xref: /openbmc/linux/mm/rmap.c (revision b608dd67)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       page->flags PG_locked (lock_page)
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           vma_start_write
29  *             mapping->i_mmap_rwsem
30  *               anon_vma->rwsem
31  *                 mm->page_table_lock or pte_lock
32  *                   swap_lock (in swap_duplicate, swap_info_get)
33  *                     mmlist_lock (in mmput, drain_mmlist and others)
34  *                     mapping->private_lock (in block_dirty_folio)
35  *                       folio_lock_memcg move_lock (in block_dirty_folio)
36  *                         i_pages lock (widely used)
37  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
38  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
41  *                       i_pages lock (widely used, in set_page_dirty,
42  *                                 in arch-dependent flush_dcache_mmap_lock,
43  *                                 within bdi.wb->list_lock in __sync_single_inode)
44  *
45  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
46  *   ->tasklist_lock
47  *     pte map lock
48  *
49  * hugetlbfs PageHuge() take locks in this order:
50  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51  *     vma_lock (hugetlb specific lock for pmd_sharing)
52  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53  *         page->flags PG_locked (lock_page)
54  */
55 
56 #include <linux/mm.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/task.h>
59 #include <linux/pagemap.h>
60 #include <linux/swap.h>
61 #include <linux/swapops.h>
62 #include <linux/slab.h>
63 #include <linux/init.h>
64 #include <linux/ksm.h>
65 #include <linux/rmap.h>
66 #include <linux/rcupdate.h>
67 #include <linux/export.h>
68 #include <linux/memcontrol.h>
69 #include <linux/mmu_notifier.h>
70 #include <linux/migrate.h>
71 #include <linux/hugetlb.h>
72 #include <linux/huge_mm.h>
73 #include <linux/backing-dev.h>
74 #include <linux/page_idle.h>
75 #include <linux/memremap.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/mm_inline.h>
78 
79 #include <asm/tlbflush.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84 
85 #include "internal.h"
86 
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89 
90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 	struct anon_vma *anon_vma;
93 
94 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 	if (anon_vma) {
96 		atomic_set(&anon_vma->refcount, 1);
97 		anon_vma->num_children = 0;
98 		anon_vma->num_active_vmas = 0;
99 		anon_vma->parent = anon_vma;
100 		/*
101 		 * Initialise the anon_vma root to point to itself. If called
102 		 * from fork, the root will be reset to the parents anon_vma.
103 		 */
104 		anon_vma->root = anon_vma;
105 	}
106 
107 	return anon_vma;
108 }
109 
110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
113 
114 	/*
115 	 * Synchronize against folio_lock_anon_vma_read() such that
116 	 * we can safely hold the lock without the anon_vma getting
117 	 * freed.
118 	 *
119 	 * Relies on the full mb implied by the atomic_dec_and_test() from
120 	 * put_anon_vma() against the acquire barrier implied by
121 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 	 *
123 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
124 	 *   down_read_trylock()		  atomic_dec_and_test()
125 	 *   LOCK				  MB
126 	 *   atomic_read()			  rwsem_is_locked()
127 	 *
128 	 * LOCK should suffice since the actual taking of the lock must
129 	 * happen _before_ what follows.
130 	 */
131 	might_sleep();
132 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 		anon_vma_lock_write(anon_vma);
134 		anon_vma_unlock_write(anon_vma);
135 	}
136 
137 	kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139 
140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144 
145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149 
150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 				struct anon_vma_chain *avc,
152 				struct anon_vma *anon_vma)
153 {
154 	avc->vma = vma;
155 	avc->anon_vma = anon_vma;
156 	list_add(&avc->same_vma, &vma->anon_vma_chain);
157 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159 
160 /**
161  * __anon_vma_prepare - attach an anon_vma to a memory region
162  * @vma: the memory region in question
163  *
164  * This makes sure the memory mapping described by 'vma' has
165  * an 'anon_vma' attached to it, so that we can associate the
166  * anonymous pages mapped into it with that anon_vma.
167  *
168  * The common case will be that we already have one, which
169  * is handled inline by anon_vma_prepare(). But if
170  * not we either need to find an adjacent mapping that we
171  * can re-use the anon_vma from (very common when the only
172  * reason for splitting a vma has been mprotect()), or we
173  * allocate a new one.
174  *
175  * Anon-vma allocations are very subtle, because we may have
176  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177  * and that may actually touch the rwsem even in the newly
178  * allocated vma (it depends on RCU to make sure that the
179  * anon_vma isn't actually destroyed).
180  *
181  * As a result, we need to do proper anon_vma locking even
182  * for the new allocation. At the same time, we do not want
183  * to do any locking for the common case of already having
184  * an anon_vma.
185  *
186  * This must be called with the mmap_lock held for reading.
187  */
188 int __anon_vma_prepare(struct vm_area_struct *vma)
189 {
190 	struct mm_struct *mm = vma->vm_mm;
191 	struct anon_vma *anon_vma, *allocated;
192 	struct anon_vma_chain *avc;
193 
194 	might_sleep();
195 
196 	avc = anon_vma_chain_alloc(GFP_KERNEL);
197 	if (!avc)
198 		goto out_enomem;
199 
200 	anon_vma = find_mergeable_anon_vma(vma);
201 	allocated = NULL;
202 	if (!anon_vma) {
203 		anon_vma = anon_vma_alloc();
204 		if (unlikely(!anon_vma))
205 			goto out_enomem_free_avc;
206 		anon_vma->num_children++; /* self-parent link for new root */
207 		allocated = anon_vma;
208 	}
209 
210 	anon_vma_lock_write(anon_vma);
211 	/* page_table_lock to protect against threads */
212 	spin_lock(&mm->page_table_lock);
213 	if (likely(!vma->anon_vma)) {
214 		vma->anon_vma = anon_vma;
215 		anon_vma_chain_link(vma, avc, anon_vma);
216 		anon_vma->num_active_vmas++;
217 		allocated = NULL;
218 		avc = NULL;
219 	}
220 	spin_unlock(&mm->page_table_lock);
221 	anon_vma_unlock_write(anon_vma);
222 
223 	if (unlikely(allocated))
224 		put_anon_vma(allocated);
225 	if (unlikely(avc))
226 		anon_vma_chain_free(avc);
227 
228 	return 0;
229 
230  out_enomem_free_avc:
231 	anon_vma_chain_free(avc);
232  out_enomem:
233 	return -ENOMEM;
234 }
235 
236 /*
237  * This is a useful helper function for locking the anon_vma root as
238  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
239  * have the same vma.
240  *
241  * Such anon_vma's should have the same root, so you'd expect to see
242  * just a single mutex_lock for the whole traversal.
243  */
244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
245 {
246 	struct anon_vma *new_root = anon_vma->root;
247 	if (new_root != root) {
248 		if (WARN_ON_ONCE(root))
249 			up_write(&root->rwsem);
250 		root = new_root;
251 		down_write(&root->rwsem);
252 	}
253 	return root;
254 }
255 
256 static inline void unlock_anon_vma_root(struct anon_vma *root)
257 {
258 	if (root)
259 		up_write(&root->rwsem);
260 }
261 
262 /*
263  * Attach the anon_vmas from src to dst.
264  * Returns 0 on success, -ENOMEM on failure.
265  *
266  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
267  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
268  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
269  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
270  * call, we can identify this case by checking (!dst->anon_vma &&
271  * src->anon_vma).
272  *
273  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
274  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
275  * This prevents degradation of anon_vma hierarchy to endless linear chain in
276  * case of constantly forking task. On the other hand, an anon_vma with more
277  * than one child isn't reused even if there was no alive vma, thus rmap
278  * walker has a good chance of avoiding scanning the whole hierarchy when it
279  * searches where page is mapped.
280  */
281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
282 {
283 	struct anon_vma_chain *avc, *pavc;
284 	struct anon_vma *root = NULL;
285 
286 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
287 		struct anon_vma *anon_vma;
288 
289 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
290 		if (unlikely(!avc)) {
291 			unlock_anon_vma_root(root);
292 			root = NULL;
293 			avc = anon_vma_chain_alloc(GFP_KERNEL);
294 			if (!avc)
295 				goto enomem_failure;
296 		}
297 		anon_vma = pavc->anon_vma;
298 		root = lock_anon_vma_root(root, anon_vma);
299 		anon_vma_chain_link(dst, avc, anon_vma);
300 
301 		/*
302 		 * Reuse existing anon_vma if it has no vma and only one
303 		 * anon_vma child.
304 		 *
305 		 * Root anon_vma is never reused:
306 		 * it has self-parent reference and at least one child.
307 		 */
308 		if (!dst->anon_vma && src->anon_vma &&
309 		    anon_vma->num_children < 2 &&
310 		    anon_vma->num_active_vmas == 0)
311 			dst->anon_vma = anon_vma;
312 	}
313 	if (dst->anon_vma)
314 		dst->anon_vma->num_active_vmas++;
315 	unlock_anon_vma_root(root);
316 	return 0;
317 
318  enomem_failure:
319 	/*
320 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
321 	 * be incorrectly decremented in unlink_anon_vmas().
322 	 * We can safely do this because callers of anon_vma_clone() don't care
323 	 * about dst->anon_vma if anon_vma_clone() failed.
324 	 */
325 	dst->anon_vma = NULL;
326 	unlink_anon_vmas(dst);
327 	return -ENOMEM;
328 }
329 
330 /*
331  * Attach vma to its own anon_vma, as well as to the anon_vmas that
332  * the corresponding VMA in the parent process is attached to.
333  * Returns 0 on success, non-zero on failure.
334  */
335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
336 {
337 	struct anon_vma_chain *avc;
338 	struct anon_vma *anon_vma;
339 	int error;
340 
341 	/* Don't bother if the parent process has no anon_vma here. */
342 	if (!pvma->anon_vma)
343 		return 0;
344 
345 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
346 	vma->anon_vma = NULL;
347 
348 	/*
349 	 * First, attach the new VMA to the parent VMA's anon_vmas,
350 	 * so rmap can find non-COWed pages in child processes.
351 	 */
352 	error = anon_vma_clone(vma, pvma);
353 	if (error)
354 		return error;
355 
356 	/* An existing anon_vma has been reused, all done then. */
357 	if (vma->anon_vma)
358 		return 0;
359 
360 	/* Then add our own anon_vma. */
361 	anon_vma = anon_vma_alloc();
362 	if (!anon_vma)
363 		goto out_error;
364 	anon_vma->num_active_vmas++;
365 	avc = anon_vma_chain_alloc(GFP_KERNEL);
366 	if (!avc)
367 		goto out_error_free_anon_vma;
368 
369 	/*
370 	 * The root anon_vma's rwsem is the lock actually used when we
371 	 * lock any of the anon_vmas in this anon_vma tree.
