1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * mapping->i_mmap_mutex 27 * anon_vma->rwsem 28 * mm->page_table_lock or pte_lock 29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 30 * swap_lock (in swap_duplicate, swap_info_get) 31 * mmlist_lock (in mmput, drain_mmlist and others) 32 * mapping->private_lock (in __set_page_dirty_buffers) 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within bdi.wb->list_lock in __sync_single_inode) 39 * 40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 41 * ->tasklist_lock 42 * pte map lock 43 */ 44 45 #include <linux/mm.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/slab.h> 50 #include <linux/init.h> 51 #include <linux/ksm.h> 52 #include <linux/rmap.h> 53 #include <linux/rcupdate.h> 54 #include <linux/export.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/migrate.h> 58 #include <linux/hugetlb.h> 59 #include <linux/backing-dev.h> 60 61 #include <asm/tlbflush.h> 62 63 #include "internal.h" 64 65 static struct kmem_cache *anon_vma_cachep; 66 static struct kmem_cache *anon_vma_chain_cachep; 67 68 static inline struct anon_vma *anon_vma_alloc(void) 69 { 70 struct anon_vma *anon_vma; 71 72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 73 if (anon_vma) { 74 atomic_set(&anon_vma->refcount, 1); 75 /* 76 * Initialise the anon_vma root to point to itself. If called 77 * from fork, the root will be reset to the parents anon_vma. 78 */ 79 anon_vma->root = anon_vma; 80 } 81 82 return anon_vma; 83 } 84 85 static inline void anon_vma_free(struct anon_vma *anon_vma) 86 { 87 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 88 89 /* 90 * Synchronize against page_lock_anon_vma_read() such that 91 * we can safely hold the lock without the anon_vma getting 92 * freed. 93 * 94 * Relies on the full mb implied by the atomic_dec_and_test() from 95 * put_anon_vma() against the acquire barrier implied by 96 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 97 * 98 * page_lock_anon_vma_read() VS put_anon_vma() 99 * down_read_trylock() atomic_dec_and_test() 100 * LOCK MB 101 * atomic_read() rwsem_is_locked() 102 * 103 * LOCK should suffice since the actual taking of the lock must 104 * happen _before_ what follows. 105 */ 106 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 107 anon_vma_lock_write(anon_vma); 108 anon_vma_unlock_write(anon_vma); 109 } 110 111 kmem_cache_free(anon_vma_cachep, anon_vma); 112 } 113 114 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 115 { 116 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 117 } 118 119 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 120 { 121 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 122 } 123 124 static void anon_vma_chain_link(struct vm_area_struct *vma, 125 struct anon_vma_chain *avc, 126 struct anon_vma *anon_vma) 127 { 128 avc->vma = vma; 129 avc->anon_vma = anon_vma; 130 list_add(&avc->same_vma, &vma->anon_vma_chain); 131 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 132 } 133 134 /** 135 * anon_vma_prepare - attach an anon_vma to a memory region 136 * @vma: the memory region in question 137 * 138 * This makes sure the memory mapping described by 'vma' has 139 * an 'anon_vma' attached to it, so that we can associate the 140 * anonymous pages mapped into it with that anon_vma. 141 * 142 * The common case will be that we already have one, but if 143 * not we either need to find an adjacent mapping that we 144 * can re-use the anon_vma from (very common when the only 145 * reason for splitting a vma has been mprotect()), or we 146 * allocate a new one. 147 * 148 * Anon-vma allocations are very subtle, because we may have 149 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 150 * and that may actually touch the spinlock even in the newly 151 * allocated vma (it depends on RCU to make sure that the 152 * anon_vma isn't actually destroyed). 153 * 154 * As a result, we need to do proper anon_vma locking even 155 * for the new allocation. At the same time, we do not want 156 * to do any locking for the common case of already having 157 * an anon_vma. 158 * 159 * This must be called with the mmap_sem held for reading. 160 */ 161 int anon_vma_prepare(struct vm_area_struct *vma) 162 { 163 struct anon_vma *anon_vma = vma->anon_vma; 164 struct anon_vma_chain *avc; 165 166 might_sleep(); 167 if (unlikely(!anon_vma)) { 168 struct mm_struct *mm = vma->vm_mm; 169 struct anon_vma *allocated; 170 171 avc = anon_vma_chain_alloc(GFP_KERNEL); 172 if (!avc) 173 goto out_enomem; 174 175 anon_vma = find_mergeable_anon_vma(vma); 176 allocated = NULL; 177 if (!anon_vma) { 178 anon_vma = anon_vma_alloc(); 179 if (unlikely(!anon_vma)) 180 goto out_enomem_free_avc; 181 allocated = anon_vma; 182 } 183 184 anon_vma_lock_write(anon_vma); 185 /* page_table_lock to protect against threads */ 186 spin_lock(&mm->page_table_lock); 187 if (likely(!vma->anon_vma)) { 188 vma->anon_vma = anon_vma; 189 anon_vma_chain_link(vma, avc, anon_vma); 190 allocated = NULL; 191 avc = NULL; 192 } 193 spin_unlock(&mm->page_table_lock); 194 anon_vma_unlock_write(anon_vma); 195 196 if (unlikely(allocated)) 197 put_anon_vma(allocated); 198 if (unlikely(avc)) 199 anon_vma_chain_free(avc); 200 } 201 return 0; 202 203 out_enomem_free_avc: 204 anon_vma_chain_free(avc); 205 out_enomem: 206 return -ENOMEM; 207 } 208 209 /* 210 * This is a useful helper function for locking the anon_vma root as 211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 212 * have the same vma. 213 * 214 * Such anon_vma's should have the same root, so you'd expect to see 215 * just a single mutex_lock for the whole traversal. 216 */ 217 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 218 { 219 struct anon_vma *new_root = anon_vma->root; 220 if (new_root != root) { 221 if (WARN_ON_ONCE(root)) 222 up_write(&root->rwsem); 223 root = new_root; 224 down_write(&root->rwsem); 225 } 226 return root; 227 } 228 229 static inline void unlock_anon_vma_root(struct anon_vma *root) 230 { 231 if (root) 232 up_write(&root->rwsem); 233 } 234 235 /* 236 * Attach the anon_vmas from src to dst. 237 * Returns 0 on success, -ENOMEM on failure. 238 */ 239 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 240 { 241 struct anon_vma_chain *avc, *pavc; 242 struct anon_vma *root = NULL; 243 244 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 245 struct anon_vma *anon_vma; 246 247 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 248 if (unlikely(!avc)) { 249 unlock_anon_vma_root(root); 250 root = NULL; 251 avc = anon_vma_chain_alloc(GFP_KERNEL); 252 if (!avc) 253 goto enomem_failure; 254 } 255 anon_vma = pavc->anon_vma; 256 root = lock_anon_vma_root(root, anon_vma); 257 anon_vma_chain_link(dst, avc, anon_vma); 258 } 259 unlock_anon_vma_root(root); 260 return 0; 261 262 enomem_failure: 263 unlink_anon_vmas(dst); 264 return -ENOMEM; 265 } 266 267 /* 268 * Attach vma to its own anon_vma, as well as to the anon_vmas that 269 * the corresponding VMA in the parent process is attached to. 270 * Returns 0 on success, non-zero on failure. 