1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * page->flags PG_locked (lock_page) 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * folio_lock_memcg move_lock (in block_dirty_folio) 36 * i_pages lock (widely used) 37 * lruvec->lru_lock (in folio_lruvec_lock_irq) 38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 40 * sb_lock (within inode_lock in fs/fs-writeback.c) 41 * i_pages lock (widely used, in set_page_dirty, 42 * in arch-dependent flush_dcache_mmap_lock, 43 * within bdi.wb->list_lock in __sync_single_inode) 44 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 47 * pte map lock 48 * 49 * hugetlbfs PageHuge() take locks in this order: 50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 51 * vma_lock (hugetlb specific lock for pmd_sharing) 52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 53 * page->flags PG_locked (lock_page) 54 */ 55 56 #include <linux/mm.h> 57 #include <linux/sched/mm.h> 58 #include <linux/sched/task.h> 59 #include <linux/pagemap.h> 60 #include <linux/swap.h> 61 #include <linux/swapops.h> 62 #include <linux/slab.h> 63 #include <linux/init.h> 64 #include <linux/ksm.h> 65 #include <linux/rmap.h> 66 #include <linux/rcupdate.h> 67 #include <linux/export.h> 68 #include <linux/memcontrol.h> 69 #include <linux/mmu_notifier.h> 70 #include <linux/migrate.h> 71 #include <linux/hugetlb.h> 72 #include <linux/huge_mm.h> 73 #include <linux/backing-dev.h> 74 #include <linux/page_idle.h> 75 #include <linux/memremap.h> 76 #include <linux/userfaultfd_k.h> 77 #include <linux/mm_inline.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/tlb.h> 83 #include <trace/events/migrate.h> 84 85 #include "internal.h" 86 87 static struct kmem_cache *anon_vma_cachep; 88 static struct kmem_cache *anon_vma_chain_cachep; 89 90 static inline struct anon_vma *anon_vma_alloc(void) 91 { 92 struct anon_vma *anon_vma; 93 94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 95 if (anon_vma) { 96 atomic_set(&anon_vma->refcount, 1); 97 anon_vma->num_children = 0; 98 anon_vma->num_active_vmas = 0; 99 anon_vma->parent = anon_vma; 100 /* 101 * Initialise the anon_vma root to point to itself. If called 102 * from fork, the root will be reset to the parents anon_vma. 103 */ 104 anon_vma->root = anon_vma; 105 } 106 107 return anon_vma; 108 } 109 110 static inline void anon_vma_free(struct anon_vma *anon_vma) 111 { 112 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 113 114 /* 115 * Synchronize against folio_lock_anon_vma_read() such that 116 * we can safely hold the lock without the anon_vma getting 117 * freed. 118 * 119 * Relies on the full mb implied by the atomic_dec_and_test() from 120 * put_anon_vma() against the acquire barrier implied by 121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 122 * 123 * folio_lock_anon_vma_read() VS put_anon_vma() 124 * down_read_trylock() atomic_dec_and_test() 125 * LOCK MB 126 * atomic_read() rwsem_is_locked() 127 * 128 * LOCK should suffice since the actual taking of the lock must 129 * happen _before_ what follows. 130 */ 131 might_sleep(); 132 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 133 anon_vma_lock_write(anon_vma); 134 anon_vma_unlock_write(anon_vma); 135 } 136 137 kmem_cache_free(anon_vma_cachep, anon_vma); 138 } 139 140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 141 { 142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 143 } 144 145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 146 { 147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 148 } 149 150 static void anon_vma_chain_link(struct vm_area_struct *vma, 151 struct anon_vma_chain *avc, 152 struct anon_vma *anon_vma) 153 { 154 avc->vma = vma; 155 avc->anon_vma = anon_vma; 156 list_add(&avc->same_vma, &vma->anon_vma_chain); 157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 158 } 159 160 /** 161 * __anon_vma_prepare - attach an anon_vma to a memory region 162 * @vma: the memory region in question 163 * 164 * This makes sure the memory mapping described by 'vma' has 165 * an 'anon_vma' attached to it, so that we can associate the 166 * anonymous pages mapped into it with that anon_vma. 167 * 168 * The common case will be that we already have one, which 169 * is handled inline by anon_vma_prepare(). But if 170 * not we either need to find an adjacent mapping that we 171 * can re-use the anon_vma from (very common when the only 172 * reason for splitting a vma has been mprotect()), or we 173 * allocate a new one. 174 * 175 * Anon-vma allocations are very subtle, because we may have 176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 177 * and that may actually touch the rwsem even in the newly 178 * allocated vma (it depends on RCU to make sure that the 179 * anon_vma isn't actually destroyed). 180 * 181 * As a result, we need to do proper anon_vma locking even 182 * for the new allocation. At the same time, we do not want 183 * to do any locking for the common case of already having 184 * an anon_vma. 185 * 186 * This must be called with the mmap_lock held for reading. 187 */ 188 int __anon_vma_prepare(struct vm_area_struct *vma) 189 { 190 struct mm_struct *mm = vma->vm_mm; 191 struct anon_vma *anon_vma, *allocated; 192 struct anon_vma_chain *avc; 193 194 might_sleep(); 195 196 avc = anon_vma_chain_alloc(GFP_KERNEL); 197 if (!avc) 198 goto out_enomem; 199 200 anon_vma = find_mergeable_anon_vma(vma); 201 allocated = NULL; 202 if (!anon_vma) { 203 anon_vma = anon_vma_alloc(); 204 if (unlikely(!anon_vma)) 205 goto out_enomem_free_avc; 206 anon_vma->num_children++; /* self-parent link for new root */ 207 allocated = anon_vma; 208 } 209 210 anon_vma_lock_write(anon_vma); 211 /* page_table_lock to protect against threads */ 212 spin_lock(&mm->page_table_lock); 213 if (likely(!vma->anon_vma)) { 214 vma->anon_vma = anon_vma; 215 anon_vma_chain_link(vma, avc, anon_vma); 216 anon_vma->num_active_vmas++; 217 allocated = NULL; 218 avc = NULL; 219 } 220 spin_unlock(&mm->page_table_lock); 221 anon_vma_unlock_write(anon_vma); 222 223 if (unlikely(allocated)) 224 put_anon_vma(allocated); 225 if (unlikely(avc)) 226 anon_vma_chain_free(avc); 227 228 return 0; 229 230 out_enomem_free_avc: 231 anon_vma_chain_free(avc); 232 out_enomem: 233 return -ENOMEM; 234 } 235 236 /* 237 * This is a useful helper function for locking the anon_vma root as 238 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 239 * have the same vma. 240 * 241 * Such anon_vma's should have the same root, so you'd expect to see 242 * just a single mutex_lock for the whole traversal. 243 */ 244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 245 { 246 struct anon_vma *new_root = anon_vma->root; 247 if (new_root != root) { 248 if (WARN_ON_ONCE(root)) 249 up_write(&root->rwsem); 250 root = new_root; 251 down_write(&root->rwsem); 252 } 253 return root; 254 } 255 256 static inline void unlock_anon_vma_root(struct anon_vma *root) 257 { 258 if (root) 259 up_write(&root->rwsem); 260 } 261 262 /* 263 * Attach the anon_vmas from src to dst. 264 * Returns 0 on success, -ENOMEM on failure. 265 * 266 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 267 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 268 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 269 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 270 * call, we can identify this case by checking (!dst->anon_vma && 271 * src->anon_vma). 272 * 273 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 274 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 275 * This prevents degradation of anon_vma hierarchy to endless linear chain in 276 * case of constantly forking task. On the other hand, an anon_vma with more 277 * than one child isn't reused even if there was no alive vma, thus rmap 278 * walker has a good chance of avoiding scanning the whole hierarchy when it 279 * searches where page is mapped. 280 */ 281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 282 { 283 struct anon_vma_chain *avc, *pavc; 284 struct anon_vma *root = NULL; 285 286 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 287 struct anon_vma *anon_vma; 288 289 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 290 if (unlikely(!avc)) { 291 unlock_anon_vma_root(root); 292 root = NULL; 293 avc = anon_vma_chain_alloc(GFP_KERNEL); 294 if (!avc) 295 goto enomem_failure; 296 } 297 anon_vma = pavc->anon_vma; 298 root = lock_anon_vma_root(root, anon_vma); 299 anon_vma_chain_link(dst, avc, anon_vma); 300 301 /* 302 * Reuse existing anon_vma if it has no vma and only one 303 * anon_vma child. 304 * 305 * Root anon_vma is never reused: 306 * it has self-parent reference and at least one child. 307 */ 308 if (!dst->anon_vma && src->anon_vma && 309 anon_vma->num_children < 2 && 310 anon_vma->num_active_vmas == 0) 311 dst->anon_vma = anon_vma; 312 } 313 if (dst->anon_vma) 314 dst->anon_vma->num_active_vmas++; 315 unlock_anon_vma_root(root); 316 return 0; 317 318 enomem_failure: 319 /* 320 * dst->anon_vma is dropped here otherwise its num_active_vmas can 321 * be incorrectly decremented in unlink_anon_vmas(). 322 * We can safely do this because callers of anon_vma_clone() don't care 323 * about dst->anon_vma if anon_vma_clone() failed. 324 */ 325 dst->anon_vma = NULL; 326 unlink_anon_vmas(dst); 327 return -ENOMEM; 328 } 329 330 /* 331 * Attach vma to its own anon_vma, as well as to the anon_vmas that 332 * the corresponding VMA in the parent process is attached to. 333 * Returns 0 on success, non-zero on failure. 334 */ 335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 336 { 337 struct anon_vma_chain *avc; 338 struct anon_vma *anon_vma; 339 int error; 340 341 /* Don't bother if the parent process has no anon_vma here. */ 342 if (!pvma->anon_vma) 343 return 0; 344 345 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 346 vma->anon_vma = NULL; 347 348 /* 349 * First, attach the new VMA to the parent VMA's anon_vmas, 350 * so rmap can find non-COWed pages in child processes. 