xref: /openbmc/linux/mm/rmap.c (revision b7019ac5)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27  *         mapping->i_mmap_rwsem
28  *           anon_vma->rwsem
29  *             mm->page_table_lock or pte_lock
30  *               pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *               swap_lock (in swap_duplicate, swap_info_get)
32  *                 mmlist_lock (in mmput, drain_mmlist and others)
33  *                 mapping->private_lock (in __set_page_dirty_buffers)
34  *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35  *                     i_pages lock (widely used)
36  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
39  *                   i_pages lock (widely used, in set_page_dirty,
40  *                             in arch-dependent flush_dcache_mmap_lock,
41  *                             within bdi.wb->list_lock in __sync_single_inode)
42  *
43  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
44  *   ->tasklist_lock
45  *     pte map lock
46  */
47 
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66 #include <linux/memremap.h>
67 #include <linux/userfaultfd_k.h>
68 
69 #include <asm/tlbflush.h>
70 
71 #include <trace/events/tlb.h>
72 
73 #include "internal.h"
74 
75 static struct kmem_cache *anon_vma_cachep;
76 static struct kmem_cache *anon_vma_chain_cachep;
77 
78 static inline struct anon_vma *anon_vma_alloc(void)
79 {
80 	struct anon_vma *anon_vma;
81 
82 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
83 	if (anon_vma) {
84 		atomic_set(&anon_vma->refcount, 1);
85 		anon_vma->degree = 1;	/* Reference for first vma */
86 		anon_vma->parent = anon_vma;
87 		/*
88 		 * Initialise the anon_vma root to point to itself. If called
89 		 * from fork, the root will be reset to the parents anon_vma.
90 		 */
91 		anon_vma->root = anon_vma;
92 	}
93 
94 	return anon_vma;
95 }
96 
97 static inline void anon_vma_free(struct anon_vma *anon_vma)
98 {
99 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
100 
101 	/*
102 	 * Synchronize against page_lock_anon_vma_read() such that
103 	 * we can safely hold the lock without the anon_vma getting
104 	 * freed.
105 	 *
106 	 * Relies on the full mb implied by the atomic_dec_and_test() from
107 	 * put_anon_vma() against the acquire barrier implied by
108 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
109 	 *
110 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
111 	 *   down_read_trylock()		  atomic_dec_and_test()
112 	 *   LOCK				  MB
113 	 *   atomic_read()			  rwsem_is_locked()
114 	 *
115 	 * LOCK should suffice since the actual taking of the lock must
116 	 * happen _before_ what follows.
117 	 */
118 	might_sleep();
119 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
120 		anon_vma_lock_write(anon_vma);
121 		anon_vma_unlock_write(anon_vma);
122 	}
123 
124 	kmem_cache_free(anon_vma_cachep, anon_vma);
125 }
126 
127 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
128 {
129 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
130 }
131 
132 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
133 {
134 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
135 }
136 
137 static void anon_vma_chain_link(struct vm_area_struct *vma,
138 				struct anon_vma_chain *avc,
139 				struct anon_vma *anon_vma)
140 {
141 	avc->vma = vma;
142 	avc->anon_vma = anon_vma;
143 	list_add(&avc->same_vma, &vma->anon_vma_chain);
144 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
145 }
146 
147 /**
148  * __anon_vma_prepare - attach an anon_vma to a memory region
149  * @vma: the memory region in question
150  *
151  * This makes sure the memory mapping described by 'vma' has
152  * an 'anon_vma' attached to it, so that we can associate the
153  * anonymous pages mapped into it with that anon_vma.
154  *
155  * The common case will be that we already have one, which
156  * is handled inline by anon_vma_prepare(). But if
157  * not we either need to find an adjacent mapping that we
158  * can re-use the anon_vma from (very common when the only
159  * reason for splitting a vma has been mprotect()), or we
160  * allocate a new one.
161  *
162  * Anon-vma allocations are very subtle, because we may have
163  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
164  * and that may actually touch the spinlock even in the newly
165  * allocated vma (it depends on RCU to make sure that the
166  * anon_vma isn't actually destroyed).
167  *
168  * As a result, we need to do proper anon_vma locking even
169  * for the new allocation. At the same time, we do not want
170  * to do any locking for the common case of already having
171  * an anon_vma.
172  *
173  * This must be called with the mmap_sem held for reading.
174  */
175 int __anon_vma_prepare(struct vm_area_struct *vma)
176 {
177 	struct mm_struct *mm = vma->vm_mm;
178 	struct anon_vma *anon_vma, *allocated;
179 	struct anon_vma_chain *avc;
180 
181 	might_sleep();
182 
183 	avc = anon_vma_chain_alloc(GFP_KERNEL);
184 	if (!avc)
185 		goto out_enomem;
186 
187 	anon_vma = find_mergeable_anon_vma(vma);
188 	allocated = NULL;
189 	if (!anon_vma) {
190 		anon_vma = anon_vma_alloc();
191 		if (unlikely(!anon_vma))
192 			goto out_enomem_free_avc;
193 		allocated = anon_vma;
194 	}
195 
196 	anon_vma_lock_write(anon_vma);
197 	/* page_table_lock to protect against threads */
198 	spin_lock(&mm->page_table_lock);
199 	if (likely(!vma->anon_vma)) {
200 		vma->anon_vma = anon_vma;
201 		anon_vma_chain_link(vma, avc, anon_vma);
202 		/* vma reference or self-parent link for new root */
203 		anon_vma->degree++;
204 		allocated = NULL;
205 		avc = NULL;
206 	}
207 	spin_unlock(&mm->page_table_lock);
208 	anon_vma_unlock_write(anon_vma);
209 
210 	if (unlikely(allocated))
211 		put_anon_vma(allocated);
212 	if (unlikely(avc))
213 		anon_vma_chain_free(avc);
214 
215 	return 0;
216 
217  out_enomem_free_avc:
218 	anon_vma_chain_free(avc);
219  out_enomem:
220 	return -ENOMEM;
221 }
222 
223 /*
224  * This is a useful helper function for locking the anon_vma root as
225  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
226  * have the same vma.
227  *
228  * Such anon_vma's should have the same root, so you'd expect to see
229  * just a single mutex_lock for the whole traversal.
230  */
231 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
232 {
233 	struct anon_vma *new_root = anon_vma->root;
234 	if (new_root != root) {
235 		if (WARN_ON_ONCE(root))
236 			up_write(&root->rwsem);
237 		root = new_root;
238 		down_write(&root->rwsem);
239 	}
240 	return root;
241 }
242 
243 static inline void unlock_anon_vma_root(struct anon_vma *root)
244 {
245 	if (root)
246 		up_write(&root->rwsem);
247 }
248 
249 /*
250  * Attach the anon_vmas from src to dst.
251  * Returns 0 on success, -ENOMEM on failure.
252  *
253  * If dst->anon_vma is NULL this function tries to find and reuse existing
254  * anon_vma which has no vmas and only one child anon_vma. This prevents
255  * degradation of anon_vma hierarchy to endless linear chain in case of
256  * constantly forking task. On the other hand, an anon_vma with more than one
257  * child isn't reused even if there was no alive vma, thus rmap walker has a
258  * good chance of avoiding scanning the whole hierarchy when it searches where
259  * page is mapped.
