1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) 27 * mapping->i_mmap_rwsem 28 * anon_vma->rwsem 29 * mm->page_table_lock or pte_lock 30 * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) 35 * i_pages lock (widely used) 36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 38 * sb_lock (within inode_lock in fs/fs-writeback.c) 39 * i_pages lock (widely used, in set_page_dirty, 40 * in arch-dependent flush_dcache_mmap_lock, 41 * within bdi.wb->list_lock in __sync_single_inode) 42 * 43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 44 * ->tasklist_lock 45 * pte map lock 46 */ 47 48 #include <linux/mm.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sched/task.h> 51 #include <linux/pagemap.h> 52 #include <linux/swap.h> 53 #include <linux/swapops.h> 54 #include <linux/slab.h> 55 #include <linux/init.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/rcupdate.h> 59 #include <linux/export.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/migrate.h> 63 #include <linux/hugetlb.h> 64 #include <linux/backing-dev.h> 65 #include <linux/page_idle.h> 66 #include <linux/memremap.h> 67 #include <linux/userfaultfd_k.h> 68 69 #include <asm/tlbflush.h> 70 71 #include <trace/events/tlb.h> 72 73 #include "internal.h" 74 75 static struct kmem_cache *anon_vma_cachep; 76 static struct kmem_cache *anon_vma_chain_cachep; 77 78 static inline struct anon_vma *anon_vma_alloc(void) 79 { 80 struct anon_vma *anon_vma; 81 82 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 83 if (anon_vma) { 84 atomic_set(&anon_vma->refcount, 1); 85 anon_vma->degree = 1; /* Reference for first vma */ 86 anon_vma->parent = anon_vma; 87 /* 88 * Initialise the anon_vma root to point to itself. If called 89 * from fork, the root will be reset to the parents anon_vma. 90 */ 91 anon_vma->root = anon_vma; 92 } 93 94 return anon_vma; 95 } 96 97 static inline void anon_vma_free(struct anon_vma *anon_vma) 98 { 99 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 100 101 /* 102 * Synchronize against page_lock_anon_vma_read() such that 103 * we can safely hold the lock without the anon_vma getting 104 * freed. 105 * 106 * Relies on the full mb implied by the atomic_dec_and_test() from 107 * put_anon_vma() against the acquire barrier implied by 108 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 109 * 110 * page_lock_anon_vma_read() VS put_anon_vma() 111 * down_read_trylock() atomic_dec_and_test() 112 * LOCK MB 113 * atomic_read() rwsem_is_locked() 114 * 115 * LOCK should suffice since the actual taking of the lock must 116 * happen _before_ what follows. 117 */ 118 might_sleep(); 119 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 120 anon_vma_lock_write(anon_vma); 121 anon_vma_unlock_write(anon_vma); 122 } 123 124 kmem_cache_free(anon_vma_cachep, anon_vma); 125 } 126 127 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 128 { 129 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 130 } 131 132 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 133 { 134 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 135 } 136 137 static void anon_vma_chain_link(struct vm_area_struct *vma, 138 struct anon_vma_chain *avc, 139 struct anon_vma *anon_vma) 140 { 141 avc->vma = vma; 142 avc->anon_vma = anon_vma; 143 list_add(&avc->same_vma, &vma->anon_vma_chain); 144 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 145 } 146 147 /** 148 * __anon_vma_prepare - attach an anon_vma to a memory region 149 * @vma: the memory region in question 150 * 151 * This makes sure the memory mapping described by 'vma' has 152 * an 'anon_vma' attached to it, so that we can associate the 153 * anonymous pages mapped into it with that anon_vma. 154 * 155 * The common case will be that we already have one, which 156 * is handled inline by anon_vma_prepare(). But if 157 * not we either need to find an adjacent mapping that we 158 * can re-use the anon_vma from (very common when the only 159 * reason for splitting a vma has been mprotect()), or we 160 * allocate a new one. 161 * 162 * Anon-vma allocations are very subtle, because we may have 163 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 164 * and that may actually touch the spinlock even in the newly 165 * allocated vma (it depends on RCU to make sure that the 166 * anon_vma isn't actually destroyed). 167 * 168 * As a result, we need to do proper anon_vma locking even 169 * for the new allocation. At the same time, we do not want 170 * to do any locking for the common case of already having 171 * an anon_vma. 172 * 173 * This must be called with the mmap_sem held for reading. 174 */ 175 int __anon_vma_prepare(struct vm_area_struct *vma) 176 { 177 struct mm_struct *mm = vma->vm_mm; 178 struct anon_vma *anon_vma, *allocated; 179 struct anon_vma_chain *avc; 180 181 might_sleep(); 182 183 avc = anon_vma_chain_alloc(GFP_KERNEL); 184 if (!avc) 185 goto out_enomem; 186 187 anon_vma = find_mergeable_anon_vma(vma); 188 allocated = NULL; 189 if (!anon_vma) { 190 anon_vma = anon_vma_alloc(); 191 if (unlikely(!anon_vma)) 192 goto out_enomem_free_avc; 193 allocated = anon_vma; 194 } 195 196 anon_vma_lock_write(anon_vma); 197 /* page_table_lock to protect against threads */ 198 spin_lock(&mm->page_table_lock); 199 if (likely(!vma->anon_vma)) { 200 vma->anon_vma = anon_vma; 201 anon_vma_chain_link(vma, avc, anon_vma); 202 /* vma reference or self-parent link for new root */ 203 anon_vma->degree++; 204 allocated = NULL; 205 avc = NULL; 206 } 207 spin_unlock(&mm->page_table_lock); 208 anon_vma_unlock_write(anon_vma); 209 210 if (unlikely(allocated)) 211 put_anon_vma(allocated); 212 if (unlikely(avc)) 213 anon_vma_chain_free(avc); 214 215 return 0; 216 217 out_enomem_free_avc: 218 anon_vma_chain_free(avc); 219 out_enomem: 220 return -ENOMEM; 221 } 222 223 /* 224 * This is a useful helper function for locking the anon_vma root as 225 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 226 * have the same vma. 227 * 228 * Such anon_vma's should have the same root, so you'd expect to see 229 * just a single mutex_lock for the whole traversal. 