351 */ 352 error = anon_vma_clone(vma, pvma); 353 if (error) 354 return error; 355 356 /* An existing anon_vma has been reused, all done then. */ 357 if (vma->anon_vma) 358 return 0; 359 360 /* Then add our own anon_vma. */ 361 anon_vma = anon_vma_alloc(); 362 if (!anon_vma) 363 goto out_error; 364 anon_vma->num_active_vmas++; 365 avc = anon_vma_chain_alloc(GFP_KERNEL); 366 if (!avc) 367 goto out_error_free_anon_vma; 368 369 /* 370 * The root anon_vma's rwsem is the lock actually used when we 371 * lock any of the anon_vmas in this anon_vma tree. 372 */ 373 anon_vma->root = pvma->anon_vma->root; 374 anon_vma->parent = pvma->anon_vma; 375 /* 376 * With refcounts, an anon_vma can stay around longer than the 377 * process it belongs to. The root anon_vma needs to be pinned until 378 * this anon_vma is freed, because the lock lives in the root. 379 */ 380 get_anon_vma(anon_vma->root); 381 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 382 vma->anon_vma = anon_vma; 383 anon_vma_lock_write(anon_vma); 384 anon_vma_chain_link(vma, avc, anon_vma); 385 anon_vma->parent->num_children++; 386 anon_vma_unlock_write(anon_vma); 387 388 return 0; 389 390 out_error_free_anon_vma: 391 put_anon_vma(anon_vma); 392 out_error: 393 unlink_anon_vmas(vma); 394 return -ENOMEM; 395 } 396 397 void unlink_anon_vmas(struct vm_area_struct *vma) 398 { 399 struct anon_vma_chain *avc, *next; 400 struct anon_vma *root = NULL; 401 402 /* 403 * Unlink each anon_vma chained to the VMA. This list is ordered 404 * from newest to oldest, ensuring the root anon_vma gets freed last. 405 */ 406 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 407 struct anon_vma *anon_vma = avc->anon_vma; 408 409 root = lock_anon_vma_root(root, anon_vma); 410 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 411 412 /* 413 * Leave empty anon_vmas on the list - we'll need 414 * to free them outside the lock. 415 */ 416 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 417 anon_vma->parent->num_children--; 418 continue; 419 } 420 421 list_del(&avc->same_vma); 422 anon_vma_chain_free(avc); 423 } 424 if (vma->anon_vma) { 425 vma->anon_vma->num_active_vmas--; 426 427 /* 428 * vma would still be needed after unlink, and anon_vma will be prepared 429 * when handle fault. 430 */ 431 vma->anon_vma = NULL; 432 } 433 unlock_anon_vma_root(root); 434 435 /* 436 * Iterate the list once more, it now only contains empty and unlinked 437 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 438 * needing to write-acquire the anon_vma->root->rwsem. 439 */ 440 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 441 struct anon_vma *anon_vma = avc->anon_vma; 442 443 VM_WARN_ON(anon_vma->num_children); 444 VM_WARN_ON(anon_vma->num_active_vmas); 445 put_anon_vma(anon_vma); 446 447 list_del(&avc->same_vma); 448 anon_vma_chain_free(avc); 449 } 450 } 451 452 static void anon_vma_ctor(void *data) 453 { 454 struct anon_vma *anon_vma = data; 455 456 init_rwsem(&anon_vma->rwsem); 457 atomic_set(&anon_vma->refcount, 0); 458 anon_vma->rb_root = RB_ROOT_CACHED; 459 } 460 461 void __init anon_vma_init(void) 462 { 463 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 464 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 465 anon_vma_ctor); 466 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 467 SLAB_PANIC|SLAB_ACCOUNT); 468 } 469 470 /* 471 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 472 * 473 * Since there is no serialization what so ever against page_remove_rmap() 474 * the best this function can do is return a refcount increased anon_vma 475 * that might have been relevant to this page. 476 * 477 * The page might have been remapped to a different anon_vma or the anon_vma 478 * returned may already be freed (and even reused). 479 * 480 * In case it was remapped to a different anon_vma, the new anon_vma will be a 481 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 482 * ensure that any anon_vma obtained from the page will still be valid for as 483 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 484 * 485 * All users of this function must be very careful when walking the anon_vma 486 * chain and verify that the page in question is indeed mapped in it 487 * [ something equivalent to page_mapped_in_vma() ]. 488 * 489 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 490 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 491 * if there is a mapcount, we can dereference the anon_vma after observing 492 * those. 493 */ 494 struct anon_vma *folio_get_anon_vma(struct folio *folio) 495 { 496 struct anon_vma *anon_vma = NULL; 497 unsigned long anon_mapping; 498 499 rcu_read_lock(); 500 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 501 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 502 goto out; 503 if (!folio_mapped(folio)) 504 goto out; 505 506 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 507 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 508 anon_vma = NULL; 509 goto out; 510 } 511 512 /* 513 * If this folio is still mapped, then its anon_vma cannot have been 514 * freed. But if it has been unmapped, we have no security against the 515 * anon_vma structure being freed and reused (for another anon_vma: 516 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 517 * above cannot corrupt). 518 */ 519 if (!folio_mapped(folio)) { 520 rcu_read_unlock(); 521 put_anon_vma(anon_vma); 522 return NULL; 523 } 524 out: 525 rcu_read_unlock(); 526 527 return anon_vma; 528 } 529 530 /* 531 * Similar to folio_get_anon_vma() except it locks the anon_vma. 532 * 533 * Its a little more complex as it tries to keep the fast path to a single 534 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 535 * reference like with folio_get_anon_vma() and then block on the mutex 536 * on !rwc->try_lock case. 537 */ 538 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 539 struct rmap_walk_control *rwc) 540 { 541 struct anon_vma *anon_vma = NULL; 542 struct anon_vma *root_anon_vma; 543 unsigned long anon_mapping; 544 545 rcu_read_lock(); 546 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 547 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 548 goto out; 549 if (!folio_mapped(folio)) 550 goto out; 551 552 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 553 root_anon_vma = READ_ONCE(anon_vma->root); 554 if (down_read_trylock(&root_anon_vma->rwsem)) { 555 /* 556 * If the folio is still mapped, then this anon_vma is still 557 * its anon_vma, and holding the mutex ensures that it will 558 * not go away, see anon_vma_free(). 559 */ 560 if (!folio_mapped(folio)) { 561 up_read(&root_anon_vma->rwsem); 562 anon_vma = NULL; 563 } 564 goto out; 565 } 566 567 if (rwc && rwc->try_lock) { 568 anon_vma = NULL; 569 rwc->contended = true; 570 goto out; 571 } 572 573 /* trylock failed, we got to sleep */ 574 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 575 anon_vma = NULL; 576 goto out; 577 } 578 579 if (!folio_mapped(folio)) { 580 rcu_read_unlock(); 581 put_anon_vma(anon_vma); 582 return NULL; 583 } 584 585 /* we pinned the anon_vma, its safe to sleep */ 586 rcu_read_unlock(); 587 anon_vma_lock_read(anon_vma); 588 589 if (atomic_dec_and_test(&anon_vma->refcount)) { 590 /* 591 * Oops, we held the last refcount, release the lock 592 * and bail -- can't simply use put_anon_vma() because 593 * we'll deadlock on the anon_vma_lock_write() recursion. 594 */ 595 anon_vma_unlock_read(anon_vma); 596 __put_anon_vma(anon_vma); 597 anon_vma = NULL; 598 } 599 600 return anon_vma; 601 602 out: 603 rcu_read_unlock(); 604 return anon_vma; 605 } 606 607 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 608 /* 609 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 610 * important if a PTE was dirty when it was unmapped that it's flushed 611 * before any IO is initiated on the page to prevent lost writes. Similarly, 612 * it must be flushed before freeing to prevent data leakage. 613 */ 614 void try_to_unmap_flush(void) 615 { 616 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 617 618 if (!tlb_ubc->flush_required) 619 return; 620 621 arch_tlbbatch_flush(&tlb_ubc->arch); 622 tlb_ubc->flush_required = false; 623 tlb_ubc->writable = false; 624 } 625 626 /* Flush iff there are potentially writable TLB entries that can race with IO */ 627 void try_to_unmap_flush_dirty(void) 628 { 629 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 630 631 if (tlb_ubc->writable) 632 try_to_unmap_flush(); 633 } 634 635 /* 636 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 637 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 638 */ 639 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 640 #define TLB_FLUSH_BATCH_PENDING_MASK \ 641 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 642 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 643 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 644 645 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval) 646 { 647 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 648 int batch; 649 bool writable = pte_dirty(pteval); 650 651 if (!pte_accessible(mm, pteval)) 652 return; 653 654 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 655 tlb_ubc->flush_required = true; 656 657 /* 658 * Ensure compiler does not re-order the setting of tlb_flush_batched 659 * before the PTE is cleared. 660 */ 661 barrier(); 662 batch = atomic_read(&mm->tlb_flush_batched); 663 retry: 664 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 665 /* 666 * Prevent `pending' from catching up with `flushed' because of 667 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 668 * `pending' becomes large. 669 */ 670 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 671 goto retry; 672 } else { 673 atomic_inc(&mm->tlb_flush_batched); 674 } 675 676 /* 677 * If the PTE was dirty then it's best to assume it's writable. The 678 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 679 * before the page is queued for IO. 680 */ 681 if (writable) 682 tlb_ubc->writable = true; 683 } 684 685 /* 686 * Returns true if the TLB flush should be deferred to the end of a batch of 687 * unmap operations to reduce IPIs. 688 */ 689 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 690 { 691 bool should_defer = false; 692 693 if (!