1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem (vmtruncate_range) 25 * mm->mmap_sem 26 * page->flags PG_locked (lock_page) 27 * mapping->i_mmap_lock 28 * anon_vma->lock 29 * mm->page_table_lock or pte_lock 30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * inode_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within inode_lock in __sync_single_inode) 39 * 40 * (code doesn't rely on that order so it could be switched around) 41 * ->tasklist_lock 42 * anon_vma->lock (memory_failure, collect_procs_anon) 43 * pte map lock 44 */ 45 46 #include <linux/mm.h> 47 #include <linux/pagemap.h> 48 #include <linux/swap.h> 49 #include <linux/swapops.h> 50 #include <linux/slab.h> 51 #include <linux/init.h> 52 #include <linux/ksm.h> 53 #include <linux/rmap.h> 54 #include <linux/rcupdate.h> 55 #include <linux/module.h> 56 #include <linux/memcontrol.h> 57 #include <linux/mmu_notifier.h> 58 #include <linux/migrate.h> 59 #include <linux/hugetlb.h> 60 61 #include <asm/tlbflush.h> 62 63 #include "internal.h" 64 65 static struct kmem_cache *anon_vma_cachep; 66 static struct kmem_cache *anon_vma_chain_cachep; 67 68 static inline struct anon_vma *anon_vma_alloc(void) 69 { 70 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 71 } 72 73 void anon_vma_free(struct anon_vma *anon_vma) 74 { 75 kmem_cache_free(anon_vma_cachep, anon_vma); 76 } 77 78 static inline struct anon_vma_chain *anon_vma_chain_alloc(void) 79 { 80 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL); 81 } 82 83 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 84 { 85 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 86 } 87 88 /** 89 * anon_vma_prepare - attach an anon_vma to a memory region 90 * @vma: the memory region in question 91 * 92 * This makes sure the memory mapping described by 'vma' has 93 * an 'anon_vma' attached to it, so that we can associate the 94 * anonymous pages mapped into it with that anon_vma. 95 * 96 * The common case will be that we already have one, but if 97 * if not we either need to find an adjacent mapping that we 98 * can re-use the anon_vma from (very common when the only 99 * reason for splitting a vma has been mprotect()), or we 100 * allocate a new one. 101 * 102 * Anon-vma allocations are very subtle, because we may have 103 * optimistically looked up an anon_vma in page_lock_anon_vma() 104 * and that may actually touch the spinlock even in the newly 105 * allocated vma (it depends on RCU to make sure that the 106 * anon_vma isn't actually destroyed). 107 * 108 * As a result, we need to do proper anon_vma locking even 109 * for the new allocation. At the same time, we do not want 110 * to do any locking for the common case of already having 111 * an anon_vma. 112 * 113 * This must be called with the mmap_sem held for reading. 114 */ 115 int anon_vma_prepare(struct vm_area_struct *vma) 116 { 117 struct anon_vma *anon_vma = vma->anon_vma; 118 struct anon_vma_chain *avc; 119 120 might_sleep(); 121 if (unlikely(!anon_vma)) { 122 struct mm_struct *mm = vma->vm_mm; 123 struct anon_vma *allocated; 124 125 avc = anon_vma_chain_alloc(); 126 if (!avc) 127 goto out_enomem; 128 129 anon_vma = find_mergeable_anon_vma(vma); 130 allocated = NULL; 131 if (!anon_vma) { 132 anon_vma = anon_vma_alloc(); 133 if (unlikely(!anon_vma)) 134 goto out_enomem_free_avc; 135 allocated = anon_vma; 136 /* 137 * This VMA had no anon_vma yet. This anon_vma is 138 * the root of any anon_vma tree that might form. 139 */ 140 anon_vma->root = anon_vma; 141 } 142 143 anon_vma_lock(anon_vma); 144 /* page_table_lock to protect against threads */ 145 spin_lock(&mm->page_table_lock); 146 if (likely(!vma->anon_vma)) { 147 vma->anon_vma = anon_vma; 148 avc->anon_vma = anon_vma; 149 avc->vma = vma; 150 list_add(&avc->same_vma, &vma->anon_vma_chain); 151 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 152 allocated = NULL; 153 avc = NULL; 154 } 155 spin_unlock(&mm->page_table_lock); 156 anon_vma_unlock(anon_vma); 157 158 if (unlikely(allocated)) 159 anon_vma_free(allocated); 160 if (unlikely(avc)) 161 anon_vma_chain_free(avc); 162 } 163 return 0; 164 165 out_enomem_free_avc: 166 anon_vma_chain_free(avc); 167 out_enomem: 168 return -ENOMEM; 169 } 170 171 static void anon_vma_chain_link(struct vm_area_struct *vma, 172 struct anon_vma_chain *avc, 173 struct anon_vma *anon_vma) 174 { 175 avc->vma = vma; 176 avc->anon_vma = anon_vma; 177 list_add(&avc->same_vma, &vma->anon_vma_chain); 178 179 anon_vma_lock(anon_vma); 180 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 181 anon_vma_unlock(anon_vma); 182 } 183 184 /* 185 * Attach the anon_vmas from src to dst. 186 * Returns 0 on success, -ENOMEM on failure. 187 */ 188 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 189 { 190 struct anon_vma_chain *avc, *pavc; 191 192 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 193 avc = anon_vma_chain_alloc(); 194 if (!avc) 195 goto enomem_failure; 196 anon_vma_chain_link(dst, avc, pavc->anon_vma); 197 } 198 return 0; 199 200 enomem_failure: 201 unlink_anon_vmas(dst); 202 return -ENOMEM; 203 } 204 205 /* 206 * Attach vma to its own anon_vma, as well as to the anon_vmas that 207 * the corresponding VMA in the parent process is attached to. 208 * Returns 0 on success, non-zero on failure. 209 */ 210 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 211 { 212 struct anon_vma_chain *avc; 213 struct anon_vma *anon_vma; 214 215 /* Don't bother if the parent process has no anon_vma here. */ 216 if (!pvma->anon_vma) 217 return 0; 218 219 /* 220 * First, attach the new VMA to the parent VMA's anon_vmas, 221 * so rmap can find non-COWed pages in child processes. 