
514 		 * mapping as such.  If the page has been used in
515 		 * another mapping, we will catch it; if this other
516 		 * mapping is already gone, the unmap path will have
517 		 * set PG_referenced or activated the page.
518 		 */
519 		if (likely(!VM_SequentialReadHint(vma)))
520 			referenced++;
521 	}
522 
523 	/* Pretend the page is referenced if the task has the
524 	   swap token and is in the middle of a page fault. */
525 	if (mm != current->mm && has_swap_token(mm) &&
526 			rwsem_is_locked(&mm->mmap_sem))
527 		referenced++;
528 
529 out_unmap:
530 	(*mapcount)--;
531 	pte_unmap_unlock(pte, ptl);
532 
533 	if (referenced)
534 		*vm_flags |= vma->vm_flags;
535 out:
536 	return referenced;
537 }
538 
539 static int page_referenced_anon(struct page *page,
540 				struct mem_cgroup *mem_cont,
541 				unsigned long *vm_flags)
542 {
543 	unsigned int mapcount;
544 	struct anon_vma *anon_vma;
545 	struct anon_vma_chain *avc;
546 	int referenced = 0;
547 
548 	anon_vma = page_lock_anon_vma(page);
549 	if (!anon_vma)
550 		return referenced;
551 
552 	mapcount = page_mapcount(page);
553 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
554 		struct vm_area_struct *vma = avc->vma;
555 		unsigned long address = vma_address(page, vma);
556 		if (address == -EFAULT)
557 			continue;
558 		/*
559 		 * If we are reclaiming on behalf of a cgroup, skip
560 		 * counting on behalf of references from different
561 		 * cgroups
562 		 */
563 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
564 			continue;
565 		referenced += page_referenced_one(page, vma, address,
566 						  &mapcount, vm_flags);
567 		if (!mapcount)
568 			break;
569 	}
570 
571 	page_unlock_anon_vma(anon_vma);
572 	return referenced;
573 }
574 
575 /**
576  * page_referenced_file - referenced check for object-based rmap
577  * @page: the page we're checking references on.
578  * @mem_cont: target memory controller
579  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
580  *
581  * For an object-based mapped page, find all the places it is mapped and
582  * check/clear the referenced flag.  This is done by following the page->mapping
583  * pointer, then walking the chain of vmas it holds.  It returns the number
584  * of references it found.
585  *
586  * This function is only called from page_referenced for object-based pages.
587  */
588 static int page_referenced_file(struct page *page,
589 				struct mem_cgroup *mem_cont,
590 				unsigned long *vm_flags)
591 {
592 	unsigned int mapcount;
593 	struct address_space *mapping = page->mapping;
594 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
595 	struct vm_area_struct *vma;
596 	struct prio_tree_iter iter;
597 	int referenced = 0;
598 
599 	/*
600 	 * The caller's checks on page->mapping and !PageAnon have made
601 	 * sure that this is a file page: the check for page->mapping
602 	 * excludes the case just before it gets set on an anon page.
603 	 */
604 	BUG_ON(PageAnon(page));
605 
606 	/*
607 	 * The page lock not only makes sure that page->mapping cannot
608 	 * suddenly be NULLified by truncation, it makes sure that the
609 	 * structure at mapping cannot be freed and reused yet,
610 	 * so we can safely take mapping->i_mmap_lock.
611 	 */
612 	BUG_ON(!PageLocked(page));
613 
614 	spin_lock(&mapping->i_mmap_lock);
615 
616 	/*
617 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
618 	 * is more likely to be accurate if we note it after spinning.
619 	 */
620 	mapcount = page_mapcount(page);
621 
622 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
623 		unsigned long address = vma_address(page, vma);
624 		if (address == -EFAULT)
625 			continue;
626 		/*
627 		 * If we are reclaiming on behalf of a cgroup, skip
628 		 * counting on behalf of references from different
629 		 * cgroups
630 		 */
631 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
632 			continue;
633 		referenced += page_referenced_one(page, vma, address,
634 						  &mapcount, vm_flags);
635 		if (!mapcount)
636 			break;
637 	}
638 
639 	spin_unlock(&mapping->i_mmap_lock);
640 	return referenced;
641 }
642 
643 /**
644  * page_referenced - test if the page was referenced
645  * @page: the page to test
646  * @is_locked: caller holds lock on the page
647  * @mem_cont: target memory controller
648  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
649  *
650  * Quick test_and_clear_referenced for all mappings to a page,
651  * returns the number of ptes which referenced the page.