(flags & TTU_BATCH_FLUSH)) 694 return false; 695 696 /* If remote CPUs need to be flushed then defer batch the flush */ 697 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 698 should_defer = true; 699 put_cpu(); 700 701 return should_defer; 702 } 703 704 /* 705 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 706 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 707 * operation such as mprotect or munmap to race between reclaim unmapping 708 * the page and flushing the page. If this race occurs, it potentially allows 709 * access to data via a stale TLB entry. Tracking all mm's that have TLB 710 * batching in flight would be expensive during reclaim so instead track 711 * whether TLB batching occurred in the past and if so then do a flush here 712 * if required. This will cost one additional flush per reclaim cycle paid 713 * by the first operation at risk such as mprotect and mumap. 714 * 715 * This must be called under the PTL so that an access to tlb_flush_batched 716 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 717 * via the PTL. 718 */ 719 void flush_tlb_batched_pending(struct mm_struct *mm) 720 { 721 int batch = atomic_read(&mm->tlb_flush_batched); 722 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 723 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 724 725 if (pending != flushed) { 726 flush_tlb_mm(mm); 727 /* 728 * If the new TLB flushing is pending during flushing, leave 729 * mm->tlb_flush_batched as is, to avoid losing flushing. 730 */ 731 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 732 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 733 } 734 } 735 #else 736 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval) 737 { 738 } 739 740 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 741 { 742 return false; 743 } 744 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 745 746 /* 747 * At what user virtual address is page expected in vma? 748 * Caller should check the page is actually part of the vma. 749 */ 750 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 751 { 752 struct folio *folio = page_folio(page); 753 if (folio_test_anon(folio)) { 754 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 755 /* 756 * Note: swapoff's unuse_vma() is more efficient with this 757 * check, and needs it to match anon_vma when KSM is active. 758 */ 759 if (!vma->anon_vma || !page__anon_vma || 760 vma->anon_vma->root != page__anon_vma->root) 761 return -EFAULT; 762 } else if (!vma->vm_file) { 763 return -EFAULT; 764 } else if (vma->vm_file->f_mapping != folio->mapping) { 765 return -EFAULT; 766 } 767 768 return vma_address(page, vma); 769 } 770 771 /* 772 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 773 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 774 * represents. 775 */ 776 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 777 { 778 pgd_t *pgd; 779 p4d_t *p4d; 780 pud_t *pud; 781 pmd_t *pmd = NULL; 782 783 pgd = pgd_offset(mm, address); 784 if (!pgd_present(*pgd)) 785 goto out; 786 787 p4d = p4d_offset(pgd, address); 788 if (!p4d_present(*p4d)) 789 goto out; 790 791 pud = pud_offset(p4d, address); 792 if (!pud_present(*pud)) 793 goto out; 794 795 pmd = pmd_offset(pud, address); 796 out: 797 return pmd; 798 } 799 800 struct folio_referenced_arg { 801 int mapcount; 802 int referenced; 803 unsigned long vm_flags; 804 struct mem_cgroup *memcg; 805 }; 806 /* 807 * arg: folio_referenced_arg will be passed 808 */ 809 static bool folio_referenced_one(struct folio *folio, 810 struct vm_area_struct *vma, unsigned long address, void *arg) 811 { 812 struct folio_referenced_arg *pra = arg; 813 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 814 int referenced = 0; 815 816 while (page_vma_mapped_walk(&pvmw)) { 817 address = pvmw.address; 818 819 if ((vma->vm_flags & VM_LOCKED) && 820 (!folio_test_large(folio) || !pvmw.pte)) { 821 /* Restore the mlock which got missed */ 822 mlock_vma_folio(folio, vma, !pvmw.pte); 823 page_vma_mapped_walk_done(&pvmw); 824 pra->vm_flags |= VM_LOCKED; 825 return false; /* To break the loop */ 826 } 827 828 if (pvmw.pte) { 829 if (lru_gen_enabled() && 830 pte_young(ptep_get(pvmw.pte))) { 831 lru_gen_look_around(&pvmw); 832 referenced++; 833 } 834 835 if (ptep_clear_flush_young_notify(vma, address, 836 pvmw.pte)) 837 referenced++; 838 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 839 if (pmdp_clear_flush_young_notify(vma, address, 840 pvmw.pmd)) 841 referenced++; 842 } else { 843 /* unexpected pmd-mapped folio? */ 844 WARN_ON_ONCE(1); 845 } 846 847 pra->mapcount--; 848 } 849 850 if (referenced) 851 folio_clear_idle(folio); 852 if (folio_test_clear_young(folio)) 853 referenced++; 854 855 if (referenced) { 856 pra->referenced++; 857 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 858 } 859 860 if (!pra->mapcount) 861 return false; /* To break the loop */ 862 863 return true; 864 } 865 866 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 867 { 868 struct folio_referenced_arg *pra = arg; 869 struct mem_cgroup *memcg = pra->memcg; 870 871 /* 872 * Ignore references from this mapping if it has no recency. If the 873 * folio has been used in another mapping, we will catch it; if this 874 * other mapping is already gone, the unmap path will have set the 875 * referenced flag or activated the folio in zap_pte_range(). 876 */ 877 if (!vma_has_recency(vma)) 878 return true; 879 880 /* 881 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 882 * of references from different cgroups. 883 */ 884 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 885 return true; 886 887 return false; 888 } 889 890 /** 891 * folio_referenced() - Test if the folio was referenced. 892 * @folio: The folio to test. 893 * @is_locked: Caller holds lock on the folio. 894 * @memcg: target memory cgroup 895 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 896 * 897 * Quick test_and_clear_referenced for all mappings of a folio, 898 * 899 * Return: The number of mappings which referenced the folio. Return -1 if 900 * the function bailed out due to rmap lock contention. 901 */ 902 int folio_referenced(struct folio *folio, int is_locked, 903 struct mem_cgroup *memcg, unsigned long *vm_flags) 904 { 905 int we_locked = 0; 906 struct folio_referenced_arg pra = { 907 .mapcount = folio_mapcount(folio), 908 .memcg = memcg, 909 }; 910 struct rmap_walk_control rwc = { 911 .rmap_one = folio_referenced_one, 912 .arg = (void *)&pra, 913 .anon_lock = folio_lock_anon_vma_read, 914 .try_lock = true, 915 .invalid_vma = invalid_folio_referenced_vma, 916 }; 917 918 *vm_flags = 0; 919 if (!pra.mapcount) 920 return 0; 921 922 if (!folio_raw_mapping(folio)) 923 return 0; 924 925 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 926 we_locked = folio_trylock(folio); 927 if (!we_locked) 928 return 1; 929 } 930 931 rmap_walk(folio, &rwc); 932 *vm_flags = pra.vm_flags; 933 934 if (we_locked) 935 folio_unlock(folio); 936 937 return rwc.contended ? -1 : pra.referenced; 938 } 939 940 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 941 { 942 int cleaned = 0; 943 struct vm_area_struct *vma = pvmw->vma; 944 struct mmu_notifier_range range; 945 unsigned long address = pvmw->address; 946 947 /* 948 * We have to assume the worse case ie pmd for invalidation. Note that 949 * the folio can not be freed from this function. 950 */ 951 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 952 vma->vm_mm, address, vma_address_end(pvmw)); 953 mmu_notifier_invalidate_range_start(&range); 954 955 while (page_vma_mapped_walk(pvmw)) { 956 int ret = 0; 957 958 address = pvmw->address; 959 if (pvmw->pte) { 960 pte_t *pte = pvmw->pte; 961 pte_t entry = ptep_get(pte); 962 963 if (!pte_dirty(entry) && !pte_write(entry)) 964 continue; 965 966 flush_cache_page(vma, address, pte_pfn(entry)); 967 entry = ptep_clear_flush(vma, address, pte); 968 entry = pte_wrprotect(entry); 969 entry = pte_mkclean(entry); 970 set_pte_at(vma->vm_mm, address, pte, entry); 971 ret = 1; 972 } else { 973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 974 pmd_t *pmd = pvmw->pmd; 975 pmd_t entry; 976 977 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 978 continue; 979 980 flush_cache_range(vma, address, 981 address + HPAGE_PMD_SIZE); 982 entry = pmdp_invalidate(vma, address, pmd); 983 entry = pmd_wrprotect(entry); 984 entry = pmd_mkclean(entry); 985 set_pmd_at(vma->vm_mm, address, pmd, entry); 986 ret = 1; 987 #else 988 /* unexpected pmd-mapped folio? */ 989 WARN_ON_ONCE(1); 990 #endif 991 } 992 993 /* 994 * No need to call mmu_notifier_invalidate_range() as we are 995 * downgrading page table protection not changing it to point 996 * to a new page. 997 * 998 * See Documentation/mm/mmu_notifier.rst 999 */ 1000 if (ret) 1001 cleaned++; 1002 } 1003 1004 mmu_notifier_invalidate_range_end(&range); 1005 1006 return cleaned; 1007 } 1008 1009 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1010 unsigned long address, void *arg) 1011 { 1012 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1013 int *cleaned = arg; 1014 1015 *cleaned += page_vma_mkclean_one(&pvmw); 1016 1017 return true; 1018 } 1019 1020 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1021 { 1022 if (vma->vm_flags & VM_SHARED) 1023 return false; 1024 1025 return true; 1026 } 1027 1028 int folio_mkclean(struct folio *folio) 1029 { 1030 int cleaned = 0; 1031 struct address_space *mapping; 1032 struct rmap_walk_control rwc = { 1033 .arg = (void *)&cleaned, 1034 .rmap_one = page_mkclean_one, 1035 .invalid_vma = invalid_mkclean_vma, 1036 }; 1037 1038 BUG_ON(!folio_test_locked(folio)); 1039 1040 if (!folio_mapped(folio)) 1041 return 0; 1042 1043 mapping = folio_mapping(folio); 1044 if (!mapping) 1045 return 0; 1046 1047 rmap_walk(folio, &rwc); 1048 1049 return cleaned; 1050 } 1051 EXPORT_SYMBOL_GPL(folio_mkclean); 1052 1053 /** 1054 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1055 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1056 * within the @vma of shared mappings. And since clean PTEs 1057 * should also be readonly, write protects them too. 1058 * @pfn: start pfn. 1059 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1060 * @pgoff: page offset that the @pfn mapped with. 1061 * @vma: vma that @pfn mapped within. 