222 */ 223 if (anon_vma_clone(vma, pvma)) 224 return -ENOMEM; 225 226 /* Then add our own anon_vma. */ 227 anon_vma = anon_vma_alloc(); 228 if (!anon_vma) 229 goto out_error; 230 avc = anon_vma_chain_alloc(); 231 if (!avc) 232 goto out_error_free_anon_vma; 233 234 /* 235 * The root anon_vma's spinlock is the lock actually used when we 236 * lock any of the anon_vmas in this anon_vma tree. 237 */ 238 anon_vma->root = pvma->anon_vma->root; 239 /* 240 * With KSM refcounts, an anon_vma can stay around longer than the 241 * process it belongs to. The root anon_vma needs to be pinned 242 * until this anon_vma is freed, because the lock lives in the root. 243 */ 244 get_anon_vma(anon_vma->root); 245 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 246 vma->anon_vma = anon_vma; 247 anon_vma_chain_link(vma, avc, anon_vma); 248 249 return 0; 250 251 out_error_free_anon_vma: 252 anon_vma_free(anon_vma); 253 out_error: 254 unlink_anon_vmas(vma); 255 return -ENOMEM; 256 } 257 258 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain) 259 { 260 struct anon_vma *anon_vma = anon_vma_chain->anon_vma; 261 int empty; 262 263 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */ 264 if (!anon_vma) 265 return; 266 267 anon_vma_lock(anon_vma); 268 list_del(&anon_vma_chain->same_anon_vma); 269 270 /* We must garbage collect the anon_vma if it's empty */ 271 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma); 272 anon_vma_unlock(anon_vma); 273 274 if (empty) { 275 /* We no longer need the root anon_vma */ 276 if (anon_vma->root != anon_vma) 277 drop_anon_vma(anon_vma->root); 278 anon_vma_free(anon_vma); 279 } 280 } 281 282 void unlink_anon_vmas(struct vm_area_struct *vma) 283 { 284 struct anon_vma_chain *avc, *next; 285 286 /* 287 * Unlink each anon_vma chained to the VMA. This list is ordered 288 * from newest to oldest, ensuring the root anon_vma gets freed last. 289 */ 290 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 291 anon_vma_unlink(avc); 292 list_del(&avc->same_vma); 293 anon_vma_chain_free(avc); 294 } 295 } 296 297 static void anon_vma_ctor(void *data) 298 { 299 struct anon_vma *anon_vma = data; 300 301 spin_lock_init(&anon_vma->lock); 302 anonvma_external_refcount_init(anon_vma); 303 INIT_LIST_HEAD(&anon_vma->head); 304 } 305 306 void __init anon_vma_init(void) 307 { 308 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 309 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 310 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 311 } 312 313 /* 314 * Getting a lock on a stable anon_vma from a page off the LRU is 315 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 316 */ 317 struct anon_vma *__page_lock_anon_vma(struct page *page) 318 { 319 struct anon_vma *anon_vma, *root_anon_vma; 320 unsigned long anon_mapping; 321 322 rcu_read_lock(); 323 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 324 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 325 goto out; 326 if (!page_mapped(page)) 327 goto out; 328 329 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 330 root_anon_vma = ACCESS_ONCE(anon_vma->root); 331 spin_lock(&root_anon_vma->lock); 332 333 /* 334 * If this page is still mapped, then its anon_vma cannot have been 335 * freed. But if it has been unmapped, we have no security against 336 * the anon_vma structure being freed and reused (for another anon_vma: 337 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot 338 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting 339 * anon_vma->root before page_unlock_anon_vma() is called to unlock. 340 */ 341 if (page_mapped(page)) 342 return anon_vma; 343 344 spin_unlock(&root_anon_vma->lock); 345 out: 346 rcu_read_unlock(); 347 return NULL; 348 } 349 350 void page_unlock_anon_vma(struct anon_vma *anon_vma) 351 __releases(&anon_vma->root->lock) 352 __releases(RCU) 353 { 354 anon_vma_unlock(anon_vma); 355 rcu_read_unlock(); 356 } 357 358 /* 359 * At what user virtual address is page expected in @vma? 360 * Returns virtual address or -EFAULT if page's index/offset is not 361 * within the range mapped the @vma. 362 */ 363 static inline unsigned long 364 vma_address(struct page *page, struct vm_area_struct *vma) 365 { 366 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 367 unsigned long address; 368 369 if (unlikely(is_vm_hugetlb_page(vma))) 370 pgoff = page->index << huge_page_order(page_hstate(page)); 371 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 372 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 373 /* page should be within @vma mapping range */ 374 return -EFAULT; 375 } 376 return address; 377 } 378 379 /* 380 * At what user virtual address is page expected in vma? 381 * Caller should check the page is actually part of the vma. 382 */ 383 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 384 { 385 if (PageAnon(page)) { 386 struct anon_vma *page__anon_vma = page_anon_vma(page); 387 /* 388 * Note: swapoff's unuse_vma() is more efficient with this 389 * check, and needs it to match anon_vma when KSM is active. 390 */ 391 if (!vma->anon_vma || !page__anon_vma || 392 vma->anon_vma->root != page__anon_vma->root) 393 return -EFAULT; 394 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 395 if (!vma->vm_file || 396 vma->vm_file->f_mapping != page->mapping) 397 return -EFAULT; 398 } else 399 return -EFAULT; 400 return vma_address(page, vma); 401 } 402 403 /* 404 * Check that @page is mapped at @address into @mm. 405 * 406 * If @sync is false, page_check_address may perform a racy check to avoid 407 * the page table lock when the pte is not present (helpful when reclaiming 408 * highly shared pages). 409 * 410 * On success returns with pte mapped and locked. 