260  */
261 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
262 {
263 	struct anon_vma_chain *avc, *pavc;
264 	struct anon_vma *root = NULL;
265 
266 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
267 		struct anon_vma *anon_vma;
268 
269 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
270 		if (unlikely(!avc)) {
271 			unlock_anon_vma_root(root);
272 			root = NULL;
273 			avc = anon_vma_chain_alloc(GFP_KERNEL);
274 			if (!avc)
275 				goto enomem_failure;
276 		}
277 		anon_vma = pavc->anon_vma;
278 		root = lock_anon_vma_root(root, anon_vma);
279 		anon_vma_chain_link(dst, avc, anon_vma);
280 
281 		/*
282 		 * Reuse existing anon_vma if its degree lower than two,
283 		 * that means it has no vma and only one anon_vma child.
284 		 *
285 		 * Do not chose parent anon_vma, otherwise first child
286 		 * will always reuse it. Root anon_vma is never reused:
287 		 * it has self-parent reference and at least one child.
288 		 */
289 		if (!dst->anon_vma && anon_vma != src->anon_vma &&
290 				anon_vma->degree < 2)
291 			dst->anon_vma = anon_vma;
292 	}
293 	if (dst->anon_vma)
294 		dst->anon_vma->degree++;
295 	unlock_anon_vma_root(root);
296 	return 0;
297 
298  enomem_failure:
299 	/*
300 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
301 	 * decremented in unlink_anon_vmas().
302 	 * We can safely do this because callers of anon_vma_clone() don't care
303 	 * about dst->anon_vma if anon_vma_clone() failed.
304 	 */
305 	dst->anon_vma = NULL;
306 	unlink_anon_vmas(dst);
307 	return -ENOMEM;
308 }
309 
310 /*
311  * Attach vma to its own anon_vma, as well as to the anon_vmas that
312  * the corresponding VMA in the parent process is attached to.
313  * Returns 0 on success, non-zero on failure.
314  */
315 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
316 {
317 	struct anon_vma_chain *avc;
318 	struct anon_vma *anon_vma;
319 	int error;
320 
321 	/* Don't bother if the parent process has no anon_vma here. */
322 	if (!pvma->anon_vma)
323 		return 0;
324 
325 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
326 	vma->anon_vma = NULL;
327 
328 	/*
329 	 * First, attach the new VMA to the parent VMA's anon_vmas,
330 	 * so rmap can find non-COWed pages in child processes.
331 	 */
332 	error = anon_vma_clone(vma, pvma);
333 	if (error)
334 		return error;
335 
336 	/* An existing anon_vma has been reused, all done then. */
337 	if (vma->anon_vma)
338 		return 0;
339 
340 	/* Then add our own anon_vma. */
341 	anon_vma = anon_vma_alloc();
342 	if (!anon_vma)
343 		goto out_error;
344 	avc = anon_vma_chain_alloc(GFP_KERNEL);
345 	if (!avc)
346 		goto out_error_free_anon_vma;
347 
348 	/*
349 	 * The root anon_vma's spinlock is the lock actually used when we
350 	 * lock any of the anon_vmas in this anon_vma tree.
351 	 */
352 	anon_vma->root = pvma->anon_vma->root;
353 	anon_vma->parent = pvma->anon_vma;
354 	/*
355 	 * With refcounts, an anon_vma can stay around longer than the
356 	 * process it belongs to. The root anon_vma needs to be pinned until
357 	 * this anon_vma is freed, because the lock lives in the root.
358 	 */
359 	get_anon_vma(anon_vma->root);
360 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
361 	vma->anon_vma = anon_vma;
362 	anon_vma_lock_write(anon_vma);
363 	anon_vma_chain_link(vma, avc, anon_vma);
364 	anon_vma->parent->degree++;
365 	anon_vma_unlock_write(anon_vma);
366 
367 	return 0;
368 
369  out_error_free_anon_vma:
370 	put_anon_vma(anon_vma);
371  out_error:
372 	unlink_anon_vmas(vma);
373 	return -ENOMEM;
374 }
375 
376 void unlink_anon_vmas(struct vm_area_struct *vma)
377 {
378 	struct anon_vma_chain *avc, *next;
379 	struct anon_vma *root = NULL;
380 
381 	/*
382 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
383 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
384 	 */
385 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
386 		struct anon_vma *anon_vma = avc->anon_vma;
387 
388 		root = lock_anon_vma_root(root, anon_vma);
389 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
390 
391 		/*
392 		 * Leave empty anon_vmas on the list - we'll need
393 		 * to free them outside the lock.
394 		 */
395 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
396 			anon_vma->parent->degree--;
397 			continue;
398 		}
399 
400 		list_del(&avc->same_vma);
401 		anon_vma_chain_free(avc);
402 	}
403 	if (vma->anon_vma)
404 		vma->anon_vma->degree--;
405 	unlock_anon_vma_root(root);
406 
407 	/*
408 	 * Iterate the list once more, it now only contains empty and unlinked
409 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
410 	 * needing to write-acquire the anon_vma->root->rwsem.
411 	 */
412 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
413 		struct anon_vma *anon_vma = avc->anon_vma;
414 
415 		VM_WARN_ON(anon_vma->degree);
416 		put_anon_vma(anon_vma);
417 
418 		list_del(&avc->same_vma);
419 		anon_vma_chain_free(avc);
420 	}
421 }
422 
423 static void anon_vma_ctor(void *data)
424 {
425 	struct anon_vma *anon_vma = data;
426 
427 	init_rwsem(&anon_vma->rwsem);
428 	atomic_set(&anon_vma->refcount, 0);
429 	anon_vma->rb_root = RB_ROOT_CACHED;
430 }
431 
432 void __init anon_vma_init(void)
433 {
434 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
435 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
436 			anon_vma_ctor);
437 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
438 			SLAB_PANIC|SLAB_ACCOUNT);
439 }
440 
441 /*
442  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
443  *
444  * Since there is no serialization what so ever against page_remove_rmap()
445  * the best this function can do is return a locked anon_vma that might
446  * have been relevant to this page.
447  *
448  * The page might have been remapped to a different anon_vma or the anon_vma
449  * returned may already be freed (and even reused).
450  *
451  * In case it was remapped to a different anon_vma, the new anon_vma will be a
452  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
453  * ensure that any anon_vma obtained from the page will still be valid for as
454  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
455  *
456  * All users of this function must be very careful when walking the anon_vma
457  * chain and verify that the page in question is indeed mapped in it
458  * [ something equivalent to page_mapped_in_vma() ].
459  *
460  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
461  * that the anon_vma pointer from page->mapping is valid if there is a
462  * mapcount, we can dereference the anon_vma after observing those.
463  */
464 struct anon_vma *page_get_anon_vma(struct page *page)
465 {
466 	struct anon_vma *anon_vma = NULL;
467 	unsigned long anon_mapping;
468 
469 	rcu_read_lock();
470 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
471 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
472 		goto out;
473 	if (!page_mapped(page))
474 		goto out;
475 
476 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
477 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
478 		anon_vma = NULL;
479 		goto out;
480 	}
481 
482 	/*
483 	 * If this page is still mapped, then its anon_vma cannot have been
484 	 * freed.  But if it has been unmapped, we have no security against the
485 	 * anon_vma structure being freed and reused (for another anon_vma:
486 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
487 	 * above cannot corrupt).
488 	 */
489 	if (!page_mapped(page)) {
490 		rcu_read_unlock();
491 		put_anon_vma(anon_vma);
492 		return NULL;
493 	}
494 out:
495 	rcu_read_unlock();
496 
497 	return anon_vma;
498 }
499 
500 /*
501  * Similar to page_get_anon_vma() except it locks the anon_vma.
502  *
503  * Its a little more complex as it tries to keep the fast path to a single
504  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
505  * reference like with page_get_anon_vma() and then block on the mutex.