652  */
653 int page_referenced(struct page *page,
654 		    int is_locked,
655 		    struct mem_cgroup *mem_cont,
656 		    unsigned long *vm_flags)
657 {
658 	int referenced = 0;
659 	int we_locked = 0;
660 
661 	*vm_flags = 0;
662 	if (page_mapped(page) && page_rmapping(page)) {
663 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
664 			we_locked = trylock_page(page);
665 			if (!we_locked) {
666 				referenced++;
667 				goto out;
668 			}
669 		}
670 		if (unlikely(PageKsm(page)))
671 			referenced += page_referenced_ksm(page, mem_cont,
672 								vm_flags);
673 		else if (PageAnon(page))
674 			referenced += page_referenced_anon(page, mem_cont,
675 								vm_flags);
676 		else if (page->mapping)
677 			referenced += page_referenced_file(page, mem_cont,
678 								vm_flags);
679 		if (we_locked)
680 			unlock_page(page);
681 	}
682 out:
683 	if (page_test_and_clear_young(page))
684 		referenced++;
685 
686 	return referenced;
687 }
688 
689 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
690 			    unsigned long address)
691 {
692 	struct mm_struct *mm = vma->vm_mm;
693 	pte_t *pte;
694 	spinlock_t *ptl;
695 	int ret = 0;
696 
697 	pte = page_check_address(page, mm, address, &ptl, 1);
698 	if (!pte)
699 		goto out;
700 
701 	if (pte_dirty(*pte) || pte_write(*pte)) {
702 		pte_t entry;
703 
704 		flush_cache_page(vma, address, pte_pfn(*pte));
705 		entry = ptep_clear_flush_notify(vma, address, pte);
706 		entry = pte_wrprotect(entry);
707 		entry = pte_mkclean(entry);
708 		set_pte_at(mm, address, pte, entry);
709 		ret = 1;
710 	}
711 
712 	pte_unmap_unlock(pte, ptl);
713 out:
714 	return ret;
715 }
716 
717 static int page_mkclean_file(struct address_space *mapping, struct page *page)
718 {
719 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
720 	struct vm_area_struct *vma;
721 	struct prio_tree_iter iter;
722 	int ret = 0;
723 
724 	BUG_ON(PageAnon(page));
725 
726 	spin_lock(&mapping->i_mmap_lock);
727 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
728 		if (vma->vm_flags & VM_SHARED) {
729 			unsigned long address = vma_address(page, vma);
730 			if (address == -EFAULT)
731 				continue;
732 			ret += page_mkclean_one(page, vma, address);
733 		}
734 	}
735 	spin_unlock(&mapping->i_mmap_lock);
736 	return ret;
737 }
738 
739 int page_mkclean(struct page *page)
740 {
741 	int ret = 0;
742 
743 	BUG_ON(!PageLocked(page));
744 
745 	if (page_mapped(page)) {
746 		struct address_space *mapping = page_mapping(page);
747 		if (mapping) {
748 			ret = page_mkclean_file(mapping, page);
749 			if (page_test_dirty(page)) {
750 				page_clear_dirty(page, 1);
751 				ret = 1;
752 			}
753 		}
754 	}
755 
756 	return ret;
757 }
758 EXPORT_SYMBOL_GPL(page_mkclean);
759 
760 /**
761  * page_move_anon_rmap - move a page to our anon_vma
762  * @page:	the page to move to our anon_vma
763  * @vma:	the vma the page belongs to
764  * @address:	the user virtual address mapped
765  *
766  * When a page belongs exclusively to one process after a COW event,
767  * that page can be moved into the anon_vma that belongs to just that
768  * process, so the rmap code will not search the parent or sibling
769  * processes.
770  */
771 void page_move_anon_rmap(struct page *page,
772 	struct vm_area_struct *vma, unsigned long address)
773 {
774 	struct anon_vma *anon_vma = vma->anon_vma;
775 
776 	VM_BUG_ON(!PageLocked(page));
777 	VM_BUG_ON(!anon_vma);
778 	VM_BUG_ON(page->index != linear_page_index(vma, address));
779 
780 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
781 	page->mapping = (struct address_space *) anon_vma;
782 }
783 
784 /**
785  * __page_set_anon_rmap - set up new anonymous rmap
786  * @page:	Page to add to rmap
787  * @vma:	VM area to add page to.
788  * @address:	User virtual address of the mapping
789  * @exclusive:	the page is exclusively owned by the current process
790  */
791 static void __page_set_anon_rmap(struct page *page,
792 	struct vm_area_struct *vma, unsigned long address, int exclusive)
793 {
794 	struct anon_vma *anon_vma = vma->anon_vma;
795 
796 	BUG_ON(!anon_vma);
797 
798 	if (PageAnon(page))
799 		return;
800 
801 	/*
802 	 * If the page isn't exclusively mapped into this vma,
803 	 * we must use the _oldest_ possible anon_vma for the
804 	 * page mapping!