411 */ 412 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 413 unsigned long address, spinlock_t **ptlp, int sync) 414 { 415 pgd_t *pgd; 416 pud_t *pud; 417 pmd_t *pmd; 418 pte_t *pte; 419 spinlock_t *ptl; 420 421 if (unlikely(PageHuge(page))) { 422 pte = huge_pte_offset(mm, address); 423 ptl = &mm->page_table_lock; 424 goto check; 425 } 426 427 pgd = pgd_offset(mm, address); 428 if (!pgd_present(*pgd)) 429 return NULL; 430 431 pud = pud_offset(pgd, address); 432 if (!pud_present(*pud)) 433 return NULL; 434 435 pmd = pmd_offset(pud, address); 436 if (!pmd_present(*pmd)) 437 return NULL; 438 439 pte = pte_offset_map(pmd, address); 440 /* Make a quick check before getting the lock */ 441 if (!sync && !pte_present(*pte)) { 442 pte_unmap(pte); 443 return NULL; 444 } 445 446 ptl = pte_lockptr(mm, pmd); 447 check: 448 spin_lock(ptl); 449 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 450 *ptlp = ptl; 451 return pte; 452 } 453 pte_unmap_unlock(pte, ptl); 454 return NULL; 455 } 456 457 /** 458 * page_mapped_in_vma - check whether a page is really mapped in a VMA 459 * @page: the page to test 460 * @vma: the VMA to test 461 * 462 * Returns 1 if the page is mapped into the page tables of the VMA, 0 463 * if the page is not mapped into the page tables of this VMA. Only 464 * valid for normal file or anonymous VMAs. 465 */ 466 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 467 { 468 unsigned long address; 469 pte_t *pte; 470 spinlock_t *ptl; 471 472 address = vma_address(page, vma); 473 if (address == -EFAULT) /* out of vma range */ 474 return 0; 475 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 476 if (!pte) /* the page is not in this mm */ 477 return 0; 478 pte_unmap_unlock(pte, ptl); 479 480 return 1; 481 } 482 483 /* 484 * Subfunctions of page_referenced: page_referenced_one called 485 * repeatedly from either page_referenced_anon or page_referenced_file. 486 */ 487 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 488 unsigned long address, unsigned int *mapcount, 489 unsigned long *vm_flags) 490 { 491 struct mm_struct *mm = vma->vm_mm; 492 pte_t *pte; 493 spinlock_t *ptl; 494 int referenced = 0; 495 496 pte = page_check_address(page, mm, address, &ptl, 0); 497 if (!pte) 498 goto out; 499 500 /* 501 * Don't want to elevate referenced for mlocked page that gets this far, 502 * in order that it progresses to try_to_unmap and is moved to the 503 * unevictable list. 504 */ 505 if (vma->vm_flags & VM_LOCKED) { 506 *mapcount = 1; /* break early from loop */ 507 *vm_flags |= VM_LOCKED; 508 goto out_unmap; 509 } 510 511 if (ptep_clear_flush_young_notify(vma, address, pte)) { 512 /* 513 * Don't treat a reference through a sequentially read 514 * mapping as such. If the page has been used in 515 * another mapping, we will catch it; if this other 516 * mapping is already gone, the unmap path will have 517 * set PG_referenced or activated the page. 518 */ 519 if (likely(!VM_SequentialReadHint(vma))) 520 referenced++; 521 } 522 523 /* Pretend the page is referenced if the task has the 524 swap token and is in the middle of a page fault. */ 525 if (mm != current->mm && has_swap_token(mm) && 526 rwsem_is_locked(&mm->mmap_sem)) 527 referenced++; 528 529 out_unmap: 530 (*mapcount)--; 531 pte_unmap_unlock(pte, ptl); 532 533 if (referenced) 534 *vm_flags |= vma->vm_flags; 535 out: 536 return referenced; 537 } 538 539 static int page_referenced_anon(struct page *page, 540 struct mem_cgroup *mem_cont, 541 unsigned long *vm_flags) 542 { 543 unsigned int mapcount; 544 struct anon_vma *anon_vma; 545 struct anon_vma_chain *avc; 546 int referenced = 0; 547 548 anon_vma = page_lock_anon_vma(page); 549 if (!anon_vma) 550 return referenced; 551 552 mapcount = page_mapcount(page); 553 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 554 struct vm_area_struct *vma = avc->vma; 555 unsigned long address = vma_address(page, vma); 556 if (address == -EFAULT) 557 continue; 558 /* 559 * If we are reclaiming on behalf of a cgroup, skip 560 * counting on behalf of references from different 561 * cgroups 562 */ 563 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 564 continue; 565 referenced += page_referenced_one(page, vma, address, 566 &mapcount, vm_flags); 567 if (!mapcount) 568 break; 569 } 570 571 page_unlock_anon_vma(anon_vma); 572 return referenced; 573 } 574 575 /** 576 * page_referenced_file - referenced check for object-based rmap 577 * @page: the page we're checking references on. 578 * @mem_cont: target memory controller 579 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 580 * 581 * For an object-based mapped page, find all the places it is mapped and 582 * check/clear the referenced flag. This is done by following the page->mapping 583 * pointer, then walking the chain of vmas it holds. It returns the number 584 * of references it found. 585 * 586 * This function is only called from page_referenced for object-based pages. 587 */ 588 static int page_referenced_file(struct page *page, 589 struct mem_cgroup *mem_cont, 590 unsigned long *vm_flags) 591 { 592 unsigned int mapcount; 593 struct address_space *mapping = page->mapping; 594 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 595 struct vm_area_struct *vma; 596 struct prio_tree_iter iter; 597 int referenced = 0; 598 599 /* 600 * The caller's checks on page->mapping and !PageAnon have made 601 * sure that this is a file page: the check for page->mapping 602 * excludes the case just before it gets set on an anon page. 603 */ 604 BUG_ON(PageAnon(page)); 605 606 /* 607 * The page lock not only makes sure that page->mapping cannot 608 * suddenly be NULLified by truncation, it makes sure that the 609 * structure at mapping cannot be freed and reused yet, 610 * so we can safely take mapping->i_mmap_lock. 611 */ 612 BUG_ON(!PageLocked(page)); 613 614 spin_lock(&mapping->i_mmap_lock); 615 616 /* 617 * i_mmap_lock does not stabilize mapcount at all, but mapcount 618 * is more likely to be accurate if we note it after spinning. 619 */ 620 mapcount = page_mapcount(page); 621 622 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 623 unsigned long address = vma_address(page, vma); 624 if (address == -EFAULT) 625 continue; 626 /* 627 * If we are reclaiming on behalf of a cgroup, skip 628 * counting on behalf of references from different 629 * cgroups 630 */ 631 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 632 continue; 633 referenced += page_referenced_one(page, vma, address, 634 &mapcount, vm_flags); 635 if (!mapcount) 636 break; 637 } 638 639 spin_unlock(&mapping->i_mmap_lock); 640 return referenced; 641 } 642 643 /** 644 * page_referenced - test if the page was referenced 645 * @page: the page to test 646 * @is_locked: caller holds lock on the page 647 * @mem_cont: target memory controller 648 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 649 * 650 * Quick test_and_clear_referenced for all mappings to a page, 651 * returns the number of ptes which referenced the page. 652 */ 653 int page_referenced(struct page *page, 654 int is_locked, 655 struct mem_cgroup *mem_cont, 656 unsigned long *vm_flags) 657 { 658 int referenced = 0; 659 int we_locked = 0; 660 661 *vm_flags = 0; 662 if (page_mapped(page) && page_rmapping(page)) { 663 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 664 we_locked = trylock_page(page); 665 if (!we_locked) { 666 referenced++; 667 goto out; 668 } 669 } 670 if (unlikely(PageKsm(page))) 671 referenced += page_referenced_ksm(page, mem_cont, 672 vm_flags); 673 else if (PageAnon(page)) 674 referenced += page_referenced_anon(page, mem_cont, 675 vm_flags); 676 else if (page->mapping) 677 referenced += page_referenced_file(page, mem_cont, 678 vm_flags); 679 if (we_locked) 680 unlock_page(page); 681 } 682 out: 683 if (page_test_and_clear_young(page)) 684 referenced++; 685 686 return referenced; 687 } 688 689 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 690 unsigned long address) 691 { 692 struct mm_struct *mm = vma->vm_mm; 693 pte_t *pte; 694 spinlock_t *ptl; 695 int ret = 0; 696 697 pte = page_check_address(page, mm, address, &ptl, 1); 698 if (!pte) 699 goto out; 700 701 if (pte_dirty(*pte) || pte_write(*pte)) { 702 pte_t entry; 703 704 flush_cache_page(vma, address, pte_pfn(*pte)); 705 entry = ptep_clear_flush_notify(vma, address, pte); 706 entry = pte_wrprotect(entry); 707 entry = pte_mkclean(entry); 708 set_pte_at(mm, address, pte, entry); 709 ret = 1; 710 } 711 712 pte_unmap_unlock(pte, ptl); 713 out: 714 return ret; 715 } 716 717 static int page_mkclean_file(struct address_space *mapping, struct page *page) 718 { 719 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 720 struct vm_area_struct *vma; 721 struct prio_tree_iter iter; 722 int ret = 0; 723 724 BUG_ON(PageAnon(page)); 725 726 spin_lock(&mapping->i_mmap_lock); 727 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 728 if (vma->vm_flags & VM_SHARED) { 729 unsigned long address = vma_address(page, vma); 730 if (address == -EFAULT) 731 continue; 732 ret += page_mkclean_one(page, vma, address); 733 } 734 } 735 spin_unlock(&mapping->i_mmap_lock); 736 return ret; 737 } 738 739 int page_mkclean(struct page *page) 740 { 741 int ret = 0; 742 743 BUG_ON(!PageLocked(page)); 744 745 if (page_mapped(page)) { 746 struct address_space *mapping = page_mapping(page); 747 if (mapping) { 748 ret = page_mkclean_file(mapping, page); 749 if (page_test_dirty(page)) { 750 page_clear_dirty(page, 1); 751 ret = 1; 752 } 753 } 754 } 755 756 return ret; 757 } 758 EXPORT_SYMBOL_GPL(page_mkclean); 759 760 /** 761 * page_move_anon_rmap - move a page to our anon_vma 762 * @page: the page to move to our anon_vma 763 * @vma: the vma the page belongs to 764 * @address: the user virtual address mapped 765 * 766 * When a page belongs exclusively to one process after a COW event, 767 * that page can be moved into the anon_vma that belongs to just that 768 * process, so the rmap code will not search the parent or sibling 769 * processes. 770 */ 771 void page_move_anon_rmap(struct page *page, 772 struct vm_area_struct *vma, unsigned long address) 773 { 774 struct anon_vma *anon_vma = vma->anon_vma; 775 776 VM_BUG_ON(!PageLocked(page)); 777 VM_BUG_ON(!anon_vma); 778 VM_BUG_ON(page->index != linear_page_index(vma, address)); 779 780 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 781 page->mapping = (struct address_space *) anon_vma; 782 } 783 784 /** 785 * __page_set_anon_rmap - set up new anonymous rmap 786 * @page: Page to add to rmap 787 * @vma: VM area to add page to. 788 * @address: User virtual address of the mapping 789 * @exclusive: the page is exclusively owned by the current process 790 */ 791 static void __page_set_anon_rmap(struct page *page, 792 struct vm_area_struct *vma, unsigned long address, int exclusive) 793 { 794 struct anon_vma *anon_vma = vma->anon_vma; 795 796 BUG_ON(!anon_vma); 797 798 if (PageAnon(page)) 799 return; 800 801 /* 802 * If the page isn't exclusively mapped into this vma, 803 * we must use the _oldest_ possible anon_vma for the 804 * page mapping! 805 */ 806 if (!exclusive) 807 anon_vma = anon_vma->root; 808 809 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 810 page->mapping = (struct address_space *) anon_vma; 811 page->index = linear_page_index(vma, address); 812 } 813 814 /** 815 * __page_check_anon_rmap - sanity check anonymous rmap addition 816 * @page: the page to add the mapping to 817 * @vma: the vm area in which the mapping is added 818 * @address: the user virtual address mapped 819 */ 820 static void __page_check_anon_rmap(struct page *page, 821 struct vm_area_struct *vma, unsigned long address) 822 { 823 #ifdef CONFIG_DEBUG_VM 824 /* 825 * The page's anon-rmap details (mapping and index) are guaranteed to 826 * be set up correctly at this point. 827 * 828 * We have exclusion against page_add_anon_rmap because the caller 829 * always holds the page locked, except if called from page_dup_rmap, 830 * in which case the page is already known to be setup. 831 * 832 * We have exclusion against page_add_new_anon_rmap because those pages 833 * are initially only visible via the pagetables, and the pte is locked 834 * over the call to page_add_new_anon_rmap. 835 */ 836 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 837 BUG_ON(page->index != linear_page_index(vma, address)); 838 #endif 839 } 840 841 /** 842 * page_add_anon_rmap - add pte mapping to an anonymous page 843 * @page: the page to add the mapping to 844 * @vma: the vm area in which the mapping is added 845 * @address: the user virtual address mapped 846 * 847 * The caller needs to hold the pte lock, and the page must be locked in 848 * the anon_vma case: to serialize mapping,index checking after setting, 849 * and to ensure that PageAnon is not being upgraded racily to PageKsm 850 * (but PageKsm is never downgraded to PageAnon). 851 */ 852 void page_add_anon_rmap(struct page *page, 853 struct vm_area_struct *vma, unsigned long address) 854 { 855 do_page_add_anon_rmap(page, vma, address, 0); 856 } 857 858 /* 859 * Special version of the above for do_swap_page, which often runs 860 * into pages that are exclusively owned by the current process. 