1062 * 1063 * Returns the number of cleaned PTEs (including PMDs). 1064 */ 1065 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1066 struct vm_area_struct *vma) 1067 { 1068 struct page_vma_mapped_walk pvmw = { 1069 .pfn = pfn, 1070 .nr_pages = nr_pages, 1071 .pgoff = pgoff, 1072 .vma = vma, 1073 .flags = PVMW_SYNC, 1074 }; 1075 1076 if (invalid_mkclean_vma(vma, NULL)) 1077 return 0; 1078 1079 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); 1080 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1081 1082 return page_vma_mkclean_one(&pvmw); 1083 } 1084 1085 int folio_total_mapcount(struct folio *folio) 1086 { 1087 int mapcount = folio_entire_mapcount(folio); 1088 int nr_pages; 1089 int i; 1090 1091 /* In the common case, avoid the loop when no pages mapped by PTE */ 1092 if (folio_nr_pages_mapped(folio) == 0) 1093 return mapcount; 1094 /* 1095 * Add all the PTE mappings of those pages mapped by PTE. 1096 * Limit the loop to folio_nr_pages_mapped()? 1097 * Perhaps: given all the raciness, that may be a good or a bad idea. 1098 */ 1099 nr_pages = folio_nr_pages(folio); 1100 for (i = 0; i < nr_pages; i++) 1101 mapcount += atomic_read(&folio_page(folio, i)->_mapcount); 1102 1103 /* But each of those _mapcounts was based on -1 */ 1104 mapcount += nr_pages; 1105 return mapcount; 1106 } 1107 1108 /** 1109 * page_move_anon_rmap - move a page to our anon_vma 1110 * @page: the page to move to our anon_vma 1111 * @vma: the vma the page belongs to 1112 * 1113 * When a page belongs exclusively to one process after a COW event, 1114 * that page can be moved into the anon_vma that belongs to just that 1115 * process, so the rmap code will not search the parent or sibling 1116 * processes. 1117 */ 1118 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1119 { 1120 void *anon_vma = vma->anon_vma; 1121 struct folio *folio = page_folio(page); 1122 1123 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1124 VM_BUG_ON_VMA(!anon_vma, vma); 1125 1126 anon_vma += PAGE_MAPPING_ANON; 1127 /* 1128 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1129 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1130 * folio_test_anon()) will not see one without the other. 1131 */ 1132 WRITE_ONCE(folio->mapping, anon_vma); 1133 SetPageAnonExclusive(page); 1134 } 1135 1136 /** 1137 * __page_set_anon_rmap - set up new anonymous rmap 1138 * @folio: Folio which contains page. 1139 * @page: Page to add to rmap. 1140 * @vma: VM area to add page to. 1141 * @address: User virtual address of the mapping 1142 * @exclusive: the page is exclusively owned by the current process 1143 */ 1144 static void __page_set_anon_rmap(struct folio *folio, struct page *page, 1145 struct vm_area_struct *vma, unsigned long address, int exclusive) 1146 { 1147 struct anon_vma *anon_vma = vma->anon_vma; 1148 1149 BUG_ON(!anon_vma); 1150 1151 if (folio_test_anon(folio)) 1152 goto out; 1153 1154 /* 1155 * If the page isn't exclusively mapped into this vma, 1156 * we must use the _oldest_ possible anon_vma for the 1157 * page mapping! 1158 */ 1159 if (!exclusive) 1160 anon_vma = anon_vma->root; 1161 1162 /* 1163 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1164 * Make sure the compiler doesn't split the stores of anon_vma and 1165 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1166 * could mistake the mapping for a struct address_space and crash. 1167 */ 1168 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1169 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1170 folio->index = linear_page_index(vma, address); 1171 out: 1172 if (exclusive) 1173 SetPageAnonExclusive(page); 1174 } 1175 1176 /** 1177 * __page_check_anon_rmap - sanity check anonymous rmap addition 1178 * @page: the page to add the mapping to 1179 * @vma: the vm area in which the mapping is added 1180 * @address: the user virtual address mapped 1181 */ 1182 static void __page_check_anon_rmap(struct page *page, 1183 struct vm_area_struct *vma, unsigned long address) 1184 { 1185 struct folio *folio = page_folio(page); 1186 /* 1187 * The page's anon-rmap details (mapping and index) are guaranteed to 1188 * be set up correctly at this point. 1189 * 1190 * We have exclusion against page_add_anon_rmap because the caller 1191 * always holds the page locked. 1192 * 1193 * We have exclusion against page_add_new_anon_rmap because those pages 1194 * are initially only visible via the pagetables, and the pte is locked 1195 * over the call to page_add_new_anon_rmap. 1196 */ 1197 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1198 folio); 1199 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1200 page); 1201 } 1202 1203 /** 1204 * page_add_anon_rmap - add pte mapping to an anonymous page 1205 * @page: the page to add the mapping to 1206 * @vma: the vm area in which the mapping is added 1207 * @address: the user virtual address mapped 1208 * @flags: the rmap flags 1209 * 1210 * The caller needs to hold the pte lock, and the page must be locked in 1211 * the anon_vma case: to serialize mapping,index checking after setting, 1212 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1213 * (but PageKsm is never downgraded to PageAnon). 1214 */ 1215 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 1216 unsigned long address, rmap_t flags) 1217 { 1218 struct folio *folio = page_folio(page); 1219 atomic_t *mapped = &folio->_nr_pages_mapped; 1220 int nr = 0, nr_pmdmapped = 0; 1221 bool compound = flags & RMAP_COMPOUND; 1222 bool first = true; 1223 1224 /* Is page being mapped by PTE? Is this its first map to be added? */ 1225 if (likely(!compound)) { 1226 first = atomic_inc_and_test(&page->_mapcount); 1227 nr = first; 1228 if (first && folio_test_large(folio)) { 1229 nr = atomic_inc_return_relaxed(mapped); 1230 nr = (nr < COMPOUND_MAPPED); 1231 } 1232 } else if (folio_test_pmd_mappable(folio)) { 1233 /* That test is redundant: it's for safety or to optimize out */ 1234 1235 first = atomic_inc_and_test(&folio->_entire_mapcount); 1236 if (first) { 1237 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1238 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1239 nr_pmdmapped = folio_nr_pages(folio); 1240 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1241 /* Raced ahead of a remove and another add? */ 1242 if (unlikely(nr < 0)) 1243 nr = 0; 1244 } else { 1245 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1246 nr = 0; 1247 } 1248 } 1249 } 1250 1251 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 1252 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 1253 1254 if (nr_pmdmapped) 1255 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped); 1256 if (nr) 1257 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1258 1259 if (likely(!folio_test_ksm(folio))) { 1260 /* address might be in next vma when migration races vma_merge */ 1261 if (first) 1262 __page_set_anon_rmap(folio, page, vma, address, 1263 !!(flags & RMAP_EXCLUSIVE)); 1264 else 1265 __page_check_anon_rmap(page, vma, address); 1266 } 1267 1268 mlock_vma_folio(folio, vma, compound); 1269 } 1270 1271 /** 1272 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1273 * @folio: The folio to add the mapping to. 1274 * @vma: the vm area in which the mapping is added 1275 * @address: the user virtual address mapped 1276 * 1277 * Like page_add_anon_rmap() but must only be called on *new* folios. 1278 * This means the inc-and-test can be bypassed. 1279 * The folio does not have to be locked. 1280 * 1281 * If the folio is large, it is accounted as a THP. As the folio 1282 * is new, it's assumed to be mapped exclusively by a single process. 1283 */ 1284 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1285 unsigned long address) 1286 { 1287 int nr; 1288 1289 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1290 __folio_set_swapbacked(folio); 1291 1292 if (likely(!folio_test_pmd_mappable(folio))) { 1293 /* increment count (starts at -1) */ 1294 atomic_set(&folio->_mapcount, 0); 1295 nr = 1; 1296 } else { 1297 /* increment count (starts at -1) */ 1298 atomic_set(&folio->_entire_mapcount, 0); 1299 atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED); 1300 nr = folio_nr_pages(folio); 1301 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr); 1302 } 1303 1304 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1305 __page_set_anon_rmap(folio, &folio->page, vma, address, 1); 1306 } 1307 1308 /** 1309 * page_add_file_rmap - add pte mapping to a file page 1310 * @page: the page to add the mapping to 1311 * @vma: the vm area in which the mapping is added 1312 * @compound: charge the page as compound or small page 1313 * 1314 * The caller needs to hold the pte lock. 1315 */ 1316 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma, 1317 bool compound) 1318 { 1319 struct folio *folio = page_folio(page); 1320 atomic_t *mapped = &folio->_nr_pages_mapped; 1321 int nr = 0, nr_pmdmapped = 0; 1322 bool first; 1323 1324 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1325 1326 /* Is page being mapped by PTE? Is this its first map to be added? */ 1327 if (likely(!compound)) { 1328 first = atomic_inc_and_test(&page->_mapcount); 1329 nr = first; 1330 if (first && folio_test_large(folio)) { 1331 nr = atomic_inc_return_relaxed(mapped); 1332 nr = (nr < COMPOUND_MAPPED); 1333 } 1334 } else if (folio_test_pmd_mappable(folio)) { 1335 /* That test is redundant: it's for safety or to optimize out */ 1336 1337 first = atomic_inc_and_test(&folio->_entire_mapcount); 1338 if (first) { 1339 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1340 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1341 nr_pmdmapped = folio_nr_pages(folio); 1342 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1343 /* Raced ahead of a remove and another add? */ 1344 if (unlikely(nr < 0)) 1345 nr = 0; 1346 } else { 1347 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1348 nr = 0; 1349 } 1350 } 1351 } 1352 1353 if (nr_pmdmapped) 1354 __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ? 