805 	 */
806 	if (!exclusive)
807 		anon_vma = anon_vma->root;
808 
809 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
810 	page->mapping = (struct address_space *) anon_vma;
811 	page->index = linear_page_index(vma, address);
812 }
813 
814 /**
815  * __page_check_anon_rmap - sanity check anonymous rmap addition
816  * @page:	the page to add the mapping to
817  * @vma:	the vm area in which the mapping is added
818  * @address:	the user virtual address mapped
819  */
820 static void __page_check_anon_rmap(struct page *page,
821 	struct vm_area_struct *vma, unsigned long address)
822 {
823 #ifdef CONFIG_DEBUG_VM
824 	/*
825 	 * The page's anon-rmap details (mapping and index) are guaranteed to
826 	 * be set up correctly at this point.
827 	 *
828 	 * We have exclusion against page_add_anon_rmap because the caller
829 	 * always holds the page locked, except if called from page_dup_rmap,
830 	 * in which case the page is already known to be setup.
831 	 *
832 	 * We have exclusion against page_add_new_anon_rmap because those pages
833 	 * are initially only visible via the pagetables, and the pte is locked
834 	 * over the call to page_add_new_anon_rmap.
835 	 */
836 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
837 	BUG_ON(page->index != linear_page_index(vma, address));
838 #endif
839 }
840 
841 /**
842  * page_add_anon_rmap - add pte mapping to an anonymous page
843  * @page:	the page to add the mapping to
844  * @vma:	the vm area in which the mapping is added
845  * @address:	the user virtual address mapped
846  *
847  * The caller needs to hold the pte lock, and the page must be locked in
848  * the anon_vma case: to serialize mapping,index checking after setting,
849  * and to ensure that PageAnon is not being upgraded racily to PageKsm
850  * (but PageKsm is never downgraded to PageAnon).
851  */
852 void page_add_anon_rmap(struct page *page,
853 	struct vm_area_struct *vma, unsigned long address)
854 {
855 	do_page_add_anon_rmap(page, vma, address, 0);
856 }
857 
858 /*
859  * Special version of the above for do_swap_page, which often runs
860  * into pages that are exclusively owned by the current process.
861  * Everybody else should continue to use page_add_anon_rmap above.
862  */
863 void do_page_add_anon_rmap(struct page *page,
864 	struct vm_area_struct *vma, unsigned long address, int exclusive)
865 {
866 	int first = atomic_inc_and_test(&page->_mapcount);
867 	if (first)
868 		__inc_zone_page_state(page, NR_ANON_PAGES);
869 	if (unlikely(PageKsm(page)))
870 		return;
871 
872 	VM_BUG_ON(!PageLocked(page));
873 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
874 	if (first)
875 		__page_set_anon_rmap(page, vma, address, exclusive);
876 	else
877 		__page_check_anon_rmap(page, vma, address);
878 }
879 
880 /**
881  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
882  * @page:	the page to add the mapping to
883  * @vma:	the vm area in which the mapping is added
884  * @address:	the user virtual address mapped
885  *
886  * Same as page_add_anon_rmap but must only be called on *new* pages.
887  * This means the inc-and-test can be bypassed.
888  * Page does not have to be locked.
889  */
890 void page_add_new_anon_rmap(struct page *page,
891 	struct vm_area_struct *vma, unsigned long address)
892 {
893 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
894 	SetPageSwapBacked(page);
895 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
896 	__inc_zone_page_state(page, NR_ANON_PAGES);
897 	__page_set_anon_rmap(page, vma, address, 1);
898 	if (page_evictable(page, vma))
899 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
900 	else
901 		add_page_to_unevictable_list(page);
902 }
903 
904 /**
905  * page_add_file_rmap - add pte mapping to a file page
906  * @page: the page to add the mapping to
907  *
908  * The caller needs to hold the pte lock.
909  */
910 void page_add_file_rmap(struct page *page)
911 {
912 	if (atomic_inc_and_test(&page->_mapcount)) {
913 		__inc_zone_page_state(page, NR_FILE_MAPPED);
914 		mem_cgroup_update_file_mapped(page, 1);
915 	}
916 }
917 
918 /**
919  * page_remove_rmap - take down pte mapping from a page
920  * @page: page to remove mapping from
921  *
922  * The caller needs to hold the pte lock.
923  */
924 void page_remove_rmap(struct page *page)
925 {
926 	/* page still mapped by someone else? */
927 	if (!atomic_add_negative(-1, &page->_mapcount))
928 		return;
929 
930 	/*
931 	 * Now that the last pte has gone, s390 must transfer dirty
932 	 * flag from storage key to struct page.  We can usually skip
933 	 * this if the page is anon, so about to be freed; but perhaps
934 	 * not if it's in swapcache - there might be another pte slot
935 	 * containing the swap entry, but page not yet written to swap.