372 	 */
373 	anon_vma->root = pvma->anon_vma->root;
374 	anon_vma->parent = pvma->anon_vma;
375 	/*
376 	 * With refcounts, an anon_vma can stay around longer than the
377 	 * process it belongs to. The root anon_vma needs to be pinned until
378 	 * this anon_vma is freed, because the lock lives in the root.
379 	 */
380 	get_anon_vma(anon_vma->root);
381 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
382 	vma->anon_vma = anon_vma;
383 	anon_vma_lock_write(anon_vma);
384 	anon_vma_chain_link(vma, avc, anon_vma);
385 	anon_vma->parent->num_children++;
386 	anon_vma_unlock_write(anon_vma);
387 
388 	return 0;
389 
390  out_error_free_anon_vma:
391 	put_anon_vma(anon_vma);
392  out_error:
393 	unlink_anon_vmas(vma);
394 	return -ENOMEM;
395 }
396 
397 void unlink_anon_vmas(struct vm_area_struct *vma)
398 {
399 	struct anon_vma_chain *avc, *next;
400 	struct anon_vma *root = NULL;
401 
402 	/*
403 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
404 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
405 	 */
406 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
407 		struct anon_vma *anon_vma = avc->anon_vma;
408 
409 		root = lock_anon_vma_root(root, anon_vma);
410 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
411 
412 		/*
413 		 * Leave empty anon_vmas on the list - we'll need
414 		 * to free them outside the lock.
415 		 */
416 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
417 			anon_vma->parent->num_children--;
418 			continue;
419 		}
420 
421 		list_del(&avc->same_vma);
422 		anon_vma_chain_free(avc);
423 	}
424 	if (vma->anon_vma) {
425 		vma->anon_vma->num_active_vmas--;
426 
427 		/*
428 		 * vma would still be needed after unlink, and anon_vma will be prepared
429 		 * when handle fault.
430 		 */
431 		vma->anon_vma = NULL;
432 	}
433 	unlock_anon_vma_root(root);
434 
435 	/*
436 	 * Iterate the list once more, it now only contains empty and unlinked
437 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
438 	 * needing to write-acquire the anon_vma->root->rwsem.
439 	 */
440 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
441 		struct anon_vma *anon_vma = avc->anon_vma;
442 
443 		VM_WARN_ON(anon_vma->num_children);
444 		VM_WARN_ON(anon_vma->num_active_vmas);
445 		put_anon_vma(anon_vma);
446 
447 		list_del(&avc->same_vma);
448 		anon_vma_chain_free(avc);
449 	}
450 }
451 
452 static void anon_vma_ctor(void *data)
453 {
454 	struct anon_vma *anon_vma = data;
455 
456 	init_rwsem(&anon_vma->rwsem);
457 	atomic_set(&anon_vma->refcount, 0);
458 	anon_vma->rb_root = RB_ROOT_CACHED;
459 }
460 
461 void __init anon_vma_init(void)
462 {
463 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
464 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
465 			anon_vma_ctor);
466 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
467 			SLAB_PANIC|SLAB_ACCOUNT);
468 }
469 
470 /*
471  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
472  *
473  * Since there is no serialization what so ever against page_remove_rmap()
474  * the best this function can do is return a refcount increased anon_vma
475  * that might have been relevant to this page.
476  *
477  * The page might have been remapped to a different anon_vma or the anon_vma
478  * returned may already be freed (and even reused).
479  *
480  * In case it was remapped to a different anon_vma, the new anon_vma will be a
481  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
482  * ensure that any anon_vma obtained from the page will still be valid for as
483  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
484  *
485  * All users of this function must be very careful when walking the anon_vma
486  * chain and verify that the page in question is indeed mapped in it
487  * [ something equivalent to page_mapped_in_vma() ].
488  *
489  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
490  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
491  * if there is a mapcount, we can dereference the anon_vma after observing
492  * those.
493  */
494 struct anon_vma *folio_get_anon_vma(struct folio *folio)
495 {
496 	struct anon_vma *anon_vma = NULL;
497 	unsigned long anon_mapping;
498 
499 	rcu_read_lock();
500 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
501 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
502 		goto out;
503 	if (!folio_mapped(folio))
504 		goto out;
505 
506 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
507 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
508 		anon_vma = NULL;
509 		goto out;
510 	}
511 
512 	/*
513 	 * If this folio is still mapped, then its anon_vma cannot have been
514 	 * freed.  But if it has been unmapped, we have no security against the
515 	 * anon_vma structure being freed and reused (for another anon_vma:
516 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
517 	 * above cannot corrupt).
518 	 */
519 	if (!folio_mapped(folio)) {
520 		rcu_read_unlock();
521 		put_anon_vma(anon_vma);
522 		return NULL;
523 	}
524 out:
525 	rcu_read_unlock();
526 
527 	return anon_vma;
528 }
529 
530 /*
531  * Similar to folio_get_anon_vma() except it locks the anon_vma.
532  *
533  * Its a little more complex as it tries to keep the fast path to a single
534  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
535  * reference like with folio_get_anon_vma() and then block on the mutex
536  * on !rwc->try_lock case.
537  */
538 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
539 					  struct rmap_walk_control *rwc)
540 {
541 	struct anon_vma *anon_vma = NULL;
542 	struct anon_vma *root_anon_vma;
543 	unsigned long anon_mapping;
544 
545 	rcu_read_lock();
546 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
547 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
548 		goto out;
549 	if (!folio_mapped(folio))
550 		goto out;
551 
552 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
553 	root_anon_vma = READ_ONCE(anon_vma->root);
554 	if (down_read_trylock(&root_anon_vma->rwsem)) {
555 		/*
556 		 * If the folio is still mapped, then this anon_vma is still
557 		 * its anon_vma, and holding the mutex ensures that it will
558 		 * not go away, see anon_vma_free().
559 		 */
560 		if (!folio_mapped(folio)) {
561 			up_read(&root_anon_vma->rwsem);
562 			anon_vma = NULL;
563 		}
564 		goto out;
565 	}
566 
567 	if (rwc && rwc->try_lock) {
568 		anon_vma = NULL;
569 		rwc->contended = true;
570 		goto out;
571 	}
572 
573 	/* trylock failed, we got to sleep */
574 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
575 		anon_vma = NULL;
576 		goto out;
577 	}
578 
579 	if (!folio_mapped(folio)) {
580 		rcu_read_unlock();
581 		put_anon_vma(anon_vma);
582 		return NULL;
583 	}
584 
585 	/* we pinned the anon_vma, its safe to sleep */
586 	rcu_read_unlock();
587 	anon_vma_lock_read(anon_vma);
588 
589 	if (atomic_dec_and_test(&anon_vma->refcount)) {
590 		/*
591 		 * Oops, we held the last refcount, release the lock
592 		 * and bail -- can't simply use put_anon_vma() because
593 		 * we'll deadlock on the anon_vma_lock_write() recursion.
594 		 */
595 		anon_vma_unlock_read(anon_vma);
596 		__put_anon_vma(anon_vma);
597 		anon_vma = NULL;
598 	}
599 
600 	return anon_vma;
601 
602 out:
603 	rcu_read_unlock();
604 	return anon_vma;
605 }
606 
607 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
608 /*
609  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
610  * important if a PTE was dirty when it was unmapped that it's flushed
611  * before any IO is initiated on the page to prevent lost writes. Similarly,
612  * it must be flushed before freeing to prevent data leakage.
613  */
614 void try_to_unmap_flush(void)
615 {
616 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
617 
618 	if (!tlb_ubc->flush_required)
619 		return;
620 
621 	arch_tlbbatch_flush(&tlb_ubc->arch);
622 	tlb_ubc->flush_required = false;
623 	tlb_ubc->writable = false;
624 }
625 
626 /* Flush iff there are potentially writable TLB entries that can race with IO */
627 void try_to_unmap_flush_dirty(void)
628 {
629 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
630 
631 	if (tlb_ubc->writable)
632 		try_to_unmap_flush();
633 }
634 
635 /*
636  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
637  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
638  */
639 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
640 #define TLB_FLUSH_BATCH_PENDING_MASK			\
641 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
642 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
643 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
644 
645 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval)
646 {
647 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
648 	int batch;
649 	bool writable = pte_dirty(pteval);
650 
651 	if (!pte_accessible(mm, pteval))
652 		return;
653 
654 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
655 	tlb_ubc->flush_required = true;
656 
657 	/*
658 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
659 	 * before the PTE is cleared.
660 	 */
661 	barrier();
662 	batch = atomic_read(&mm->tlb_flush_batched);
663 retry:
664 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
665 		/*
666 		 * Prevent `pending' from catching up with `flushed' because of
667 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
668 		 * `pending' becomes large.
669 		 */
670 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
671 			goto retry;
672 	} else {
673 		atomic_inc(&mm->tlb_flush_batched);
674 	}
675 
676 	/*
677 	 * If the PTE was dirty then it's best to assume it's writable. The
678 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
679 	 * before the page is queued for IO.
680 	 */
681 	if (writable)
682 		tlb_ubc->writable = true;
683 }
684 
685 /*
686  * Returns true if the TLB flush should be deferred to the end of a batch of
687  * unmap operations to reduce IPIs.
688  */
689 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
690 {
691 	bool should_defer = false;
692 
693 	if (!(flags & TTU_BATCH_FLUSH))
694 		return false;
695 
696 	/* If remote CPUs need to be flushed then defer batch the flush */
697 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
698 		should_defer = true;
699 	put_cpu();
700 
701 	return should_defer;
702 }
703 
704 /*
705  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
706  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
707  * operation such as mprotect or munmap to race between reclaim unmapping
708  * the page and flushing the page. If this race occurs, it potentially allows
709  * access to data via a stale TLB entry. Tracking all mm's that have TLB
710  * batching in flight would be expensive during reclaim so instead track
711  * whether TLB batching occurred in the past and if so then do a flush here
712  * if required. This will cost one additional flush per reclaim cycle paid
713  * by the first operation at risk such as mprotect and mumap.
714  *
715  * This must be called under the PTL so that an access to tlb_flush_batched
716  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
717  * via the PTL.