271 */ 272 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 273 { 274 struct anon_vma_chain *avc; 275 struct anon_vma *anon_vma; 276 277 /* Don't bother if the parent process has no anon_vma here. */ 278 if (!pvma->anon_vma) 279 return 0; 280 281 /* 282 * First, attach the new VMA to the parent VMA's anon_vmas, 283 * so rmap can find non-COWed pages in child processes. 284 */ 285 if (anon_vma_clone(vma, pvma)) 286 return -ENOMEM; 287 288 /* Then add our own anon_vma. */ 289 anon_vma = anon_vma_alloc(); 290 if (!anon_vma) 291 goto out_error; 292 avc = anon_vma_chain_alloc(GFP_KERNEL); 293 if (!avc) 294 goto out_error_free_anon_vma; 295 296 /* 297 * The root anon_vma's spinlock is the lock actually used when we 298 * lock any of the anon_vmas in this anon_vma tree. 299 */ 300 anon_vma->root = pvma->anon_vma->root; 301 /* 302 * With refcounts, an anon_vma can stay around longer than the 303 * process it belongs to. The root anon_vma needs to be pinned until 304 * this anon_vma is freed, because the lock lives in the root. 305 */ 306 get_anon_vma(anon_vma->root); 307 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 308 vma->anon_vma = anon_vma; 309 anon_vma_lock_write(anon_vma); 310 anon_vma_chain_link(vma, avc, anon_vma); 311 anon_vma_unlock_write(anon_vma); 312 313 return 0; 314 315 out_error_free_anon_vma: 316 put_anon_vma(anon_vma); 317 out_error: 318 unlink_anon_vmas(vma); 319 return -ENOMEM; 320 } 321 322 void unlink_anon_vmas(struct vm_area_struct *vma) 323 { 324 struct anon_vma_chain *avc, *next; 325 struct anon_vma *root = NULL; 326 327 /* 328 * Unlink each anon_vma chained to the VMA. This list is ordered 329 * from newest to oldest, ensuring the root anon_vma gets freed last. 330 */ 331 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 332 struct anon_vma *anon_vma = avc->anon_vma; 333 334 root = lock_anon_vma_root(root, anon_vma); 335 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 336 337 /* 338 * Leave empty anon_vmas on the list - we'll need 339 * to free them outside the lock. 340 */ 341 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) 342 continue; 343 344 list_del(&avc->same_vma); 345 anon_vma_chain_free(avc); 346 } 347 unlock_anon_vma_root(root); 348 349 /* 350 * Iterate the list once more, it now only contains empty and unlinked 351 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 352 * needing to write-acquire the anon_vma->root->rwsem. 353 */ 354 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 355 struct anon_vma *anon_vma = avc->anon_vma; 356 357 put_anon_vma(anon_vma); 358 359 list_del(&avc->same_vma); 360 anon_vma_chain_free(avc); 361 } 362 } 363 364 static void anon_vma_ctor(void *data) 365 { 366 struct anon_vma *anon_vma = data; 367 368 init_rwsem(&anon_vma->rwsem); 369 atomic_set(&anon_vma->refcount, 0); 370 anon_vma->rb_root = RB_ROOT; 371 } 372 373 void __init anon_vma_init(void) 374 { 375 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 376 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 377 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 378 } 379 380 /* 381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 382 * 383 * Since there is no serialization what so ever against page_remove_rmap() 384 * the best this function can do is return a locked anon_vma that might 385 * have been relevant to this page. 386 * 387 * The page might have been remapped to a different anon_vma or the anon_vma 388 * returned may already be freed (and even reused). 389 * 390 * In case it was remapped to a different anon_vma, the new anon_vma will be a 391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 392 * ensure that any anon_vma obtained from the page will still be valid for as 393 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 394 * 395 * All users of this function must be very careful when walking the anon_vma 396 * chain and verify that the page in question is indeed mapped in it 397 * [ something equivalent to page_mapped_in_vma() ]. 398 * 399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 400 * that the anon_vma pointer from page->mapping is valid if there is a 401 * mapcount, we can dereference the anon_vma after observing those. 402 */ 403 struct anon_vma *page_get_anon_vma(struct page *page) 404 { 405 struct anon_vma *anon_vma = NULL; 406 unsigned long anon_mapping; 407 408 rcu_read_lock(); 409 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 410 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 411 goto out; 412 if (!page_mapped(page)) 413 goto out; 414 415 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 416 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 417 anon_vma = NULL; 418 goto out; 419 } 420 421 /* 422 * If this page is still mapped, then its anon_vma cannot have been 423 * freed. But if it has been unmapped, we have no security against the 424 * anon_vma structure being freed and reused (for another anon_vma: 425 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 426 * above cannot corrupt). 427 */ 428 if (!page_mapped(page)) { 429 put_anon_vma(anon_vma); 430 anon_vma = NULL; 431 } 432 out: 433 rcu_read_unlock(); 434 435 return anon_vma; 436 } 437 438 /* 439 * Similar to page_get_anon_vma() except it locks the anon_vma. 440 * 441 * Its a little more complex as it tries to keep the fast path to a single 442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 443 * reference like with page_get_anon_vma() and then block on the mutex. 444 */ 445 struct anon_vma *page_lock_anon_vma_read(struct page *page) 446 { 447 struct anon_vma *anon_vma = NULL; 448 struct anon_vma *root_anon_vma; 449 unsigned long anon_mapping; 450 451 rcu_read_lock(); 452 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 453 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 454 goto out; 455 if (!page_mapped(page)) 456 goto out; 457 458 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 459 root_anon_vma = ACCESS_ONCE(anon_vma->root); 460 if (down_read_trylock(&root_anon_vma->rwsem)) { 461 /* 462 * If the page is still mapped, then this anon_vma is still 463 * its anon_vma, and holding the mutex ensures that it will 464 * not go away, see anon_vma_free(). 465 */ 466 if (!page_mapped(page)) { 467 up_read(&root_anon_vma->rwsem); 468 anon_vma = NULL; 469 } 470 goto out; 471 } 472 473 /* trylock failed, we got to sleep */ 474 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 475 anon_vma = NULL; 476 goto out; 477 } 478 479 if (!page_mapped(page)) { 480 put_anon_vma(anon_vma); 481 anon_vma = NULL; 482 goto out; 483 } 484 485 /* we pinned the anon_vma, its safe to sleep */ 486 rcu_read_unlock(); 487 anon_vma_lock_read(anon_vma); 488 489 if (atomic_dec_and_test(&anon_vma->refcount)) { 490 /* 491 * Oops, we held the last refcount, release the lock 492 * and bail -- can't simply use put_anon_vma() because 493 * we'll deadlock on the anon_vma_lock_write() recursion. 