230 */ 231 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 232 { 233 struct anon_vma *new_root = anon_vma->root; 234 if (new_root != root) { 235 if (WARN_ON_ONCE(root)) 236 up_write(&root->rwsem); 237 root = new_root; 238 down_write(&root->rwsem); 239 } 240 return root; 241 } 242 243 static inline void unlock_anon_vma_root(struct anon_vma *root) 244 { 245 if (root) 246 up_write(&root->rwsem); 247 } 248 249 /* 250 * Attach the anon_vmas from src to dst. 251 * Returns 0 on success, -ENOMEM on failure. 252 * 253 * If dst->anon_vma is NULL this function tries to find and reuse existing 254 * anon_vma which has no vmas and only one child anon_vma. This prevents 255 * degradation of anon_vma hierarchy to endless linear chain in case of 256 * constantly forking task. On the other hand, an anon_vma with more than one 257 * child isn't reused even if there was no alive vma, thus rmap walker has a 258 * good chance of avoiding scanning the whole hierarchy when it searches where 259 * page is mapped. 260 */ 261 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 262 { 263 struct anon_vma_chain *avc, *pavc; 264 struct anon_vma *root = NULL; 265 266 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 267 struct anon_vma *anon_vma; 268 269 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 270 if (unlikely(!avc)) { 271 unlock_anon_vma_root(root); 272 root = NULL; 273 avc = anon_vma_chain_alloc(GFP_KERNEL); 274 if (!avc) 275 goto enomem_failure; 276 } 277 anon_vma = pavc->anon_vma; 278 root = lock_anon_vma_root(root, anon_vma); 279 anon_vma_chain_link(dst, avc, anon_vma); 280 281 /* 282 * Reuse existing anon_vma if its degree lower than two, 283 * that means it has no vma and only one anon_vma child. 284 * 285 * Do not chose parent anon_vma, otherwise first child 286 * will always reuse it. Root anon_vma is never reused: 287 * it has self-parent reference and at least one child. 288 */ 289 if (!dst->anon_vma && anon_vma != src->anon_vma && 290 anon_vma->degree < 2) 291 dst->anon_vma = anon_vma; 292 } 293 if (dst->anon_vma) 294 dst->anon_vma->degree++; 295 unlock_anon_vma_root(root); 296 return 0; 297 298 enomem_failure: 299 /* 300 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 301 * decremented in unlink_anon_vmas(). 302 * We can safely do this because callers of anon_vma_clone() don't care 303 * about dst->anon_vma if anon_vma_clone() failed. 304 */ 305 dst->anon_vma = NULL; 306 unlink_anon_vmas(dst); 307 return -ENOMEM; 308 } 309 310 /* 311 * Attach vma to its own anon_vma, as well as to the anon_vmas that 312 * the corresponding VMA in the parent process is attached to. 313 * Returns 0 on success, non-zero on failure. 314 */ 315 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 316 { 317 struct anon_vma_chain *avc; 318 struct anon_vma *anon_vma; 319 int error; 320 321 /* Don't bother if the parent process has no anon_vma here. */ 322 if (!pvma->anon_vma) 323 return 0; 324 325 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 326 vma->anon_vma = NULL; 327 328 /* 329 * First, attach the new VMA to the parent VMA's anon_vmas, 330 * so rmap can find non-COWed pages in child processes. 331 */ 332 error = anon_vma_clone(vma, pvma); 333 if (error) 334 return error; 335 336 /* An existing anon_vma has been reused, all done then. */ 337 if (vma->anon_vma) 338 return 0; 339 340 /* Then add our own anon_vma. */ 341 anon_vma = anon_vma_alloc(); 342 if (!anon_vma) 343 goto out_error; 344 avc = anon_vma_chain_alloc(GFP_KERNEL); 345 if (!avc) 346 goto out_error_free_anon_vma; 347 348 /* 349 * The root anon_vma's spinlock is the lock actually used when we 350 * lock any of the anon_vmas in this anon_vma tree. 351 */ 352 anon_vma->root = pvma->anon_vma->root; 353 anon_vma->parent = pvma->anon_vma; 354 /* 355 * With refcounts, an anon_vma can stay around longer than the 356 * process it belongs to. The root anon_vma needs to be pinned until 357 * this anon_vma is freed, because the lock lives in the root. 358 */ 359 get_anon_vma(anon_vma->root); 360 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 361 vma->anon_vma = anon_vma; 362 anon_vma_lock_write(anon_vma); 363 anon_vma_chain_link(vma, avc, anon_vma); 364 anon_vma->parent->degree++; 365 anon_vma_unlock_write(anon_vma); 366 367 return 0; 368 369 out_error_free_anon_vma: 370 put_anon_vma(anon_vma); 371 out_error: 372 unlink_anon_vmas(vma); 373 return -ENOMEM; 374 } 375 376 void unlink_anon_vmas(struct vm_area_struct *vma) 377 { 378 struct anon_vma_chain *avc, *next; 379 struct anon_vma *root = NULL; 380 381 /* 382 * Unlink each anon_vma chained to the VMA. This list is ordered 383 * from newest to oldest, ensuring the root anon_vma gets freed last. 384 */ 385 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 386 struct anon_vma *anon_vma = avc->anon_vma; 387 388 root = lock_anon_vma_root(root, anon_vma); 389 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 390 391 /* 392 * Leave empty anon_vmas on the list - we'll need 393 * to free them outside the lock. 394 */ 395 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 396 anon_vma->parent->degree--; 397 continue; 398 } 399 400 list_del(&avc->same_vma); 401 anon_vma_chain_free(avc); 402 } 403 if (vma->anon_vma) 404 vma->anon_vma->degree--; 405 unlock_anon_vma_root(root); 406 407 /* 408 * Iterate the list once more, it now only contains empty and unlinked 409 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 410 * needing to write-acquire the anon_vma->root->rwsem. 411 */ 412 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 413 struct anon_vma *anon_vma = avc->anon_vma; 414 415 VM_WARN_ON(anon_vma->degree); 416 put_anon_vma(anon_vma); 417 418 list_del(&avc->same_vma); 419 anon_vma_chain_free(avc); 420 } 421 } 422 423 static void anon_vma_ctor(void *data) 424 { 425 struct anon_vma *anon_vma = data; 426 427 init_rwsem(&anon_vma->rwsem); 428 atomic_set(&anon_vma->refcount, 0); 429 anon_vma->rb_root = RB_ROOT_CACHED; 430 } 431 432 void __init anon_vma_init(void) 433 { 434 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 435 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 436 anon_vma_ctor); 437 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 438 SLAB_PANIC|SLAB_ACCOUNT); 439 } 440 441 /* 442 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 443 * 444 * Since there is no serialization what so ever against page_remove_rmap() 445 * the best this function can do is return a locked anon_vma that might 446 * have been relevant to this page. 447 * 448 * The page might have been remapped to a different anon_vma or the anon_vma 449 * returned may already be freed (and even reused). 