718  */
719 void flush_tlb_batched_pending(struct mm_struct *mm)
720 {
721 	int batch = atomic_read(&mm->tlb_flush_batched);
722 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
723 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
724 
725 	if (pending != flushed) {
726 		flush_tlb_mm(mm);
727 		/*
728 		 * If the new TLB flushing is pending during flushing, leave
729 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
730 		 */
731 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
732 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
733 	}
734 }
735 #else
736 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval)
737 {
738 }
739 
740 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
741 {
742 	return false;
743 }
744 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
745 
746 /*
747  * At what user virtual address is page expected in vma?
748  * Caller should check the page is actually part of the vma.
749  */
750 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
751 {
752 	struct folio *folio = page_folio(page);
753 	if (folio_test_anon(folio)) {
754 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
755 		/*
756 		 * Note: swapoff's unuse_vma() is more efficient with this
757 		 * check, and needs it to match anon_vma when KSM is active.
758 		 */
759 		if (!vma->anon_vma || !page__anon_vma ||
760 		    vma->anon_vma->root != page__anon_vma->root)
761 			return -EFAULT;
762 	} else if (!vma->vm_file) {
763 		return -EFAULT;
764 	} else if (vma->vm_file->f_mapping != folio->mapping) {
765 		return -EFAULT;
766 	}
767 
768 	return vma_address(page, vma);
769 }
770 
771 /*
772  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
773  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
774  * represents.
775  */
776 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
777 {
778 	pgd_t *pgd;
779 	p4d_t *p4d;
780 	pud_t *pud;
781 	pmd_t *pmd = NULL;
782 
783 	pgd = pgd_offset(mm, address);
784 	if (!pgd_present(*pgd))
785 		goto out;
786 
787 	p4d = p4d_offset(pgd, address);
788 	if (!p4d_present(*p4d))
789 		goto out;
790 
791 	pud = pud_offset(p4d, address);
792 	if (!pud_present(*pud))
793 		goto out;
794 
795 	pmd = pmd_offset(pud, address);
796 out:
797 	return pmd;
798 }
799 
800 struct folio_referenced_arg {
801 	int mapcount;
802 	int referenced;
803 	unsigned long vm_flags;
804 	struct mem_cgroup *memcg;
805 };
806 /*
807  * arg: folio_referenced_arg will be passed
808  */
809 static bool folio_referenced_one(struct folio *folio,
810 		struct vm_area_struct *vma, unsigned long address, void *arg)
811 {
812 	struct folio_referenced_arg *pra = arg;
813 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
814 	int referenced = 0;
815 
816 	while (page_vma_mapped_walk(&pvmw)) {
817 		address = pvmw.address;
818 
819 		if ((vma->vm_flags & VM_LOCKED) &&
820 		    (!folio_test_large(folio) || !pvmw.pte)) {
821 			/* Restore the mlock which got missed */
822 			mlock_vma_folio(folio, vma, !pvmw.pte);
823 			page_vma_mapped_walk_done(&pvmw);
824 			pra->vm_flags |= VM_LOCKED;
825 			return false; /* To break the loop */
826 		}
827 
828 		if (pvmw.pte) {
829 			if (lru_gen_enabled() &&
830 			    pte_young(ptep_get(pvmw.pte))) {
831 				lru_gen_look_around(&pvmw);
832 				referenced++;
833 			}
834 
835 			if (ptep_clear_flush_young_notify(vma, address,
836 						pvmw.pte))
837 				referenced++;
838 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
839 			if (pmdp_clear_flush_young_notify(vma, address,
840 						pvmw.pmd))
841 				referenced++;
842 		} else {
843 			/* unexpected pmd-mapped folio? */
844 			WARN_ON_ONCE(1);
845 		}
846 
847 		pra->mapcount--;
848 	}
849 
850 	if (referenced)
851 		folio_clear_idle(folio);
852 	if (folio_test_clear_young(folio))
853 		referenced++;
854 
855 	if (referenced) {
856 		pra->referenced++;
857 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
858 	}
859 
860 	if (!pra->mapcount)
861 		return false; /* To break the loop */
862 
863 	return true;
864 }
865 
866 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
867 {
868 	struct folio_referenced_arg *pra = arg;
869 	struct mem_cgroup *memcg = pra->memcg;
870 
871 	/*
872 	 * Ignore references from this mapping if it has no recency. If the
873 	 * folio has been used in another mapping, we will catch it; if this
874 	 * other mapping is already gone, the unmap path will have set the
875 	 * referenced flag or activated the folio in zap_pte_range().
876 	 */
877 	if (!vma_has_recency(vma))
878 		return true;
879 
880 	/*
881 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
882 	 * of references from different cgroups.
883 	 */
884 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
885 		return true;
886 
887 	return false;
888 }
889 
890 /**
891  * folio_referenced() - Test if the folio was referenced.
892  * @folio: The folio to test.
893  * @is_locked: Caller holds lock on the folio.
894  * @memcg: target memory cgroup
895  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
896  *
897  * Quick test_and_clear_referenced for all mappings of a folio,
898  *
899  * Return: The number of mappings which referenced the folio. Return -1 if
900  * the function bailed out due to rmap lock contention.
901  */
902 int folio_referenced(struct folio *folio, int is_locked,
903 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
904 {
905 	int we_locked = 0;
906 	struct folio_referenced_arg pra = {
907 		.mapcount = folio_mapcount(folio),
908 		.memcg = memcg,
909 	};
910 	struct rmap_walk_control rwc = {
911 		.rmap_one = folio_referenced_one,
912 		.arg = (void *)&pra,
913 		.anon_lock = folio_lock_anon_vma_read,
914 		.try_lock = true,
915 		.invalid_vma = invalid_folio_referenced_vma,
916 	};
917 
918 	*vm_flags = 0;
919 	if (!pra.mapcount)
920 		return 0;
921 
922 	if (!folio_raw_mapping(folio))
923 		return 0;
924 
925 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
926 		we_locked = folio_trylock(folio);
927 		if (!we_locked)
928 			return 1;
929 	}
930 
931 	rmap_walk(folio, &rwc);
932 	*vm_flags = pra.vm_flags;
933 
934 	if (we_locked)
935 		folio_unlock(folio);
936 
937 	return rwc.contended ? -1 : pra.referenced;
938 }
939 
940 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
941 {
942 	int cleaned = 0;
943 	struct vm_area_struct *vma = pvmw->vma;
944 	struct mmu_notifier_range range;
945 	unsigned long address = pvmw->address;
946 
947 	/*
948 	 * We have to assume the worse case ie pmd for invalidation. Note that
949 	 * the folio can not be freed from this function.
950 	 */
951 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
952 				vma->vm_mm, address, vma_address_end(pvmw));
953 	mmu_notifier_invalidate_range_start(&range);
954 
955 	while (page_vma_mapped_walk(pvmw)) {
956 		int ret = 0;
957 
958 		address = pvmw->address;
959 		if (pvmw->pte) {
960 			pte_t *pte = pvmw->pte;
961 			pte_t entry = ptep_get(pte);
962 
963 			if (!pte_dirty(entry) && !pte_write(entry))
964 				continue;
965 
966 			flush_cache_page(vma, address, pte_pfn(entry));
967 			entry = ptep_clear_flush(vma, address, pte);
968 			entry = pte_wrprotect(entry);
969 			entry = pte_mkclean(entry);
970 			set_pte_at(vma->vm_mm, address, pte, entry);
971 			ret = 1;
972 		} else {
973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
974 			pmd_t *pmd = pvmw->pmd;
975 			pmd_t entry;
976 
977 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
978 				continue;
979 
980 			flush_cache_range(vma, address,
981 					  address + HPAGE_PMD_SIZE);
982 			entry = pmdp_invalidate(vma, address, pmd);
983 			entry = pmd_wrprotect(entry);
984 			entry = pmd_mkclean(entry);
985 			set_pmd_at(vma->vm_mm, address, pmd, entry);
986 			ret = 1;
987 #else
988 			/* unexpected pmd-mapped folio? */
989 			WARN_ON_ONCE(1);
990 #endif
991 		}
992 
993 		/*
994 		 * No need to call mmu_notifier_invalidate_range() as we are
995 		 * downgrading page table protection not changing it to point
996 		 * to a new page.
997 		 *
998 		 * See Documentation/mm/mmu_notifier.rst
999 		 */
1000 		if (ret)
1001 			cleaned++;
1002 	}
1003 
1004 	mmu_notifier_invalidate_range_end(&range);
1005 
1006 	return cleaned;
1007 }
1008 
1009 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1010 			     unsigned long address, void *arg)
1011 {
1012 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1013 	int *cleaned = arg;
1014 
1015 	*cleaned += page_vma_mkclean_one(&pvmw);
1016 
1017 	return true;
1018 }
1019 
1020 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1021 {
1022 	if (vma->vm_flags & VM_SHARED)
1023 		return false;
1024 
1025 	return true;
1026 }
1027 
1028 int folio_mkclean(struct folio *folio)
1029 {
1030 	int cleaned = 0;
1031 	struct address_space *mapping;
1032 	struct rmap_walk_control rwc = {
1033 		.arg = (void *)&cleaned,
1034 		.rmap_one = page_mkclean_one,
1035 		.invalid_vma = invalid_mkclean_vma,
1036 	};
1037 
1038 	BUG_ON(!folio_test_locked(folio));
1039 
1040 	if (!folio_mapped(folio))
1041 		return 0;
1042 
1043 	mapping = folio_mapping(folio);
1044 	if (!mapping)
1045 		return 0;
1046 
1047 	rmap_walk(folio, &rwc);
1048 
1049 	return cleaned;
1050 }
1051 EXPORT_SYMBOL_GPL(folio_mkclean);
1052 
1053 /**
1054  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1055  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1056  *                     within the @vma of shared mappings. And since clean PTEs
1057  *                     should also be readonly, write protects them too.
1058  * @pfn: start pfn.
1059  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1060  * @pgoff: page offset that the @pfn mapped with.
1061  * @vma: vma that @pfn mapped within.
1062  *
1063  * Returns the number of cleaned PTEs (including PMDs).