494 */ 495 anon_vma_unlock_read(anon_vma); 496 __put_anon_vma(anon_vma); 497 anon_vma = NULL; 498 } 499 500 return anon_vma; 501 502 out: 503 rcu_read_unlock(); 504 return anon_vma; 505 } 506 507 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 508 { 509 anon_vma_unlock_read(anon_vma); 510 } 511 512 /* 513 * At what user virtual address is page expected in @vma? 514 */ 515 static inline unsigned long 516 __vma_address(struct page *page, struct vm_area_struct *vma) 517 { 518 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 519 520 if (unlikely(is_vm_hugetlb_page(vma))) 521 pgoff = page->index << huge_page_order(page_hstate(page)); 522 523 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 524 } 525 526 inline unsigned long 527 vma_address(struct page *page, struct vm_area_struct *vma) 528 { 529 unsigned long address = __vma_address(page, vma); 530 531 /* page should be within @vma mapping range */ 532 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 533 534 return address; 535 } 536 537 /* 538 * At what user virtual address is page expected in vma? 539 * Caller should check the page is actually part of the vma. 540 */ 541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 542 { 543 unsigned long address; 544 if (PageAnon(page)) { 545 struct anon_vma *page__anon_vma = page_anon_vma(page); 546 /* 547 * Note: swapoff's unuse_vma() is more efficient with this 548 * check, and needs it to match anon_vma when KSM is active. 549 */ 550 if (!vma->anon_vma || !page__anon_vma || 551 vma->anon_vma->root != page__anon_vma->root) 552 return -EFAULT; 553 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 554 if (!vma->vm_file || 555 vma->vm_file->f_mapping != page->mapping) 556 return -EFAULT; 557 } else 558 return -EFAULT; 559 address = __vma_address(page, vma); 560 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 561 return -EFAULT; 562 return address; 563 } 564 565 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 566 { 567 pgd_t *pgd; 568 pud_t *pud; 569 pmd_t *pmd = NULL; 570 571 pgd = pgd_offset(mm, address); 572 if (!pgd_present(*pgd)) 573 goto out; 574 575 pud = pud_offset(pgd, address); 576 if (!pud_present(*pud)) 577 goto out; 578 579 pmd = pmd_offset(pud, address); 580 if (!pmd_present(*pmd)) 581 pmd = NULL; 582 out: 583 return pmd; 584 } 585 586 /* 587 * Check that @page is mapped at @address into @mm. 588 * 589 * If @sync is false, page_check_address may perform a racy check to avoid 590 * the page table lock when the pte is not present (helpful when reclaiming 591 * highly shared pages). 592 * 593 * On success returns with pte mapped and locked. 594 */ 595 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 596 unsigned long address, spinlock_t **ptlp, int sync) 597 { 598 pmd_t *pmd; 599 pte_t *pte; 600 spinlock_t *ptl; 601 602 if (unlikely(PageHuge(page))) { 603 pte = huge_pte_offset(mm, address); 604 ptl = &mm->page_table_lock; 605 goto check; 606 } 607 608 pmd = mm_find_pmd(mm, address); 609 if (!pmd) 610 return NULL; 611 612 if (pmd_trans_huge(*pmd)) 613 return NULL; 614 615 pte = pte_offset_map(pmd, address); 616 /* Make a quick check before getting the lock */ 617 if (!sync && !pte_present(*pte)) { 618 pte_unmap(pte); 619 return NULL; 620 } 621 622 ptl = pte_lockptr(mm, pmd); 623 check: 624 spin_lock(ptl); 625 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 626 *ptlp = ptl; 627 return pte; 628 } 629 pte_unmap_unlock(pte, ptl); 630 return NULL; 631 } 632 633 /** 634 * page_mapped_in_vma - check whether a page is really mapped in a VMA 635 * @page: the page to test 636 * @vma: the VMA to test 637 * 638 * Returns 1 if the page is mapped into the page tables of the VMA, 0 639 * if the page is not mapped into the page tables of this VMA. Only 640 * valid for normal file or anonymous VMAs. 641 */ 642 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 643 { 644 unsigned long address; 645 pte_t *pte; 646 spinlock_t *ptl; 647 648 address = __vma_address(page, vma); 649 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 650 return 0; 651 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 652 if (!pte) /* the page is not in this mm */ 653 return 0; 654 pte_unmap_unlock(pte, ptl); 655 656 return 1; 657 } 658 659 /* 660 * Subfunctions of page_referenced: page_referenced_one called 661 * repeatedly from either page_referenced_anon or page_referenced_file. 662 */ 663 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 664 unsigned long address, unsigned int *mapcount, 665 unsigned long *vm_flags) 666 { 667 struct mm_struct *mm = vma->vm_mm; 668 int referenced = 0; 669 670 if (unlikely(PageTransHuge(page))) { 671 pmd_t *pmd; 672 673 spin_lock(&mm->page_table_lock); 674 /* 675 * rmap might return false positives; we must filter 676 * these out using page_check_address_pmd(). 677 */ 678 pmd = page_check_address_pmd(page, mm, address, 679 PAGE_CHECK_ADDRESS_PMD_FLAG); 680 if (!pmd) { 681 spin_unlock(&mm->page_table_lock); 682 goto out; 683 } 684 685 if (vma->vm_flags & VM_LOCKED) { 686 spin_unlock(&mm->page_table_lock); 687 *mapcount = 0; /* break early from loop */ 688 *vm_flags |= VM_LOCKED; 689 goto out; 690 } 691 692 /* go ahead even if the pmd is pmd_trans_splitting() */ 693 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 694 referenced++; 695 spin_unlock(&mm->page_table_lock); 696 } else { 697 pte_t *pte; 698 spinlock_t *ptl; 699 700 /* 701 * rmap might return false positives; we must filter 702 * these out using page_check_address(). 