450 * 451 * In case it was remapped to a different anon_vma, the new anon_vma will be a 452 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 453 * ensure that any anon_vma obtained from the page will still be valid for as 454 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 455 * 456 * All users of this function must be very careful when walking the anon_vma 457 * chain and verify that the page in question is indeed mapped in it 458 * [ something equivalent to page_mapped_in_vma() ]. 459 * 460 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 461 * that the anon_vma pointer from page->mapping is valid if there is a 462 * mapcount, we can dereference the anon_vma after observing those. 463 */ 464 struct anon_vma *page_get_anon_vma(struct page *page) 465 { 466 struct anon_vma *anon_vma = NULL; 467 unsigned long anon_mapping; 468 469 rcu_read_lock(); 470 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 471 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 472 goto out; 473 if (!page_mapped(page)) 474 goto out; 475 476 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 477 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 478 anon_vma = NULL; 479 goto out; 480 } 481 482 /* 483 * If this page is still mapped, then its anon_vma cannot have been 484 * freed. But if it has been unmapped, we have no security against the 485 * anon_vma structure being freed and reused (for another anon_vma: 486 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 487 * above cannot corrupt). 488 */ 489 if (!page_mapped(page)) { 490 rcu_read_unlock(); 491 put_anon_vma(anon_vma); 492 return NULL; 493 } 494 out: 495 rcu_read_unlock(); 496 497 return anon_vma; 498 } 499 500 /* 501 * Similar to page_get_anon_vma() except it locks the anon_vma. 502 * 503 * Its a little more complex as it tries to keep the fast path to a single 504 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 505 * reference like with page_get_anon_vma() and then block on the mutex. 506 */ 507 struct anon_vma *page_lock_anon_vma_read(struct page *page) 508 { 509 struct anon_vma *anon_vma = NULL; 510 struct anon_vma *root_anon_vma; 511 unsigned long anon_mapping; 512 513 rcu_read_lock(); 514 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 515 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 516 goto out; 517 if (!page_mapped(page)) 518 goto out; 519 520 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 521 root_anon_vma = READ_ONCE(anon_vma->root); 522 if (down_read_trylock(&root_anon_vma->rwsem)) { 523 /* 524 * If the page is still mapped, then this anon_vma is still 525 * its anon_vma, and holding the mutex ensures that it will 526 * not go away, see anon_vma_free(). 527 */ 528 if (!page_mapped(page)) { 529 up_read(&root_anon_vma->rwsem); 530 anon_vma = NULL; 531 } 532 goto out; 533 } 534 535 /* trylock failed, we got to sleep */ 536 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 537 anon_vma = NULL; 538 goto out; 539 } 540 541 if (!page_mapped(page)) { 542 rcu_read_unlock(); 543 put_anon_vma(anon_vma); 544 return NULL; 545 } 546 547 /* we pinned the anon_vma, its safe to sleep */ 548 rcu_read_unlock(); 549 anon_vma_lock_read(anon_vma); 550 551 if (atomic_dec_and_test(&anon_vma->refcount)) { 552 /* 553 * Oops, we held the last refcount, release the lock 554 * and bail -- can't simply use put_anon_vma() because 555 * we'll deadlock on the anon_vma_lock_write() recursion. 556 */ 557 anon_vma_unlock_read(anon_vma); 558 __put_anon_vma(anon_vma); 559 anon_vma = NULL; 560 } 561 562 return anon_vma; 563 564 out: 565 rcu_read_unlock(); 566 return anon_vma; 567 } 568 569 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 570 { 571 anon_vma_unlock_read(anon_vma); 572 } 573 574 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 575 /* 576 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 577 * important if a PTE was dirty when it was unmapped that it's flushed 578 * before any IO is initiated on the page to prevent lost writes. Similarly, 579 * it must be flushed before freeing to prevent data leakage. 580 */ 581 void try_to_unmap_flush(void) 582 { 583 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 584 585 if (!tlb_ubc->flush_required) 586 return; 587 588 arch_tlbbatch_flush(&tlb_ubc->arch); 589 tlb_ubc->flush_required = false; 590 tlb_ubc->writable = false; 591 } 592 593 /* Flush iff there are potentially writable TLB entries that can race with IO */ 594 void try_to_unmap_flush_dirty(void) 595 { 596 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 597 598 if (tlb_ubc->writable) 599 try_to_unmap_flush(); 600 } 601 602 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 603 { 604 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 605 606 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 607 tlb_ubc->flush_required = true; 608 609 /* 610 * Ensure compiler does not re-order the setting of tlb_flush_batched 611 * before the PTE is cleared. 612 */ 613 barrier(); 614 mm->tlb_flush_batched = true; 615 616 /* 617 * If the PTE was dirty then it's best to assume it's writable. The 618 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 619 * before the page is queued for IO. 620 */ 621 if (writable) 622 tlb_ubc->writable = true; 623 } 624 625 /* 626 * Returns true if the TLB flush should be deferred to the end of a batch of 627 * unmap operations to reduce IPIs. 628 */ 629 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 630 { 631 bool should_defer = false; 632 633 if (!