506  */
507 struct anon_vma *page_lock_anon_vma_read(struct page *page)
508 {
509 	struct anon_vma *anon_vma = NULL;
510 	struct anon_vma *root_anon_vma;
511 	unsigned long anon_mapping;
512 
513 	rcu_read_lock();
514 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
515 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
516 		goto out;
517 	if (!page_mapped(page))
518 		goto out;
519 
520 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
521 	root_anon_vma = READ_ONCE(anon_vma->root);
522 	if (down_read_trylock(&root_anon_vma->rwsem)) {
523 		/*
524 		 * If the page is still mapped, then this anon_vma is still
525 		 * its anon_vma, and holding the mutex ensures that it will
526 		 * not go away, see anon_vma_free().
527 		 */
528 		if (!page_mapped(page)) {
529 			up_read(&root_anon_vma->rwsem);
530 			anon_vma = NULL;
531 		}
532 		goto out;
533 	}
534 
535 	/* trylock failed, we got to sleep */
536 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
537 		anon_vma = NULL;
538 		goto out;
539 	}
540 
541 	if (!page_mapped(page)) {
542 		rcu_read_unlock();
543 		put_anon_vma(anon_vma);
544 		return NULL;
545 	}
546 
547 	/* we pinned the anon_vma, its safe to sleep */
548 	rcu_read_unlock();
549 	anon_vma_lock_read(anon_vma);
550 
551 	if (atomic_dec_and_test(&anon_vma->refcount)) {
552 		/*
553 		 * Oops, we held the last refcount, release the lock
554 		 * and bail -- can't simply use put_anon_vma() because
555 		 * we'll deadlock on the anon_vma_lock_write() recursion.
556 		 */
557 		anon_vma_unlock_read(anon_vma);
558 		__put_anon_vma(anon_vma);
559 		anon_vma = NULL;
560 	}
561 
562 	return anon_vma;
563 
564 out:
565 	rcu_read_unlock();
566 	return anon_vma;
567 }
568 
569 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
570 {
571 	anon_vma_unlock_read(anon_vma);
572 }
573 
574 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
575 /*
576  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
577  * important if a PTE was dirty when it was unmapped that it's flushed
578  * before any IO is initiated on the page to prevent lost writes. Similarly,
579  * it must be flushed before freeing to prevent data leakage.
580  */
581 void try_to_unmap_flush(void)
582 {
583 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
584 
585 	if (!tlb_ubc->flush_required)
586 		return;
587 
588 	arch_tlbbatch_flush(&tlb_ubc->arch);
589 	tlb_ubc->flush_required = false;
590 	tlb_ubc->writable = false;
591 }
592 
593 /* Flush iff there are potentially writable TLB entries that can race with IO */
594 void try_to_unmap_flush_dirty(void)
595 {
596 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
597 
598 	if (tlb_ubc->writable)
599 		try_to_unmap_flush();
600 }
601 
602 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
603 {
604 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
605 
606 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
607 	tlb_ubc->flush_required = true;
608 
609 	/*
610 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
611 	 * before the PTE is cleared.
612 	 */
613 	barrier();
614 	mm->tlb_flush_batched = true;
615 
616 	/*
617 	 * If the PTE was dirty then it's best to assume it's writable. The
618 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
619 	 * before the page is queued for IO.
620 	 */
621 	if (writable)
622 		tlb_ubc->writable = true;
623 }
624 
625 /*
626  * Returns true if the TLB flush should be deferred to the end of a batch of
627  * unmap operations to reduce IPIs.
628  */
629 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
630 {
631 	bool should_defer = false;
632 
633 	if (!(flags & TTU_BATCH_FLUSH))
634 		return false;
635 
636 	/* If remote CPUs need to be flushed then defer batch the flush */
637 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
638 		should_defer = true;
639 	put_cpu();
640 
641 	return should_defer;
642 }
643 
644 /*
645  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
646  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
647  * operation such as mprotect or munmap to race between reclaim unmapping
648  * the page and flushing the page. If this race occurs, it potentially allows
649  * access to data via a stale TLB entry. Tracking all mm's that have TLB
650  * batching in flight would be expensive during reclaim so instead track
651  * whether TLB batching occurred in the past and if so then do a flush here
652  * if required. This will cost one additional flush per reclaim cycle paid
653  * by the first operation at risk such as mprotect and mumap.
654  *
655  * This must be called under the PTL so that an access to tlb_flush_batched
656  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
657  * via the PTL.
658  */
659 void flush_tlb_batched_pending(struct mm_struct *mm)
660 {
661 	if (mm->tlb_flush_batched) {
662 		flush_tlb_mm(mm);
663 
664 		/*
665 		 * Do not allow the compiler to re-order the clearing of
666 		 * tlb_flush_batched before the tlb is flushed.
667 		 */
668 		barrier();
669 		mm->tlb_flush_batched = false;
670 	}
671 }
672 #else
673 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
674 {
675 }
676 
677 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
678 {
679 	return false;
680 }
681 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
682 
683 /*
684  * At what user virtual address is page expected in vma?
685  * Caller should check the page is actually part of the vma.
686  */
687 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
688 {
689 	unsigned long address;
690 	if (PageAnon(page)) {
691 		struct anon_vma *page__anon_vma = page_anon_vma(page);
692 		/*
693 		 * Note: swapoff's unuse_vma() is more efficient with this
694 		 * check, and needs it to match anon_vma when KSM is active.
695 		 */
696 		if (!vma->anon_vma || !page__anon_vma ||
697 		    vma->anon_vma->root != page__anon_vma->root)
698 			return -EFAULT;
699 	} else if (page->mapping) {
700 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
701 			return -EFAULT;
702 	} else
703 		return -EFAULT;
704 	address = __vma_address(page, vma);
705 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
706 		return -EFAULT;
707 	return address;
708 }
709 
710 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
711 {
712 	pgd_t *pgd;
713 	p4d_t *p4d;
714 	pud_t *pud;
715 	pmd_t *pmd = NULL;
716 	pmd_t pmde;
717 
718 	pgd = pgd_offset(mm, address);
719 	if (!pgd_present(*pgd))
720 		goto out;
721 
722 	p4d = p4d_offset(pgd, address);
723 	if (!p4d_present(*p4d))
724 		goto out;
725 
726 	pud = pud_offset(p4d, address);
727 	if (!pud_present(*pud))
728 		goto out;
729 
730 	pmd = pmd_offset(pud, address);
731 	/*
732 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
733 	 * without holding anon_vma lock for write.  So when looking for a
734 	 * genuine pmde (in which to find pte), test present and !THP together.
735 	 */
736 	pmde = *pmd;
737 	barrier();
738 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
739 		pmd = NULL;
740 out:
741 	return pmd;
742 }
743 
744 struct page_referenced_arg {
745 	int mapcount;
746 	int referenced;
747 	unsigned long vm_flags;
748 	struct mem_cgroup *memcg;
749 };
750 /*
751  * arg: page_referenced_arg will be passed
752  */
753 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
754 			unsigned long address, void *arg)
755 {
756 	struct page_referenced_arg *pra = arg;
757 	struct page_vma_mapped_walk pvmw = {
758 		.page = page,
759 		.vma = vma,
760 		.address = address,
761 	};
762 	int referenced = 0;
763 
764 	while (page_vma_mapped_walk(&pvmw)) {
765 		address = pvmw.address;
766 
767 		if (vma->vm_flags & VM_LOCKED) {
768 			page_vma_mapped_walk_done(&pvmw);
769 			pra->vm_flags |= VM_LOCKED;
770 			return false; /* To break the loop */
771 		}
772 
773 		if (pvmw.pte) {
774 			if (ptep_clear_flush_young_notify(vma, address,
775 						pvmw.pte)) {
776 				/*
777 				 * Don't treat a reference through
778 				 * a sequentially read mapping as such.