703 */ 704 pte = page_check_address(page, mm, address, &ptl, 0); 705 if (!pte) 706 goto out; 707 708 if (vma->vm_flags & VM_LOCKED) { 709 pte_unmap_unlock(pte, ptl); 710 *mapcount = 0; /* break early from loop */ 711 *vm_flags |= VM_LOCKED; 712 goto out; 713 } 714 715 if (ptep_clear_flush_young_notify(vma, address, pte)) { 716 /* 717 * Don't treat a reference through a sequentially read 718 * mapping as such. If the page has been used in 719 * another mapping, we will catch it; if this other 720 * mapping is already gone, the unmap path will have 721 * set PG_referenced or activated the page. 722 */ 723 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 724 referenced++; 725 } 726 pte_unmap_unlock(pte, ptl); 727 } 728 729 (*mapcount)--; 730 731 if (referenced) 732 *vm_flags |= vma->vm_flags; 733 out: 734 return referenced; 735 } 736 737 static int page_referenced_anon(struct page *page, 738 struct mem_cgroup *memcg, 739 unsigned long *vm_flags) 740 { 741 unsigned int mapcount; 742 struct anon_vma *anon_vma; 743 pgoff_t pgoff; 744 struct anon_vma_chain *avc; 745 int referenced = 0; 746 747 anon_vma = page_lock_anon_vma_read(page); 748 if (!anon_vma) 749 return referenced; 750 751 mapcount = page_mapcount(page); 752 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 753 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 754 struct vm_area_struct *vma = avc->vma; 755 unsigned long address = vma_address(page, vma); 756 /* 757 * If we are reclaiming on behalf of a cgroup, skip 758 * counting on behalf of references from different 759 * cgroups 760 */ 761 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 762 continue; 763 referenced += page_referenced_one(page, vma, address, 764 &mapcount, vm_flags); 765 if (!mapcount) 766 break; 767 } 768 769 page_unlock_anon_vma_read(anon_vma); 770 return referenced; 771 } 772 773 /** 774 * page_referenced_file - referenced check for object-based rmap 775 * @page: the page we're checking references on. 776 * @memcg: target memory control group 777 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 778 * 779 * For an object-based mapped page, find all the places it is mapped and 780 * check/clear the referenced flag. This is done by following the page->mapping 781 * pointer, then walking the chain of vmas it holds. It returns the number 782 * of references it found. 783 * 784 * This function is only called from page_referenced for object-based pages. 785 */ 786 static int page_referenced_file(struct page *page, 787 struct mem_cgroup *memcg, 788 unsigned long *vm_flags) 789 { 790 unsigned int mapcount; 791 struct address_space *mapping = page->mapping; 792 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 793 struct vm_area_struct *vma; 794 int referenced = 0; 795 796 /* 797 * The caller's checks on page->mapping and !PageAnon have made 798 * sure that this is a file page: the check for page->mapping 799 * excludes the case just before it gets set on an anon page. 800 */ 801 BUG_ON(PageAnon(page)); 802 803 /* 804 * The page lock not only makes sure that page->mapping cannot 805 * suddenly be NULLified by truncation, it makes sure that the 806 * structure at mapping cannot be freed and reused yet, 807 * so we can safely take mapping->i_mmap_mutex. 808 */ 809 BUG_ON(!PageLocked(page)); 810 811 mutex_lock(&mapping->i_mmap_mutex); 812 813 /* 814 * i_mmap_mutex does not stabilize mapcount at all, but mapcount 815 * is more likely to be accurate if we note it after spinning. 816 */ 817 mapcount = page_mapcount(page); 818 819 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 820 unsigned long address = vma_address(page, vma); 821 /* 822 * If we are reclaiming on behalf of a cgroup, skip 823 * counting on behalf of references from different 824 * cgroups 825 */ 826 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 827 continue; 828 referenced += page_referenced_one(page, vma, address, 829 &mapcount, vm_flags); 830 if (!mapcount) 831 break; 832 } 833 834 mutex_unlock(&mapping->i_mmap_mutex); 835 return referenced; 836 } 837 838 /** 839 * page_referenced - test if the page was referenced 840 * @page: the page to test 841 * @is_locked: caller holds lock on the page 842 * @memcg: target memory cgroup 843 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 844 * 845 * Quick test_and_clear_referenced for all mappings to a page, 846 * returns the number of ptes which referenced the page. 847 */ 848 int page_referenced(struct page *page, 849 int is_locked, 850 struct mem_cgroup *memcg, 851 unsigned long *vm_flags) 852 { 853 int referenced = 0; 854 int we_locked = 0; 855 856 *vm_flags = 0; 857 if (page_mapped(page) && page_rmapping(page)) { 858 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 859 we_locked = trylock_page(page); 860 if (!we_locked) { 861 referenced++; 862 goto out; 863 } 864 } 865 if (unlikely(PageKsm(page))) 866 referenced += page_referenced_ksm(page, memcg, 867 vm_flags); 868 else if (PageAnon(page)) 869 referenced += page_referenced_anon(page, memcg, 870 vm_flags); 871 else if (page->mapping) 872 referenced += page_referenced_file(page, memcg, 873 vm_flags); 874 if (we_locked) 875 unlock_page(page); 876 } 877 out: 878 return referenced; 879 } 880 881 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 882 unsigned long address) 883 { 884 struct mm_struct *mm = vma->vm_mm; 885 pte_t *pte; 886 spinlock_t *ptl; 887 int ret = 0; 888 889 pte = page_check_address(page, mm, address, &ptl, 1); 890 if (!pte) 891 goto out; 892 893 if (pte_dirty(*pte) || pte_write(*pte)) { 894 pte_t entry; 895 896 flush_cache_page(vma, address, pte_pfn(*pte)); 897 entry = ptep_clear_flush(vma, address, pte); 898 entry = pte_wrprotect(entry); 899 entry = pte_mkclean(entry); 900 set_pte_at(mm, address, pte, entry); 901 ret = 1; 902 } 903 904 pte_unmap_unlock(pte, ptl); 905 906 if (ret) 907 mmu_notifier_invalidate_page(mm, address); 908 out: 909 return ret; 910 } 911 912 static int page_mkclean_file(struct address_space *mapping, struct page *page) 913 { 914 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 915 struct vm_area_struct *vma; 916 int ret = 0; 917 918 BUG_ON(PageAnon(page)); 919 920 mutex_lock(&mapping->i_mmap_mutex); 921 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 922 if (vma->vm_flags & VM_SHARED) { 923 unsigned long address = vma_address(page, vma); 924 ret += page_mkclean_one(page, vma, address); 925 } 926 } 927 mutex_unlock(&mapping->i_mmap_mutex); 928 return ret; 929 } 930 931 int page_mkclean(struct page *page) 932 { 933 int ret = 0; 934 935 BUG_ON(!PageLocked(page)); 936 937 if (page_mapped(page)) { 938 struct address_space *mapping = page_mapping(page); 939 if (mapping) 940 ret = page_mkclean_file(mapping, page); 941 } 942 943 return ret; 944 } 945 EXPORT_SYMBOL_GPL(page_mkclean); 946 947 /** 948 * page_move_anon_rmap - move a page to our anon_vma 949 * @page: the page to move to our anon_vma 950 * @vma: the vma the page belongs to 951 * @address: the user virtual address mapped 952 * 953 * When a page belongs exclusively to one process after a COW event, 954 * that page can be moved into the anon_vma that belongs to just that 955 * process, so the rmap code will not search the parent or sibling 956 * processes. 957 */ 958 void page_move_anon_rmap(struct page *page, 959 struct vm_area_struct *vma, unsigned long address) 960 { 961 struct anon_vma *anon_vma = vma->anon_vma; 962 963 VM_BUG_ON(!PageLocked(page)); 964 VM_BUG_ON(!anon_vma); 965 VM_BUG_ON(page->index != linear_page_index(vma, address)); 966 967 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 968 page->mapping = (struct address_space *) anon_vma; 969 } 970 971 /** 972 * __page_set_anon_rmap - set up new anonymous rmap 973 * @page: Page to add to rmap 974 * @vma: VM area to add page to. 975 * @address: User virtual address of the mapping 976 * @exclusive: the page is exclusively owned by the current process 977 */ 978 static void __page_set_anon_rmap(struct page *page, 979 struct vm_area_struct *vma, unsigned long address, int exclusive) 980 { 981 struct anon_vma *anon_vma = vma->anon_vma; 982 983 BUG_ON(!anon_vma); 984 985 if (PageAnon(page)) 986 return; 987 988 /* 989 * If the page isn't exclusively mapped into this vma, 990 * we must use the _oldest_ possible anon_vma for the 991 * page mapping! 