1064  */
1065 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1066 		      struct vm_area_struct *vma)
1067 {
1068 	struct page_vma_mapped_walk pvmw = {
1069 		.pfn		= pfn,
1070 		.nr_pages	= nr_pages,
1071 		.pgoff		= pgoff,
1072 		.vma		= vma,
1073 		.flags		= PVMW_SYNC,
1074 	};
1075 
1076 	if (invalid_mkclean_vma(vma, NULL))
1077 		return 0;
1078 
1079 	pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1080 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1081 
1082 	return page_vma_mkclean_one(&pvmw);
1083 }
1084 
1085 int folio_total_mapcount(struct folio *folio)
1086 {
1087 	int mapcount = folio_entire_mapcount(folio);
1088 	int nr_pages;
1089 	int i;
1090 
1091 	/* In the common case, avoid the loop when no pages mapped by PTE */
1092 	if (folio_nr_pages_mapped(folio) == 0)
1093 		return mapcount;
1094 	/*
1095 	 * Add all the PTE mappings of those pages mapped by PTE.
1096 	 * Limit the loop to folio_nr_pages_mapped()?
1097 	 * Perhaps: given all the raciness, that may be a good or a bad idea.
1098 	 */
1099 	nr_pages = folio_nr_pages(folio);
1100 	for (i = 0; i < nr_pages; i++)
1101 		mapcount += atomic_read(&folio_page(folio, i)->_mapcount);
1102 
1103 	/* But each of those _mapcounts was based on -1 */
1104 	mapcount += nr_pages;
1105 	return mapcount;
1106 }
1107 
1108 /**
1109  * page_move_anon_rmap - move a page to our anon_vma
1110  * @page:	the page to move to our anon_vma
1111  * @vma:	the vma the page belongs to
1112  *
1113  * When a page belongs exclusively to one process after a COW event,
1114  * that page can be moved into the anon_vma that belongs to just that
1115  * process, so the rmap code will not search the parent or sibling
1116  * processes.
1117  */
1118 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1119 {
1120 	void *anon_vma = vma->anon_vma;
1121 	struct folio *folio = page_folio(page);
1122 
1123 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1124 	VM_BUG_ON_VMA(!anon_vma, vma);
1125 
1126 	anon_vma += PAGE_MAPPING_ANON;
1127 	/*
1128 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1129 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1130 	 * folio_test_anon()) will not see one without the other.
1131 	 */
1132 	WRITE_ONCE(folio->mapping, anon_vma);
1133 	SetPageAnonExclusive(page);
1134 }
1135 
1136 /**
1137  * __page_set_anon_rmap - set up new anonymous rmap
1138  * @folio:	Folio which contains page.
1139  * @page:	Page to add to rmap.
1140  * @vma:	VM area to add page to.
1141  * @address:	User virtual address of the mapping
1142  * @exclusive:	the page is exclusively owned by the current process
1143  */
1144 static void __page_set_anon_rmap(struct folio *folio, struct page *page,
1145 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1146 {
1147 	struct anon_vma *anon_vma = vma->anon_vma;
1148 
1149 	BUG_ON(!anon_vma);
1150 
1151 	if (folio_test_anon(folio))
1152 		goto out;
1153 
1154 	/*
1155 	 * If the page isn't exclusively mapped into this vma,
1156 	 * we must use the _oldest_ possible anon_vma for the
1157 	 * page mapping!
1158 	 */
1159 	if (!exclusive)
1160 		anon_vma = anon_vma->root;
1161 
1162 	/*
1163 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1164 	 * Make sure the compiler doesn't split the stores of anon_vma and
1165 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1166 	 * could mistake the mapping for a struct address_space and crash.
1167 	 */
1168 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1169 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1170 	folio->index = linear_page_index(vma, address);
1171 out:
1172 	if (exclusive)
1173 		SetPageAnonExclusive(page);
1174 }
1175 
1176 /**
1177  * __page_check_anon_rmap - sanity check anonymous rmap addition
1178  * @page:	the page to add the mapping to
1179  * @vma:	the vm area in which the mapping is added
1180  * @address:	the user virtual address mapped
1181  */
1182 static void __page_check_anon_rmap(struct page *page,
1183 	struct vm_area_struct *vma, unsigned long address)
1184 {
1185 	struct folio *folio = page_folio(page);
1186 	/*
1187 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1188 	 * be set up correctly at this point.
1189 	 *
1190 	 * We have exclusion against page_add_anon_rmap because the caller
1191 	 * always holds the page locked.
1192 	 *
1193 	 * We have exclusion against page_add_new_anon_rmap because those pages
1194 	 * are initially only visible via the pagetables, and the pte is locked
1195 	 * over the call to page_add_new_anon_rmap.
1196 	 */
1197 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1198 			folio);
1199 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1200 		       page);
1201 }
1202 
1203 /**
1204  * page_add_anon_rmap - add pte mapping to an anonymous page
1205  * @page:	the page to add the mapping to
1206  * @vma:	the vm area in which the mapping is added
1207  * @address:	the user virtual address mapped
1208  * @flags:	the rmap flags
1209  *
1210  * The caller needs to hold the pte lock, and the page must be locked in
1211  * the anon_vma case: to serialize mapping,index checking after setting,
1212  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1213  * (but PageKsm is never downgraded to PageAnon).
1214  */
1215 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
1216 		unsigned long address, rmap_t flags)
1217 {
1218 	struct folio *folio = page_folio(page);
1219 	atomic_t *mapped = &folio->_nr_pages_mapped;
1220 	int nr = 0, nr_pmdmapped = 0;
1221 	bool compound = flags & RMAP_COMPOUND;
1222 	bool first = true;
1223 
1224 	/* Is page being mapped by PTE? Is this its first map to be added? */
1225 	if (likely(!compound)) {
1226 		first = atomic_inc_and_test(&page->_mapcount);
1227 		nr = first;
1228 		if (first && folio_test_large(folio)) {
1229 			nr = atomic_inc_return_relaxed(mapped);
1230 			nr = (nr < COMPOUND_MAPPED);
1231 		}
1232 	} else if (folio_test_pmd_mappable(folio)) {
1233 		/* That test is redundant: it's for safety or to optimize out */
1234 
1235 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1236 		if (first) {
1237 			nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1238 			if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1239 				nr_pmdmapped = folio_nr_pages(folio);
1240 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1241 				/* Raced ahead of a remove and another add? */
1242 				if (unlikely(nr < 0))
1243 					nr = 0;
1244 			} else {
1245 				/* Raced ahead of a remove of COMPOUND_MAPPED */
1246 				nr = 0;
1247 			}
1248 		}
1249 	}
1250 
1251 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1252 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1253 
1254 	if (nr_pmdmapped)
1255 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
1256 	if (nr)
1257 		__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1258 
1259 	if (likely(!folio_test_ksm(folio))) {
1260 		/* address might be in next vma when migration races vma_merge */
1261 		if (first)
1262 			__page_set_anon_rmap(folio, page, vma, address,
1263 					     !!(flags & RMAP_EXCLUSIVE));
1264 		else
1265 			__page_check_anon_rmap(page, vma, address);
1266 	}
1267 
1268 	mlock_vma_folio(folio, vma, compound);
1269 }
1270 
1271 /**
1272  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1273  * @folio:	The folio to add the mapping to.
1274  * @vma:	the vm area in which the mapping is added
1275  * @address:	the user virtual address mapped
1276  *
1277  * Like page_add_anon_rmap() but must only be called on *new* folios.
1278  * This means the inc-and-test can be bypassed.
1279  * The folio does not have to be locked.
1280  *
1281  * If the folio is large, it is accounted as a THP.  As the folio
1282  * is new, it's assumed to be mapped exclusively by a single process.
1283  */
1284 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1285 		unsigned long address)
1286 {
1287 	int nr;
1288 
1289 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1290 	__folio_set_swapbacked(folio);
1291 
1292 	if (likely(!folio_test_pmd_mappable(folio))) {
1293 		/* increment count (starts at -1) */
1294 		atomic_set(&folio->_mapcount, 0);
1295 		nr = 1;
1296 	} else {
1297 		/* increment count (starts at -1) */
1298 		atomic_set(&folio->_entire_mapcount, 0);
1299 		atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED);
1300 		nr = folio_nr_pages(folio);
1301 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
1302 	}
1303 
1304 	__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1305 	__page_set_anon_rmap(folio, &folio->page, vma, address, 1);
1306 }
1307 
1308 /**
1309  * page_add_file_rmap - add pte mapping to a file page
1310  * @page:	the page to add the mapping to
1311  * @vma:	the vm area in which the mapping is added
1312  * @compound:	charge the page as compound or small page
1313  *
1314  * The caller needs to hold the pte lock.
1315  */
1316 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma,
1317 		bool compound)
1318 {
1319 	struct folio *folio = page_folio(page);
1320 	atomic_t *mapped = &folio->_nr_pages_mapped;
1321 	int nr = 0, nr_pmdmapped = 0;
1322 	bool first;
1323 
1324 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1325 
1326 	/* Is page being mapped by PTE? Is this its first map to be added? */
1327 	if (likely(!compound)) {
1328 		first = atomic_inc_and_test(&page->_mapcount);
1329 		nr = first;
1330 		if (first && folio_test_large(folio)) {
1331 			nr = atomic_inc_return_relaxed(mapped);
1332 			nr = (nr < COMPOUND_MAPPED);
1333 		}
1334 	} else if (folio_test_pmd_mappable(folio)) {
1335 		/* That test is redundant: it's for safety or to optimize out */
1336 
1337 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1338 		if (first) {
1339 			nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1340 			if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1341 				nr_pmdmapped = folio_nr_pages(folio);
1342 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1343 				/* Raced ahead of a remove and another add? */
1344 				if (unlikely(nr < 0))
1345 					nr = 0;
1346 			} else {
1347 				/* Raced ahead of a remove of COMPOUND_MAPPED */
1348 				nr = 0;
1349 			}
1350 		}
1351 	}
1352 
1353 	if (nr_pmdmapped)
1354 		__lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ?
1355 			NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1356 	if (nr)
1357 		__lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
1358 
1359 	mlock_vma_folio(folio, vma, compound);
1360 }
1361 
1362 /**
1363  * page_remove_rmap - take down pte mapping from a page
1364  * @page:	page to remove mapping from
1365  * @vma:	the vm area from which the mapping is removed
1366  * @compound:	uncharge the page as compound or small page
1367  *
1368  * The caller needs to hold the pte lock.