779 				 * If the page has been used in another mapping,
780 				 * we will catch it; if this other mapping is
781 				 * already gone, the unmap path will have set
782 				 * PG_referenced or activated the page.
783 				 */
784 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
785 					referenced++;
786 			}
787 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
788 			if (pmdp_clear_flush_young_notify(vma, address,
789 						pvmw.pmd))
790 				referenced++;
791 		} else {
792 			/* unexpected pmd-mapped page? */
793 			WARN_ON_ONCE(1);
794 		}
795 
796 		pra->mapcount--;
797 	}
798 
799 	if (referenced)
800 		clear_page_idle(page);
801 	if (test_and_clear_page_young(page))
802 		referenced++;
803 
804 	if (referenced) {
805 		pra->referenced++;
806 		pra->vm_flags |= vma->vm_flags;
807 	}
808 
809 	if (!pra->mapcount)
810 		return false; /* To break the loop */
811 
812 	return true;
813 }
814 
815 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
816 {
817 	struct page_referenced_arg *pra = arg;
818 	struct mem_cgroup *memcg = pra->memcg;
819 
820 	if (!mm_match_cgroup(vma->vm_mm, memcg))
821 		return true;
822 
823 	return false;
824 }
825 
826 /**
827  * page_referenced - test if the page was referenced
828  * @page: the page to test
829  * @is_locked: caller holds lock on the page
830  * @memcg: target memory cgroup
831  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
832  *
833  * Quick test_and_clear_referenced for all mappings to a page,
834  * returns the number of ptes which referenced the page.
835  */
836 int page_referenced(struct page *page,
837 		    int is_locked,
838 		    struct mem_cgroup *memcg,
839 		    unsigned long *vm_flags)
840 {
841 	int we_locked = 0;
842 	struct page_referenced_arg pra = {
843 		.mapcount = total_mapcount(page),
844 		.memcg = memcg,
845 	};
846 	struct rmap_walk_control rwc = {
847 		.rmap_one = page_referenced_one,
848 		.arg = (void *)&pra,
849 		.anon_lock = page_lock_anon_vma_read,
850 	};
851 
852 	*vm_flags = 0;
853 	if (!pra.mapcount)
854 		return 0;
855 
856 	if (!page_rmapping(page))
857 		return 0;
858 
859 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
860 		we_locked = trylock_page(page);
861 		if (!we_locked)
862 			return 1;
863 	}
864 
865 	/*
866 	 * If we are reclaiming on behalf of a cgroup, skip
867 	 * counting on behalf of references from different
868 	 * cgroups
869 	 */
870 	if (memcg) {
871 		rwc.invalid_vma = invalid_page_referenced_vma;
872 	}
873 
874 	rmap_walk(page, &rwc);
875 	*vm_flags = pra.vm_flags;
876 
877 	if (we_locked)
878 		unlock_page(page);
879 
880 	return pra.referenced;
881 }
882 
883 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
884 			    unsigned long address, void *arg)
885 {
886 	struct page_vma_mapped_walk pvmw = {
887 		.page = page,
888 		.vma = vma,
889 		.address = address,
890 		.flags = PVMW_SYNC,
891 	};
892 	struct mmu_notifier_range range;
893 	int *cleaned = arg;
894 
895 	/*
896 	 * We have to assume the worse case ie pmd for invalidation. Note that
897 	 * the page can not be free from this function.
898 	 */
899 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
900 				0, vma, vma->vm_mm, address,
901 				min(vma->vm_end, address +
902 				    (PAGE_SIZE << compound_order(page))));
903 	mmu_notifier_invalidate_range_start(&range);
904 
905 	while (page_vma_mapped_walk(&pvmw)) {
906 		unsigned long cstart;
907 		int ret = 0;
908 
909 		cstart = address = pvmw.address;
910 		if (pvmw.pte) {
911 			pte_t entry;
912 			pte_t *pte = pvmw.pte;
913 
914 			if (!pte_dirty(*pte) && !pte_write(*pte))
915 				continue;
916 
917 			flush_cache_page(vma, address, pte_pfn(*pte));
918 			entry = ptep_clear_flush(vma, address, pte);
919 			entry = pte_wrprotect(entry);
920 			entry = pte_mkclean(entry);
921 			set_pte_at(vma->vm_mm, address, pte, entry);
922 			ret = 1;
923 		} else {
924 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
925 			pmd_t *pmd = pvmw.pmd;
926 			pmd_t entry;
927 
928 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
929 				continue;
930 
931 			flush_cache_page(vma, address, page_to_pfn(page));
932 			entry = pmdp_invalidate(vma, address, pmd);
933 			entry = pmd_wrprotect(entry);
934 			entry = pmd_mkclean(entry);
935 			set_pmd_at(vma->vm_mm, address, pmd, entry);
936 			cstart &= PMD_MASK;
937 			ret = 1;
938 #else
939 			/* unexpected pmd-mapped page? */
940 			WARN_ON_ONCE(1);
941 #endif
942 		}
943 
944 		/*
945 		 * No need to call mmu_notifier_invalidate_range() as we are
946 		 * downgrading page table protection not changing it to point
947 		 * to a new page.
948 		 *
949 		 * See Documentation/vm/mmu_notifier.rst
950 		 */
951 		if (ret)
952 			(*cleaned)++;
953 	}
954 
955 	mmu_notifier_invalidate_range_end(&range);
956 
957 	return true;
958 }
959 
960 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
961 {
962 	if (vma->vm_flags & VM_SHARED)
963 		return false;
964 
965 	return true;
966 }
967 
968 int page_mkclean(struct page *page)
969 {
970 	int cleaned = 0;
971 	struct address_space *mapping;
972 	struct rmap_walk_control rwc = {
973 		.arg = (void *)&cleaned,
974 		.rmap_one = page_mkclean_one,
975 		.invalid_vma = invalid_mkclean_vma,
976 	};
977 
978 	BUG_ON(!PageLocked(page));
979 
980 	if (!page_mapped(page))
981 		return 0;
982 
983 	mapping = page_mapping(page);
984 	if (!mapping)
985 		return 0;
986 
987 	rmap_walk(page, &rwc);
988 
989 	return cleaned;
990 }
991 EXPORT_SYMBOL_GPL(page_mkclean);
992 
993 /**
994  * page_move_anon_rmap - move a page to our anon_vma
995  * @page:	the page to move to our anon_vma
996  * @vma:	the vma the page belongs to
997  *
998  * When a page belongs exclusively to one process after a COW event,
999  * that page can be moved into the anon_vma that belongs to just that
1000  * process, so the rmap code will not search the parent or sibling
1001  * processes.
1002  */
1003 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1004 {
1005 	struct anon_vma *anon_vma = vma->anon_vma;
1006 
1007 	page = compound_head(page);
1008 
1009 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1010 	VM_BUG_ON_VMA(!anon_vma, vma);
1011 
1012 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1013 	/*
1014 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1015 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1016 	 * PageAnon()) will not see one without the other.
1017 	 */
1018 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1019 }
1020 
1021 /**
1022  * __page_set_anon_rmap - set up new anonymous rmap
1023  * @page:	Page or Hugepage to add to rmap
1024  * @vma:	VM area to add page to.
1025  * @address:	User virtual address of the mapping
1026  * @exclusive:	the page is exclusively owned by the current process
1027  */
1028 static void __page_set_anon_rmap(struct page *page,
1029 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1030 {
1031 	struct anon_vma *anon_vma = vma->anon_vma;
1032 
1033 	BUG_ON(!anon_vma);
1034 
1035 	if (PageAnon(page))
1036 		return;
1037 
1038 	/*
1039 	 * If the page isn't exclusively mapped into this vma,
1040 	 * we must use the _oldest_ possible anon_vma for the
1041 	 * page mapping!