936 	 */
937 	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
938 		page_clear_dirty(page, 1);
939 		set_page_dirty(page);
940 	}
941 	/*
942 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
943 	 * and not charged by memcg for now.
944 	 */
945 	if (unlikely(PageHuge(page)))
946 		return;
947 	if (PageAnon(page)) {
948 		mem_cgroup_uncharge_page(page);
949 		__dec_zone_page_state(page, NR_ANON_PAGES);
950 	} else {
951 		__dec_zone_page_state(page, NR_FILE_MAPPED);
952 		mem_cgroup_update_file_mapped(page, -1);
953 	}
954 	/*
955 	 * It would be tidy to reset the PageAnon mapping here,
956 	 * but that might overwrite a racing page_add_anon_rmap
957 	 * which increments mapcount after us but sets mapping
958 	 * before us: so leave the reset to free_hot_cold_page,
959 	 * and remember that it's only reliable while mapped.
960 	 * Leaving it set also helps swapoff to reinstate ptes
961 	 * faster for those pages still in swapcache.
962 	 */
963 }
964 
965 /*
966  * Subfunctions of try_to_unmap: try_to_unmap_one called
967  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
968  */
969 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
970 		     unsigned long address, enum ttu_flags flags)
971 {
972 	struct mm_struct *mm = vma->vm_mm;
973 	pte_t *pte;
974 	pte_t pteval;
975 	spinlock_t *ptl;
976 	int ret = SWAP_AGAIN;
977 
978 	pte = page_check_address(page, mm, address, &ptl, 0);
979 	if (!pte)
980 		goto out;
981 
982 	/*
983 	 * If the page is mlock()d, we cannot swap it out.
984 	 * If it's recently referenced (perhaps page_referenced
985 	 * skipped over this mm) then we should reactivate it.
986 	 */
987 	if (!(flags & TTU_IGNORE_MLOCK)) {
988 		if (vma->vm_flags & VM_LOCKED)
989 			goto out_mlock;
990 
991 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
992 			goto out_unmap;
993 	}
994 	if (!(flags & TTU_IGNORE_ACCESS)) {
995 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
996 			ret = SWAP_FAIL;
997 			goto out_unmap;
998 		}
999   	}
1000 
1001 	/* Nuke the page table entry. */
1002 	flush_cache_page(vma, address, page_to_pfn(page));
1003 	pteval = ptep_clear_flush_notify(vma, address, pte);
1004 
1005 	/* Move the dirty bit to the physical page now the pte is gone. */
1006 	if (pte_dirty(pteval))
1007 		set_page_dirty(page);
1008 
1009 	/* Update high watermark before we lower rss */
1010 	update_hiwater_rss(mm);
1011 
1012 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1013 		if (PageAnon(page))
1014 			dec_mm_counter(mm, MM_ANONPAGES);
1015 		else
1016 			dec_mm_counter(mm, MM_FILEPAGES);
1017 		set_pte_at(mm, address, pte,
1018 				swp_entry_to_pte(make_hwpoison_entry(page)));
1019 	} else if (PageAnon(page)) {
1020 		swp_entry_t entry = { .val = page_private(page) };
1021 
1022 		if (PageSwapCache(page)) {
1023 			/*
1024 			 * Store the swap location in the pte.
1025 			 * See handle_pte_fault() ...
1026 			 */
1027 			if (swap_duplicate(entry) < 0) {
1028 				set_pte_at(mm, address, pte, pteval);
1029 				ret = SWAP_FAIL;
1030 				goto out_unmap;
1031 			}
1032 			if (list_empty(&mm->mmlist)) {
1033 				spin_lock(&mmlist_lock);
1034 				if (list_empty(&mm->mmlist))
1035 					list_add(&mm->mmlist, &init_mm.mmlist);
1036 				spin_unlock(&mmlist_lock);
1037 			}
1038 			dec_mm_counter(mm, MM_ANONPAGES);
1039 			inc_mm_counter(mm, MM_SWAPENTS);
1040 		} else if (PAGE_MIGRATION) {
1041 			/*
1042 			 * Store the pfn of the page in a special migration
1043 			 * pte. do_swap_page() will wait until the migration
1044 			 * pte is removed and then restart fault handling.