992 */ 993 if (!exclusive) 994 anon_vma = anon_vma->root; 995 996 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 997 page->mapping = (struct address_space *) anon_vma; 998 page->index = linear_page_index(vma, address); 999 } 1000 1001 /** 1002 * __page_check_anon_rmap - sanity check anonymous rmap addition 1003 * @page: the page to add the mapping to 1004 * @vma: the vm area in which the mapping is added 1005 * @address: the user virtual address mapped 1006 */ 1007 static void __page_check_anon_rmap(struct page *page, 1008 struct vm_area_struct *vma, unsigned long address) 1009 { 1010 #ifdef CONFIG_DEBUG_VM 1011 /* 1012 * The page's anon-rmap details (mapping and index) are guaranteed to 1013 * be set up correctly at this point. 1014 * 1015 * We have exclusion against page_add_anon_rmap because the caller 1016 * always holds the page locked, except if called from page_dup_rmap, 1017 * in which case the page is already known to be setup. 1018 * 1019 * We have exclusion against page_add_new_anon_rmap because those pages 1020 * are initially only visible via the pagetables, and the pte is locked 1021 * over the call to page_add_new_anon_rmap. 1022 */ 1023 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1024 BUG_ON(page->index != linear_page_index(vma, address)); 1025 #endif 1026 } 1027 1028 /** 1029 * page_add_anon_rmap - add pte mapping to an anonymous page 1030 * @page: the page to add the mapping to 1031 * @vma: the vm area in which the mapping is added 1032 * @address: the user virtual address mapped 1033 * 1034 * The caller needs to hold the pte lock, and the page must be locked in 1035 * the anon_vma case: to serialize mapping,index checking after setting, 1036 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1037 * (but PageKsm is never downgraded to PageAnon). 1038 */ 1039 void page_add_anon_rmap(struct page *page, 1040 struct vm_area_struct *vma, unsigned long address) 1041 { 1042 do_page_add_anon_rmap(page, vma, address, 0); 1043 } 1044 1045 /* 1046 * Special version of the above for do_swap_page, which often runs 1047 * into pages that are exclusively owned by the current process. 1048 * Everybody else should continue to use page_add_anon_rmap above. 1049 */ 1050 void do_page_add_anon_rmap(struct page *page, 1051 struct vm_area_struct *vma, unsigned long address, int exclusive) 1052 { 1053 int first = atomic_inc_and_test(&page->_mapcount); 1054 if (first) { 1055 if (!PageTransHuge(page)) 1056 __inc_zone_page_state(page, NR_ANON_PAGES); 1057 else 1058 __inc_zone_page_state(page, 1059 NR_ANON_TRANSPARENT_HUGEPAGES); 1060 } 1061 if (unlikely(PageKsm(page))) 1062 return; 1063 1064 VM_BUG_ON(!PageLocked(page)); 1065 /* address might be in next vma when migration races vma_adjust */ 1066 if (first) 1067 __page_set_anon_rmap(page, vma, address, exclusive); 1068 else 1069 __page_check_anon_rmap(page, vma, address); 1070 } 1071 1072 /** 1073 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1074 * @page: the page to add the mapping to 1075 * @vma: the vm area in which the mapping is added 1076 * @address: the user virtual address mapped 1077 * 1078 * Same as page_add_anon_rmap but must only be called on *new* pages. 1079 * This means the inc-and-test can be bypassed. 1080 * Page does not have to be locked. 1081 */ 1082 void page_add_new_anon_rmap(struct page *page, 1083 struct vm_area_struct *vma, unsigned long address) 1084 { 1085 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1086 SetPageSwapBacked(page); 1087 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1088 if (!PageTransHuge(page)) 1089 __inc_zone_page_state(page, NR_ANON_PAGES); 1090 else 1091 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1092 __page_set_anon_rmap(page, vma, address, 1); 1093 if (!mlocked_vma_newpage(vma, page)) { 1094 SetPageActive(page); 1095 lru_cache_add(page); 1096 } else 1097 add_page_to_unevictable_list(page); 1098 } 1099 1100 /** 1101 * page_add_file_rmap - add pte mapping to a file page 1102 * @page: the page to add the mapping to 1103 * 1104 * The caller needs to hold the pte lock. 1105 */ 1106 void page_add_file_rmap(struct page *page) 1107 { 1108 bool locked; 1109 unsigned long flags; 1110 1111 mem_cgroup_begin_update_page_stat(page, &locked, &flags); 1112 if (atomic_inc_and_test(&page->_mapcount)) { 1113 __inc_zone_page_state(page, NR_FILE_MAPPED); 1114 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED); 1115 } 1116 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1117 } 1118 1119 /** 1120 * page_remove_rmap - take down pte mapping from a page 1121 * @page: page to remove mapping from 1122 * 1123 * The caller needs to hold the pte lock. 1124 */ 1125 void page_remove_rmap(struct page *page) 1126 { 1127 bool anon = PageAnon(page); 1128 bool locked; 1129 unsigned long flags; 1130 1131 /* 1132 * The anon case has no mem_cgroup page_stat to update; but may 1133 * uncharge_page() below, where the lock ordering can deadlock if 1134 * we hold the lock against page_stat move: so avoid it on anon. 1135 */ 1136 if (!anon) 1137 mem_cgroup_begin_update_page_stat(page, &locked, &flags); 1138 1139 /* page still mapped by someone else? */ 1140 if (!atomic_add_negative(-1, &page->_mapcount)) 1141 goto out; 1142 1143 /* 1144 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 1145 * and not charged by memcg for now. 1146 */ 1147 if (unlikely(PageHuge(page))) 1148 goto out; 1149 if (anon) { 1150 mem_cgroup_uncharge_page(page); 1151 if (!PageTransHuge(page)) 1152 __dec_zone_page_state(page, NR_ANON_PAGES); 1153 else 1154 __dec_zone_page_state(page, 1155 NR_ANON_TRANSPARENT_HUGEPAGES); 1156 } else { 1157 __dec_zone_page_state(page, NR_FILE_MAPPED); 1158 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED); 1159 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1160 } 1161 if (unlikely(PageMlocked(page))) 1162 clear_page_mlock(page); 1163 /* 1164 * It would be tidy to reset the PageAnon mapping here, 1165 * but that might overwrite a racing page_add_anon_rmap 1166 * which increments mapcount after us but sets mapping 1167 * before us: so leave the reset to free_hot_cold_page, 1168 * and remember that it's only reliable while mapped. 1169 * Leaving it set also helps swapoff to reinstate ptes 1170 * faster for those pages still in swapcache. 