1042 	 */
1043 	if (!exclusive)
1044 		anon_vma = anon_vma->root;
1045 
1046 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1047 	page->mapping = (struct address_space *) anon_vma;
1048 	page->index = linear_page_index(vma, address);
1049 }
1050 
1051 /**
1052  * __page_check_anon_rmap - sanity check anonymous rmap addition
1053  * @page:	the page to add the mapping to
1054  * @vma:	the vm area in which the mapping is added
1055  * @address:	the user virtual address mapped
1056  */
1057 static void __page_check_anon_rmap(struct page *page,
1058 	struct vm_area_struct *vma, unsigned long address)
1059 {
1060 #ifdef CONFIG_DEBUG_VM
1061 	/*
1062 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1063 	 * be set up correctly at this point.
1064 	 *
1065 	 * We have exclusion against page_add_anon_rmap because the caller
1066 	 * always holds the page locked, except if called from page_dup_rmap,
1067 	 * in which case the page is already known to be setup.
1068 	 *
1069 	 * We have exclusion against page_add_new_anon_rmap because those pages
1070 	 * are initially only visible via the pagetables, and the pte is locked
1071 	 * over the call to page_add_new_anon_rmap.
1072 	 */
1073 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1074 	BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1075 #endif
1076 }
1077 
1078 /**
1079  * page_add_anon_rmap - add pte mapping to an anonymous page
1080  * @page:	the page to add the mapping to
1081  * @vma:	the vm area in which the mapping is added
1082  * @address:	the user virtual address mapped
1083  * @compound:	charge the page as compound or small page
1084  *
1085  * The caller needs to hold the pte lock, and the page must be locked in
1086  * the anon_vma case: to serialize mapping,index checking after setting,
1087  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1088  * (but PageKsm is never downgraded to PageAnon).
1089  */
1090 void page_add_anon_rmap(struct page *page,
1091 	struct vm_area_struct *vma, unsigned long address, bool compound)
1092 {
1093 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1094 }
1095 
1096 /*
1097  * Special version of the above for do_swap_page, which often runs
1098  * into pages that are exclusively owned by the current process.
1099  * Everybody else should continue to use page_add_anon_rmap above.
1100  */
1101 void do_page_add_anon_rmap(struct page *page,
1102 	struct vm_area_struct *vma, unsigned long address, int flags)
1103 {
1104 	bool compound = flags & RMAP_COMPOUND;
1105 	bool first;
1106 
1107 	if (compound) {
1108 		atomic_t *mapcount;
1109 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1110 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1111 		mapcount = compound_mapcount_ptr(page);
1112 		first = atomic_inc_and_test(mapcount);
1113 	} else {
1114 		first = atomic_inc_and_test(&page->_mapcount);
1115 	}
1116 
1117 	if (first) {
1118 		int nr = compound ? hpage_nr_pages(page) : 1;
1119 		/*
1120 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1121 		 * these counters are not modified in interrupt context, and
1122 		 * pte lock(a spinlock) is held, which implies preemption
1123 		 * disabled.
1124 		 */
1125 		if (compound)
1126 			__inc_node_page_state(page, NR_ANON_THPS);
1127 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1128 	}
1129 	if (unlikely(PageKsm(page)))
1130 		return;
1131 
1132 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1133 
1134 	/* address might be in next vma when migration races vma_adjust */
1135 	if (first)
1136 		__page_set_anon_rmap(page, vma, address,
1137 				flags & RMAP_EXCLUSIVE);
1138 	else
1139 		__page_check_anon_rmap(page, vma, address);
1140 }
1141 
1142 /**
1143  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1144  * @page:	the page to add the mapping to
1145  * @vma:	the vm area in which the mapping is added
1146  * @address:	the user virtual address mapped
1147  * @compound:	charge the page as compound or small page
1148  *
1149  * Same as page_add_anon_rmap but must only be called on *new* pages.
1150  * This means the inc-and-test can be bypassed.
1151  * Page does not have to be locked.
1152  */
1153 void page_add_new_anon_rmap(struct page *page,
1154 	struct vm_area_struct *vma, unsigned long address, bool compound)
1155 {
1156 	int nr = compound ? hpage_nr_pages(page) : 1;
1157 
1158 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1159 	__SetPageSwapBacked(page);
1160 	if (compound) {
1161 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1162 		/* increment count (starts at -1) */
1163 		atomic_set(compound_mapcount_ptr(page), 0);
1164 		__inc_node_page_state(page, NR_ANON_THPS);
1165 	} else {
1166 		/* Anon THP always mapped first with PMD */
1167 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1168 		/* increment count (starts at -1) */
1169 		atomic_set(&page->_mapcount, 0);
1170 	}
1171 	__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1172 	__page_set_anon_rmap(page, vma, address, 1);
1173 }
1174 
1175 /**
1176  * page_add_file_rmap - add pte mapping to a file page
1177  * @page: the page to add the mapping to
1178  * @compound: charge the page as compound or small page
1179  *
1180  * The caller needs to hold the pte lock.
1181  */
1182 void page_add_file_rmap(struct page *page, bool compound)
1183 {
1184 	int i, nr = 1;
1185 
1186 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1187 	lock_page_memcg(page);
1188 	if (compound && PageTransHuge(page)) {
1189 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1190 			if (atomic_inc_and_test(&page[i]._mapcount))
1191 				nr++;
1192 		}
1193 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1194 			goto out;
1195 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1196 		__inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1197 	} else {
1198 		if (PageTransCompound(page) && page_mapping(page)) {
1199 			VM_WARN_ON_ONCE(!PageLocked(page));
1200 
1201 			SetPageDoubleMap(compound_head(page));
1202 			if (PageMlocked(page))
1203 				clear_page_mlock(compound_head(page));
1204 		}
1205 		if (!atomic_inc_and_test(&page->_mapcount))
1206 			goto out;
1207 	}
1208 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1209 out:
1210 	unlock_page_memcg(page);
1211 }
1212 
1213 static void page_remove_file_rmap(struct page *page, bool compound)
1214 {
1215 	int i, nr = 1;
1216 
1217 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1218 	lock_page_memcg(page);
1219 
1220 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1221 	if (unlikely(PageHuge(page))) {
1222 		/* hugetlb pages are always mapped with pmds */
1223 		atomic_dec(compound_mapcount_ptr(page));
1224 		goto out;
1225 	}
1226 
1227 	/* page still mapped by someone else? */
1228 	if (compound && PageTransHuge(page)) {
1229 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1230 			if (atomic_add_negative(-1, &page[i]._mapcount))
1231 				nr++;
1232 		}
1233 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1234 			goto out;
1235 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1236 		__dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1237 	} else {
1238 		if (!atomic_add_negative(-1, &page->_mapcount))
1239 			goto out;
1240 	}
1241 
1242 	/*
1243 	 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1244 	 * these counters are not modified in interrupt context, and
1245 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1246 	 */
1247 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1248 
1249 	if (unlikely(PageMlocked(page)))
1250 		clear_page_mlock(page);
1251 out:
1252 	unlock_page_memcg(page);
1253 }
1254 
1255 static void page_remove_anon_compound_rmap(struct page *page)
1256 {
1257 	int i, nr;
1258 
1259 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1260 		return;
1261 
1262 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1263 	if (unlikely(PageHuge(page)))
1264 		return;
1265 
1266 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1267 		return;
1268 
1269 	__dec_node_page_state(page, NR_ANON_THPS);
1270 
1271 	if (TestClearPageDoubleMap(page)) {
1272 		/*
1273 		 * Subpages can be mapped with PTEs too. Check how many of
1274 		 * themi are still mapped.