1045 			 */
1046 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1047 			entry = make_migration_entry(page, pte_write(pteval));
1048 		}
1049 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1050 		BUG_ON(pte_file(*pte));
1051 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1052 		/* Establish migration entry for a file page */
1053 		swp_entry_t entry;
1054 		entry = make_migration_entry(page, pte_write(pteval));
1055 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1056 	} else
1057 		dec_mm_counter(mm, MM_FILEPAGES);
1058 
1059 	page_remove_rmap(page);
1060 	page_cache_release(page);
1061 
1062 out_unmap:
1063 	pte_unmap_unlock(pte, ptl);
1064 out:
1065 	return ret;
1066 
1067 out_mlock:
1068 	pte_unmap_unlock(pte, ptl);
1069 
1070 
1071 	/*
1072 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1073 	 * unstable result and race. Plus, We can't wait here because
1074 	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1075 	 * if trylock failed, the page remain in evictable lru and later
1076 	 * vmscan could retry to move the page to unevictable lru if the
1077 	 * page is actually mlocked.
1078 	 */
1079 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1080 		if (vma->vm_flags & VM_LOCKED) {
1081 			mlock_vma_page(page);
1082 			ret = SWAP_MLOCK;
1083 		}
1084 		up_read(&vma->vm_mm->mmap_sem);
1085 	}
1086 	return ret;
1087 }
1088 
1089 /*
1090  * objrmap doesn't work for nonlinear VMAs because the assumption that
1091  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1092  * Consequently, given a particular page and its ->index, we cannot locate the
1093  * ptes which are mapping that page without an exhaustive linear search.
1094  *
1095  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1096  * maps the file to which the target page belongs.  The ->vm_private_data field
1097  * holds the current cursor into that scan.  Successive searches will circulate
1098  * around the vma's virtual address space.
1099  *
1100  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1101  * more scanning pressure is placed against them as well.   Eventually pages
1102  * will become fully unmapped and are eligible for eviction.
1103  *
1104  * For very sparsely populated VMAs this is a little inefficient - chances are
1105  * there there won't be many ptes located within the scan cluster.  In this case
1106  * maybe we could scan further - to the end of the pte page, perhaps.
1107  *
1108  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1109  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1110  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1111  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1112  */
1113 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1114 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1115 
1116 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1117 		struct vm_area_struct *vma, struct page *check_page)
1118 {
1119 	struct mm_struct *mm = vma->vm_mm;
1120 	pgd_t *pgd;
1121 	pud_t *pud;
1122 	pmd_t *pmd;
1123 	pte_t *pte;
1124 	pte_t pteval;
1125 	spinlock_t *ptl;
1126 	struct page *page;
1127 	unsigned long address;
1128 	unsigned long end;
1129 	int ret = SWAP_AGAIN;
1130 	int locked_vma = 0;
1131 
1132 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1133 	end = address + CLUSTER_SIZE;
1134 	if (address < vma->vm_start)
1135 		address = vma->vm_start;
1136 	if (end > vma->vm_end)
1137 		end = vma->vm_end;
1138 
1139 	pgd = pgd_offset(mm, address);
1140 	if (!pgd_present(*pgd))
1141 		return ret;
1142 
1143 	pud = pud_offset(pgd, address);
1144 	if (!pud_present(*pud))
1145 		return ret;
1146 
1147 	pmd = pmd_offset(pud, address);
1148 	if (!pmd_present(*pmd))
1149 		return ret;
1150 
1151 	/*
1152 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1153 	 * keep the sem while scanning the cluster for mlocking pages.
1154 	 */
1155 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1156 		locked_vma = (vma->vm_flags & VM_LOCKED);
1157 		if (!locked_vma)
1158 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1159 	}
1160 
1161 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1162 
1163 	/* Update high watermark before we lower rss */
1164 	update_hiwater_rss(mm);
1165 
1166 	for (; address < end; pte++, address += PAGE_SIZE) {
1167 		if (!pte_present(*pte))
1168 			continue;
1169 		page = vm_normal_page(vma, address, *pte);
1170 		BUG_ON(!page || PageAnon(page));
1171 
1172 		if (locked_vma) {
1173 			mlock_vma_page(page);   /* no-op if already mlocked */
1174 			if (page == check_page)
1175 				ret = SWAP_MLOCK;
1176 			continue;	/* don't unmap */
1177 		}
1178 
1179 		if (ptep_clear_flush_young_notify(vma, address, pte))
1180 			continue;
1181 
1182 		/* Nuke the page table entry. */
1183 		flush_cache_page(vma, address, pte_pfn(*pte));
1184 		pteval = ptep_clear_flush_notify(vma, address, pte);
1185 
1186 		/* If nonlinear, store the file page offset in the pte. */
1187 		if (page->index != linear_page_index(vma, address))
1188 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1189 
1190 		/* Move the dirty bit to the physical page now the pte is gone. */
1191 		if (pte_dirty(pteval))
1192 			set_page_dirty(page);
1193 
1194 		page_remove_rmap(page);
1195 		page_cache_release(page);
1196 		dec_mm_counter(mm, MM_FILEPAGES);
1197 		(*mapcount)--;
1198 	}
1199 	pte_unmap_unlock(pte - 1, ptl);
1200 	if (locked_vma)
1201 		up_read(&vma->vm_mm->mmap_sem);
1202 	return ret;
1203 }
1204 
1205 static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1206 {
1207 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1208 
1209 	if (!maybe_stack)
1210 		return false;
1211 
1212 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1213 						VM_STACK_INCOMPLETE_SETUP)
1214 		return true;
1215 
1216 	return false;
1217 }
1218 
1219 /**
1220  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1221  * rmap method
1222  * @page: the page to unmap/unlock
1223  * @flags: action and flags
1224  *
1225  * Find all the mappings of a page using the mapping pointer and the vma chains
1226  * contained in the anon_vma struct it points to.