1355 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped); 1356 if (nr) 1357 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr); 1358 1359 mlock_vma_folio(folio, vma, compound); 1360 } 1361 1362 /** 1363 * page_remove_rmap - take down pte mapping from a page 1364 * @page: page to remove mapping from 1365 * @vma: the vm area from which the mapping is removed 1366 * @compound: uncharge the page as compound or small page 1367 * 1368 * The caller needs to hold the pte lock. 1369 */ 1370 void page_remove_rmap(struct page *page, struct vm_area_struct *vma, 1371 bool compound) 1372 { 1373 struct folio *folio = page_folio(page); 1374 atomic_t *mapped = &folio->_nr_pages_mapped; 1375 int nr = 0, nr_pmdmapped = 0; 1376 bool last; 1377 enum node_stat_item idx; 1378 1379 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1380 1381 /* Hugetlb pages are not counted in NR_*MAPPED */ 1382 if (unlikely(folio_test_hugetlb(folio))) { 1383 /* hugetlb pages are always mapped with pmds */ 1384 atomic_dec(&folio->_entire_mapcount); 1385 return; 1386 } 1387 1388 /* Is page being unmapped by PTE? Is this its last map to be removed? */ 1389 if (likely(!compound)) { 1390 last = atomic_add_negative(-1, &page->_mapcount); 1391 nr = last; 1392 if (last && folio_test_large(folio)) { 1393 nr = atomic_dec_return_relaxed(mapped); 1394 nr = (nr < COMPOUND_MAPPED); 1395 } 1396 } else if (folio_test_pmd_mappable(folio)) { 1397 /* That test is redundant: it's for safety or to optimize out */ 1398 1399 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1400 if (last) { 1401 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped); 1402 if (likely(nr < COMPOUND_MAPPED)) { 1403 nr_pmdmapped = folio_nr_pages(folio); 1404 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1405 /* Raced ahead of another remove and an add? */ 1406 if (unlikely(nr < 0)) 1407 nr = 0; 1408 } else { 1409 /* An add of COMPOUND_MAPPED raced ahead */ 1410 nr = 0; 1411 } 1412 } 1413 } 1414 1415 if (nr_pmdmapped) { 1416 if (folio_test_anon(folio)) 1417 idx = NR_ANON_THPS; 1418 else if (folio_test_swapbacked(folio)) 1419 idx = NR_SHMEM_PMDMAPPED; 1420 else 1421 idx = NR_FILE_PMDMAPPED; 1422 __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped); 1423 } 1424 if (nr) { 1425 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1426 __lruvec_stat_mod_folio(folio, idx, -nr); 1427 1428 /* 1429 * Queue anon THP for deferred split if at least one 1430 * page of the folio is unmapped and at least one page 1431 * is still mapped. 1432 */ 1433 if (folio_test_pmd_mappable(folio) && folio_test_anon(folio)) 1434 if (!compound || nr < nr_pmdmapped) 1435 deferred_split_folio(folio); 1436 } 1437 1438 /* 1439 * It would be tidy to reset folio_test_anon mapping when fully 1440 * unmapped, but that might overwrite a racing page_add_anon_rmap 1441 * which increments mapcount after us but sets mapping before us: 1442 * so leave the reset to free_pages_prepare, and remember that 1443 * it's only reliable while mapped. 1444 */ 1445 1446 munlock_vma_folio(folio, vma, compound); 1447 } 1448 1449 /* 1450 * @arg: enum ttu_flags will be passed to this argument 1451 */ 1452 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1453 unsigned long address, void *arg) 1454 { 1455 struct mm_struct *mm = vma->vm_mm; 1456 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1457 pte_t pteval; 1458 struct page *subpage; 1459 bool anon_exclusive, ret = true; 1460 struct mmu_notifier_range range; 1461 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1462 unsigned long pfn; 1463 1464 /* 1465 * When racing against e.g. zap_pte_range() on another cpu, 1466 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1467 * try_to_unmap() may return before page_mapped() has become false, 1468 * if page table locking is skipped: use TTU_SYNC to wait for that. 1469 */ 1470 if (flags & TTU_SYNC) 1471 pvmw.flags = PVMW_SYNC; 1472 1473 if (flags & TTU_SPLIT_HUGE_PMD) 1474 split_huge_pmd_address(vma, address, false, folio); 1475 1476 /* 1477 * For THP, we have to assume the worse case ie pmd for invalidation. 1478 * For hugetlb, it could be much worse if we need to do pud 1479 * invalidation in the case of pmd sharing. 1480 * 1481 * Note that the folio can not be freed in this function as call of 1482 * try_to_unmap() must hold a reference on the folio. 1483 */ 1484 range.end = vma_address_end(&pvmw); 1485 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1486 address, range.end); 1487 if (folio_test_hugetlb(folio)) { 1488 /* 1489 * If sharing is possible, start and end will be adjusted 1490 * accordingly. 1491 */ 1492 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1493 &range.end); 1494 } 1495 mmu_notifier_invalidate_range_start(&range); 1496 1497 while (page_vma_mapped_walk(&pvmw)) { 1498 /* Unexpected PMD-mapped THP? */ 1499 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1500 1501 /* 1502 * If the folio is in an mlock()d vma, we must not swap it out. 1503 */ 1504 if (!(flags & TTU_IGNORE_MLOCK) && 1505 (vma->vm_flags & VM_LOCKED)) { 1506 /* Restore the mlock which got missed */ 1507 mlock_vma_folio(folio, vma, false); 1508 page_vma_mapped_walk_done(&pvmw); 1509 ret = false; 1510 break; 1511 } 1512 1513 pfn = pte_pfn(ptep_get(pvmw.pte)); 1514 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1515 address = pvmw.address; 1516 anon_exclusive = folio_test_anon(folio) && 1517 PageAnonExclusive(subpage); 1518 1519 if (folio_test_hugetlb(folio)) { 1520 bool anon = folio_test_anon(folio); 1521 1522 /* 1523 * The try_to_unmap() is only passed a hugetlb page 1524 * in the case where the hugetlb page is poisoned. 1525 */ 1526 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1527 /* 1528 * huge_pmd_unshare may unmap an entire PMD page. 1529 * There is no way of knowing exactly which PMDs may 1530 * be cached for this mm, so we must flush them all. 1531 * start/end were already adjusted above to cover this 1532 * range. 1533 */ 1534 flush_cache_range(vma, range.start, range.end); 1535 1536 /* 1537 * To call huge_pmd_unshare, i_mmap_rwsem must be 1538 * held in write mode. Caller needs to explicitly 1539 * do this outside rmap routines. 1540 * 1541 * We also must hold hugetlb vma_lock in write mode. 1542 * Lock order dictates acquiring vma_lock BEFORE 1543 * i_mmap_rwsem. We can only try lock here and fail 1544 * if unsuccessful. 1545 */ 1546 if (!anon) { 1547 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1548 if (!hugetlb_vma_trylock_write(vma)) { 1549 page_vma_mapped_walk_done(&pvmw); 1550 ret = false; 1551 break; 1552 } 1553 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1554 hugetlb_vma_unlock_write(vma); 1555 flush_tlb_range(vma, 1556 range.start, range.end); 1557 mmu_notifier_invalidate_range(mm, 1558 range.start, range.end); 1559 /* 1560 * The ref count of the PMD page was 1561 * dropped which is part of the way map 1562 * counting is done for shared PMDs. 1563 * Return 'true' here. When there is 1564 * no other sharing, huge_pmd_unshare 1565 * returns false and we will unmap the 1566 * actual page and drop map count 1567 * to zero. 1568 */ 1569 page_vma_mapped_walk_done(&pvmw); 1570 break; 1571 } 1572 hugetlb_vma_unlock_write(vma); 1573 } 1574 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1575 } else { 1576 flush_cache_page(vma, address, pfn); 1577 /* Nuke the page table entry. */ 1578 if (should_defer_flush(mm, flags)) { 1579 /* 1580 * We clear the PTE but do not flush so potentially 1581 * a remote CPU could still be writing to the folio. 1582 * If the entry was previously clean then the 1583 * architecture must guarantee that a clear->dirty 1584 * transition on a cached TLB entry is written through 1585 * and traps if the PTE is unmapped. 1586 */ 1587 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1588 1589 set_tlb_ubc_flush_pending(mm, pteval); 1590 } else { 1591 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1592 } 1593 } 1594 1595 /* 1596 * Now the pte is cleared. If this pte was uffd-wp armed, 1597 * we may want to replace a none pte with a marker pte if 1598 * it's file-backed, so we don't lose the tracking info. 1599 */ 1600 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1601 1602 /* Set the dirty flag on the folio now the pte is gone. */ 1603 if (pte_dirty(pteval)) 1604 folio_mark_dirty(folio); 1605 1606 /* Update high watermark before we lower rss */ 1607 update_hiwater_rss(mm); 1608 1609 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 1610 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1611 if (folio_test_hugetlb(folio)) { 1612 hugetlb_count_sub(folio_nr_pages(folio), mm); 1613 set_huge_pte_at(mm, address, pvmw.pte, pteval); 1614 } else { 1615 dec_mm_counter(mm, mm_counter(&folio->page)); 1616 set_pte_at(mm, address, pvmw.pte, pteval); 1617 } 1618 1619 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1620 /* 1621 * The guest indicated that the page content is of no 1622 * interest anymore. Simply discard the pte, vmscan 1623 * will take care of the rest. 1624 * A future reference will then fault in a new zero 1625 * page. When userfaultfd is active, we must not drop 1626 * this page though, as its main user (postcopy 1627 * migration) will not expect userfaults on already 1628 * copied pages. 