(flags & TTU_BATCH_FLUSH)) 634 return false; 635 636 /* If remote CPUs need to be flushed then defer batch the flush */ 637 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 638 should_defer = true; 639 put_cpu(); 640 641 return should_defer; 642 } 643 644 /* 645 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 646 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 647 * operation such as mprotect or munmap to race between reclaim unmapping 648 * the page and flushing the page. If this race occurs, it potentially allows 649 * access to data via a stale TLB entry. Tracking all mm's that have TLB 650 * batching in flight would be expensive during reclaim so instead track 651 * whether TLB batching occurred in the past and if so then do a flush here 652 * if required. This will cost one additional flush per reclaim cycle paid 653 * by the first operation at risk such as mprotect and mumap. 654 * 655 * This must be called under the PTL so that an access to tlb_flush_batched 656 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 657 * via the PTL. 658 */ 659 void flush_tlb_batched_pending(struct mm_struct *mm) 660 { 661 if (mm->tlb_flush_batched) { 662 flush_tlb_mm(mm); 663 664 /* 665 * Do not allow the compiler to re-order the clearing of 666 * tlb_flush_batched before the tlb is flushed. 667 */ 668 barrier(); 669 mm->tlb_flush_batched = false; 670 } 671 } 672 #else 673 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 674 { 675 } 676 677 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 678 { 679 return false; 680 } 681 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 682 683 /* 684 * At what user virtual address is page expected in vma? 685 * Caller should check the page is actually part of the vma. 686 */ 687 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 688 { 689 unsigned long address; 690 if (PageAnon(page)) { 691 struct anon_vma *page__anon_vma = page_anon_vma(page); 692 /* 693 * Note: swapoff's unuse_vma() is more efficient with this 694 * check, and needs it to match anon_vma when KSM is active. 695 */ 696 if (!vma->anon_vma || !page__anon_vma || 697 vma->anon_vma->root != page__anon_vma->root) 698 return -EFAULT; 699 } else if (page->mapping) { 700 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) 701 return -EFAULT; 702 } else 703 return -EFAULT; 704 address = __vma_address(page, vma); 705 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 706 return -EFAULT; 707 return address; 708 } 709 710 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 711 { 712 pgd_t *pgd; 713 p4d_t *p4d; 714 pud_t *pud; 715 pmd_t *pmd = NULL; 716 pmd_t pmde; 717 718 pgd = pgd_offset(mm, address); 719 if (!pgd_present(*pgd)) 720 goto out; 721 722 p4d = p4d_offset(pgd, address); 723 if (!p4d_present(*p4d)) 724 goto out; 725 726 pud = pud_offset(p4d, address); 727 if (!pud_present(*pud)) 728 goto out; 729 730 pmd = pmd_offset(pud, address); 731 /* 732 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 733 * without holding anon_vma lock for write. So when looking for a 734 * genuine pmde (in which to find pte), test present and !THP together. 735 */ 736 pmde = *pmd; 737 barrier(); 738 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 739 pmd = NULL; 740 out: 741 return pmd; 742 } 743 744 struct page_referenced_arg { 745 int mapcount; 746 int referenced; 747 unsigned long vm_flags; 748 struct mem_cgroup *memcg; 749 }; 750 /* 751 * arg: page_referenced_arg will be passed 752 */ 753 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, 754 unsigned long address, void *arg) 755 { 756 struct page_referenced_arg *pra = arg; 757 struct page_vma_mapped_walk pvmw = { 758 .page = page, 759 .vma = vma, 760 .address = address, 761 }; 762 int referenced = 0; 763 764 while (page_vma_mapped_walk(&pvmw)) { 765 address = pvmw.address; 766 767 if (vma->vm_flags & VM_LOCKED) { 768 page_vma_mapped_walk_done(&pvmw); 769 pra->vm_flags |= VM_LOCKED; 770 return false; /* To break the loop */ 771 } 772 773 if (pvmw.pte) { 774 if (ptep_clear_flush_young_notify(vma, address, 775 pvmw.pte)) { 776 /* 777 * Don't treat a reference through 778 * a sequentially read mapping as such. 779 * If the page has been used in another mapping, 780 * we will catch it; if this other mapping is 781 * already gone, the unmap path will have set 782 * PG_referenced or activated the page. 783 */ 784 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 785 referenced++; 786 } 787 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 788 if (pmdp_clear_flush_young_notify(vma, address, 789 pvmw.pmd)) 790 referenced++; 791 } else { 792 /* unexpected pmd-mapped page? */ 793 WARN_ON_ONCE(1); 794 } 795 796 pra->mapcount--; 797 } 798 799 if (referenced) 800 clear_page_idle(page); 801 if (test_and_clear_page_young(page)) 802 referenced++; 803 804 if (referenced) { 805 pra->referenced++; 806 pra->vm_flags |= vma->vm_flags; 807 } 808 809 if (!pra->mapcount) 810 return false; /* To break the loop */ 811 812 return true; 813 } 814 815 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 816 { 817 struct page_referenced_arg *pra = arg; 818 struct mem_cgroup *memcg = pra->memcg; 819 820 if (!mm_match_cgroup(vma->vm_mm, memcg)) 821 return true; 822 823 return false; 824 } 825 826 /** 827 * page_referenced - test if the page was referenced 828 * @page: the page to test 829 * @is_locked: caller holds lock on the page 830 * @memcg: target memory cgroup 831 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 832 * 833 * Quick test_and_clear_referenced for all mappings to a page, 834 * returns the number of ptes which referenced the page. 835 */ 836 int page_referenced(struct page *page, 837 int is_locked, 838 struct mem_cgroup *memcg, 839 unsigned long *vm_flags) 840 { 841 int we_locked = 0; 842 struct page_referenced_arg pra = { 843 .mapcount = total_mapcount(page), 844 .memcg = memcg, 845 }; 846 struct rmap_walk_control rwc = { 847 .rmap_one = page_referenced_one, 848 .arg = (void *)&pra, 849 .anon_lock = page_lock_anon_vma_read, 850 }; 851 852 *vm_flags = 0; 853 if (!pra.mapcount) 854 return 0; 855 856 if (!page_rmapping(page)) 857 return 0; 858 859 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 860 we_locked = trylock_page(page); 861 if (!we_locked) 862 return 1; 863 } 864 865 /* 866 * If we are reclaiming on behalf of a cgroup, skip 867 * counting on behalf of references from different 868 * cgroups 869 */ 870 if (memcg) { 871 rwc.invalid_vma = invalid_page_referenced_vma; 872 } 873 874 rmap_walk(page, &rwc); 875 *vm_flags = pra.vm_flags; 876 877 if (we_locked) 878 unlock_page(page); 879 880 return pra.referenced; 881 } 882 883 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, 884 unsigned long address, void *arg) 885 { 886 struct page_vma_mapped_walk pvmw = { 887 .page = page, 888 .vma = vma, 889 .address = address, 890 .flags = PVMW_SYNC, 891 }; 892 struct mmu_notifier_range range; 893 int *cleaned = arg; 894 895 /* 896 * We have to assume the worse case ie pmd for invalidation. Note that 897 * the page can not be free from this function. 