1227  *
1228  * This function is only called from try_to_unmap/try_to_munlock for
1229  * anonymous pages.
1230  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1231  * where the page was found will be held for write.  So, we won't recheck
1232  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1233  * 'LOCKED.
1234  */
1235 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1236 {
1237 	struct anon_vma *anon_vma;
1238 	struct anon_vma_chain *avc;
1239 	int ret = SWAP_AGAIN;
1240 
1241 	anon_vma = page_lock_anon_vma(page);
1242 	if (!anon_vma)
1243 		return ret;
1244 
1245 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1246 		struct vm_area_struct *vma = avc->vma;
1247 		unsigned long address;
1248 
1249 		/*
1250 		 * During exec, a temporary VMA is setup and later moved.
1251 		 * The VMA is moved under the anon_vma lock but not the
1252 		 * page tables leading to a race where migration cannot
1253 		 * find the migration ptes. Rather than increasing the
1254 		 * locking requirements of exec(), migration skips
1255 		 * temporary VMAs until after exec() completes.
1256 		 */
1257 		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1258 				is_vma_temporary_stack(vma))
1259 			continue;
1260 
1261 		address = vma_address(page, vma);
1262 		if (address == -EFAULT)
1263 			continue;
1264 		ret = try_to_unmap_one(page, vma, address, flags);
1265 		if (ret != SWAP_AGAIN || !page_mapped(page))
1266 			break;
1267 	}
1268 
1269 	page_unlock_anon_vma(anon_vma);
1270 	return ret;
1271 }
1272 
1273 /**
1274  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1275  * @page: the page to unmap/unlock
1276  * @flags: action and flags
1277  *
1278  * Find all the mappings of a page using the mapping pointer and the vma chains
1279  * contained in the address_space struct it points to.
1280  *
1281  * This function is only called from try_to_unmap/try_to_munlock for
1282  * object-based pages.
1283  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1284  * where the page was found will be held for write.  So, we won't recheck
1285  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1286  * 'LOCKED.
1287  */
1288 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1289 {
1290 	struct address_space *mapping = page->mapping;
1291 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1292 	struct vm_area_struct *vma;
1293 	struct prio_tree_iter iter;
1294 	int ret = SWAP_AGAIN;
1295 	unsigned long cursor;
1296 	unsigned long max_nl_cursor = 0;
1297 	unsigned long max_nl_size = 0;
1298 	unsigned int mapcount;
1299 
1300 	spin_lock(&mapping->i_mmap_lock);
1301 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1302 		unsigned long address = vma_address(page, vma);
1303 		if (address == -EFAULT)
1304 			continue;
1305 		ret = try_to_unmap_one(page, vma, address, flags);
1306 		if (ret != SWAP_AGAIN || !page_mapped(page))
1307 			goto out;
1308 	}
1309 
1310 	if (list_empty(&mapping->i_mmap_nonlinear))
1311 		goto out;
1312 
1313 	/*
1314 	 * We don't bother to try to find the munlocked page in nonlinears.
1315 	 * It's costly. Instead, later, page reclaim logic may call
1316 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1317 	 */
1318 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1319 		goto out;
1320 
1321 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1322 						shared.vm_set.list) {
1323 		cursor = (unsigned long) vma->vm_private_data;
1324 		if (cursor > max_nl_cursor)
1325 			max_nl_cursor = cursor;
1326 		cursor = vma->vm_end - vma->vm_start;
1327 		if (cursor > max_nl_size)
1328 			max_nl_size = cursor;
1329 	}
1330 
1331 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1332 		ret = SWAP_FAIL;
1333 		goto out;
1334 	}
1335 
1336 	/*
1337 	 * We don't try to search for this page in the nonlinear vmas,
1338 	 * and page_referenced wouldn't have found it anyway.  Instead
1339 	 * just walk the nonlinear vmas trying to age and unmap some.
1340 	 * The mapcount of the page we came in with is irrelevant,
1341 	 * but even so use it as a guide to how hard we should try?