1171 */ 1172 return; 1173 out: 1174 if (!anon) 1175 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1176 } 1177 1178 /* 1179 * Subfunctions of try_to_unmap: try_to_unmap_one called 1180 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file. 1181 */ 1182 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1183 unsigned long address, enum ttu_flags flags) 1184 { 1185 struct mm_struct *mm = vma->vm_mm; 1186 pte_t *pte; 1187 pte_t pteval; 1188 spinlock_t *ptl; 1189 int ret = SWAP_AGAIN; 1190 1191 pte = page_check_address(page, mm, address, &ptl, 0); 1192 if (!pte) 1193 goto out; 1194 1195 /* 1196 * If the page is mlock()d, we cannot swap it out. 1197 * If it's recently referenced (perhaps page_referenced 1198 * skipped over this mm) then we should reactivate it. 1199 */ 1200 if (!(flags & TTU_IGNORE_MLOCK)) { 1201 if (vma->vm_flags & VM_LOCKED) 1202 goto out_mlock; 1203 1204 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1205 goto out_unmap; 1206 } 1207 if (!(flags & TTU_IGNORE_ACCESS)) { 1208 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1209 ret = SWAP_FAIL; 1210 goto out_unmap; 1211 } 1212 } 1213 1214 /* Nuke the page table entry. */ 1215 flush_cache_page(vma, address, page_to_pfn(page)); 1216 pteval = ptep_clear_flush(vma, address, pte); 1217 1218 /* Move the dirty bit to the physical page now the pte is gone. */ 1219 if (pte_dirty(pteval)) 1220 set_page_dirty(page); 1221 1222 /* Update high watermark before we lower rss */ 1223 update_hiwater_rss(mm); 1224 1225 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1226 if (!PageHuge(page)) { 1227 if (PageAnon(page)) 1228 dec_mm_counter(mm, MM_ANONPAGES); 1229 else 1230 dec_mm_counter(mm, MM_FILEPAGES); 1231 } 1232 set_pte_at(mm, address, pte, 1233 swp_entry_to_pte(make_hwpoison_entry(page))); 1234 } else if (PageAnon(page)) { 1235 swp_entry_t entry = { .val = page_private(page) }; 1236 pte_t swp_pte; 1237 1238 if (PageSwapCache(page)) { 1239 /* 1240 * Store the swap location in the pte. 1241 * See handle_pte_fault() ... 1242 */ 1243 if (swap_duplicate(entry) < 0) { 1244 set_pte_at(mm, address, pte, pteval); 1245 ret = SWAP_FAIL; 1246 goto out_unmap; 1247 } 1248 if (list_empty(&mm->mmlist)) { 1249 spin_lock(&mmlist_lock); 1250 if (list_empty(&mm->mmlist)) 1251 list_add(&mm->mmlist, &init_mm.mmlist); 1252 spin_unlock(&mmlist_lock); 1253 } 1254 dec_mm_counter(mm, MM_ANONPAGES); 1255 inc_mm_counter(mm, MM_SWAPENTS); 1256 } else if (IS_ENABLED(CONFIG_MIGRATION)) { 1257 /* 1258 * Store the pfn of the page in a special migration 1259 * pte. do_swap_page() will wait until the migration 1260 * pte is removed and then restart fault handling. 1261 */ 1262 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1263 entry = make_migration_entry(page, pte_write(pteval)); 1264 } 1265 swp_pte = swp_entry_to_pte(entry); 1266 if (pte_soft_dirty(pteval)) 1267 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1268 set_pte_at(mm, address, pte, swp_pte); 1269 BUG_ON(pte_file(*pte)); 1270 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1271 (TTU_ACTION(flags) == TTU_MIGRATION)) { 1272 /* Establish migration entry for a file page */ 1273 swp_entry_t entry; 1274 entry = make_migration_entry(page, pte_write(pteval)); 1275 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1276 } else 1277 dec_mm_counter(mm, MM_FILEPAGES); 1278 1279 page_remove_rmap(page); 1280 page_cache_release(page); 1281 1282 out_unmap: 1283 pte_unmap_unlock(pte, ptl); 1284 if (ret != SWAP_FAIL) 1285 mmu_notifier_invalidate_page(mm, address); 1286 out: 1287 return ret; 1288 1289 out_mlock: 1290 pte_unmap_unlock(pte, ptl); 1291 1292 1293 /* 1294 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1295 * unstable result and race. Plus, We can't wait here because 1296 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex. 1297 * if trylock failed, the page remain in evictable lru and later 1298 * vmscan could retry to move the page to unevictable lru if the 1299 * page is actually mlocked. 1300 */ 1301 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1302 if (vma->vm_flags & VM_LOCKED) { 1303 mlock_vma_page(page); 1304 ret = SWAP_MLOCK; 1305 } 1306 up_read(&vma->vm_mm->mmap_sem); 1307 } 1308 return ret; 1309 } 1310 1311 /* 1312 * objrmap doesn't work for nonlinear VMAs because the assumption that 1313 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1314 * Consequently, given a particular page and its ->index, we cannot locate the 1315 * ptes which are mapping that page without an exhaustive linear search. 1316 * 1317 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1318 * maps the file to which the target page belongs. The ->vm_private_data field 1319 * holds the current cursor into that scan. Successive searches will circulate 1320 * around the vma's virtual address space. 1321 * 1322 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1323 * more scanning pressure is placed against them as well. Eventually pages 1324 * will become fully unmapped and are eligible for eviction. 1325 * 1326 * For very sparsely populated VMAs this is a little inefficient - chances are 1327 * there there won't be many ptes located within the scan cluster. In this case 1328 * maybe we could scan further - to the end of the pte page, perhaps. 1329 * 1330 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1331 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1332 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1333 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1334 */ 1335 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1336 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1337 1338 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1339 struct vm_area_struct *vma, struct page *check_page) 1340 { 1341 struct mm_struct *mm = vma->vm_mm; 1342 pmd_t *pmd; 1343 pte_t *pte; 1344 pte_t pteval; 1345 spinlock_t *ptl; 1346 struct page *page; 1347 unsigned long address; 1348 unsigned long mmun_start; /* For mmu_notifiers */ 1349 unsigned long mmun_end; /* For mmu_notifiers */ 1350 unsigned long end; 1351 int ret = SWAP_AGAIN; 1352 int locked_vma = 0; 1353 1354 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1355 end = address + CLUSTER_SIZE; 1356 if (address < vma->vm_start) 1357 address = vma->vm_start; 1358 if (end > vma->vm_end) 1359 end = vma->vm_end; 1360 1361 pmd = mm_find_pmd(mm, address); 1362 if (!pmd) 1363 return ret; 1364 1365 mmun_start = address; 1366 mmun_end = end; 1367 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1368 1369 /* 1370 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1371 * keep the sem while scanning the cluster for mlocking pages. 