898 */ 899 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 900 0, vma, vma->vm_mm, address, 901 min(vma->vm_end, address + 902 (PAGE_SIZE << compound_order(page)))); 903 mmu_notifier_invalidate_range_start(&range); 904 905 while (page_vma_mapped_walk(&pvmw)) { 906 unsigned long cstart; 907 int ret = 0; 908 909 cstart = address = pvmw.address; 910 if (pvmw.pte) { 911 pte_t entry; 912 pte_t *pte = pvmw.pte; 913 914 if (!pte_dirty(*pte) && !pte_write(*pte)) 915 continue; 916 917 flush_cache_page(vma, address, pte_pfn(*pte)); 918 entry = ptep_clear_flush(vma, address, pte); 919 entry = pte_wrprotect(entry); 920 entry = pte_mkclean(entry); 921 set_pte_at(vma->vm_mm, address, pte, entry); 922 ret = 1; 923 } else { 924 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 925 pmd_t *pmd = pvmw.pmd; 926 pmd_t entry; 927 928 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 929 continue; 930 931 flush_cache_page(vma, address, page_to_pfn(page)); 932 entry = pmdp_invalidate(vma, address, pmd); 933 entry = pmd_wrprotect(entry); 934 entry = pmd_mkclean(entry); 935 set_pmd_at(vma->vm_mm, address, pmd, entry); 936 cstart &= PMD_MASK; 937 ret = 1; 938 #else 939 /* unexpected pmd-mapped page? */ 940 WARN_ON_ONCE(1); 941 #endif 942 } 943 944 /* 945 * No need to call mmu_notifier_invalidate_range() as we are 946 * downgrading page table protection not changing it to point 947 * to a new page. 948 * 949 * See Documentation/vm/mmu_notifier.rst 950 */ 951 if (ret) 952 (*cleaned)++; 953 } 954 955 mmu_notifier_invalidate_range_end(&range); 956 957 return true; 958 } 959 960 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 961 { 962 if (vma->vm_flags & VM_SHARED) 963 return false; 964 965 return true; 966 } 967 968 int page_mkclean(struct page *page) 969 { 970 int cleaned = 0; 971 struct address_space *mapping; 972 struct rmap_walk_control rwc = { 973 .arg = (void *)&cleaned, 974 .rmap_one = page_mkclean_one, 975 .invalid_vma = invalid_mkclean_vma, 976 }; 977 978 BUG_ON(!PageLocked(page)); 979 980 if (!page_mapped(page)) 981 return 0; 982 983 mapping = page_mapping(page); 984 if (!mapping) 985 return 0; 986 987 rmap_walk(page, &rwc); 988 989 return cleaned; 990 } 991 EXPORT_SYMBOL_GPL(page_mkclean); 992 993 /** 994 * page_move_anon_rmap - move a page to our anon_vma 995 * @page: the page to move to our anon_vma 996 * @vma: the vma the page belongs to 997 * 998 * When a page belongs exclusively to one process after a COW event, 999 * that page can be moved into the anon_vma that belongs to just that 1000 * process, so the rmap code will not search the parent or sibling 1001 * processes. 1002 */ 1003 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1004 { 1005 struct anon_vma *anon_vma = vma->anon_vma; 1006 1007 page = compound_head(page); 1008 1009 VM_BUG_ON_PAGE(!PageLocked(page), page); 1010 VM_BUG_ON_VMA(!anon_vma, vma); 1011 1012 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1013 /* 1014 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1015 * simultaneously, so a concurrent reader (eg page_referenced()'s 1016 * PageAnon()) will not see one without the other. 1017 */ 1018 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1019 } 1020 1021 /** 1022 * __page_set_anon_rmap - set up new anonymous rmap 1023 * @page: Page or Hugepage to add to rmap 1024 * @vma: VM area to add page to. 1025 * @address: User virtual address of the mapping 1026 * @exclusive: the page is exclusively owned by the current process 1027 */ 1028 static void __page_set_anon_rmap(struct page *page, 1029 struct vm_area_struct *vma, unsigned long address, int exclusive) 1030 { 1031 struct anon_vma *anon_vma = vma->anon_vma; 1032 1033 BUG_ON(!anon_vma); 1034 1035 if (PageAnon(page)) 1036 return; 1037 1038 /* 1039 * If the page isn't exclusively mapped into this vma, 1040 * we must use the _oldest_ possible anon_vma for the 1041 * page mapping! 1042 */ 1043 if (!exclusive) 1044 anon_vma = anon_vma->root; 1045 1046 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1047 page->mapping = (struct address_space *) anon_vma; 1048 page->index = linear_page_index(vma, address); 1049 } 1050 1051 /** 1052 * __page_check_anon_rmap - sanity check anonymous rmap addition 1053 * @page: the page to add the mapping to 1054 * @vma: the vm area in which the mapping is added 1055 * @address: the user virtual address mapped 1056 */ 1057 static void __page_check_anon_rmap(struct page *page, 1058 struct vm_area_struct *vma, unsigned long address) 1059 { 1060 #ifdef CONFIG_DEBUG_VM 1061 /* 1062 * The page's anon-rmap details (mapping and index) are guaranteed to 1063 * be set up correctly at this point. 1064 * 1065 * We have exclusion against page_add_anon_rmap because the caller 1066 * always holds the page locked, except if called from page_dup_rmap, 1067 * in which case the page is already known to be setup. 1068 * 1069 * We have exclusion against page_add_new_anon_rmap because those pages 1070 * are initially only visible via the pagetables, and the pte is locked 1071 * over the call to page_add_new_anon_rmap. 1072 */ 1073 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1074 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address)); 1075 #endif 1076 } 1077 1078 /** 1079 * page_add_anon_rmap - add pte mapping to an anonymous page 1080 * @page: the page to add the mapping to 1081 * @vma: the vm area in which the mapping is added 1082 * @address: the user virtual address mapped 1083 * @compound: charge the page as compound or small page 1084 * 1085 * The caller needs to hold the pte lock, and the page must be locked in 1086 * the anon_vma case: to serialize mapping,index checking after setting, 1087 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1088 * (but PageKsm is never downgraded to PageAnon). 