1342 	 */
1343 	mapcount = page_mapcount(page);
1344 	if (!mapcount)
1345 		goto out;
1346 	cond_resched_lock(&mapping->i_mmap_lock);
1347 
1348 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1349 	if (max_nl_cursor == 0)
1350 		max_nl_cursor = CLUSTER_SIZE;
1351 
1352 	do {
1353 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1354 						shared.vm_set.list) {
1355 			cursor = (unsigned long) vma->vm_private_data;
1356 			while ( cursor < max_nl_cursor &&
1357 				cursor < vma->vm_end - vma->vm_start) {
1358 				if (try_to_unmap_cluster(cursor, &mapcount,
1359 						vma, page) == SWAP_MLOCK)
1360 					ret = SWAP_MLOCK;
1361 				cursor += CLUSTER_SIZE;
1362 				vma->vm_private_data = (void *) cursor;
1363 				if ((int)mapcount <= 0)
1364 					goto out;
1365 			}
1366 			vma->vm_private_data = (void *) max_nl_cursor;
1367 		}
1368 		cond_resched_lock(&mapping->i_mmap_lock);
1369 		max_nl_cursor += CLUSTER_SIZE;
1370 	} while (max_nl_cursor <= max_nl_size);
1371 
1372 	/*
1373 	 * Don't loop forever (perhaps all the remaining pages are
1374 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1375 	 * vmas, now forgetting on which ones it had fallen behind.
1376 	 */
1377 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1378 		vma->vm_private_data = NULL;
1379 out:
1380 	spin_unlock(&mapping->i_mmap_lock);
1381 	return ret;
1382 }
1383 
1384 /**
1385  * try_to_unmap - try to remove all page table mappings to a page
1386  * @page: the page to get unmapped
1387  * @flags: action and flags
1388  *
1389  * Tries to remove all the page table entries which are mapping this
1390  * page, used in the pageout path.  Caller must hold the page lock.
1391  * Return values are:
1392  *
1393  * SWAP_SUCCESS	- we succeeded in removing all mappings
1394  * SWAP_AGAIN	- we missed a mapping, try again later
1395  * SWAP_FAIL	- the page is unswappable
1396  * SWAP_MLOCK	- page is mlocked.
1397  */
1398 int try_to_unmap(struct page *page, enum ttu_flags flags)
1399 {
1400 	int ret;
1401 
1402 	BUG_ON(!PageLocked(page));
1403 
1404 	if (unlikely(PageKsm(page)))
1405 		ret = try_to_unmap_ksm(page, flags);
1406 	else if (PageAnon(page))
1407 		ret = try_to_unmap_anon(page, flags);
1408 	else
1409 		ret = try_to_unmap_file(page, flags);
1410 	if (ret != SWAP_MLOCK && !page_mapped(page))
1411 		ret = SWAP_SUCCESS;
1412 	return ret;
1413 }
1414 
1415 /**
1416  * try_to_munlock - try to munlock a page
1417  * @page: the page to be munlocked
1418  *
1419  * Called from munlock code.  Checks all of the VMAs mapping the page
1420  * to make sure nobody else has this page mlocked. The page will be
1421  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1422  *
1423  * Return values are:
1424  *
1425  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1426  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1427  * SWAP_FAIL	- page cannot be located at present
1428  * SWAP_MLOCK	- page is now mlocked.
1429  */
1430 int try_to_munlock(struct page *page)
1431 {
1432 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1433 
1434 	if (unlikely(PageKsm(page)))
1435 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1436 	else if (PageAnon(page))
1437 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1438 	else
1439 		return try_to_unmap_file(page, TTU_MUNLOCK);
1440 }
1441 
1442 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1443 /*
1444  * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1445  * if necessary.  Be careful to do all the tests under the lock.  Once
1446  * we know we are the last user, nobody else can get a reference and we
1447  * can do the freeing without the lock.
1448  */
1449 void drop_anon_vma(struct anon_vma *anon_vma)
1450 {
1451 	BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
1452 	if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1453 		struct anon_vma *root = anon_vma->root;
1454 		int empty = list_empty(&anon_vma->head);
1455 		int last_root_user = 0;
1456 		int root_empty = 0;
1457 
1458 		/*
1459 		 * The refcount on a non-root anon_vma got dropped.  Drop
1460 		 * the refcount on the root and check if we need to free it.
1461 		 */
1462 		if (empty && anon_vma != root) {
1463 			BUG_ON(atomic_read(&root->external_refcount) <= 0);
1464 			last_root_user = atomic_dec_and_test(&root->external_refcount);
1465 			root_empty = list_empty(&root->head);
1466 		}
1467 		anon_vma_unlock(anon_vma);
1468 
1469 		if (empty) {
1470 			anon_vma_free(anon_vma);
1471 			if (root_empty && last_root_user)
1472 				anon_vma_free(root);
1473 		}
1474 	}
1475 }
1476 #endif
1477 
1478 #ifdef CONFIG_MIGRATION
1479 /*
1480  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1481  * Called by migrate.c to remove migration ptes, but might be used more later.