1372 */ 1373 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1374 locked_vma = (vma->vm_flags & VM_LOCKED); 1375 if (!locked_vma) 1376 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1377 } 1378 1379 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1380 1381 /* Update high watermark before we lower rss */ 1382 update_hiwater_rss(mm); 1383 1384 for (; address < end; pte++, address += PAGE_SIZE) { 1385 if (!pte_present(*pte)) 1386 continue; 1387 page = vm_normal_page(vma, address, *pte); 1388 BUG_ON(!page || PageAnon(page)); 1389 1390 if (locked_vma) { 1391 mlock_vma_page(page); /* no-op if already mlocked */ 1392 if (page == check_page) 1393 ret = SWAP_MLOCK; 1394 continue; /* don't unmap */ 1395 } 1396 1397 if (ptep_clear_flush_young_notify(vma, address, pte)) 1398 continue; 1399 1400 /* Nuke the page table entry. */ 1401 flush_cache_page(vma, address, pte_pfn(*pte)); 1402 pteval = ptep_clear_flush(vma, address, pte); 1403 1404 /* If nonlinear, store the file page offset in the pte. */ 1405 if (page->index != linear_page_index(vma, address)) { 1406 pte_t ptfile = pgoff_to_pte(page->index); 1407 if (pte_soft_dirty(pteval)) 1408 pte_file_mksoft_dirty(ptfile); 1409 set_pte_at(mm, address, pte, ptfile); 1410 } 1411 1412 /* Move the dirty bit to the physical page now the pte is gone. */ 1413 if (pte_dirty(pteval)) 1414 set_page_dirty(page); 1415 1416 page_remove_rmap(page); 1417 page_cache_release(page); 1418 dec_mm_counter(mm, MM_FILEPAGES); 1419 (*mapcount)--; 1420 } 1421 pte_unmap_unlock(pte - 1, ptl); 1422 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1423 if (locked_vma) 1424 up_read(&vma->vm_mm->mmap_sem); 1425 return ret; 1426 } 1427 1428 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1429 { 1430 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1431 1432 if (!maybe_stack) 1433 return false; 1434 1435 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1436 VM_STACK_INCOMPLETE_SETUP) 1437 return true; 1438 1439 return false; 1440 } 1441 1442 /** 1443 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1444 * rmap method 1445 * @page: the page to unmap/unlock 1446 * @flags: action and flags 1447 * 1448 * Find all the mappings of a page using the mapping pointer and the vma chains 1449 * contained in the anon_vma struct it points to. 1450 * 1451 * This function is only called from try_to_unmap/try_to_munlock for 1452 * anonymous pages. 1453 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1454 * where the page was found will be held for write. So, we won't recheck 1455 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1456 * 'LOCKED. 1457 */ 1458 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) 1459 { 1460 struct anon_vma *anon_vma; 1461 pgoff_t pgoff; 1462 struct anon_vma_chain *avc; 1463 int ret = SWAP_AGAIN; 1464 1465 anon_vma = page_lock_anon_vma_read(page); 1466 if (!anon_vma) 1467 return ret; 1468 1469 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1470 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1471 struct vm_area_struct *vma = avc->vma; 1472 unsigned long address; 1473 1474 /* 1475 * During exec, a temporary VMA is setup and later moved. 1476 * The VMA is moved under the anon_vma lock but not the 1477 * page tables leading to a race where migration cannot 1478 * find the migration ptes. Rather than increasing the 1479 * locking requirements of exec(), migration skips 1480 * temporary VMAs until after exec() completes. 1481 */ 1482 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && 1483 is_vma_temporary_stack(vma)) 1484 continue; 1485 1486 address = vma_address(page, vma); 1487 ret = try_to_unmap_one(page, vma, address, flags); 1488 if (ret != SWAP_AGAIN || !page_mapped(page)) 1489 break; 1490 } 1491 1492 page_unlock_anon_vma_read(anon_vma); 1493 return ret; 1494 } 1495 1496 /** 1497 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1498 * @page: the page to unmap/unlock 1499 * @flags: action and flags 1500 * 1501 * Find all the mappings of a page using the mapping pointer and the vma chains 1502 * contained in the address_space struct it points to. 1503 * 1504 * This function is only called from try_to_unmap/try_to_munlock for 1505 * object-based pages. 1506 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1507 * where the page was found will be held for write. So, we won't recheck 1508 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1509 * 'LOCKED. 1510 */ 1511 static int try_to_unmap_file(struct page *page, enum ttu_flags flags) 1512 { 1513 struct address_space *mapping = page->mapping; 1514 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1515 struct vm_area_struct *vma; 1516 int ret = SWAP_AGAIN; 1517 unsigned long cursor; 1518 unsigned long max_nl_cursor = 0; 1519 unsigned long max_nl_size = 0; 1520 unsigned int mapcount; 1521 1522 if (PageHuge(page)) 1523 pgoff = page->index << compound_order(page); 1524 1525 mutex_lock(&mapping->i_mmap_mutex); 1526 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1527 unsigned long address = vma_address(page, vma); 1528 ret = try_to_unmap_one(page, vma, address, flags); 1529 if (ret != SWAP_AGAIN || !page_mapped(page)) 1530 goto out; 1531 } 1532 1533 if (list_empty(&mapping->i_mmap_nonlinear)) 1534 goto out; 1535 1536 /* 1537 * We don't bother to try to find the munlocked page in nonlinears. 1538 * It's costly. Instead, later, page reclaim logic may call 1539 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. 1540 */ 1541 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1542 goto out; 1543 1544 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1545 shared.nonlinear) { 1546 cursor = (unsigned long) vma->vm_private_data; 1547 if (cursor > max_nl_cursor) 1548 max_nl_cursor = cursor; 1549 cursor = vma->vm_end - vma->vm_start; 1550 if (cursor > max_nl_size) 1551 max_nl_size = cursor; 1552 } 1553 1554 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1555 ret = SWAP_FAIL; 1556 goto out; 1557 } 1558 1559 /* 1560 * We don't try to search for this page in the nonlinear vmas, 1561 * and page_referenced wouldn't have found it anyway. Instead 1562 * just walk the nonlinear vmas trying to age and unmap some. 1563 * The mapcount of the page we came in with is irrelevant, 1564 * but even so use it as a guide to how hard we should try? 1565 */ 1566 mapcount = page_mapcount(page); 1567 if (!mapcount) 1568 goto out; 1569 cond_resched(); 1570 1571 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1572 if (max_nl_cursor == 0) 1573 max_nl_cursor = CLUSTER_SIZE; 1574 1575 do { 1576 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1577 shared.nonlinear) { 1578 cursor = (unsigned long) vma->vm_private_data; 1579 while ( cursor < max_nl_cursor && 1580 cursor < vma->vm_end - vma->vm_start) { 1581 if (try_to_unmap_cluster(cursor, &mapcount, 1582 vma, page) == SWAP_MLOCK) 1583 ret = SWAP_MLOCK; 1584 cursor += CLUSTER_SIZE; 1585 vma->vm_private_data = (void *) cursor; 1586 if ((int)mapcount <= 0) 1587 goto out; 1588 } 1589 vma->vm_private_data = (void *) max_nl_cursor; 1590 } 1591 cond_resched(); 1592 max_nl_cursor += CLUSTER_SIZE; 1593 } while (max_nl_cursor <= max_nl_size); 1594 1595 /* 1596 * Don't loop forever (perhaps all the remaining pages are 1597 * in locked vmas). Reset cursor on all unreserved nonlinear 1598 * vmas, now forgetting on which ones it had fallen behind. 