1089 */ 1090 void page_add_anon_rmap(struct page *page, 1091 struct vm_area_struct *vma, unsigned long address, bool compound) 1092 { 1093 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); 1094 } 1095 1096 /* 1097 * Special version of the above for do_swap_page, which often runs 1098 * into pages that are exclusively owned by the current process. 1099 * Everybody else should continue to use page_add_anon_rmap above. 1100 */ 1101 void do_page_add_anon_rmap(struct page *page, 1102 struct vm_area_struct *vma, unsigned long address, int flags) 1103 { 1104 bool compound = flags & RMAP_COMPOUND; 1105 bool first; 1106 1107 if (compound) { 1108 atomic_t *mapcount; 1109 VM_BUG_ON_PAGE(!PageLocked(page), page); 1110 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1111 mapcount = compound_mapcount_ptr(page); 1112 first = atomic_inc_and_test(mapcount); 1113 } else { 1114 first = atomic_inc_and_test(&page->_mapcount); 1115 } 1116 1117 if (first) { 1118 int nr = compound ? hpage_nr_pages(page) : 1; 1119 /* 1120 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1121 * these counters are not modified in interrupt context, and 1122 * pte lock(a spinlock) is held, which implies preemption 1123 * disabled. 1124 */ 1125 if (compound) 1126 __inc_node_page_state(page, NR_ANON_THPS); 1127 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); 1128 } 1129 if (unlikely(PageKsm(page))) 1130 return; 1131 1132 VM_BUG_ON_PAGE(!PageLocked(page), page); 1133 1134 /* address might be in next vma when migration races vma_adjust */ 1135 if (first) 1136 __page_set_anon_rmap(page, vma, address, 1137 flags & RMAP_EXCLUSIVE); 1138 else 1139 __page_check_anon_rmap(page, vma, address); 1140 } 1141 1142 /** 1143 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1144 * @page: the page to add the mapping to 1145 * @vma: the vm area in which the mapping is added 1146 * @address: the user virtual address mapped 1147 * @compound: charge the page as compound or small page 1148 * 1149 * Same as page_add_anon_rmap but must only be called on *new* pages. 1150 * This means the inc-and-test can be bypassed. 1151 * Page does not have to be locked. 1152 */ 1153 void page_add_new_anon_rmap(struct page *page, 1154 struct vm_area_struct *vma, unsigned long address, bool compound) 1155 { 1156 int nr = compound ? hpage_nr_pages(page) : 1; 1157 1158 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1159 __SetPageSwapBacked(page); 1160 if (compound) { 1161 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1162 /* increment count (starts at -1) */ 1163 atomic_set(compound_mapcount_ptr(page), 0); 1164 __inc_node_page_state(page, NR_ANON_THPS); 1165 } else { 1166 /* Anon THP always mapped first with PMD */ 1167 VM_BUG_ON_PAGE(PageTransCompound(page), page); 1168 /* increment count (starts at -1) */ 1169 atomic_set(&page->_mapcount, 0); 1170 } 1171 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); 1172 __page_set_anon_rmap(page, vma, address, 1); 1173 } 1174 1175 /** 1176 * page_add_file_rmap - add pte mapping to a file page 1177 * @page: the page to add the mapping to 1178 * @compound: charge the page as compound or small page 1179 * 1180 * The caller needs to hold the pte lock. 1181 */ 1182 void page_add_file_rmap(struct page *page, bool compound) 1183 { 1184 int i, nr = 1; 1185 1186 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1187 lock_page_memcg(page); 1188 if (compound && PageTransHuge(page)) { 1189 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1190 if (atomic_inc_and_test(&page[i]._mapcount)) 1191 nr++; 1192 } 1193 if (!atomic_inc_and_test(compound_mapcount_ptr(page))) 1194 goto out; 1195 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 1196 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED); 1197 } else { 1198 if (PageTransCompound(page) && page_mapping(page)) { 1199 VM_WARN_ON_ONCE(!PageLocked(page)); 1200 1201 SetPageDoubleMap(compound_head(page)); 1202 if (PageMlocked(page)) 1203 clear_page_mlock(compound_head(page)); 1204 } 1205 if (!atomic_inc_and_test(&page->_mapcount)) 1206 goto out; 1207 } 1208 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); 1209 out: 1210 unlock_page_memcg(page); 1211 } 1212 1213 static void page_remove_file_rmap(struct page *page, bool compound) 1214 { 1215 int i, nr = 1; 1216 1217 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1218 lock_page_memcg(page); 1219 1220 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1221 if (unlikely(PageHuge(page))) { 1222 /* hugetlb pages are always mapped with pmds */ 1223 atomic_dec(compound_mapcount_ptr(page)); 1224 goto out; 1225 } 1226 1227 /* page still mapped by someone else? */ 1228 if (compound && PageTransHuge(page)) { 1229 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1230 if (atomic_add_negative(-1, &page[i]._mapcount)) 1231 nr++; 1232 } 1233 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1234 goto out; 1235 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 1236 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED); 1237 } else { 1238 if (!atomic_add_negative(-1, &page->_mapcount)) 1239 goto out; 1240 } 1241 1242 /* 1243 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because 1244 * these counters are not modified in interrupt context, and 1245 * pte lock(a spinlock) is held, which implies preemption disabled. 1246 */ 1247 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); 1248 1249 if (unlikely(PageMlocked(page))) 1250 clear_page_mlock(page); 1251 out: 1252 unlock_page_memcg(page); 1253 } 1254 1255 static void page_remove_anon_compound_rmap(struct page *page) 1256 { 1257 int i, nr; 1258 1259 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1260 return; 1261 1262 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1263 if (unlikely(PageHuge(page))) 1264 return; 1265 1266 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1267 return; 1268 1269 __dec_node_page_state(page, NR_ANON_THPS); 1270 1271 if (TestClearPageDoubleMap(page)) { 1272 /* 1273 * Subpages can be mapped with PTEs too. Check how many of 1274 * themi are still mapped. 