1629 */ 1630 dec_mm_counter(mm, mm_counter(&folio->page)); 1631 /* We have to invalidate as we cleared the pte */ 1632 mmu_notifier_invalidate_range(mm, address, 1633 address + PAGE_SIZE); 1634 } else if (folio_test_anon(folio)) { 1635 swp_entry_t entry = { .val = page_private(subpage) }; 1636 pte_t swp_pte; 1637 /* 1638 * Store the swap location in the pte. 1639 * See handle_pte_fault() ... 1640 */ 1641 if (unlikely(folio_test_swapbacked(folio) != 1642 folio_test_swapcache(folio))) { 1643 WARN_ON_ONCE(1); 1644 ret = false; 1645 /* We have to invalidate as we cleared the pte */ 1646 mmu_notifier_invalidate_range(mm, address, 1647 address + PAGE_SIZE); 1648 page_vma_mapped_walk_done(&pvmw); 1649 break; 1650 } 1651 1652 /* MADV_FREE page check */ 1653 if (!folio_test_swapbacked(folio)) { 1654 int ref_count, map_count; 1655 1656 /* 1657 * Synchronize with gup_pte_range(): 1658 * - clear PTE; barrier; read refcount 1659 * - inc refcount; barrier; read PTE 1660 */ 1661 smp_mb(); 1662 1663 ref_count = folio_ref_count(folio); 1664 map_count = folio_mapcount(folio); 1665 1666 /* 1667 * Order reads for page refcount and dirty flag 1668 * (see comments in __remove_mapping()). 1669 */ 1670 smp_rmb(); 1671 1672 /* 1673 * The only page refs must be one from isolation 1674 * plus the rmap(s) (dropped by discard:). 1675 */ 1676 if (ref_count == 1 + map_count && 1677 !folio_test_dirty(folio)) { 1678 /* Invalidate as we cleared the pte */ 1679 mmu_notifier_invalidate_range(mm, 1680 address, address + PAGE_SIZE); 1681 dec_mm_counter(mm, MM_ANONPAGES); 1682 goto discard; 1683 } 1684 1685 /* 1686 * If the folio was redirtied, it cannot be 1687 * discarded. Remap the page to page table. 1688 */ 1689 set_pte_at(mm, address, pvmw.pte, pteval); 1690 folio_set_swapbacked(folio); 1691 ret = false; 1692 page_vma_mapped_walk_done(&pvmw); 1693 break; 1694 } 1695 1696 if (swap_duplicate(entry) < 0) { 1697 set_pte_at(mm, address, pvmw.pte, pteval); 1698 ret = false; 1699 page_vma_mapped_walk_done(&pvmw); 1700 break; 1701 } 1702 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1703 swap_free(entry); 1704 set_pte_at(mm, address, pvmw.pte, pteval); 1705 ret = false; 1706 page_vma_mapped_walk_done(&pvmw); 1707 break; 1708 } 1709 1710 /* See page_try_share_anon_rmap(): clear PTE first. */ 1711 if (anon_exclusive && 1712 page_try_share_anon_rmap(subpage)) { 1713 swap_free(entry); 1714 set_pte_at(mm, address, pvmw.pte, pteval); 1715 ret = false; 1716 page_vma_mapped_walk_done(&pvmw); 1717 break; 1718 } 1719 if (list_empty(&mm->mmlist)) { 1720 spin_lock(&mmlist_lock); 1721 if (list_empty(&mm->mmlist)) 1722 list_add(&mm->mmlist, &init_mm.mmlist); 1723 spin_unlock(&mmlist_lock); 1724 } 1725 dec_mm_counter(mm, MM_ANONPAGES); 1726 inc_mm_counter(mm, MM_SWAPENTS); 1727 swp_pte = swp_entry_to_pte(entry); 1728 if (anon_exclusive) 1729 swp_pte = pte_swp_mkexclusive(swp_pte); 1730 if (pte_soft_dirty(pteval)) 1731 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1732 if (pte_uffd_wp(pteval)) 1733 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1734 set_pte_at(mm, address, pvmw.pte, swp_pte); 1735 /* Invalidate as we cleared the pte */ 1736 mmu_notifier_invalidate_range(mm, address, 1737 address + PAGE_SIZE); 1738 } else { 1739 /* 1740 * This is a locked file-backed folio, 1741 * so it cannot be removed from the page 1742 * cache and replaced by a new folio before 1743 * mmu_notifier_invalidate_range_end, so no 1744 * concurrent thread might update its page table 1745 * to point at a new folio while a device is 1746 * still using this folio. 1747 * 1748 * See Documentation/mm/mmu_notifier.rst 1749 */ 1750 dec_mm_counter(mm, mm_counter_file(&folio->page)); 1751 } 1752 discard: 1753 /* 1754 * No need to call mmu_notifier_invalidate_range() it has be 1755 * done above for all cases requiring it to happen under page 1756 * table lock before mmu_notifier_invalidate_range_end() 1757 * 1758 * See Documentation/mm/mmu_notifier.rst 1759 */ 1760 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 1761 if (vma->vm_flags & VM_LOCKED) 1762 mlock_drain_local(); 1763 folio_put(folio); 1764 } 1765 1766 mmu_notifier_invalidate_range_end(&range); 1767 1768 return ret; 1769 } 1770 1771 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1772 { 1773 return vma_is_temporary_stack(vma); 1774 } 1775 1776 static int folio_not_mapped(struct folio *folio) 1777 { 1778 return !folio_mapped(folio); 1779 } 1780 1781 /** 1782 * try_to_unmap - Try to remove all page table mappings to a folio. 1783 * @folio: The folio to unmap. 1784 * @flags: action and flags 1785 * 1786 * Tries to remove all the page table entries which are mapping this 1787 * folio. It is the caller's responsibility to check if the folio is 1788 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1789 * 1790 * Context: Caller must hold the folio lock. 1791 */ 1792 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1793 { 1794 struct rmap_walk_control rwc = { 1795 .rmap_one = try_to_unmap_one, 1796 .arg = (void *)flags, 1797 .done = folio_not_mapped, 1798 .anon_lock = folio_lock_anon_vma_read, 1799 }; 1800 1801 if (flags & TTU_RMAP_LOCKED) 1802 rmap_walk_locked(folio, &rwc); 1803 else 1804 rmap_walk(folio, &rwc); 1805 } 1806 1807 /* 1808 * @arg: enum ttu_flags will be passed to this argument. 1809 * 1810 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1811 * containing migration entries. 1812 */ 1813 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 1814 unsigned long address, void *arg) 1815 { 1816 struct mm_struct *mm = vma->vm_mm; 1817 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1818 pte_t pteval; 1819 struct page *subpage; 1820 bool anon_exclusive, ret = true; 1821 struct mmu_notifier_range range; 1822 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1823 unsigned long pfn; 1824 1825 /* 1826 * When racing against e.g. zap_pte_range() on another cpu, 1827 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1828 * try_to_migrate() may return before page_mapped() has become false, 1829 * if page table locking is skipped: use TTU_SYNC to wait for that. 1830 */ 1831 if (flags & TTU_SYNC) 1832 pvmw.flags = PVMW_SYNC; 1833 1834 /* 1835 * unmap_page() in mm/huge_memory.c is the only user of migration with 1836 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1837 */ 1838 if (flags & TTU_SPLIT_HUGE_PMD) 1839 split_huge_pmd_address(vma, address, true, folio); 1840 1841 /* 1842 * For THP, we have to assume the worse case ie pmd for invalidation. 1843 * For hugetlb, it could be much worse if we need to do pud 1844 * invalidation in the case of pmd sharing. 1845 * 1846 * Note that the page can not be free in this function as call of 1847 * try_to_unmap() must hold a reference on the page. 1848 */ 1849 range.end = vma_address_end(&pvmw); 1850 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1851 address, range.end); 1852 if (folio_test_hugetlb(folio)) { 1853 /* 1854 * If sharing is possible, start and end will be adjusted 1855 * accordingly. 1856 */ 1857 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1858 &range.end); 1859 } 1860 mmu_notifier_invalidate_range_start(&range); 1861 1862 while (page_vma_mapped_walk(&pvmw)) { 1863 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1864 /* PMD-mapped THP migration entry */ 1865 if (!pvmw.pte) { 1866 subpage = folio_page(folio, 1867 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 1868 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 1869 !folio_test_pmd_mappable(folio), folio); 1870 1871 if (set_pmd_migration_entry(&pvmw, subpage)) { 1872 ret = false; 1873 page_vma_mapped_walk_done(&pvmw); 1874 break; 1875 } 1876 continue; 1877 } 1878 #endif 1879 1880 /* Unexpected PMD-mapped THP? */ 1881 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1882 1883 pfn = pte_pfn(ptep_get(pvmw.pte)); 1884 1885 if (folio_is_zone_device(folio)) { 1886 /* 1887 * Our PTE is a non-present device exclusive entry and 1888 * calculating the subpage as for the common case would 1889 * result in an invalid pointer. 1890 * 1891 * Since only PAGE_SIZE pages can currently be 1892 * migrated, just set it to page. This will need to be 1893 * changed when hugepage migrations to device private 1894 * memory are supported. 1895 */ 1896 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 1897 subpage = &folio->page; 1898 } else { 1899 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1900 } 1901 address = pvmw.address; 1902 anon_exclusive = folio_test_anon(folio) && 1903 PageAnonExclusive(subpage); 1904 1905 if (folio_test_hugetlb(folio)) { 1906 bool anon = folio_test_anon(folio); 1907 1908 /* 1909 * huge_pmd_unshare may unmap an entire PMD page. 1910 * There is no way of knowing exactly which PMDs may 1911 * be cached for this mm, so we must flush them all. 1912 * start/end were already adjusted above to cover this 1913 * range. 1914 */ 1915 flush_cache_range(vma, range.start, range.end); 1916 1917 /* 1918 * To call huge_pmd_unshare, i_mmap_rwsem must be 1919 * held in write mode. Caller needs to explicitly 1920 * do this outside rmap routines. 1921 * 1922 * We also must hold hugetlb vma_lock in write mode. 1923 * Lock order dictates acquiring vma_lock BEFORE 1924 * i_mmap_rwsem. We can only try lock here and 1925 * fail if unsuccessful. 1926 */ 1927 if (!anon) { 1928 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1929 if (!hugetlb_vma_trylock_write(vma)) { 1930 page_vma_mapped_walk_done(&pvmw); 1931 ret = false; 1932 break; 1933 } 1934 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1935 hugetlb_vma_unlock_write(vma); 1936 flush_tlb_range(vma, 1937 range.start, range.end); 1938 mmu_notifier_invalidate_range(mm, 1939 range.start, range.end); 1940 1941 /* 1942 * The ref count of the PMD page was 1943 * dropped which is part of the way map 1944 * counting is done for shared PMDs. 1945 * Return 'true' here. When there is 1946 * no other sharing, huge_pmd_unshare 1947 * returns false and we will unmap the 1948 * actual page and drop map count 1949 * to zero. 1950 */ 1951 page_vma_mapped_walk_done(&pvmw); 1952 break; 1953 } 1954 hugetlb_vma_unlock_write(vma); 1955 } 1956 /* Nuke the hugetlb page table entry */ 1957 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1958 } else { 1959 flush_cache_page(vma, address, pfn); 1960 /* Nuke the page table entry. */ 1961 if (should_defer_flush(mm, flags)) { 1962 /* 1963 * We clear the PTE but do not flush so potentially 1964 * a remote CPU could still be writing to the folio. 