1369  */
1370 void page_remove_rmap(struct page *page, struct vm_area_struct *vma,
1371 		bool compound)
1372 {
1373 	struct folio *folio = page_folio(page);
1374 	atomic_t *mapped = &folio->_nr_pages_mapped;
1375 	int nr = 0, nr_pmdmapped = 0;
1376 	bool last;
1377 	enum node_stat_item idx;
1378 
1379 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1380 
1381 	/* Hugetlb pages are not counted in NR_*MAPPED */
1382 	if (unlikely(folio_test_hugetlb(folio))) {
1383 		/* hugetlb pages are always mapped with pmds */
1384 		atomic_dec(&folio->_entire_mapcount);
1385 		return;
1386 	}
1387 
1388 	/* Is page being unmapped by PTE? Is this its last map to be removed? */
1389 	if (likely(!compound)) {
1390 		last = atomic_add_negative(-1, &page->_mapcount);
1391 		nr = last;
1392 		if (last && folio_test_large(folio)) {
1393 			nr = atomic_dec_return_relaxed(mapped);
1394 			nr = (nr < COMPOUND_MAPPED);
1395 		}
1396 	} else if (folio_test_pmd_mappable(folio)) {
1397 		/* That test is redundant: it's for safety or to optimize out */
1398 
1399 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1400 		if (last) {
1401 			nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped);
1402 			if (likely(nr < COMPOUND_MAPPED)) {
1403 				nr_pmdmapped = folio_nr_pages(folio);
1404 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1405 				/* Raced ahead of another remove and an add? */
1406 				if (unlikely(nr < 0))
1407 					nr = 0;
1408 			} else {
1409 				/* An add of COMPOUND_MAPPED raced ahead */
1410 				nr = 0;
1411 			}
1412 		}
1413 	}
1414 
1415 	if (nr_pmdmapped) {
1416 		if (folio_test_anon(folio))
1417 			idx = NR_ANON_THPS;
1418 		else if (folio_test_swapbacked(folio))
1419 			idx = NR_SHMEM_PMDMAPPED;
1420 		else
1421 			idx = NR_FILE_PMDMAPPED;
1422 		__lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped);
1423 	}
1424 	if (nr) {
1425 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1426 		__lruvec_stat_mod_folio(folio, idx, -nr);
1427 
1428 		/*
1429 		 * Queue anon THP for deferred split if at least one
1430 		 * page of the folio is unmapped and at least one page
1431 		 * is still mapped.
1432 		 */
1433 		if (folio_test_pmd_mappable(folio) && folio_test_anon(folio))
1434 			if (!compound || nr < nr_pmdmapped)
1435 				deferred_split_folio(folio);
1436 	}
1437 
1438 	/*
1439 	 * It would be tidy to reset folio_test_anon mapping when fully
1440 	 * unmapped, but that might overwrite a racing page_add_anon_rmap
1441 	 * which increments mapcount after us but sets mapping before us:
1442 	 * so leave the reset to free_pages_prepare, and remember that
1443 	 * it's only reliable while mapped.
1444 	 */
1445 
1446 	munlock_vma_folio(folio, vma, compound);
1447 }
1448 
1449 /*
1450  * @arg: enum ttu_flags will be passed to this argument
1451  */
1452 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1453 		     unsigned long address, void *arg)
1454 {
1455 	struct mm_struct *mm = vma->vm_mm;
1456 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1457 	pte_t pteval;
1458 	struct page *subpage;
1459 	bool anon_exclusive, ret = true;
1460 	struct mmu_notifier_range range;
1461 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1462 	unsigned long pfn;
1463 
1464 	/*
1465 	 * When racing against e.g. zap_pte_range() on another cpu,
1466 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1467 	 * try_to_unmap() may return before page_mapped() has become false,
1468 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1469 	 */
1470 	if (flags & TTU_SYNC)
1471 		pvmw.flags = PVMW_SYNC;
1472 
1473 	if (flags & TTU_SPLIT_HUGE_PMD)
1474 		split_huge_pmd_address(vma, address, false, folio);
1475 
1476 	/*
1477 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1478 	 * For hugetlb, it could be much worse if we need to do pud
1479 	 * invalidation in the case of pmd sharing.
1480 	 *
1481 	 * Note that the folio can not be freed in this function as call of
1482 	 * try_to_unmap() must hold a reference on the folio.
1483 	 */
1484 	range.end = vma_address_end(&pvmw);
1485 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1486 				address, range.end);
1487 	if (folio_test_hugetlb(folio)) {
1488 		/*
1489 		 * If sharing is possible, start and end will be adjusted
1490 		 * accordingly.
1491 		 */
1492 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1493 						     &range.end);
1494 	}
1495 	mmu_notifier_invalidate_range_start(&range);
1496 
1497 	while (page_vma_mapped_walk(&pvmw)) {
1498 		/* Unexpected PMD-mapped THP? */
1499 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1500 
1501 		/*
1502 		 * If the folio is in an mlock()d vma, we must not swap it out.
1503 		 */
1504 		if (!(flags & TTU_IGNORE_MLOCK) &&
1505 		    (vma->vm_flags & VM_LOCKED)) {
1506 			/* Restore the mlock which got missed */
1507 			mlock_vma_folio(folio, vma, false);
1508 			page_vma_mapped_walk_done(&pvmw);
1509 			ret = false;
1510 			break;
1511 		}
1512 
1513 		pfn = pte_pfn(ptep_get(pvmw.pte));
1514 		subpage = folio_page(folio, pfn - folio_pfn(folio));
1515 		address = pvmw.address;
1516 		anon_exclusive = folio_test_anon(folio) &&
1517 				 PageAnonExclusive(subpage);
1518 
1519 		if (folio_test_hugetlb(folio)) {
1520 			bool anon = folio_test_anon(folio);
1521 
1522 			/*
1523 			 * The try_to_unmap() is only passed a hugetlb page
1524 			 * in the case where the hugetlb page is poisoned.
1525 			 */
1526 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1527 			/*
1528 			 * huge_pmd_unshare may unmap an entire PMD page.
1529 			 * There is no way of knowing exactly which PMDs may
1530 			 * be cached for this mm, so we must flush them all.
1531 			 * start/end were already adjusted above to cover this
1532 			 * range.
1533 			 */
1534 			flush_cache_range(vma, range.start, range.end);
1535 
1536 			/*
1537 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1538 			 * held in write mode.  Caller needs to explicitly
1539 			 * do this outside rmap routines.
1540 			 *
1541 			 * We also must hold hugetlb vma_lock in write mode.
1542 			 * Lock order dictates acquiring vma_lock BEFORE
1543 			 * i_mmap_rwsem.  We can only try lock here and fail
1544 			 * if unsuccessful.
1545 			 */
1546 			if (!anon) {
1547 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1548 				if (!hugetlb_vma_trylock_write(vma)) {
1549 					page_vma_mapped_walk_done(&pvmw);
1550 					ret = false;
1551 					break;
1552 				}
1553 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1554 					hugetlb_vma_unlock_write(vma);
1555 					flush_tlb_range(vma,
1556 						range.start, range.end);
1557 					mmu_notifier_invalidate_range(mm,
1558 						range.start, range.end);
1559 					/*
1560 					 * The ref count of the PMD page was
1561 					 * dropped which is part of the way map
1562 					 * counting is done for shared PMDs.
1563 					 * Return 'true' here.  When there is
1564 					 * no other sharing, huge_pmd_unshare
1565 					 * returns false and we will unmap the
1566 					 * actual page and drop map count
1567 					 * to zero.
1568 					 */
1569 					page_vma_mapped_walk_done(&pvmw);
1570 					break;
1571 				}
1572 				hugetlb_vma_unlock_write(vma);
1573 			}
1574 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1575 		} else {
1576 			flush_cache_page(vma, address, pfn);
1577 			/* Nuke the page table entry. */
1578 			if (should_defer_flush(mm, flags)) {
1579 				/*
1580 				 * We clear the PTE but do not flush so potentially
1581 				 * a remote CPU could still be writing to the folio.
1582 				 * If the entry was previously clean then the
1583 				 * architecture must guarantee that a clear->dirty
1584 				 * transition on a cached TLB entry is written through
1585 				 * and traps if the PTE is unmapped.
1586 				 */
1587 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1588 
1589 				set_tlb_ubc_flush_pending(mm, pteval);
1590 			} else {
1591 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1592 			}
1593 		}
1594 
1595 		/*
1596 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1597 		 * we may want to replace a none pte with a marker pte if
1598 		 * it's file-backed, so we don't lose the tracking info.
1599 		 */
1600 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1601 
1602 		/* Set the dirty flag on the folio now the pte is gone. */
1603 		if (pte_dirty(pteval))
1604 			folio_mark_dirty(folio);
1605 
1606 		/* Update high watermark before we lower rss */
1607 		update_hiwater_rss(mm);
1608 
1609 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1610 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1611 			if (folio_test_hugetlb(folio)) {
1612 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1613 				set_huge_pte_at(mm, address, pvmw.pte, pteval);
1614 			} else {
1615 				dec_mm_counter(mm, mm_counter(&folio->page));
1616 				set_pte_at(mm, address, pvmw.pte, pteval);
1617 			}
1618 
1619 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1620 			/*
1621 			 * The guest indicated that the page content is of no
1622 			 * interest anymore. Simply discard the pte, vmscan
1623 			 * will take care of the rest.
1624 			 * A future reference will then fault in a new zero
1625 			 * page. When userfaultfd is active, we must not drop
1626 			 * this page though, as its main user (postcopy
1627 			 * migration) will not expect userfaults on already
1628 			 * copied pages.
1629 			 */
1630 			dec_mm_counter(mm, mm_counter(&folio->page));
1631 			/* We have to invalidate as we cleared the pte */
1632 			mmu_notifier_invalidate_range(mm, address,
1633 						      address + PAGE_SIZE);
1634 		} else if (folio_test_anon(folio)) {
1635 			swp_entry_t entry = { .val = page_private(subpage) };
1636 			pte_t swp_pte;
1637 			/*
1638 			 * Store the swap location in the pte.
1639 			 * See handle_pte_fault() ...
1640 			 */
1641 			if (unlikely(folio_test_swapbacked(folio) !=
1642 					folio_test_swapcache(folio))) {
1643 				WARN_ON_ONCE(1);
1644 				ret = false;
1645 				/* We have to invalidate as we cleared the pte */
1646 				mmu_notifier_invalidate_range(mm, address,
1647 							address + PAGE_SIZE);
1648 				page_vma_mapped_walk_done(&pvmw);
1649 				break;
1650 			}
1651 
1652 			/* MADV_FREE page check */
1653 			if (!folio_test_swapbacked(folio)) {
1654 				int ref_count, map_count;
1655 
1656 				/*
1657 				 * Synchronize with gup_pte_range():
1658 				 * - clear PTE; barrier; read refcount
1659 				 * - inc refcount; barrier; read PTE
1660 				 */
1661 				smp_mb();
1662 
1663 				ref_count = folio_ref_count(folio);
1664 				map_count = folio_mapcount(folio);
1665 
1666 				/*
1667 				 * Order reads for page refcount and dirty flag
1668 				 * (see comments in __remove_mapping()).