1275 */ 1276 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1277 if (atomic_add_negative(-1, &page[i]._mapcount)) 1278 nr++; 1279 } 1280 } else { 1281 nr = HPAGE_PMD_NR; 1282 } 1283 1284 if (unlikely(PageMlocked(page))) 1285 clear_page_mlock(page); 1286 1287 if (nr) { 1288 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr); 1289 deferred_split_huge_page(page); 1290 } 1291 } 1292 1293 /** 1294 * page_remove_rmap - take down pte mapping from a page 1295 * @page: page to remove mapping from 1296 * @compound: uncharge the page as compound or small page 1297 * 1298 * The caller needs to hold the pte lock. 1299 */ 1300 void page_remove_rmap(struct page *page, bool compound) 1301 { 1302 if (!PageAnon(page)) 1303 return page_remove_file_rmap(page, compound); 1304 1305 if (compound) 1306 return page_remove_anon_compound_rmap(page); 1307 1308 /* page still mapped by someone else? */ 1309 if (!atomic_add_negative(-1, &page->_mapcount)) 1310 return; 1311 1312 /* 1313 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1314 * these counters are not modified in interrupt context, and 1315 * pte lock(a spinlock) is held, which implies preemption disabled. 1316 */ 1317 __dec_node_page_state(page, NR_ANON_MAPPED); 1318 1319 if (unlikely(PageMlocked(page))) 1320 clear_page_mlock(page); 1321 1322 if (PageTransCompound(page)) 1323 deferred_split_huge_page(compound_head(page)); 1324 1325 /* 1326 * It would be tidy to reset the PageAnon mapping here, 1327 * but that might overwrite a racing page_add_anon_rmap 1328 * which increments mapcount after us but sets mapping 1329 * before us: so leave the reset to free_unref_page, 1330 * and remember that it's only reliable while mapped. 1331 * Leaving it set also helps swapoff to reinstate ptes 1332 * faster for those pages still in swapcache. 1333 */ 1334 } 1335 1336 /* 1337 * @arg: enum ttu_flags will be passed to this argument 1338 */ 1339 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1340 unsigned long address, void *arg) 1341 { 1342 struct mm_struct *mm = vma->vm_mm; 1343 struct page_vma_mapped_walk pvmw = { 1344 .page = page, 1345 .vma = vma, 1346 .address = address, 1347 }; 1348 pte_t pteval; 1349 struct page *subpage; 1350 bool ret = true; 1351 struct mmu_notifier_range range; 1352 enum ttu_flags flags = (enum ttu_flags)arg; 1353 1354 /* munlock has nothing to gain from examining un-locked vmas */ 1355 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) 1356 return true; 1357 1358 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && 1359 is_zone_device_page(page) && !is_device_private_page(page)) 1360 return true; 1361 1362 if (flags & TTU_SPLIT_HUGE_PMD) { 1363 split_huge_pmd_address(vma, address, 1364 flags & TTU_SPLIT_FREEZE, page); 1365 } 1366 1367 /* 1368 * For THP, we have to assume the worse case ie pmd for invalidation. 1369 * For hugetlb, it could be much worse if we need to do pud 1370 * invalidation in the case of pmd sharing. 1371 * 1372 * Note that the page can not be free in this function as call of 1373 * try_to_unmap() must hold a reference on the page. 1374 */ 1375 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1376 address, 1377 min(vma->vm_end, address + 1378 (PAGE_SIZE << compound_order(page)))); 1379 if (PageHuge(page)) { 1380 /* 1381 * If sharing is possible, start and end will be adjusted 1382 * accordingly. 1383 */ 1384 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1385 &range.end); 1386 } 1387 mmu_notifier_invalidate_range_start(&range); 1388 1389 while (page_vma_mapped_walk(&pvmw)) { 1390 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1391 /* PMD-mapped THP migration entry */ 1392 if (!pvmw.pte && (flags & TTU_MIGRATION)) { 1393 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 1394 1395 set_pmd_migration_entry(&pvmw, page); 1396 continue; 1397 } 1398 #endif 1399 1400 /* 1401 * If the page is mlock()d, we cannot swap it out. 1402 * If it's recently referenced (perhaps page_referenced 1403 * skipped over this mm) then we should reactivate it. 1404 */ 1405 if (!(flags & TTU_IGNORE_MLOCK)) { 1406 if (vma->vm_flags & VM_LOCKED) { 1407 /* PTE-mapped THP are never mlocked */ 1408 if (!PageTransCompound(page)) { 1409 /* 1410 * Holding pte lock, we do *not* need 1411 * mmap_sem here 1412 */ 1413 mlock_vma_page(page); 1414 } 1415 ret = false; 1416 page_vma_mapped_walk_done(&pvmw); 1417 break; 1418 } 1419 if (flags & TTU_MUNLOCK) 1420 continue; 1421 } 1422 1423 /* Unexpected PMD-mapped THP? */ 1424 VM_BUG_ON_PAGE(!pvmw.pte, page); 1425 1426 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); 1427 address = pvmw.address; 1428 1429 if (PageHuge(page)) { 1430 if (huge_pmd_unshare(mm, &address, pvmw.pte)) { 1431 /* 1432 * huge_pmd_unshare unmapped an entire PMD 1433 * page. There is no way of knowing exactly 1434 * which PMDs may be cached for this mm, so 1435 * we must flush them all. start/end were 1436 * already adjusted above to cover this range. 1437 */ 1438 flush_cache_range(vma, range.start, range.end); 1439 flush_tlb_range(vma, range.start, range.end); 1440 mmu_notifier_invalidate_range(mm, range.start, 1441 range.end); 1442 1443 /* 1444 * The ref count of the PMD page was dropped 1445 * which is part of the way map counting 1446 * is done for shared PMDs. Return 'true' 1447 * here. When there is no other sharing, 1448 * huge_pmd_unshare returns false and we will 1449 * unmap the actual page and drop map count 1450 * to zero. 1451 */ 1452 page_vma_mapped_walk_done(&pvmw); 1453 break; 1454 } 1455 } 1456 1457 if (IS_ENABLED(CONFIG_MIGRATION) && 1458 (flags & TTU_MIGRATION) && 1459 is_zone_device_page(page)) { 1460 swp_entry_t entry; 1461 pte_t swp_pte; 1462 1463 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte); 1464 1465 /* 1466 * Store the pfn of the page in a special migration 1467 * pte. do_swap_page() will wait until the migration 1468 * pte is removed and then restart fault handling. 