1275 		 */
1276 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1277 			if (atomic_add_negative(-1, &page[i]._mapcount))
1278 				nr++;
1279 		}
1280 	} else {
1281 		nr = HPAGE_PMD_NR;
1282 	}
1283 
1284 	if (unlikely(PageMlocked(page)))
1285 		clear_page_mlock(page);
1286 
1287 	if (nr) {
1288 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1289 		deferred_split_huge_page(page);
1290 	}
1291 }
1292 
1293 /**
1294  * page_remove_rmap - take down pte mapping from a page
1295  * @page:	page to remove mapping from
1296  * @compound:	uncharge the page as compound or small page
1297  *
1298  * The caller needs to hold the pte lock.
1299  */
1300 void page_remove_rmap(struct page *page, bool compound)
1301 {
1302 	if (!PageAnon(page))
1303 		return page_remove_file_rmap(page, compound);
1304 
1305 	if (compound)
1306 		return page_remove_anon_compound_rmap(page);
1307 
1308 	/* page still mapped by someone else? */
1309 	if (!atomic_add_negative(-1, &page->_mapcount))
1310 		return;
1311 
1312 	/*
1313 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1314 	 * these counters are not modified in interrupt context, and
1315 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1316 	 */
1317 	__dec_node_page_state(page, NR_ANON_MAPPED);
1318 
1319 	if (unlikely(PageMlocked(page)))
1320 		clear_page_mlock(page);
1321 
1322 	if (PageTransCompound(page))
1323 		deferred_split_huge_page(compound_head(page));
1324 
1325 	/*
1326 	 * It would be tidy to reset the PageAnon mapping here,
1327 	 * but that might overwrite a racing page_add_anon_rmap
1328 	 * which increments mapcount after us but sets mapping
1329 	 * before us: so leave the reset to free_unref_page,
1330 	 * and remember that it's only reliable while mapped.
1331 	 * Leaving it set also helps swapoff to reinstate ptes
1332 	 * faster for those pages still in swapcache.
1333 	 */
1334 }
1335 
1336 /*
1337  * @arg: enum ttu_flags will be passed to this argument
1338  */
1339 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1340 		     unsigned long address, void *arg)
1341 {
1342 	struct mm_struct *mm = vma->vm_mm;
1343 	struct page_vma_mapped_walk pvmw = {
1344 		.page = page,
1345 		.vma = vma,
1346 		.address = address,
1347 	};
1348 	pte_t pteval;
1349 	struct page *subpage;
1350 	bool ret = true;
1351 	struct mmu_notifier_range range;
1352 	enum ttu_flags flags = (enum ttu_flags)arg;
1353 
1354 	/* munlock has nothing to gain from examining un-locked vmas */
1355 	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1356 		return true;
1357 
1358 	if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1359 	    is_zone_device_page(page) && !is_device_private_page(page))
1360 		return true;
1361 
1362 	if (flags & TTU_SPLIT_HUGE_PMD) {
1363 		split_huge_pmd_address(vma, address,
1364 				flags & TTU_SPLIT_FREEZE, page);
1365 	}
1366 
1367 	/*
1368 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1369 	 * For hugetlb, it could be much worse if we need to do pud
1370 	 * invalidation in the case of pmd sharing.
1371 	 *
1372 	 * Note that the page can not be free in this function as call of
1373 	 * try_to_unmap() must hold a reference on the page.
1374 	 */
1375 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1376 				address,
1377 				min(vma->vm_end, address +
1378 				    (PAGE_SIZE << compound_order(page))));
1379 	if (PageHuge(page)) {
1380 		/*
1381 		 * If sharing is possible, start and end will be adjusted
1382 		 * accordingly.
1383 		 */
1384 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1385 						     &range.end);
1386 	}
1387 	mmu_notifier_invalidate_range_start(&range);
1388 
1389 	while (page_vma_mapped_walk(&pvmw)) {
1390 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1391 		/* PMD-mapped THP migration entry */
1392 		if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1393 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1394 
1395 			set_pmd_migration_entry(&pvmw, page);
1396 			continue;
1397 		}
1398 #endif
1399 
1400 		/*
1401 		 * If the page is mlock()d, we cannot swap it out.
1402 		 * If it's recently referenced (perhaps page_referenced
1403 		 * skipped over this mm) then we should reactivate it.
1404 		 */
1405 		if (!(flags & TTU_IGNORE_MLOCK)) {
1406 			if (vma->vm_flags & VM_LOCKED) {
1407 				/* PTE-mapped THP are never mlocked */
1408 				if (!PageTransCompound(page)) {
1409 					/*
1410 					 * Holding pte lock, we do *not* need
1411 					 * mmap_sem here
1412 					 */
1413 					mlock_vma_page(page);
1414 				}
1415 				ret = false;
1416 				page_vma_mapped_walk_done(&pvmw);
1417 				break;
1418 			}
1419 			if (flags & TTU_MUNLOCK)
1420 				continue;
1421 		}
1422 
1423 		/* Unexpected PMD-mapped THP? */
1424 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1425 
1426 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1427 		address = pvmw.address;
1428 
1429 		if (PageHuge(page)) {
1430 			if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1431 				/*
1432 				 * huge_pmd_unshare unmapped an entire PMD
1433 				 * page.  There is no way of knowing exactly
1434 				 * which PMDs may be cached for this mm, so
1435 				 * we must flush them all.  start/end were
1436 				 * already adjusted above to cover this range.
1437 				 */
1438 				flush_cache_range(vma, range.start, range.end);
1439 				flush_tlb_range(vma, range.start, range.end);
1440 				mmu_notifier_invalidate_range(mm, range.start,
1441 							      range.end);
1442 
1443 				/*
1444 				 * The ref count of the PMD page was dropped
1445 				 * which is part of the way map counting
1446 				 * is done for shared PMDs.  Return 'true'
1447 				 * here.  When there is no other sharing,
1448 				 * huge_pmd_unshare returns false and we will
1449 				 * unmap the actual page and drop map count
1450 				 * to zero.
1451 				 */
1452 				page_vma_mapped_walk_done(&pvmw);
1453 				break;
1454 			}
1455 		}
1456 
1457 		if (IS_ENABLED(CONFIG_MIGRATION) &&
1458 		    (flags & TTU_MIGRATION) &&
1459 		    is_zone_device_page(page)) {
1460 			swp_entry_t entry;
1461 			pte_t swp_pte;
1462 
1463 			pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1464 
1465 			/*
1466 			 * Store the pfn of the page in a special migration
1467 			 * pte. do_swap_page() will wait until the migration
1468 			 * pte is removed and then restart fault handling.
1469 			 */
1470 			entry = make_migration_entry(page, 0);
1471 			swp_pte = swp_entry_to_pte(entry);
1472 			if (pte_soft_dirty(pteval))
1473 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1474 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1475 			/*
1476 			 * No need to invalidate here it will synchronize on
1477 			 * against the special swap migration pte.
1478 			 */
1479 			goto discard;
1480 		}
1481 
1482 		if (!(flags & TTU_IGNORE_ACCESS)) {
1483 			if (ptep_clear_flush_young_notify(vma, address,
1484 						pvmw.pte)) {
1485 				ret = false;
1486 				page_vma_mapped_walk_done(&pvmw);
1487 				break;
1488 			}
1489 		}
1490 
1491 		/* Nuke the page table entry. */
1492 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1493 		if (should_defer_flush(mm, flags)) {
1494 			/*
1495 			 * We clear the PTE but do not flush so potentially
1496 			 * a remote CPU could still be writing to the page.