1669 				 */
1670 				smp_rmb();
1671 
1672 				/*
1673 				 * The only page refs must be one from isolation
1674 				 * plus the rmap(s) (dropped by discard:).
1675 				 */
1676 				if (ref_count == 1 + map_count &&
1677 				    !folio_test_dirty(folio)) {
1678 					/* Invalidate as we cleared the pte */
1679 					mmu_notifier_invalidate_range(mm,
1680 						address, address + PAGE_SIZE);
1681 					dec_mm_counter(mm, MM_ANONPAGES);
1682 					goto discard;
1683 				}
1684 
1685 				/*
1686 				 * If the folio was redirtied, it cannot be
1687 				 * discarded. Remap the page to page table.
1688 				 */
1689 				set_pte_at(mm, address, pvmw.pte, pteval);
1690 				folio_set_swapbacked(folio);
1691 				ret = false;
1692 				page_vma_mapped_walk_done(&pvmw);
1693 				break;
1694 			}
1695 
1696 			if (swap_duplicate(entry) < 0) {
1697 				set_pte_at(mm, address, pvmw.pte, pteval);
1698 				ret = false;
1699 				page_vma_mapped_walk_done(&pvmw);
1700 				break;
1701 			}
1702 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1703 				swap_free(entry);
1704 				set_pte_at(mm, address, pvmw.pte, pteval);
1705 				ret = false;
1706 				page_vma_mapped_walk_done(&pvmw);
1707 				break;
1708 			}
1709 
1710 			/* See page_try_share_anon_rmap(): clear PTE first. */
1711 			if (anon_exclusive &&
1712 			    page_try_share_anon_rmap(subpage)) {
1713 				swap_free(entry);
1714 				set_pte_at(mm, address, pvmw.pte, pteval);
1715 				ret = false;
1716 				page_vma_mapped_walk_done(&pvmw);
1717 				break;
1718 			}
1719 			if (list_empty(&mm->mmlist)) {
1720 				spin_lock(&mmlist_lock);
1721 				if (list_empty(&mm->mmlist))
1722 					list_add(&mm->mmlist, &init_mm.mmlist);
1723 				spin_unlock(&mmlist_lock);
1724 			}
1725 			dec_mm_counter(mm, MM_ANONPAGES);
1726 			inc_mm_counter(mm, MM_SWAPENTS);
1727 			swp_pte = swp_entry_to_pte(entry);
1728 			if (anon_exclusive)
1729 				swp_pte = pte_swp_mkexclusive(swp_pte);
1730 			if (pte_soft_dirty(pteval))
1731 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1732 			if (pte_uffd_wp(pteval))
1733 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1734 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1735 			/* Invalidate as we cleared the pte */
1736 			mmu_notifier_invalidate_range(mm, address,
1737 						      address + PAGE_SIZE);
1738 		} else {
1739 			/*
1740 			 * This is a locked file-backed folio,
1741 			 * so it cannot be removed from the page
1742 			 * cache and replaced by a new folio before
1743 			 * mmu_notifier_invalidate_range_end, so no
1744 			 * concurrent thread might update its page table
1745 			 * to point at a new folio while a device is
1746 			 * still using this folio.
1747 			 *
1748 			 * See Documentation/mm/mmu_notifier.rst
1749 			 */
1750 			dec_mm_counter(mm, mm_counter_file(&folio->page));
1751 		}
1752 discard:
1753 		/*
1754 		 * No need to call mmu_notifier_invalidate_range() it has be
1755 		 * done above for all cases requiring it to happen under page
1756 		 * table lock before mmu_notifier_invalidate_range_end()
1757 		 *
1758 		 * See Documentation/mm/mmu_notifier.rst
1759 		 */
1760 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1761 		if (vma->vm_flags & VM_LOCKED)
1762 			mlock_drain_local();
1763 		folio_put(folio);
1764 	}
1765 
1766 	mmu_notifier_invalidate_range_end(&range);
1767 
1768 	return ret;
1769 }
1770 
1771 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1772 {
1773 	return vma_is_temporary_stack(vma);
1774 }
1775 
1776 static int folio_not_mapped(struct folio *folio)
1777 {
1778 	return !folio_mapped(folio);
1779 }
1780 
1781 /**
1782  * try_to_unmap - Try to remove all page table mappings to a folio.
1783  * @folio: The folio to unmap.
1784  * @flags: action and flags
1785  *
1786  * Tries to remove all the page table entries which are mapping this
1787  * folio.  It is the caller's responsibility to check if the folio is
1788  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1789  *
1790  * Context: Caller must hold the folio lock.
1791  */
1792 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1793 {
1794 	struct rmap_walk_control rwc = {
1795 		.rmap_one = try_to_unmap_one,
1796 		.arg = (void *)flags,
1797 		.done = folio_not_mapped,
1798 		.anon_lock = folio_lock_anon_vma_read,
1799 	};
1800 
1801 	if (flags & TTU_RMAP_LOCKED)
1802 		rmap_walk_locked(folio, &rwc);
1803 	else
1804 		rmap_walk(folio, &rwc);
1805 }
1806 
1807 /*
1808  * @arg: enum ttu_flags will be passed to this argument.
1809  *
1810  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1811  * containing migration entries.
1812  */
1813 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1814 		     unsigned long address, void *arg)
1815 {
1816 	struct mm_struct *mm = vma->vm_mm;
1817 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1818 	pte_t pteval;
1819 	struct page *subpage;
1820 	bool anon_exclusive, ret = true;
1821 	struct mmu_notifier_range range;
1822 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1823 	unsigned long pfn;
1824 
1825 	/*
1826 	 * When racing against e.g. zap_pte_range() on another cpu,
1827 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1828 	 * try_to_migrate() may return before page_mapped() has become false,
1829 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1830 	 */
1831 	if (flags & TTU_SYNC)
1832 		pvmw.flags = PVMW_SYNC;
1833 
1834 	/*
1835 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1836 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1837 	 */
1838 	if (flags & TTU_SPLIT_HUGE_PMD)
1839 		split_huge_pmd_address(vma, address, true, folio);
1840 
1841 	/*
1842 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1843 	 * For hugetlb, it could be much worse if we need to do pud
1844 	 * invalidation in the case of pmd sharing.
1845 	 *
1846 	 * Note that the page can not be free in this function as call of
1847 	 * try_to_unmap() must hold a reference on the page.
1848 	 */
1849 	range.end = vma_address_end(&pvmw);
1850 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1851 				address, range.end);
1852 	if (folio_test_hugetlb(folio)) {
1853 		/*
1854 		 * If sharing is possible, start and end will be adjusted
1855 		 * accordingly.
1856 		 */
1857 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1858 						     &range.end);
1859 	}
1860 	mmu_notifier_invalidate_range_start(&range);
1861 
1862 	while (page_vma_mapped_walk(&pvmw)) {
1863 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1864 		/* PMD-mapped THP migration entry */
1865 		if (!pvmw.pte) {
1866 			subpage = folio_page(folio,
1867 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1868 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1869 					!folio_test_pmd_mappable(folio), folio);
1870 
1871 			if (set_pmd_migration_entry(&pvmw, subpage)) {
1872 				ret = false;
1873 				page_vma_mapped_walk_done(&pvmw);
1874 				break;
1875 			}
1876 			continue;
1877 		}
1878 #endif
1879 
1880 		/* Unexpected PMD-mapped THP? */
1881 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1882 
1883 		pfn = pte_pfn(ptep_get(pvmw.pte));
1884 
1885 		if (folio_is_zone_device(folio)) {
1886 			/*
1887 			 * Our PTE is a non-present device exclusive entry and
1888 			 * calculating the subpage as for the common case would
1889 			 * result in an invalid pointer.
1890 			 *
1891 			 * Since only PAGE_SIZE pages can currently be
1892 			 * migrated, just set it to page. This will need to be
1893 			 * changed when hugepage migrations to device private
1894 			 * memory are supported.
1895 			 */
1896 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1897 			subpage = &folio->page;
1898 		} else {
1899 			subpage = folio_page(folio, pfn - folio_pfn(folio));
1900 		}
1901 		address = pvmw.address;
1902 		anon_exclusive = folio_test_anon(folio) &&
1903 				 PageAnonExclusive(subpage);
1904 
1905 		if (folio_test_hugetlb(folio)) {
1906 			bool anon = folio_test_anon(folio);
1907 
1908 			/*
1909 			 * huge_pmd_unshare may unmap an entire PMD page.
1910 			 * There is no way of knowing exactly which PMDs may
1911 			 * be cached for this mm, so we must flush them all.
1912 			 * start/end were already adjusted above to cover this
1913 			 * range.
1914 			 */
1915 			flush_cache_range(vma, range.start, range.end);
1916 
1917 			/*
1918 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1919 			 * held in write mode.  Caller needs to explicitly
1920 			 * do this outside rmap routines.
1921 			 *
1922 			 * We also must hold hugetlb vma_lock in write mode.
1923 			 * Lock order dictates acquiring vma_lock BEFORE
1924 			 * i_mmap_rwsem.  We can only try lock here and
1925 			 * fail if unsuccessful.
1926 			 */
1927 			if (!anon) {
1928 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1929 				if (!hugetlb_vma_trylock_write(vma)) {
1930 					page_vma_mapped_walk_done(&pvmw);
1931 					ret = false;
1932 					break;
1933 				}
1934 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1935 					hugetlb_vma_unlock_write(vma);
1936 					flush_tlb_range(vma,
1937 						range.start, range.end);
1938 					mmu_notifier_invalidate_range(mm,
1939 						range.start, range.end);
1940 
1941 					/*
1942 					 * The ref count of the PMD page was
1943 					 * dropped which is part of the way map
1944 					 * counting is done for shared PMDs.
1945 					 * Return 'true' here.  When there is
1946 					 * no other sharing, huge_pmd_unshare
1947 					 * returns false and we will unmap the
1948 					 * actual page and drop map count
1949 					 * to zero.