1482  */
1483 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1484 		struct vm_area_struct *, unsigned long, void *), void *arg)
1485 {
1486 	struct anon_vma *anon_vma;
1487 	struct anon_vma_chain *avc;
1488 	int ret = SWAP_AGAIN;
1489 
1490 	/*
1491 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1492 	 * because that depends on page_mapped(); but not all its usages
1493 	 * are holding mmap_sem. Users without mmap_sem are required to
1494 	 * take a reference count to prevent the anon_vma disappearing
1495 	 */
1496 	anon_vma = page_anon_vma(page);
1497 	if (!anon_vma)
1498 		return ret;
1499 	anon_vma_lock(anon_vma);
1500 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1501 		struct vm_area_struct *vma = avc->vma;
1502 		unsigned long address = vma_address(page, vma);
1503 		if (address == -EFAULT)
1504 			continue;
1505 		ret = rmap_one(page, vma, address, arg);
1506 		if (ret != SWAP_AGAIN)
1507 			break;
1508 	}
1509 	anon_vma_unlock(anon_vma);
1510 	return ret;
1511 }
1512 
1513 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1514 		struct vm_area_struct *, unsigned long, void *), void *arg)
1515 {
1516 	struct address_space *mapping = page->mapping;
1517 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1518 	struct vm_area_struct *vma;
1519 	struct prio_tree_iter iter;
1520 	int ret = SWAP_AGAIN;
1521 
1522 	if (!mapping)
1523 		return ret;
1524 	spin_lock(&mapping->i_mmap_lock);
1525 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1526 		unsigned long address = vma_address(page, vma);
1527 		if (address == -EFAULT)
1528 			continue;
1529 		ret = rmap_one(page, vma, address, arg);
1530 		if (ret != SWAP_AGAIN)
1531 			break;
1532 	}
1533 	/*
1534 	 * No nonlinear handling: being always shared, nonlinear vmas
1535 	 * never contain migration ptes.  Decide what to do about this
1536 	 * limitation to linear when we need rmap_walk() on nonlinear.
1537 	 */
1538 	spin_unlock(&mapping->i_mmap_lock);
1539 	return ret;
1540 }
1541 
1542 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1543 		struct vm_area_struct *, unsigned long, void *), void *arg)
1544 {
1545 	VM_BUG_ON(!PageLocked(page));
1546 
1547 	if (unlikely(PageKsm(page)))
1548 		return rmap_walk_ksm(page, rmap_one, arg);
1549 	else if (PageAnon(page))
1550 		return rmap_walk_anon(page, rmap_one, arg);
1551 	else
1552 		return rmap_walk_file(page, rmap_one, arg);
1553 }
1554 #endif /* CONFIG_MIGRATION */
1555 
1556 #ifdef CONFIG_HUGETLB_PAGE
1557 /*
1558  * The following three functions are for anonymous (private mapped) hugepages.
1559  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1560  * and no lru code, because we handle hugepages differently from common pages.
1561  */
1562 static void __hugepage_set_anon_rmap(struct page *page,
1563 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1564 {
1565 	struct anon_vma *anon_vma = vma->anon_vma;
1566 
1567 	BUG_ON(!anon_vma);
1568 
1569 	if (PageAnon(page))
1570 		return;
1571 	if (!exclusive)
1572 		anon_vma = anon_vma->root;
1573 
1574 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1575 	page->mapping = (struct address_space *) anon_vma;
1576 	page->index = linear_page_index(vma, address);
1577 }
1578 
1579 void hugepage_add_anon_rmap(struct page *page,
1580 			    struct vm_area_struct *vma, unsigned long address)
1581 {
1582 	struct anon_vma *anon_vma = vma->anon_vma;
1583 	int first;
1584 
1585 	BUG_ON(!PageLocked(page));
1586 	BUG_ON(!anon_vma);
1587 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1588 	first = atomic_inc_and_test(&page->_mapcount);
1589 	if (first)
1590 		__hugepage_set_anon_rmap(page, vma, address, 0);
1591 }
1592 
1593 void hugepage_add_new_anon_rmap(struct page *page,
1594 			struct vm_area_struct *vma, unsigned long address)
1595 {
1596 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1597 	atomic_set(&page->_mapcount, 0);
1598 	__hugepage_set_anon_rmap(page, vma, address, 1);
1599 }
1600 #endif /* CONFIG_HUGETLB_PAGE */
1601