861 * Everybody else should continue to use page_add_anon_rmap above. 862 */ 863 void do_page_add_anon_rmap(struct page *page, 864 struct vm_area_struct *vma, unsigned long address, int exclusive) 865 { 866 int first = atomic_inc_and_test(&page->_mapcount); 867 if (first) 868 __inc_zone_page_state(page, NR_ANON_PAGES); 869 if (unlikely(PageKsm(page))) 870 return; 871 872 VM_BUG_ON(!PageLocked(page)); 873 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 874 if (first) 875 __page_set_anon_rmap(page, vma, address, exclusive); 876 else 877 __page_check_anon_rmap(page, vma, address); 878 } 879 880 /** 881 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 882 * @page: the page to add the mapping to 883 * @vma: the vm area in which the mapping is added 884 * @address: the user virtual address mapped 885 * 886 * Same as page_add_anon_rmap but must only be called on *new* pages. 887 * This means the inc-and-test can be bypassed. 888 * Page does not have to be locked. 889 */ 890 void page_add_new_anon_rmap(struct page *page, 891 struct vm_area_struct *vma, unsigned long address) 892 { 893 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 894 SetPageSwapBacked(page); 895 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 896 __inc_zone_page_state(page, NR_ANON_PAGES); 897 __page_set_anon_rmap(page, vma, address, 1); 898 if (page_evictable(page, vma)) 899 lru_cache_add_lru(page, LRU_ACTIVE_ANON); 900 else 901 add_page_to_unevictable_list(page); 902 } 903 904 /** 905 * page_add_file_rmap - add pte mapping to a file page 906 * @page: the page to add the mapping to 907 * 908 * The caller needs to hold the pte lock. 909 */ 910 void page_add_file_rmap(struct page *page) 911 { 912 if (atomic_inc_and_test(&page->_mapcount)) { 913 __inc_zone_page_state(page, NR_FILE_MAPPED); 914 mem_cgroup_update_file_mapped(page, 1); 915 } 916 } 917 918 /** 919 * page_remove_rmap - take down pte mapping from a page 920 * @page: page to remove mapping from 921 * 922 * The caller needs to hold the pte lock. 923 */ 924 void page_remove_rmap(struct page *page) 925 { 926 /* page still mapped by someone else? */ 927 if (!atomic_add_negative(-1, &page->_mapcount)) 928 return; 929 930 /* 931 * Now that the last pte has gone, s390 must transfer dirty 932 * flag from storage key to struct page. We can usually skip 933 * this if the page is anon, so about to be freed; but perhaps 934 * not if it's in swapcache - there might be another pte slot 935 * containing the swap entry, but page not yet written to swap. 936 */ 937 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) { 938 page_clear_dirty(page, 1); 939 set_page_dirty(page); 940 } 941 /* 942 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 943 * and not charged by memcg for now. 944 */ 945 if (unlikely(PageHuge(page))) 946 return; 947 if (PageAnon(page)) { 948 mem_cgroup_uncharge_page(page); 949 __dec_zone_page_state(page, NR_ANON_PAGES); 950 } else { 951 __dec_zone_page_state(page, NR_FILE_MAPPED); 952 mem_cgroup_update_file_mapped(page, -1); 953 } 954 /* 955 * It would be tidy to reset the PageAnon mapping here, 956 * but that might overwrite a racing page_add_anon_rmap 957 * which increments mapcount after us but sets mapping 958 * before us: so leave the reset to free_hot_cold_page, 959 * and remember that it's only reliable while mapped. 960 * Leaving it set also helps swapoff to reinstate ptes 961 * faster for those pages still in swapcache. 962 */ 963 } 964 965 /* 966 * Subfunctions of try_to_unmap: try_to_unmap_one called 967 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 968 */ 969 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 970 unsigned long address, enum ttu_flags flags) 971 { 972 struct mm_struct *mm = vma->vm_mm; 973 pte_t *pte; 974 pte_t pteval; 975 spinlock_t *ptl; 976 int ret = SWAP_AGAIN; 977 978 pte = page_check_address(page, mm, address, &ptl, 0); 979 if (!pte) 980 goto out; 981 982 /* 983 * If the page is mlock()d, we cannot swap it out. 984 * If it's recently referenced (perhaps page_referenced 985 * skipped over this mm) then we should reactivate it. 986 */ 987 if (!(flags & TTU_IGNORE_MLOCK)) { 988 if (vma->vm_flags & VM_LOCKED) 989 goto out_mlock; 990 991 if (TTU_ACTION(flags) == TTU_MUNLOCK) 992 goto out_unmap; 993 } 994 if (!(flags & TTU_IGNORE_ACCESS)) { 995 if (ptep_clear_flush_young_notify(vma, address, pte)) { 996 ret = SWAP_FAIL; 997 goto out_unmap; 998 } 999 } 1000 1001 /* Nuke the page table entry. */ 1002 flush_cache_page(vma, address, page_to_pfn(page)); 1003 pteval = ptep_clear_flush_notify(vma, address, pte); 1004 1005 /* Move the dirty bit to the physical page now the pte is gone. */ 1006 if (pte_dirty(pteval)) 1007 set_page_dirty(page); 1008 1009 /* Update high watermark before we lower rss */ 1010 update_hiwater_rss(mm); 1011 1012 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1013 if (PageAnon(page)) 1014 dec_mm_counter(mm, MM_ANONPAGES); 1015 else 1016 dec_mm_counter(mm, MM_FILEPAGES); 1017 set_pte_at(mm, address, pte, 1018 swp_entry_to_pte(make_hwpoison_entry(page))); 1019 } else if (PageAnon(page)) { 1020 swp_entry_t entry = { .val = page_private(page) }; 1021 1022 if (PageSwapCache(page)) { 1023 /* 1024 * Store the swap location in the pte. 1025 * See handle_pte_fault() ... 1026 */ 1027 if (swap_duplicate(entry) < 0) { 1028 set_pte_at(mm, address, pte, pteval); 1029 ret = SWAP_FAIL; 1030 goto out_unmap; 1031 } 1032 if (list_empty(&mm->mmlist)) { 1033 spin_lock(&mmlist_lock); 1034 if (list_empty(&mm->mmlist)) 1035 list_add(&mm->mmlist, &init_mm.mmlist); 1036 spin_unlock(&mmlist_lock); 1037 } 1038 dec_mm_counter(mm, MM_ANONPAGES); 1039 inc_mm_counter(mm, MM_SWAPENTS); 1040 } else if (PAGE_MIGRATION) { 1041 /* 1042 * Store the pfn of the page in a special migration 1043 * pte. do_swap_page() will wait until the migration 1044 * pte is removed and then restart fault handling. 