1497 			 * If the entry was previously clean then the
1498 			 * architecture must guarantee that a clear->dirty
1499 			 * transition on a cached TLB entry is written through
1500 			 * and traps if the PTE is unmapped.
1501 			 */
1502 			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1503 
1504 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1505 		} else {
1506 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1507 		}
1508 
1509 		/* Move the dirty bit to the page. Now the pte is gone. */
1510 		if (pte_dirty(pteval))
1511 			set_page_dirty(page);
1512 
1513 		/* Update high watermark before we lower rss */
1514 		update_hiwater_rss(mm);
1515 
1516 		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1517 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1518 			if (PageHuge(page)) {
1519 				int nr = 1 << compound_order(page);
1520 				hugetlb_count_sub(nr, mm);
1521 				set_huge_swap_pte_at(mm, address,
1522 						     pvmw.pte, pteval,
1523 						     vma_mmu_pagesize(vma));
1524 			} else {
1525 				dec_mm_counter(mm, mm_counter(page));
1526 				set_pte_at(mm, address, pvmw.pte, pteval);
1527 			}
1528 
1529 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1530 			/*
1531 			 * The guest indicated that the page content is of no
1532 			 * interest anymore. Simply discard the pte, vmscan
1533 			 * will take care of the rest.
1534 			 * A future reference will then fault in a new zero
1535 			 * page. When userfaultfd is active, we must not drop
1536 			 * this page though, as its main user (postcopy
1537 			 * migration) will not expect userfaults on already
1538 			 * copied pages.
1539 			 */
1540 			dec_mm_counter(mm, mm_counter(page));
1541 			/* We have to invalidate as we cleared the pte */
1542 			mmu_notifier_invalidate_range(mm, address,
1543 						      address + PAGE_SIZE);
1544 		} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1545 				(flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1546 			swp_entry_t entry;
1547 			pte_t swp_pte;
1548 
1549 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1550 				set_pte_at(mm, address, pvmw.pte, pteval);
1551 				ret = false;
1552 				page_vma_mapped_walk_done(&pvmw);
1553 				break;
1554 			}
1555 
1556 			/*
1557 			 * Store the pfn of the page in a special migration
1558 			 * pte. do_swap_page() will wait until the migration
1559 			 * pte is removed and then restart fault handling.
1560 			 */
1561 			entry = make_migration_entry(subpage,
1562 					pte_write(pteval));
1563 			swp_pte = swp_entry_to_pte(entry);
1564 			if (pte_soft_dirty(pteval))
1565 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1566 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1567 			/*
1568 			 * No need to invalidate here it will synchronize on
1569 			 * against the special swap migration pte.
1570 			 */
1571 		} else if (PageAnon(page)) {
1572 			swp_entry_t entry = { .val = page_private(subpage) };
1573 			pte_t swp_pte;
1574 			/*
1575 			 * Store the swap location in the pte.
1576 			 * See handle_pte_fault() ...
1577 			 */
1578 			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1579 				WARN_ON_ONCE(1);
1580 				ret = false;
1581 				/* We have to invalidate as we cleared the pte */
1582 				mmu_notifier_invalidate_range(mm, address,
1583 							address + PAGE_SIZE);
1584 				page_vma_mapped_walk_done(&pvmw);
1585 				break;
1586 			}
1587 
1588 			/* MADV_FREE page check */
1589 			if (!PageSwapBacked(page)) {
1590 				if (!PageDirty(page)) {
1591 					/* Invalidate as we cleared the pte */
1592 					mmu_notifier_invalidate_range(mm,
1593 						address, address + PAGE_SIZE);
1594 					dec_mm_counter(mm, MM_ANONPAGES);
1595 					goto discard;
1596 				}
1597 
1598 				/*
1599 				 * If the page was redirtied, it cannot be
1600 				 * discarded. Remap the page to page table.
1601 				 */
1602 				set_pte_at(mm, address, pvmw.pte, pteval);
1603 				SetPageSwapBacked(page);
1604 				ret = false;
1605 				page_vma_mapped_walk_done(&pvmw);
1606 				break;
1607 			}
1608 
1609 			if (swap_duplicate(entry) < 0) {
1610 				set_pte_at(mm, address, pvmw.pte, pteval);
1611 				ret = false;
1612 				page_vma_mapped_walk_done(&pvmw);
1613 				break;
1614 			}
1615 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1616 				set_pte_at(mm, address, pvmw.pte, pteval);
1617 				ret = false;
1618 				page_vma_mapped_walk_done(&pvmw);
1619 				break;
1620 			}
1621 			if (list_empty(&mm->mmlist)) {
1622 				spin_lock(&mmlist_lock);
1623 				if (list_empty(&mm->mmlist))
1624 					list_add(&mm->mmlist, &init_mm.mmlist);
1625 				spin_unlock(&mmlist_lock);
1626 			}
1627 			dec_mm_counter(mm, MM_ANONPAGES);
1628 			inc_mm_counter(mm, MM_SWAPENTS);
1629 			swp_pte = swp_entry_to_pte(entry);
1630 			if (pte_soft_dirty(pteval))
1631 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1632 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1633 			/* Invalidate as we cleared the pte */
1634 			mmu_notifier_invalidate_range(mm, address,
1635 						      address + PAGE_SIZE);
1636 		} else {
1637 			/*
1638 			 * This is a locked file-backed page, thus it cannot
1639 			 * be removed from the page cache and replaced by a new
1640 			 * page before mmu_notifier_invalidate_range_end, so no
1641 			 * concurrent thread might update its page table to
1642 			 * point at new page while a device still is using this
1643 			 * page.
1644 			 *
1645 			 * See Documentation/vm/mmu_notifier.rst
1646 			 */
1647 			dec_mm_counter(mm, mm_counter_file(page));
1648 		}
1649 discard:
1650 		/*
1651 		 * No need to call mmu_notifier_invalidate_range() it has be
1652 		 * done above for all cases requiring it to happen under page
1653 		 * table lock before mmu_notifier_invalidate_range_end()
1654 		 *
1655 		 * See Documentation/vm/mmu_notifier.rst
1656 		 */
1657 		page_remove_rmap(subpage, PageHuge(page));
1658 		put_page(page);
1659 	}
1660 
1661 	mmu_notifier_invalidate_range_end(&range);
1662 
1663 	return ret;
1664 }
1665 
1666 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1667 {
1668 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1669 
1670 	if (!maybe_stack)
1671 		return false;
1672 
1673 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1674 						VM_STACK_INCOMPLETE_SETUP)
1675 		return true;
1676 
1677 	return false;
1678 }
1679 
1680 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1681 {
1682 	return is_vma_temporary_stack(vma);
1683 }
1684 
1685 static int page_mapcount_is_zero(struct page *page)
1686 {
1687 	return !total_mapcount(page);
1688 }
1689 
1690 /**
1691  * try_to_unmap - try to remove all page table mappings to a page
1692  * @page: the page to get unmapped
1693  * @flags: action and flags
1694  *
1695  * Tries to remove all the page table entries which are mapping this
1696  * page, used in the pageout path.  Caller must hold the page lock.
1697  *
1698  * If unmap is successful, return true. Otherwise, false.
1699  */
1700 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1701 {
1702 	struct rmap_walk_control rwc = {
1703 		.rmap_one = try_to_unmap_one,
1704 		.arg = (void *)flags,
1705 		.done = page_mapcount_is_zero,
1706 		.anon_lock = page_lock_anon_vma_read,
1707 	};
1708 
1709 	/*
1710 	 * During exec, a temporary VMA is setup and later moved.