1965 * If the entry was previously clean then the 1966 * architecture must guarantee that a clear->dirty 1967 * transition on a cached TLB entry is written through 1968 * and traps if the PTE is unmapped. 1969 */ 1970 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1971 1972 set_tlb_ubc_flush_pending(mm, pteval); 1973 } else { 1974 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1975 } 1976 } 1977 1978 /* Set the dirty flag on the folio now the pte is gone. */ 1979 if (pte_dirty(pteval)) 1980 folio_mark_dirty(folio); 1981 1982 /* Update high watermark before we lower rss */ 1983 update_hiwater_rss(mm); 1984 1985 if (folio_is_device_private(folio)) { 1986 unsigned long pfn = folio_pfn(folio); 1987 swp_entry_t entry; 1988 pte_t swp_pte; 1989 1990 if (anon_exclusive) 1991 BUG_ON(page_try_share_anon_rmap(subpage)); 1992 1993 /* 1994 * Store the pfn of the page in a special migration 1995 * pte. do_swap_page() will wait until the migration 1996 * pte is removed and then restart fault handling. 1997 */ 1998 entry = pte_to_swp_entry(pteval); 1999 if (is_writable_device_private_entry(entry)) 2000 entry = make_writable_migration_entry(pfn); 2001 else if (anon_exclusive) 2002 entry = make_readable_exclusive_migration_entry(pfn); 2003 else 2004 entry = make_readable_migration_entry(pfn); 2005 swp_pte = swp_entry_to_pte(entry); 2006 2007 /* 2008 * pteval maps a zone device page and is therefore 2009 * a swap pte. 2010 */ 2011 if (pte_swp_soft_dirty(pteval)) 2012 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2013 if (pte_swp_uffd_wp(pteval)) 2014 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2015 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2016 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2017 compound_order(&folio->page)); 2018 /* 2019 * No need to invalidate here it will synchronize on 2020 * against the special swap migration pte. 2021 */ 2022 } else if (PageHWPoison(subpage)) { 2023 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2024 if (folio_test_hugetlb(folio)) { 2025 hugetlb_count_sub(folio_nr_pages(folio), mm); 2026 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2027 } else { 2028 dec_mm_counter(mm, mm_counter(&folio->page)); 2029 set_pte_at(mm, address, pvmw.pte, pteval); 2030 } 2031 2032 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2033 /* 2034 * The guest indicated that the page content is of no 2035 * interest anymore. Simply discard the pte, vmscan 2036 * will take care of the rest. 2037 * A future reference will then fault in a new zero 2038 * page. When userfaultfd is active, we must not drop 2039 * this page though, as its main user (postcopy 2040 * migration) will not expect userfaults on already 2041 * copied pages. 2042 */ 2043 dec_mm_counter(mm, mm_counter(&folio->page)); 2044 /* We have to invalidate as we cleared the pte */ 2045 mmu_notifier_invalidate_range(mm, address, 2046 address + PAGE_SIZE); 2047 } else { 2048 swp_entry_t entry; 2049 pte_t swp_pte; 2050 2051 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2052 if (folio_test_hugetlb(folio)) 2053 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2054 else 2055 set_pte_at(mm, address, pvmw.pte, pteval); 2056 ret = false; 2057 page_vma_mapped_walk_done(&pvmw); 2058 break; 2059 } 2060 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2061 !anon_exclusive, subpage); 2062 2063 /* See page_try_share_anon_rmap(): clear PTE first. */ 2064 if (anon_exclusive && 2065 page_try_share_anon_rmap(subpage)) { 2066 if (folio_test_hugetlb(folio)) 2067 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2068 else 2069 set_pte_at(mm, address, pvmw.pte, pteval); 2070 ret = false; 2071 page_vma_mapped_walk_done(&pvmw); 2072 break; 2073 } 2074 2075 /* 2076 * Store the pfn of the page in a special migration 2077 * pte. do_swap_page() will wait until the migration 2078 * pte is removed and then restart fault handling. 2079 */ 2080 if (pte_write(pteval)) 2081 entry = make_writable_migration_entry( 2082 page_to_pfn(subpage)); 2083 else if (anon_exclusive) 2084 entry = make_readable_exclusive_migration_entry( 2085 page_to_pfn(subpage)); 2086 else 2087 entry = make_readable_migration_entry( 2088 page_to_pfn(subpage)); 2089 if (pte_young(pteval)) 2090 entry = make_migration_entry_young(entry); 2091 if (pte_dirty(pteval)) 2092 entry = make_migration_entry_dirty(entry); 2093 swp_pte = swp_entry_to_pte(entry); 2094 if (pte_soft_dirty(pteval)) 2095 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2096 if (pte_uffd_wp(pteval)) 2097 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2098 if (folio_test_hugetlb(folio)) 2099 set_huge_pte_at(mm, address, pvmw.pte, swp_pte); 2100 else 2101 set_pte_at(mm, address, pvmw.pte, swp_pte); 2102 trace_set_migration_pte(address, pte_val(swp_pte), 2103 compound_order(&folio->page)); 2104 /* 2105 * No need to invalidate here it will synchronize on 2106 * against the special swap migration pte. 2107 */ 2108 } 2109 2110 /* 2111 * No need to call mmu_notifier_invalidate_range() it has be 2112 * done above for all cases requiring it to happen under page 2113 * table lock before mmu_notifier_invalidate_range_end() 2114 * 2115 * See Documentation/mm/mmu_notifier.rst 2116 */ 2117 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 2118 if (vma->vm_flags & VM_LOCKED) 2119 mlock_drain_local(); 2120 folio_put(folio); 2121 } 2122 2123 mmu_notifier_invalidate_range_end(&range); 2124 2125 return ret; 2126 } 2127 2128 /** 2129 * try_to_migrate - try to replace all page table mappings with swap entries 2130 * @folio: the folio to replace page table entries for 2131 * @flags: action and flags 2132 * 2133 * Tries to remove all the page table entries which are mapping this folio and 2134 * replace them with special swap entries. Caller must hold the folio lock. 2135 */ 2136 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2137 { 2138 struct rmap_walk_control rwc = { 2139 .rmap_one = try_to_migrate_one, 2140 .arg = (void *)flags, 2141 .done = folio_not_mapped, 2142 .anon_lock = folio_lock_anon_vma_read, 2143 }; 2144 2145 /* 2146 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2147 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2148 */ 2149 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2150 TTU_SYNC | TTU_BATCH_FLUSH))) 2151 return; 2152 2153 if (folio_is_zone_device(folio) && 2154 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2155 return; 2156 2157 /* 2158 * During exec, a temporary VMA is setup and later moved. 2159 * The VMA is moved under the anon_vma lock but not the 2160 * page tables leading to a race where migration cannot 2161 * find the migration ptes. Rather than increasing the 2162 * locking requirements of exec(), migration skips 2163 * temporary VMAs until after exec() completes. 2164 */ 2165 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2166 rwc.invalid_vma = invalid_migration_vma; 2167 2168 if (flags & TTU_RMAP_LOCKED) 2169 rmap_walk_locked(folio, &rwc); 2170 else 2171 rmap_walk(folio, &rwc); 2172 } 2173 2174 #ifdef CONFIG_DEVICE_PRIVATE 2175 struct make_exclusive_args { 2176 struct mm_struct *mm; 2177 unsigned long address; 2178 void *owner; 2179 bool valid; 2180 }; 2181 2182 static bool page_make_device_exclusive_one(struct folio *folio, 2183 struct vm_area_struct *vma, unsigned long address, void *priv) 2184 { 2185 struct mm_struct *mm = vma->vm_mm; 2186 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2187 struct make_exclusive_args *args = priv; 2188 pte_t pteval; 2189 struct page *subpage; 2190 bool ret = true; 2191 struct mmu_notifier_range range; 2192 swp_entry_t entry; 2193 pte_t swp_pte; 2194 pte_t ptent; 2195 2196 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2197 vma->vm_mm, address, min(vma->vm_end, 2198 address + folio_size(folio)), 2199 args->owner); 2200 mmu_notifier_invalidate_range_start(&range); 2201 2202 while (page_vma_mapped_walk(&pvmw)) { 2203 /* Unexpected PMD-mapped THP? */ 2204 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2205 2206 ptent = ptep_get(pvmw.pte); 2207 if (!pte_present(ptent)) { 2208 ret = false; 2209 page_vma_mapped_walk_done(&pvmw); 2210 break; 2211 } 2212 2213 subpage = folio_page(folio, 2214 pte_pfn(ptent) - folio_pfn(folio)); 2215 address = pvmw.address; 2216 2217 /* Nuke the page table entry. */ 2218 flush_cache_page(vma, address, pte_pfn(ptent)); 2219 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2220 2221 /* Set the dirty flag on the folio now the pte is gone. */ 2222 if (pte_dirty(pteval)) 2223 folio_mark_dirty(folio); 2224 2225 /* 2226 * Check that our target page is still mapped at the expected 2227 * address. 2228 */ 2229 if (args->mm == mm && args->address == address && 2230 pte_write(pteval)) 2231 args->valid = true; 2232 2233 /* 2234 * Store the pfn of the page in a special migration 2235 * pte. do_swap_page() will wait until the migration 2236 * pte is removed and then restart fault handling. 2237 */ 2238 if (pte_write(pteval)) 2239 entry = make_writable_device_exclusive_entry( 2240 page_to_pfn(subpage)); 2241 else 2242 entry = make_readable_device_exclusive_entry( 2243 page_to_pfn(subpage)); 2244 swp_pte = swp_entry_to_pte(entry); 2245 if (pte_soft_dirty(pteval)) 2246 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2247 if (pte_uffd_wp(pteval)) 2248 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2249 2250 set_pte_at(mm, address, pvmw.pte, swp_pte); 2251 2252 /* 2253 * There is a reference on the page for the swap entry which has 2254 * been removed, so shouldn't take another. 