1045 */ 1046 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1047 entry = make_migration_entry(page, pte_write(pteval)); 1048 } 1049 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1050 BUG_ON(pte_file(*pte)); 1051 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { 1052 /* Establish migration entry for a file page */ 1053 swp_entry_t entry; 1054 entry = make_migration_entry(page, pte_write(pteval)); 1055 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1056 } else 1057 dec_mm_counter(mm, MM_FILEPAGES); 1058 1059 page_remove_rmap(page); 1060 page_cache_release(page); 1061 1062 out_unmap: 1063 pte_unmap_unlock(pte, ptl); 1064 out: 1065 return ret; 1066 1067 out_mlock: 1068 pte_unmap_unlock(pte, ptl); 1069 1070 1071 /* 1072 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1073 * unstable result and race. Plus, We can't wait here because 1074 * we now hold anon_vma->lock or mapping->i_mmap_lock. 1075 * if trylock failed, the page remain in evictable lru and later 1076 * vmscan could retry to move the page to unevictable lru if the 1077 * page is actually mlocked. 1078 */ 1079 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1080 if (vma->vm_flags & VM_LOCKED) { 1081 mlock_vma_page(page); 1082 ret = SWAP_MLOCK; 1083 } 1084 up_read(&vma->vm_mm->mmap_sem); 1085 } 1086 return ret; 1087 } 1088 1089 /* 1090 * objrmap doesn't work for nonlinear VMAs because the assumption that 1091 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1092 * Consequently, given a particular page and its ->index, we cannot locate the 1093 * ptes which are mapping that page without an exhaustive linear search. 1094 * 1095 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1096 * maps the file to which the target page belongs. The ->vm_private_data field 1097 * holds the current cursor into that scan. Successive searches will circulate 1098 * around the vma's virtual address space. 1099 * 1100 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1101 * more scanning pressure is placed against them as well. Eventually pages 1102 * will become fully unmapped and are eligible for eviction. 1103 * 1104 * For very sparsely populated VMAs this is a little inefficient - chances are 1105 * there there won't be many ptes located within the scan cluster. In this case 1106 * maybe we could scan further - to the end of the pte page, perhaps. 1107 * 1108 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1109 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1110 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1111 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1112 */ 1113 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1114 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1115 1116 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1117 struct vm_area_struct *vma, struct page *check_page) 1118 { 1119 struct mm_struct *mm = vma->vm_mm; 1120 pgd_t *pgd; 1121 pud_t *pud; 1122 pmd_t *pmd; 1123 pte_t *pte; 1124 pte_t pteval; 1125 spinlock_t *ptl; 1126 struct page *page; 1127 unsigned long address; 1128 unsigned long end; 1129 int ret = SWAP_AGAIN; 1130 int locked_vma = 0; 1131 1132 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1133 end = address + CLUSTER_SIZE; 1134 if (address < vma->vm_start) 1135 address = vma->vm_start; 1136 if (end > vma->vm_end) 1137 end = vma->vm_end; 1138 1139 pgd = pgd_offset(mm, address); 1140 if (!pgd_present(*pgd)) 1141 return ret; 1142 1143 pud = pud_offset(pgd, address); 1144 if (!pud_present(*pud)) 1145 return ret; 1146 1147 pmd = pmd_offset(pud, address); 1148 if (!pmd_present(*pmd)) 1149 return ret; 1150 1151 /* 1152 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1153 * keep the sem while scanning the cluster for mlocking pages. 1154 */ 1155 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1156 locked_vma = (vma->vm_flags & VM_LOCKED); 1157 if (!locked_vma) 1158 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1159 } 1160 1161 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1162 1163 /* Update high watermark before we lower rss */ 1164 update_hiwater_rss(mm); 1165 1166 for (; address < end; pte++, address += PAGE_SIZE) { 1167 if (!pte_present(*pte)) 1168 continue; 1169 page = vm_normal_page(vma, address, *pte); 1170 BUG_ON(!page || PageAnon(page)); 1171 1172 if (locked_vma) { 1173 mlock_vma_page(page); /* no-op if already mlocked */ 1174 if (page == check_page) 1175 ret = SWAP_MLOCK; 1176 continue; /* don't unmap */ 1177 } 1178 1179 if (ptep_clear_flush_young_notify(vma, address, pte)) 1180 continue; 1181 1182 /* Nuke the page table entry. */ 1183 flush_cache_page(vma, address, pte_pfn(*pte)); 1184 pteval = ptep_clear_flush_notify(vma, address, pte); 1185 1186 /* If nonlinear, store the file page offset in the pte. */ 1187 if (page->index != linear_page_index(vma, address)) 1188 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 1189 1190 /* Move the dirty bit to the physical page now the pte is gone. */ 1191 if (pte_dirty(pteval)) 1192 set_page_dirty(page); 1193 1194 page_remove_rmap(page); 1195 page_cache_release(page); 1196 dec_mm_counter(mm, MM_FILEPAGES); 1197 (*mapcount)--; 1198 } 1199 pte_unmap_unlock(pte - 1, ptl); 1200 if (locked_vma) 1201 up_read(&vma->vm_mm->mmap_sem); 1202 return ret; 1203 } 1204 1205 static bool is_vma_temporary_stack(struct vm_area_struct *vma) 1206 { 1207 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1208 1209 if (!maybe_stack) 1210 return false; 1211 1212 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1213 VM_STACK_INCOMPLETE_SETUP) 1214 return true; 1215 1216 return false; 1217 } 1218 1219 /** 1220 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1221 * rmap method 1222 * @page: the page to unmap/unlock 1223 * @flags: action and flags 1224 * 1225 * Find all the mappings of a page using the mapping pointer and the vma chains 1226 * contained in the anon_vma struct it points to. 1227 * 1228 * This function is only called from try_to_unmap/try_to_munlock for 1229 * anonymous pages. 1230 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1231 * where the page was found will be held for write. So, we won't recheck 1232 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1233 * 'LOCKED. 