1711 	 * The VMA is moved under the anon_vma lock but not the
1712 	 * page tables leading to a race where migration cannot
1713 	 * find the migration ptes. Rather than increasing the
1714 	 * locking requirements of exec(), migration skips
1715 	 * temporary VMAs until after exec() completes.
1716 	 */
1717 	if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1718 	    && !PageKsm(page) && PageAnon(page))
1719 		rwc.invalid_vma = invalid_migration_vma;
1720 
1721 	if (flags & TTU_RMAP_LOCKED)
1722 		rmap_walk_locked(page, &rwc);
1723 	else
1724 		rmap_walk(page, &rwc);
1725 
1726 	return !page_mapcount(page) ? true : false;
1727 }
1728 
1729 static int page_not_mapped(struct page *page)
1730 {
1731 	return !page_mapped(page);
1732 };
1733 
1734 /**
1735  * try_to_munlock - try to munlock a page
1736  * @page: the page to be munlocked
1737  *
1738  * Called from munlock code.  Checks all of the VMAs mapping the page
1739  * to make sure nobody else has this page mlocked. The page will be
1740  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1741  */
1742 
1743 void try_to_munlock(struct page *page)
1744 {
1745 	struct rmap_walk_control rwc = {
1746 		.rmap_one = try_to_unmap_one,
1747 		.arg = (void *)TTU_MUNLOCK,
1748 		.done = page_not_mapped,
1749 		.anon_lock = page_lock_anon_vma_read,
1750 
1751 	};
1752 
1753 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1754 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1755 
1756 	rmap_walk(page, &rwc);
1757 }
1758 
1759 void __put_anon_vma(struct anon_vma *anon_vma)
1760 {
1761 	struct anon_vma *root = anon_vma->root;
1762 
1763 	anon_vma_free(anon_vma);
1764 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1765 		anon_vma_free(root);
1766 }
1767 
1768 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1769 					struct rmap_walk_control *rwc)
1770 {
1771 	struct anon_vma *anon_vma;
1772 
1773 	if (rwc->anon_lock)
1774 		return rwc->anon_lock(page);
1775 
1776 	/*
1777 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1778 	 * because that depends on page_mapped(); but not all its usages
1779 	 * are holding mmap_sem. Users without mmap_sem are required to
1780 	 * take a reference count to prevent the anon_vma disappearing
1781 	 */
1782 	anon_vma = page_anon_vma(page);
1783 	if (!anon_vma)
1784 		return NULL;
1785 
1786 	anon_vma_lock_read(anon_vma);
1787 	return anon_vma;
1788 }
1789 
1790 /*
1791  * rmap_walk_anon - do something to anonymous page using the object-based
1792  * rmap method
1793  * @page: the page to be handled
1794  * @rwc: control variable according to each walk type
1795  *
1796  * Find all the mappings of a page using the mapping pointer and the vma chains
1797  * contained in the anon_vma struct it points to.
1798  *
1799  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1800  * where the page was found will be held for write.  So, we won't recheck
1801  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1802  * LOCKED.
1803  */
1804 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1805 		bool locked)
1806 {
1807 	struct anon_vma *anon_vma;
1808 	pgoff_t pgoff_start, pgoff_end;
1809 	struct anon_vma_chain *avc;
1810 
1811 	if (locked) {
1812 		anon_vma = page_anon_vma(page);
1813 		/* anon_vma disappear under us? */
1814 		VM_BUG_ON_PAGE(!anon_vma, page);
1815 	} else {
1816 		anon_vma = rmap_walk_anon_lock(page, rwc);
1817 	}
1818 	if (!anon_vma)
1819 		return;
1820 
1821 	pgoff_start = page_to_pgoff(page);
1822 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1823 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1824 			pgoff_start, pgoff_end) {
1825 		struct vm_area_struct *vma = avc->vma;
1826 		unsigned long address = vma_address(page, vma);
1827 
1828 		cond_resched();
1829 
1830 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1831 			continue;
1832 
1833 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1834 			break;
1835 		if (rwc->done && rwc->done(page))
1836 			break;
1837 	}
1838 
1839 	if (!locked)
1840 		anon_vma_unlock_read(anon_vma);
1841 }
1842 
1843 /*
1844  * rmap_walk_file - do something to file page using the object-based rmap method
1845  * @page: the page to be handled
1846  * @rwc: control variable according to each walk type
1847  *
1848  * Find all the mappings of a page using the mapping pointer and the vma chains
1849  * contained in the address_space struct it points to.
1850  *
1851  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1852  * where the page was found will be held for write.  So, we won't recheck
1853  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1854  * LOCKED.
1855  */
1856 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1857 		bool locked)
1858 {
1859 	struct address_space *mapping = page_mapping(page);
1860 	pgoff_t pgoff_start, pgoff_end;
1861 	struct vm_area_struct *vma;
1862 
1863 	/*
1864 	 * The page lock not only makes sure that page->mapping cannot
1865 	 * suddenly be NULLified by truncation, it makes sure that the
1866 	 * structure at mapping cannot be freed and reused yet,
1867 	 * so we can safely take mapping->i_mmap_rwsem.
1868 	 */
1869 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1870 
1871 	if (!mapping)
1872 		return;
1873 
1874 	pgoff_start = page_to_pgoff(page);
1875 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1876 	if (!locked)
1877 		i_mmap_lock_read(mapping);
1878 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
1879 			pgoff_start, pgoff_end) {
1880 		unsigned long address = vma_address(page, vma);
1881 
1882 		cond_resched();
1883 
1884 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1885 			continue;
1886 
1887 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1888 			goto done;
1889 		if (rwc->done && rwc->done(page))
1890 			goto done;
1891 	}
1892 
1893 done:
1894 	if (!locked)
1895 		i_mmap_unlock_read(mapping);
1896 }
1897 
1898 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1899 {
1900 	if (unlikely(PageKsm(page)))
1901 		rmap_walk_ksm(page, rwc);
1902 	else if (PageAnon(page))
1903 		rmap_walk_anon(page, rwc, false);
1904 	else
1905 		rmap_walk_file(page, rwc, false);
1906 }
1907 
1908 /* Like rmap_walk, but caller holds relevant rmap lock */
1909 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1910 {
1911 	/* no ksm support for now */
1912 	VM_BUG_ON_PAGE(PageKsm(page), page);
1913 	if (PageAnon(page))
1914 		rmap_walk_anon(page, rwc, true);
1915 	else
1916 		rmap_walk_file(page, rwc, true);
1917 }
1918 
1919 #ifdef CONFIG_HUGETLB_PAGE
1920 /*
1921  * The following two functions are for anonymous (private mapped) hugepages.
1922  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1923  * and no lru code, because we handle hugepages differently from common pages.
1924  */
1925 void hugepage_add_anon_rmap(struct page *page,
1926 			    struct vm_area_struct *vma, unsigned long address)
1927 {
1928 	struct anon_vma *anon_vma = vma->anon_vma;
1929 	int first;
1930 
1931 	BUG_ON(!PageLocked(page));
1932 	BUG_ON(!anon_vma);
1933 	/* address might be in next vma when migration races vma_adjust */
1934 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1935 	if (first)
1936 		__page_set_anon_rmap(page, vma, address, 0);
1937 }
1938 
1939 void hugepage_add_new_anon_rmap(struct page *page,
1940 			struct vm_area_struct *vma, unsigned long address)
1941 {
1942 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1943 	atomic_set(compound_mapcount_ptr(page), 0);
1944 	__page_set_anon_rmap(page, vma, address, 1);
1945 }
1946 #endif /* CONFIG_HUGETLB_PAGE */
1947