2255 */ 2256 page_remove_rmap(subpage, vma, false); 2257 } 2258 2259 mmu_notifier_invalidate_range_end(&range); 2260 2261 return ret; 2262 } 2263 2264 /** 2265 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2266 * @folio: The folio to replace page table entries for. 2267 * @mm: The mm_struct where the folio is expected to be mapped. 2268 * @address: Address where the folio is expected to be mapped. 2269 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2270 * 2271 * Tries to remove all the page table entries which are mapping this 2272 * folio and replace them with special device exclusive swap entries to 2273 * grant a device exclusive access to the folio. 2274 * 2275 * Context: Caller must hold the folio lock. 2276 * Return: false if the page is still mapped, or if it could not be unmapped 2277 * from the expected address. Otherwise returns true (success). 2278 */ 2279 static bool folio_make_device_exclusive(struct folio *folio, 2280 struct mm_struct *mm, unsigned long address, void *owner) 2281 { 2282 struct make_exclusive_args args = { 2283 .mm = mm, 2284 .address = address, 2285 .owner = owner, 2286 .valid = false, 2287 }; 2288 struct rmap_walk_control rwc = { 2289 .rmap_one = page_make_device_exclusive_one, 2290 .done = folio_not_mapped, 2291 .anon_lock = folio_lock_anon_vma_read, 2292 .arg = &args, 2293 }; 2294 2295 /* 2296 * Restrict to anonymous folios for now to avoid potential writeback 2297 * issues. 2298 */ 2299 if (!folio_test_anon(folio)) 2300 return false; 2301 2302 rmap_walk(folio, &rwc); 2303 2304 return args.valid && !folio_mapcount(folio); 2305 } 2306 2307 /** 2308 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2309 * @mm: mm_struct of associated target process 2310 * @start: start of the region to mark for exclusive device access 2311 * @end: end address of region 2312 * @pages: returns the pages which were successfully marked for exclusive access 2313 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2314 * 2315 * Returns: number of pages found in the range by GUP. A page is marked for 2316 * exclusive access only if the page pointer is non-NULL. 2317 * 2318 * This function finds ptes mapping page(s) to the given address range, locks 2319 * them and replaces mappings with special swap entries preventing userspace CPU 2320 * access. On fault these entries are replaced with the original mapping after 2321 * calling MMU notifiers. 2322 * 2323 * A driver using this to program access from a device must use a mmu notifier 2324 * critical section to hold a device specific lock during programming. Once 2325 * programming is complete it should drop the page lock and reference after 2326 * which point CPU access to the page will revoke the exclusive access. 2327 */ 2328 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2329 unsigned long end, struct page **pages, 2330 void *owner) 2331 { 2332 long npages = (end - start) >> PAGE_SHIFT; 2333 long i; 2334 2335 npages = get_user_pages_remote(mm, start, npages, 2336 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2337 pages, NULL); 2338 if (npages < 0) 2339 return npages; 2340 2341 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2342 struct folio *folio = page_folio(pages[i]); 2343 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2344 folio_put(folio); 2345 pages[i] = NULL; 2346 continue; 2347 } 2348 2349 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2350 folio_unlock(folio); 2351 folio_put(folio); 2352 pages[i] = NULL; 2353 } 2354 } 2355 2356 return npages; 2357 } 2358 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2359 #endif 2360 2361 void __put_anon_vma(struct anon_vma *anon_vma) 2362 { 2363 struct anon_vma *root = anon_vma->root; 2364 2365 anon_vma_free(anon_vma); 2366 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2367 anon_vma_free(root); 2368 } 2369 2370 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2371 struct rmap_walk_control *rwc) 2372 { 2373 struct anon_vma *anon_vma; 2374 2375 if (rwc->anon_lock) 2376 return rwc->anon_lock(folio, rwc); 2377 2378 /* 2379 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2380 * because that depends on page_mapped(); but not all its usages 2381 * are holding mmap_lock. Users without mmap_lock are required to 2382 * take a reference count to prevent the anon_vma disappearing 2383 */ 2384 anon_vma = folio_anon_vma(folio); 2385 if (!anon_vma) 2386 return NULL; 2387 2388 if (anon_vma_trylock_read(anon_vma)) 2389 goto out; 2390 2391 if (rwc->try_lock) { 2392 anon_vma = NULL; 2393 rwc->contended = true; 2394 goto out; 2395 } 2396 2397 anon_vma_lock_read(anon_vma); 2398 out: 2399 return anon_vma; 2400 } 2401 2402 /* 2403 * rmap_walk_anon - do something to anonymous page using the object-based 2404 * rmap method 2405 * @page: the page to be handled 2406 * @rwc: control variable according to each walk type 2407 * 2408 * Find all the mappings of a page using the mapping pointer and the vma chains 2409 * contained in the anon_vma struct it points to. 2410 */ 2411 static void rmap_walk_anon(struct folio *folio, 2412 struct rmap_walk_control *rwc, bool locked) 2413 { 2414 struct anon_vma *anon_vma; 2415 pgoff_t pgoff_start, pgoff_end; 2416 struct anon_vma_chain *avc; 2417 2418 if (locked) { 2419 anon_vma = folio_anon_vma(folio); 2420 /* anon_vma disappear under us? */ 2421 VM_BUG_ON_FOLIO(!anon_vma, folio); 2422 } else { 2423 anon_vma = rmap_walk_anon_lock(folio, rwc); 2424 } 2425 if (!anon_vma) 2426 return; 2427 2428 pgoff_start = folio_pgoff(folio); 2429 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2430 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2431 pgoff_start, pgoff_end) { 2432 struct vm_area_struct *vma = avc->vma; 2433 unsigned long address = vma_address(&folio->page, vma); 2434 2435 VM_BUG_ON_VMA(address == -EFAULT, vma); 2436 cond_resched(); 2437 2438 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2439 continue; 2440 2441 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2442 break; 2443 if (rwc->done && rwc->done(folio)) 2444 break; 2445 } 2446 2447 if (!locked) 2448 anon_vma_unlock_read(anon_vma); 2449 } 2450 2451 /* 2452 * rmap_walk_file - do something to file page using the object-based rmap method 2453 * @page: the page to be handled 2454 * @rwc: control variable according to each walk type 2455 * 2456 * Find all the mappings of a page using the mapping pointer and the vma chains 2457 * contained in the address_space struct it points to. 2458 */ 2459 static void rmap_walk_file(struct folio *folio, 2460 struct rmap_walk_control *rwc, bool locked) 2461 { 2462 struct address_space *mapping = folio_mapping(folio); 2463 pgoff_t pgoff_start, pgoff_end; 2464 struct vm_area_struct *vma; 2465 2466 /* 2467 * The page lock not only makes sure that page->mapping cannot 2468 * suddenly be NULLified by truncation, it makes sure that the 2469 * structure at mapping cannot be freed and reused yet, 2470 * so we can safely take mapping->i_mmap_rwsem. 2471 */ 2472 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2473 2474 if (!mapping) 2475 return; 2476 2477 pgoff_start = folio_pgoff(folio); 2478 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2479 if (!locked) { 2480 if (i_mmap_trylock_read(mapping)) 2481 goto lookup; 2482 2483 if (rwc->try_lock) { 2484 rwc->contended = true; 2485 return; 2486 } 2487 2488 i_mmap_lock_read(mapping); 2489 } 2490 lookup: 2491 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2492 pgoff_start, pgoff_end) { 2493 unsigned long address = vma_address(&folio->page, vma); 2494 2495 VM_BUG_ON_VMA(address == -EFAULT, vma); 2496 cond_resched(); 2497 2498 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2499 continue; 2500 2501 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2502 goto done; 2503 if (rwc->done && rwc->done(folio)) 2504 goto done; 2505 } 2506 2507 done: 2508 if (!locked) 2509 i_mmap_unlock_read(mapping); 2510 } 2511 2512 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2513 { 2514 if (unlikely(folio_test_ksm(folio))) 2515 rmap_walk_ksm(folio, rwc); 2516 else if (folio_test_anon(folio)) 2517 rmap_walk_anon(folio, rwc, false); 2518 else 2519 rmap_walk_file(folio, rwc, false); 2520 } 2521 2522 /* Like rmap_walk, but caller holds relevant rmap lock */ 2523 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2524 { 2525 /* no ksm support for now */ 2526 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2527 if (folio_test_anon(folio)) 2528 rmap_walk_anon(folio, rwc, true); 2529 else 2530 rmap_walk_file(folio, rwc, true); 2531 } 2532 2533 #ifdef CONFIG_HUGETLB_PAGE 2534 /* 2535 * The following two functions are for anonymous (private mapped) hugepages. 2536 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2537 * and no lru code, because we handle hugepages differently from common pages. 2538 * 2539 * RMAP_COMPOUND is ignored. 2540 */ 2541 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 2542 unsigned long address, rmap_t flags) 2543 { 2544 struct folio *folio = page_folio(page); 2545 struct anon_vma *anon_vma = vma->anon_vma; 2546 int first; 2547 2548 BUG_ON(!folio_test_locked(folio)); 2549 BUG_ON(!anon_vma); 2550 /* address might be in next vma when migration races vma_merge */ 2551 first = atomic_inc_and_test(&folio->_entire_mapcount); 2552 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 2553 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 2554 if (first) 2555 __page_set_anon_rmap(folio, page, vma, address, 2556 !!(flags & RMAP_EXCLUSIVE)); 2557 } 2558 2559 void hugepage_add_new_anon_rmap(struct folio *folio, 2560 struct vm_area_struct *vma, unsigned long address) 2561 { 2562 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2563 /* increment count (starts at -1) */ 2564 atomic_set(&folio->_entire_mapcount, 0); 2565 folio_clear_hugetlb_restore_reserve(folio); 2566 __page_set_anon_rmap(folio, &folio->page, vma, address, 1); 2567 } 2568 #endif /* CONFIG_HUGETLB_PAGE */ 2569