1950 					 */
1951 					page_vma_mapped_walk_done(&pvmw);
1952 					break;
1953 				}
1954 				hugetlb_vma_unlock_write(vma);
1955 			}
1956 			/* Nuke the hugetlb page table entry */
1957 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1958 		} else {
1959 			flush_cache_page(vma, address, pfn);
1960 			/* Nuke the page table entry. */
1961 			if (should_defer_flush(mm, flags)) {
1962 				/*
1963 				 * We clear the PTE but do not flush so potentially
1964 				 * a remote CPU could still be writing to the folio.
1965 				 * If the entry was previously clean then the
1966 				 * architecture must guarantee that a clear->dirty
1967 				 * transition on a cached TLB entry is written through
1968 				 * and traps if the PTE is unmapped.
1969 				 */
1970 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1971 
1972 				set_tlb_ubc_flush_pending(mm, pteval);
1973 			} else {
1974 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1975 			}
1976 		}
1977 
1978 		/* Set the dirty flag on the folio now the pte is gone. */
1979 		if (pte_dirty(pteval))
1980 			folio_mark_dirty(folio);
1981 
1982 		/* Update high watermark before we lower rss */
1983 		update_hiwater_rss(mm);
1984 
1985 		if (folio_is_device_private(folio)) {
1986 			unsigned long pfn = folio_pfn(folio);
1987 			swp_entry_t entry;
1988 			pte_t swp_pte;
1989 
1990 			if (anon_exclusive)
1991 				BUG_ON(page_try_share_anon_rmap(subpage));
1992 
1993 			/*
1994 			 * Store the pfn of the page in a special migration
1995 			 * pte. do_swap_page() will wait until the migration
1996 			 * pte is removed and then restart fault handling.
1997 			 */
1998 			entry = pte_to_swp_entry(pteval);
1999 			if (is_writable_device_private_entry(entry))
2000 				entry = make_writable_migration_entry(pfn);
2001 			else if (anon_exclusive)
2002 				entry = make_readable_exclusive_migration_entry(pfn);
2003 			else
2004 				entry = make_readable_migration_entry(pfn);
2005 			swp_pte = swp_entry_to_pte(entry);
2006 
2007 			/*
2008 			 * pteval maps a zone device page and is therefore
2009 			 * a swap pte.
2010 			 */
2011 			if (pte_swp_soft_dirty(pteval))
2012 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2013 			if (pte_swp_uffd_wp(pteval))
2014 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2015 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2016 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2017 						compound_order(&folio->page));
2018 			/*
2019 			 * No need to invalidate here it will synchronize on
2020 			 * against the special swap migration pte.
2021 			 */
2022 		} else if (PageHWPoison(subpage)) {
2023 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2024 			if (folio_test_hugetlb(folio)) {
2025 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2026 				set_huge_pte_at(mm, address, pvmw.pte, pteval);
2027 			} else {
2028 				dec_mm_counter(mm, mm_counter(&folio->page));
2029 				set_pte_at(mm, address, pvmw.pte, pteval);
2030 			}
2031 
2032 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2033 			/*
2034 			 * The guest indicated that the page content is of no
2035 			 * interest anymore. Simply discard the pte, vmscan
2036 			 * will take care of the rest.
2037 			 * A future reference will then fault in a new zero
2038 			 * page. When userfaultfd is active, we must not drop
2039 			 * this page though, as its main user (postcopy
2040 			 * migration) will not expect userfaults on already
2041 			 * copied pages.
2042 			 */
2043 			dec_mm_counter(mm, mm_counter(&folio->page));
2044 			/* We have to invalidate as we cleared the pte */
2045 			mmu_notifier_invalidate_range(mm, address,
2046 						      address + PAGE_SIZE);
2047 		} else {
2048 			swp_entry_t entry;
2049 			pte_t swp_pte;
2050 
2051 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2052 				if (folio_test_hugetlb(folio))
2053 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
2054 				else
2055 					set_pte_at(mm, address, pvmw.pte, pteval);
2056 				ret = false;
2057 				page_vma_mapped_walk_done(&pvmw);
2058 				break;
2059 			}
2060 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2061 				       !anon_exclusive, subpage);
2062 
2063 			/* See page_try_share_anon_rmap(): clear PTE first. */
2064 			if (anon_exclusive &&
2065 			    page_try_share_anon_rmap(subpage)) {
2066 				if (folio_test_hugetlb(folio))
2067 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
2068 				else
2069 					set_pte_at(mm, address, pvmw.pte, pteval);
2070 				ret = false;
2071 				page_vma_mapped_walk_done(&pvmw);
2072 				break;
2073 			}
2074 
2075 			/*
2076 			 * Store the pfn of the page in a special migration
2077 			 * pte. do_swap_page() will wait until the migration
2078 			 * pte is removed and then restart fault handling.
2079 			 */
2080 			if (pte_write(pteval))
2081 				entry = make_writable_migration_entry(
2082 							page_to_pfn(subpage));
2083 			else if (anon_exclusive)
2084 				entry = make_readable_exclusive_migration_entry(
2085 							page_to_pfn(subpage));
2086 			else
2087 				entry = make_readable_migration_entry(
2088 							page_to_pfn(subpage));
2089 			if (pte_young(pteval))
2090 				entry = make_migration_entry_young(entry);
2091 			if (pte_dirty(pteval))
2092 				entry = make_migration_entry_dirty(entry);
2093 			swp_pte = swp_entry_to_pte(entry);
2094 			if (pte_soft_dirty(pteval))
2095 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2096 			if (pte_uffd_wp(pteval))
2097 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2098 			if (folio_test_hugetlb(folio))
2099 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
2100 			else
2101 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2102 			trace_set_migration_pte(address, pte_val(swp_pte),
2103 						compound_order(&folio->page));
2104 			/*
2105 			 * No need to invalidate here it will synchronize on
2106 			 * against the special swap migration pte.
2107 			 */
2108 		}
2109 
2110 		/*
2111 		 * No need to call mmu_notifier_invalidate_range() it has be
2112 		 * done above for all cases requiring it to happen under page
2113 		 * table lock before mmu_notifier_invalidate_range_end()
2114 		 *
2115 		 * See Documentation/mm/mmu_notifier.rst
2116 		 */
2117 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2118 		if (vma->vm_flags & VM_LOCKED)
2119 			mlock_drain_local();
2120 		folio_put(folio);
2121 	}
2122 
2123 	mmu_notifier_invalidate_range_end(&range);
2124 
2125 	return ret;
2126 }
2127 
2128 /**
2129  * try_to_migrate - try to replace all page table mappings with swap entries
2130  * @folio: the folio to replace page table entries for
2131  * @flags: action and flags
2132  *
2133  * Tries to remove all the page table entries which are mapping this folio and
2134  * replace them with special swap entries. Caller must hold the folio lock.
2135  */
2136 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2137 {
2138 	struct rmap_walk_control rwc = {
2139 		.rmap_one = try_to_migrate_one,
2140 		.arg = (void *)flags,
2141 		.done = folio_not_mapped,
2142 		.anon_lock = folio_lock_anon_vma_read,
2143 	};
2144 
2145 	/*
2146 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2147 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2148 	 */
2149 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2150 					TTU_SYNC | TTU_BATCH_FLUSH)))
2151 		return;
2152 
2153 	if (folio_is_zone_device(folio) &&
2154 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2155 		return;
2156 
2157 	/*
2158 	 * During exec, a temporary VMA is setup and later moved.
2159 	 * The VMA is moved under the anon_vma lock but not the
2160 	 * page tables leading to a race where migration cannot
2161 	 * find the migration ptes. Rather than increasing the
2162 	 * locking requirements of exec(), migration skips
2163 	 * temporary VMAs until after exec() completes.
2164 	 */
2165 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2166 		rwc.invalid_vma = invalid_migration_vma;
2167 
2168 	if (flags & TTU_RMAP_LOCKED)
2169 		rmap_walk_locked(folio, &rwc);
2170 	else
2171 		rmap_walk(folio, &rwc);
2172 }
2173 
2174 #ifdef CONFIG_DEVICE_PRIVATE
2175 struct make_exclusive_args {
2176 	struct mm_struct *mm;
2177 	unsigned long address;
2178 	void *owner;
2179 	bool valid;
2180 };
2181 
2182 static bool page_make_device_exclusive_one(struct folio *folio,
2183 		struct vm_area_struct *vma, unsigned long address, void *priv)
2184 {
2185 	struct mm_struct *mm = vma->vm_mm;
2186 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2187 	struct make_exclusive_args *args = priv;
2188 	pte_t pteval;
2189 	struct page *subpage;
2190 	bool ret = true;
2191 	struct mmu_notifier_range range;
2192 	swp_entry_t entry;
2193 	pte_t swp_pte;
2194 	pte_t ptent;
2195 
2196 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2197 				      vma->vm_mm, address, min(vma->vm_end,
2198 				      address + folio_size(folio)),
2199 				      args->owner);
2200 	mmu_notifier_invalidate_range_start(&range);
2201 
2202 	while (page_vma_mapped_walk(&pvmw)) {
2203 		/* Unexpected PMD-mapped THP? */
2204 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2205 
2206 		ptent = ptep_get(pvmw.pte);
2207 		if (!pte_present(ptent)) {
2208 			ret = false;
2209 			page_vma_mapped_walk_done(&pvmw);
2210 			break;
2211 		}
2212 
2213 		subpage = folio_page(folio,
2214 				pte_pfn(ptent) - folio_pfn(folio));
2215 		address = pvmw.address;
2216 
2217 		/* Nuke the page table entry. */
2218 		flush_cache_page(vma, address, pte_pfn(ptent));
2219 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2220 
2221 		/* Set the dirty flag on the folio now the pte is gone. */
2222 		if (pte_dirty(pteval))
2223 			folio_mark_dirty(folio);
2224 
2225 		/*
2226 		 * Check that our target page is still mapped at the expected
2227 		 * address.
2228 		 */
2229 		if (args->mm == mm && args->address == address &&
2230 		    pte_write(pteval))
2231 			args->valid = true;
2232 
2233 		/*
2234 		 * Store the pfn of the page in a special migration
2235 		 * pte. do_swap_page() will wait until the migration
2236 		 * pte is removed and then restart fault handling.