1599 */ 1600 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear) 1601 vma->vm_private_data = NULL; 1602 out: 1603 mutex_unlock(&mapping->i_mmap_mutex); 1604 return ret; 1605 } 1606 1607 /** 1608 * try_to_unmap - try to remove all page table mappings to a page 1609 * @page: the page to get unmapped 1610 * @flags: action and flags 1611 * 1612 * Tries to remove all the page table entries which are mapping this 1613 * page, used in the pageout path. Caller must hold the page lock. 1614 * Return values are: 1615 * 1616 * SWAP_SUCCESS - we succeeded in removing all mappings 1617 * SWAP_AGAIN - we missed a mapping, try again later 1618 * SWAP_FAIL - the page is unswappable 1619 * SWAP_MLOCK - page is mlocked. 1620 */ 1621 int try_to_unmap(struct page *page, enum ttu_flags flags) 1622 { 1623 int ret; 1624 1625 BUG_ON(!PageLocked(page)); 1626 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page)); 1627 1628 if (unlikely(PageKsm(page))) 1629 ret = try_to_unmap_ksm(page, flags); 1630 else if (PageAnon(page)) 1631 ret = try_to_unmap_anon(page, flags); 1632 else 1633 ret = try_to_unmap_file(page, flags); 1634 if (ret != SWAP_MLOCK && !page_mapped(page)) 1635 ret = SWAP_SUCCESS; 1636 return ret; 1637 } 1638 1639 /** 1640 * try_to_munlock - try to munlock a page 1641 * @page: the page to be munlocked 1642 * 1643 * Called from munlock code. Checks all of the VMAs mapping the page 1644 * to make sure nobody else has this page mlocked. The page will be 1645 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1646 * 1647 * Return values are: 1648 * 1649 * SWAP_AGAIN - no vma is holding page mlocked, or, 1650 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1651 * SWAP_FAIL - page cannot be located at present 1652 * SWAP_MLOCK - page is now mlocked. 1653 */ 1654 int try_to_munlock(struct page *page) 1655 { 1656 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1657 1658 if (unlikely(PageKsm(page))) 1659 return try_to_unmap_ksm(page, TTU_MUNLOCK); 1660 else if (PageAnon(page)) 1661 return try_to_unmap_anon(page, TTU_MUNLOCK); 1662 else 1663 return try_to_unmap_file(page, TTU_MUNLOCK); 1664 } 1665 1666 void __put_anon_vma(struct anon_vma *anon_vma) 1667 { 1668 struct anon_vma *root = anon_vma->root; 1669 1670 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1671 anon_vma_free(root); 1672 1673 anon_vma_free(anon_vma); 1674 } 1675 1676 #ifdef CONFIG_MIGRATION 1677 /* 1678 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): 1679 * Called by migrate.c to remove migration ptes, but might be used more later. 1680 */ 1681 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, 1682 struct vm_area_struct *, unsigned long, void *), void *arg) 1683 { 1684 struct anon_vma *anon_vma; 1685 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1686 struct anon_vma_chain *avc; 1687 int ret = SWAP_AGAIN; 1688 1689 /* 1690 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1691 * because that depends on page_mapped(); but not all its usages 1692 * are holding mmap_sem. Users without mmap_sem are required to 1693 * take a reference count to prevent the anon_vma disappearing 1694 */ 1695 anon_vma = page_anon_vma(page); 1696 if (!anon_vma) 1697 return ret; 1698 anon_vma_lock_read(anon_vma); 1699 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1700 struct vm_area_struct *vma = avc->vma; 1701 unsigned long address = vma_address(page, vma); 1702 ret = rmap_one(page, vma, address, arg); 1703 if (ret != SWAP_AGAIN) 1704 break; 1705 } 1706 anon_vma_unlock_read(anon_vma); 1707 return ret; 1708 } 1709 1710 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, 1711 struct vm_area_struct *, unsigned long, void *), void *arg) 1712 { 1713 struct address_space *mapping = page->mapping; 1714 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1715 struct vm_area_struct *vma; 1716 int ret = SWAP_AGAIN; 1717 1718 if (!mapping) 1719 return ret; 1720 mutex_lock(&mapping->i_mmap_mutex); 1721 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1722 unsigned long address = vma_address(page, vma); 1723 ret = rmap_one(page, vma, address, arg); 1724 if (ret != SWAP_AGAIN) 1725 break; 1726 } 1727 /* 1728 * No nonlinear handling: being always shared, nonlinear vmas 1729 * never contain migration ptes. Decide what to do about this 1730 * limitation to linear when we need rmap_walk() on nonlinear. 1731 */ 1732 mutex_unlock(&mapping->i_mmap_mutex); 1733 return ret; 1734 } 1735 1736 int rmap_walk(struct page *page, int (*rmap_one)(struct page *, 1737 struct vm_area_struct *, unsigned long, void *), void *arg) 1738 { 1739 VM_BUG_ON(!PageLocked(page)); 1740 1741 if (unlikely(PageKsm(page))) 1742 return rmap_walk_ksm(page, rmap_one, arg); 1743 else if (PageAnon(page)) 1744 return rmap_walk_anon(page, rmap_one, arg); 1745 else 1746 return rmap_walk_file(page, rmap_one, arg); 1747 } 1748 #endif /* CONFIG_MIGRATION */ 1749 1750 #ifdef CONFIG_HUGETLB_PAGE 1751 /* 1752 * The following three functions are for anonymous (private mapped) hugepages. 1753 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1754 * and no lru code, because we handle hugepages differently from common pages. 1755 */ 1756 static void __hugepage_set_anon_rmap(struct page *page, 1757 struct vm_area_struct *vma, unsigned long address, int exclusive) 1758 { 1759 struct anon_vma *anon_vma = vma->anon_vma; 1760 1761 BUG_ON(!anon_vma); 1762 1763 if (PageAnon(page)) 1764 return; 1765 if (!exclusive) 1766 anon_vma = anon_vma->root; 1767 1768 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1769 page->mapping = (struct address_space *) anon_vma; 1770 page->index = linear_page_index(vma, address); 1771 } 1772 1773 void hugepage_add_anon_rmap(struct page *page, 1774 struct vm_area_struct *vma, unsigned long address) 1775 { 1776 struct anon_vma *anon_vma = vma->anon_vma; 1777 int first; 1778 1779 BUG_ON(!PageLocked(page)); 1780 BUG_ON(!anon_vma); 1781 /* address might be in next vma when migration races vma_adjust */ 1782 first = atomic_inc_and_test(&page->_mapcount); 1783 if (first) 1784 __hugepage_set_anon_rmap(page, vma, address, 0); 1785 } 1786 1787 void hugepage_add_new_anon_rmap(struct page *page, 1788 struct vm_area_struct *vma, unsigned long address) 1789 { 1790 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1791 atomic_set(&page->_mapcount, 0); 1792 __hugepage_set_anon_rmap(page, vma, address, 1); 1793 } 1794 #endif /* CONFIG_HUGETLB_PAGE */ 1795