1234 */ 1235 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) 1236 { 1237 struct anon_vma *anon_vma; 1238 struct anon_vma_chain *avc; 1239 int ret = SWAP_AGAIN; 1240 1241 anon_vma = page_lock_anon_vma(page); 1242 if (!anon_vma) 1243 return ret; 1244 1245 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1246 struct vm_area_struct *vma = avc->vma; 1247 unsigned long address; 1248 1249 /* 1250 * During exec, a temporary VMA is setup and later moved. 1251 * The VMA is moved under the anon_vma lock but not the 1252 * page tables leading to a race where migration cannot 1253 * find the migration ptes. Rather than increasing the 1254 * locking requirements of exec(), migration skips 1255 * temporary VMAs until after exec() completes. 1256 */ 1257 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) && 1258 is_vma_temporary_stack(vma)) 1259 continue; 1260 1261 address = vma_address(page, vma); 1262 if (address == -EFAULT) 1263 continue; 1264 ret = try_to_unmap_one(page, vma, address, flags); 1265 if (ret != SWAP_AGAIN || !page_mapped(page)) 1266 break; 1267 } 1268 1269 page_unlock_anon_vma(anon_vma); 1270 return ret; 1271 } 1272 1273 /** 1274 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1275 * @page: the page to unmap/unlock 1276 * @flags: action and flags 1277 * 1278 * Find all the mappings of a page using the mapping pointer and the vma chains 1279 * contained in the address_space struct it points to. 1280 * 1281 * This function is only called from try_to_unmap/try_to_munlock for 1282 * object-based pages. 1283 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1284 * where the page was found will be held for write. So, we won't recheck 1285 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1286 * 'LOCKED. 1287 */ 1288 static int try_to_unmap_file(struct page *page, enum ttu_flags flags) 1289 { 1290 struct address_space *mapping = page->mapping; 1291 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1292 struct vm_area_struct *vma; 1293 struct prio_tree_iter iter; 1294 int ret = SWAP_AGAIN; 1295 unsigned long cursor; 1296 unsigned long max_nl_cursor = 0; 1297 unsigned long max_nl_size = 0; 1298 unsigned int mapcount; 1299 1300 spin_lock(&mapping->i_mmap_lock); 1301 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1302 unsigned long address = vma_address(page, vma); 1303 if (address == -EFAULT) 1304 continue; 1305 ret = try_to_unmap_one(page, vma, address, flags); 1306 if (ret != SWAP_AGAIN || !page_mapped(page)) 1307 goto out; 1308 } 1309 1310 if (list_empty(&mapping->i_mmap_nonlinear)) 1311 goto out; 1312 1313 /* 1314 * We don't bother to try to find the munlocked page in nonlinears. 1315 * It's costly. Instead, later, page reclaim logic may call 1316 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. 1317 */ 1318 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1319 goto out; 1320 1321 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1322 shared.vm_set.list) { 1323 cursor = (unsigned long) vma->vm_private_data; 1324 if (cursor > max_nl_cursor) 1325 max_nl_cursor = cursor; 1326 cursor = vma->vm_end - vma->vm_start; 1327 if (cursor > max_nl_size) 1328 max_nl_size = cursor; 1329 } 1330 1331 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1332 ret = SWAP_FAIL; 1333 goto out; 1334 } 1335 1336 /* 1337 * We don't try to search for this page in the nonlinear vmas, 1338 * and page_referenced wouldn't have found it anyway. Instead 1339 * just walk the nonlinear vmas trying to age and unmap some. 1340 * The mapcount of the page we came in with is irrelevant, 1341 * but even so use it as a guide to how hard we should try? 1342 */ 1343 mapcount = page_mapcount(page); 1344 if (!mapcount) 1345 goto out; 1346 cond_resched_lock(&mapping->i_mmap_lock); 1347 1348 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1349 if (max_nl_cursor == 0) 1350 max_nl_cursor = CLUSTER_SIZE; 1351 1352 do { 1353 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1354 shared.vm_set.list) { 1355 cursor = (unsigned long) vma->vm_private_data; 1356 while ( cursor < max_nl_cursor && 1357 cursor < vma->vm_end - vma->vm_start) { 1358 if (try_to_unmap_cluster(cursor, &mapcount, 1359 vma, page) == SWAP_MLOCK) 1360 ret = SWAP_MLOCK; 1361 cursor += CLUSTER_SIZE; 1362 vma->vm_private_data = (void *) cursor; 1363 if ((int)mapcount <= 0) 1364 goto out; 1365 } 1366 vma->vm_private_data = (void *) max_nl_cursor; 1367 } 1368 cond_resched_lock(&mapping->i_mmap_lock); 1369 max_nl_cursor += CLUSTER_SIZE; 1370 } while (max_nl_cursor <= max_nl_size); 1371 1372 /* 1373 * Don't loop forever (perhaps all the remaining pages are 1374 * in locked vmas). Reset cursor on all unreserved nonlinear 1375 * vmas, now forgetting on which ones it had fallen behind. 1376 */ 1377 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1378 vma->vm_private_data = NULL; 1379 out: 1380 spin_unlock(&mapping->i_mmap_lock); 1381 return ret; 1382 } 1383 1384 /** 1385 * try_to_unmap - try to remove all page table mappings to a page 1386 * @page: the page to get unmapped 1387 * @flags: action and flags 1388 * 1389 * Tries to remove all the page table entries which are mapping this 1390 * page, used in the pageout path. Caller must hold the page lock. 1391 * Return values are: 1392 * 1393 * SWAP_SUCCESS - we succeeded in removing all mappings 1394 * SWAP_AGAIN - we missed a mapping, try again later 1395 * SWAP_FAIL - the page is unswappable 1396 * SWAP_MLOCK - page is mlocked. 1397 */ 1398 int try_to_unmap(struct page *page, enum ttu_flags flags) 1399 { 1400 int ret; 1401 1402 BUG_ON(!PageLocked(page)); 1403 1404 if (unlikely(PageKsm(page))) 1405 ret = try_to_unmap_ksm(page, flags); 1406 else if (PageAnon(page)) 1407 ret = try_to_unmap_anon(page, flags); 1408 else 1409 ret = try_to_unmap_file(page, flags); 1410 if (ret != SWAP_MLOCK && !page_mapped(page)) 1411 ret = SWAP_SUCCESS; 1412 return ret; 1413 } 1414 1415 /** 1416 * try_to_munlock - try to munlock a page 1417 * @page: the page to be munlocked 1418 * 1419 * Called from munlock code. Checks all of the VMAs mapping the page 1420 * to make sure nobody else has this page mlocked. The page will be 1421 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1422 * 1423 * Return values are: 1424 * 1425 * SWAP_AGAIN - no vma is holding page mlocked, or, 1426 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1427 * SWAP_FAIL - page cannot be located at present 1428 * SWAP_MLOCK - page is now mlocked. 