2237 		 */
2238 		if (pte_write(pteval))
2239 			entry = make_writable_device_exclusive_entry(
2240 							page_to_pfn(subpage));
2241 		else
2242 			entry = make_readable_device_exclusive_entry(
2243 							page_to_pfn(subpage));
2244 		swp_pte = swp_entry_to_pte(entry);
2245 		if (pte_soft_dirty(pteval))
2246 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2247 		if (pte_uffd_wp(pteval))
2248 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2249 
2250 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2251 
2252 		/*
2253 		 * There is a reference on the page for the swap entry which has
2254 		 * been removed, so shouldn't take another.
2255 		 */
2256 		page_remove_rmap(subpage, vma, false);
2257 	}
2258 
2259 	mmu_notifier_invalidate_range_end(&range);
2260 
2261 	return ret;
2262 }
2263 
2264 /**
2265  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2266  * @folio: The folio to replace page table entries for.
2267  * @mm: The mm_struct where the folio is expected to be mapped.
2268  * @address: Address where the folio is expected to be mapped.
2269  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2270  *
2271  * Tries to remove all the page table entries which are mapping this
2272  * folio and replace them with special device exclusive swap entries to
2273  * grant a device exclusive access to the folio.
2274  *
2275  * Context: Caller must hold the folio lock.
2276  * Return: false if the page is still mapped, or if it could not be unmapped
2277  * from the expected address. Otherwise returns true (success).
2278  */
2279 static bool folio_make_device_exclusive(struct folio *folio,
2280 		struct mm_struct *mm, unsigned long address, void *owner)
2281 {
2282 	struct make_exclusive_args args = {
2283 		.mm = mm,
2284 		.address = address,
2285 		.owner = owner,
2286 		.valid = false,
2287 	};
2288 	struct rmap_walk_control rwc = {
2289 		.rmap_one = page_make_device_exclusive_one,
2290 		.done = folio_not_mapped,
2291 		.anon_lock = folio_lock_anon_vma_read,
2292 		.arg = &args,
2293 	};
2294 
2295 	/*
2296 	 * Restrict to anonymous folios for now to avoid potential writeback
2297 	 * issues.
2298 	 */
2299 	if (!folio_test_anon(folio))
2300 		return false;
2301 
2302 	rmap_walk(folio, &rwc);
2303 
2304 	return args.valid && !folio_mapcount(folio);
2305 }
2306 
2307 /**
2308  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2309  * @mm: mm_struct of associated target process
2310  * @start: start of the region to mark for exclusive device access
2311  * @end: end address of region
2312  * @pages: returns the pages which were successfully marked for exclusive access
2313  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2314  *
2315  * Returns: number of pages found in the range by GUP. A page is marked for
2316  * exclusive access only if the page pointer is non-NULL.
2317  *
2318  * This function finds ptes mapping page(s) to the given address range, locks
2319  * them and replaces mappings with special swap entries preventing userspace CPU
2320  * access. On fault these entries are replaced with the original mapping after
2321  * calling MMU notifiers.
2322  *
2323  * A driver using this to program access from a device must use a mmu notifier
2324  * critical section to hold a device specific lock during programming. Once
2325  * programming is complete it should drop the page lock and reference after
2326  * which point CPU access to the page will revoke the exclusive access.
2327  */
2328 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2329 				unsigned long end, struct page **pages,
2330 				void *owner)
2331 {
2332 	long npages = (end - start) >> PAGE_SHIFT;
2333 	long i;
2334 
2335 	npages = get_user_pages_remote(mm, start, npages,
2336 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2337 				       pages, NULL);
2338 	if (npages < 0)
2339 		return npages;
2340 
2341 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2342 		struct folio *folio = page_folio(pages[i]);
2343 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2344 			folio_put(folio);
2345 			pages[i] = NULL;
2346 			continue;
2347 		}
2348 
2349 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2350 			folio_unlock(folio);
2351 			folio_put(folio);
2352 			pages[i] = NULL;
2353 		}
2354 	}
2355 
2356 	return npages;
2357 }
2358 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2359 #endif
2360 
2361 void __put_anon_vma(struct anon_vma *anon_vma)
2362 {
2363 	struct anon_vma *root = anon_vma->root;
2364 
2365 	anon_vma_free(anon_vma);
2366 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2367 		anon_vma_free(root);
2368 }
2369 
2370 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2371 					    struct rmap_walk_control *rwc)
2372 {
2373 	struct anon_vma *anon_vma;
2374 
2375 	if (rwc->anon_lock)
2376 		return rwc->anon_lock(folio, rwc);
2377 
2378 	/*
2379 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2380 	 * because that depends on page_mapped(); but not all its usages
2381 	 * are holding mmap_lock. Users without mmap_lock are required to
2382 	 * take a reference count to prevent the anon_vma disappearing
2383 	 */
2384 	anon_vma = folio_anon_vma(folio);
2385 	if (!anon_vma)
2386 		return NULL;
2387 
2388 	if (anon_vma_trylock_read(anon_vma))
2389 		goto out;
2390 
2391 	if (rwc->try_lock) {
2392 		anon_vma = NULL;
2393 		rwc->contended = true;
2394 		goto out;
2395 	}
2396 
2397 	anon_vma_lock_read(anon_vma);
2398 out:
2399 	return anon_vma;
2400 }
2401 
2402 /*
2403  * rmap_walk_anon - do something to anonymous page using the object-based
2404  * rmap method
2405  * @page: the page to be handled
2406  * @rwc: control variable according to each walk type
2407  *
2408  * Find all the mappings of a page using the mapping pointer and the vma chains
2409  * contained in the anon_vma struct it points to.
2410  */
2411 static void rmap_walk_anon(struct folio *folio,
2412 		struct rmap_walk_control *rwc, bool locked)
2413 {
2414 	struct anon_vma *anon_vma;
2415 	pgoff_t pgoff_start, pgoff_end;
2416 	struct anon_vma_chain *avc;
2417 
2418 	if (locked) {
2419 		anon_vma = folio_anon_vma(folio);
2420 		/* anon_vma disappear under us? */
2421 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2422 	} else {
2423 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2424 	}
2425 	if (!anon_vma)
2426 		return;
2427 
2428 	pgoff_start = folio_pgoff(folio);
2429 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2430 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2431 			pgoff_start, pgoff_end) {
2432 		struct vm_area_struct *vma = avc->vma;
2433 		unsigned long address = vma_address(&folio->page, vma);
2434 
2435 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2436 		cond_resched();
2437 
2438 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2439 			continue;
2440 
2441 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2442 			break;
2443 		if (rwc->done && rwc->done(folio))
2444 			break;
2445 	}
2446 
2447 	if (!locked)
2448 		anon_vma_unlock_read(anon_vma);
2449 }
2450 
2451 /*
2452  * rmap_walk_file - do something to file page using the object-based rmap method
2453  * @page: the page to be handled
2454  * @rwc: control variable according to each walk type
2455  *
2456  * Find all the mappings of a page using the mapping pointer and the vma chains
2457  * contained in the address_space struct it points to.
2458  */
2459 static void rmap_walk_file(struct folio *folio,
2460 		struct rmap_walk_control *rwc, bool locked)
2461 {
2462 	struct address_space *mapping = folio_mapping(folio);
2463 	pgoff_t pgoff_start, pgoff_end;
2464 	struct vm_area_struct *vma;
2465 
2466 	/*
2467 	 * The page lock not only makes sure that page->mapping cannot
2468 	 * suddenly be NULLified by truncation, it makes sure that the
2469 	 * structure at mapping cannot be freed and reused yet,
2470 	 * so we can safely take mapping->i_mmap_rwsem.
2471 	 */
2472 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2473 
2474 	if (!mapping)
2475 		return;
2476 
2477 	pgoff_start = folio_pgoff(folio);
2478 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2479 	if (!locked) {
2480 		if (i_mmap_trylock_read(mapping))
2481 			goto lookup;
2482 
2483 		if (rwc->try_lock) {
2484 			rwc->contended = true;
2485 			return;
2486 		}
2487 
2488 		i_mmap_lock_read(mapping);
2489 	}
2490 lookup:
2491 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2492 			pgoff_start, pgoff_end) {
2493 		unsigned long address = vma_address(&folio->page, vma);
2494 
2495 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2496 		cond_resched();
2497 
2498 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2499 			continue;
2500 
2501 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2502 			goto done;
2503 		if (rwc->done && rwc->done(folio))
2504 			goto done;
2505 	}
2506 
2507 done:
2508 	if (!locked)
2509 		i_mmap_unlock_read(mapping);
2510 }
2511 
2512 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2513 {
2514 	if (unlikely(folio_test_ksm(folio)))
2515 		rmap_walk_ksm(folio, rwc);
2516 	else if (folio_test_anon(folio))
2517 		rmap_walk_anon(folio, rwc, false);
2518 	else
2519 		rmap_walk_file(folio, rwc, false);
2520 }
2521 
2522 /* Like rmap_walk, but caller holds relevant rmap lock */
2523 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2524 {
2525 	/* no ksm support for now */
2526 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2527 	if (folio_test_anon(folio))
2528 		rmap_walk_anon(folio, rwc, true);
2529 	else
2530 		rmap_walk_file(folio, rwc, true);
2531 }
2532 
2533 #ifdef CONFIG_HUGETLB_PAGE
2534 /*
2535  * The following two functions are for anonymous (private mapped) hugepages.
2536  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2537  * and no lru code, because we handle hugepages differently from common pages.
2538  *
2539  * RMAP_COMPOUND is ignored.
2540  */
2541 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2542 			    unsigned long address, rmap_t flags)
2543 {
2544 	struct folio *folio = page_folio(page);
2545 	struct anon_vma *anon_vma = vma->anon_vma;
2546 	int first;
2547 
2548 	BUG_ON(!folio_test_locked(folio));
2549 	BUG_ON(!anon_vma);
2550 	/* address might be in next vma when migration races vma_merge */
2551 	first = atomic_inc_and_test(&folio->_entire_mapcount);
2552 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2553 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2554 	if (first)
2555 		__page_set_anon_rmap(folio, page, vma, address,
2556 				     !!(flags & RMAP_EXCLUSIVE));
2557 }
2558 
2559 void hugepage_add_new_anon_rmap(struct folio *folio,
2560 			struct vm_area_struct *vma, unsigned long address)
2561 {
2562 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2563 	/* increment count (starts at -1) */
2564 	atomic_set(&folio->_entire_mapcount, 0);
2565 	folio_clear_hugetlb_restore_reserve(folio);
2566 	__page_set_anon_rmap(folio, &folio->page, vma, address, 1);
2567 }
2568 #endif /* CONFIG_HUGETLB_PAGE */
2569