1429 */ 1430 int try_to_munlock(struct page *page) 1431 { 1432 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1433 1434 if (unlikely(PageKsm(page))) 1435 return try_to_unmap_ksm(page, TTU_MUNLOCK); 1436 else if (PageAnon(page)) 1437 return try_to_unmap_anon(page, TTU_MUNLOCK); 1438 else 1439 return try_to_unmap_file(page, TTU_MUNLOCK); 1440 } 1441 1442 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION) 1443 /* 1444 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root 1445 * if necessary. Be careful to do all the tests under the lock. Once 1446 * we know we are the last user, nobody else can get a reference and we 1447 * can do the freeing without the lock. 1448 */ 1449 void drop_anon_vma(struct anon_vma *anon_vma) 1450 { 1451 BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0); 1452 if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) { 1453 struct anon_vma *root = anon_vma->root; 1454 int empty = list_empty(&anon_vma->head); 1455 int last_root_user = 0; 1456 int root_empty = 0; 1457 1458 /* 1459 * The refcount on a non-root anon_vma got dropped. Drop 1460 * the refcount on the root and check if we need to free it. 1461 */ 1462 if (empty && anon_vma != root) { 1463 BUG_ON(atomic_read(&root->external_refcount) <= 0); 1464 last_root_user = atomic_dec_and_test(&root->external_refcount); 1465 root_empty = list_empty(&root->head); 1466 } 1467 anon_vma_unlock(anon_vma); 1468 1469 if (empty) { 1470 anon_vma_free(anon_vma); 1471 if (root_empty && last_root_user) 1472 anon_vma_free(root); 1473 } 1474 } 1475 } 1476 #endif 1477 1478 #ifdef CONFIG_MIGRATION 1479 /* 1480 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): 1481 * Called by migrate.c to remove migration ptes, but might be used more later. 1482 */ 1483 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, 1484 struct vm_area_struct *, unsigned long, void *), void *arg) 1485 { 1486 struct anon_vma *anon_vma; 1487 struct anon_vma_chain *avc; 1488 int ret = SWAP_AGAIN; 1489 1490 /* 1491 * Note: remove_migration_ptes() cannot use page_lock_anon_vma() 1492 * because that depends on page_mapped(); but not all its usages 1493 * are holding mmap_sem. Users without mmap_sem are required to 1494 * take a reference count to prevent the anon_vma disappearing 1495 */ 1496 anon_vma = page_anon_vma(page); 1497 if (!anon_vma) 1498 return ret; 1499 anon_vma_lock(anon_vma); 1500 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1501 struct vm_area_struct *vma = avc->vma; 1502 unsigned long address = vma_address(page, vma); 1503 if (address == -EFAULT) 1504 continue; 1505 ret = rmap_one(page, vma, address, arg); 1506 if (ret != SWAP_AGAIN) 1507 break; 1508 } 1509 anon_vma_unlock(anon_vma); 1510 return ret; 1511 } 1512 1513 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, 1514 struct vm_area_struct *, unsigned long, void *), void *arg) 1515 { 1516 struct address_space *mapping = page->mapping; 1517 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1518 struct vm_area_struct *vma; 1519 struct prio_tree_iter iter; 1520 int ret = SWAP_AGAIN; 1521 1522 if (!mapping) 1523 return ret; 1524 spin_lock(&mapping->i_mmap_lock); 1525 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1526 unsigned long address = vma_address(page, vma); 1527 if (address == -EFAULT) 1528 continue; 1529 ret = rmap_one(page, vma, address, arg); 1530 if (ret != SWAP_AGAIN) 1531 break; 1532 } 1533 /* 1534 * No nonlinear handling: being always shared, nonlinear vmas 1535 * never contain migration ptes. Decide what to do about this 1536 * limitation to linear when we need rmap_walk() on nonlinear. 1537 */ 1538 spin_unlock(&mapping->i_mmap_lock); 1539 return ret; 1540 } 1541 1542 int rmap_walk(struct page *page, int (*rmap_one)(struct page *, 1543 struct vm_area_struct *, unsigned long, void *), void *arg) 1544 { 1545 VM_BUG_ON(!PageLocked(page)); 1546 1547 if (unlikely(PageKsm(page))) 1548 return rmap_walk_ksm(page, rmap_one, arg); 1549 else if (PageAnon(page)) 1550 return rmap_walk_anon(page, rmap_one, arg); 1551 else 1552 return rmap_walk_file(page, rmap_one, arg); 1553 } 1554 #endif /* CONFIG_MIGRATION */ 1555 1556 #ifdef CONFIG_HUGETLB_PAGE 1557 /* 1558 * The following three functions are for anonymous (private mapped) hugepages. 1559 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1560 * and no lru code, because we handle hugepages differently from common pages. 1561 */ 1562 static void __hugepage_set_anon_rmap(struct page *page, 1563 struct vm_area_struct *vma, unsigned long address, int exclusive) 1564 { 1565 struct anon_vma *anon_vma = vma->anon_vma; 1566 1567 BUG_ON(!anon_vma); 1568 1569 if (PageAnon(page)) 1570 return; 1571 if (!exclusive) 1572 anon_vma = anon_vma->root; 1573 1574 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1575 page->mapping = (struct address_space *) anon_vma; 1576 page->index = linear_page_index(vma, address); 1577 } 1578 1579 void hugepage_add_anon_rmap(struct page *page, 1580 struct vm_area_struct *vma, unsigned long address) 1581 { 1582 struct anon_vma *anon_vma = vma->anon_vma; 1583 int first; 1584 1585 BUG_ON(!PageLocked(page)); 1586 BUG_ON(!anon_vma); 1587 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1588 first = atomic_inc_and_test(&page->_mapcount); 1589 if (first) 1590 __hugepage_set_anon_rmap(page, vma, address, 0); 1591 } 1592 1593 void hugepage_add_new_anon_rmap(struct page *page, 1594 struct vm_area_struct *vma, unsigned long address) 1595 { 1596 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1597 atomic_set(&page->_mapcount, 0); 1598 __hugepage_set_anon_rmap(page, vma, address, 1); 1599 } 1600 #endif /* CONFIG_HUGETLB_PAGE */ 1601