1469 */ 1470 entry = make_migration_entry(page, 0); 1471 swp_pte = swp_entry_to_pte(entry); 1472 if (pte_soft_dirty(pteval)) 1473 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1474 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 1475 /* 1476 * No need to invalidate here it will synchronize on 1477 * against the special swap migration pte. 1478 */ 1479 goto discard; 1480 } 1481 1482 if (!(flags & TTU_IGNORE_ACCESS)) { 1483 if (ptep_clear_flush_young_notify(vma, address, 1484 pvmw.pte)) { 1485 ret = false; 1486 page_vma_mapped_walk_done(&pvmw); 1487 break; 1488 } 1489 } 1490 1491 /* Nuke the page table entry. */ 1492 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1493 if (should_defer_flush(mm, flags)) { 1494 /* 1495 * We clear the PTE but do not flush so potentially 1496 * a remote CPU could still be writing to the page. 1497 * If the entry was previously clean then the 1498 * architecture must guarantee that a clear->dirty 1499 * transition on a cached TLB entry is written through 1500 * and traps if the PTE is unmapped. 1501 */ 1502 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1503 1504 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1505 } else { 1506 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1507 } 1508 1509 /* Move the dirty bit to the page. Now the pte is gone. */ 1510 if (pte_dirty(pteval)) 1511 set_page_dirty(page); 1512 1513 /* Update high watermark before we lower rss */ 1514 update_hiwater_rss(mm); 1515 1516 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1517 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1518 if (PageHuge(page)) { 1519 int nr = 1 << compound_order(page); 1520 hugetlb_count_sub(nr, mm); 1521 set_huge_swap_pte_at(mm, address, 1522 pvmw.pte, pteval, 1523 vma_mmu_pagesize(vma)); 1524 } else { 1525 dec_mm_counter(mm, mm_counter(page)); 1526 set_pte_at(mm, address, pvmw.pte, pteval); 1527 } 1528 1529 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1530 /* 1531 * The guest indicated that the page content is of no 1532 * interest anymore. Simply discard the pte, vmscan 1533 * will take care of the rest. 1534 * A future reference will then fault in a new zero 1535 * page. When userfaultfd is active, we must not drop 1536 * this page though, as its main user (postcopy 1537 * migration) will not expect userfaults on already 1538 * copied pages. 1539 */ 1540 dec_mm_counter(mm, mm_counter(page)); 1541 /* We have to invalidate as we cleared the pte */ 1542 mmu_notifier_invalidate_range(mm, address, 1543 address + PAGE_SIZE); 1544 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1545 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) { 1546 swp_entry_t entry; 1547 pte_t swp_pte; 1548 1549 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1550 set_pte_at(mm, address, pvmw.pte, pteval); 1551 ret = false; 1552 page_vma_mapped_walk_done(&pvmw); 1553 break; 1554 } 1555 1556 /* 1557 * Store the pfn of the page in a special migration 1558 * pte. do_swap_page() will wait until the migration 1559 * pte is removed and then restart fault handling. 1560 */ 1561 entry = make_migration_entry(subpage, 1562 pte_write(pteval)); 1563 swp_pte = swp_entry_to_pte(entry); 1564 if (pte_soft_dirty(pteval)) 1565 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1566 set_pte_at(mm, address, pvmw.pte, swp_pte); 1567 /* 1568 * No need to invalidate here it will synchronize on 1569 * against the special swap migration pte. 1570 */ 1571 } else if (PageAnon(page)) { 1572 swp_entry_t entry = { .val = page_private(subpage) }; 1573 pte_t swp_pte; 1574 /* 1575 * Store the swap location in the pte. 1576 * See handle_pte_fault() ... 1577 */ 1578 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { 1579 WARN_ON_ONCE(1); 1580 ret = false; 1581 /* We have to invalidate as we cleared the pte */ 1582 mmu_notifier_invalidate_range(mm, address, 1583 address + PAGE_SIZE); 1584 page_vma_mapped_walk_done(&pvmw); 1585 break; 1586 } 1587 1588 /* MADV_FREE page check */ 1589 if (!PageSwapBacked(page)) { 1590 if (!PageDirty(page)) { 1591 /* Invalidate as we cleared the pte */ 1592 mmu_notifier_invalidate_range(mm, 1593 address, address + PAGE_SIZE); 1594 dec_mm_counter(mm, MM_ANONPAGES); 1595 goto discard; 1596 } 1597 1598 /* 1599 * If the page was redirtied, it cannot be 1600 * discarded. Remap the page to page table. 1601 */ 1602 set_pte_at(mm, address, pvmw.pte, pteval); 1603 SetPageSwapBacked(page); 1604 ret = false; 1605 page_vma_mapped_walk_done(&pvmw); 1606 break; 1607 } 1608 1609 if (swap_duplicate(entry) < 0) { 1610 set_pte_at(mm, address, pvmw.pte, pteval); 1611 ret = false; 1612 page_vma_mapped_walk_done(&pvmw); 1613 break; 1614 } 1615 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1616 set_pte_at(mm, address, pvmw.pte, pteval); 1617 ret = false; 1618 page_vma_mapped_walk_done(&pvmw); 1619 break; 1620 } 1621 if (list_empty(&mm->mmlist)) { 1622 spin_lock(&mmlist_lock); 1623 if (list_empty(&mm->mmlist)) 1624 list_add(&mm->mmlist, &init_mm.mmlist); 1625 spin_unlock(&mmlist_lock); 1626 } 1627 dec_mm_counter(mm, MM_ANONPAGES); 1628 inc_mm_counter(mm, MM_SWAPENTS); 1629 swp_pte = swp_entry_to_pte(entry); 1630 if (pte_soft_dirty(pteval)) 1631 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1632 set_pte_at(mm, address, pvmw.pte, swp_pte); 1633 /* Invalidate as we cleared the pte */ 1634 mmu_notifier_invalidate_range(mm, address, 1635 address + PAGE_SIZE); 1636 } else { 1637 /* 1638 * This is a locked file-backed page, thus it cannot 1639 * be removed from the page cache and replaced by a new 1640 * page before mmu_notifier_invalidate_range_end, so no 1641 * concurrent thread might update its page table to 1642 * point at new page while a device still is using this 1643 * page. 1644 * 1645 * See Documentation/vm/mmu_notifier.rst 1646 */ 1647 dec_mm_counter(mm, mm_counter_file(page)); 1648 } 1649 discard: 1650 /* 1651 * No need to call mmu_notifier_invalidate_range() it has be 1652 * done above for all cases requiring it to happen under page 1653 * table lock before mmu_notifier_invalidate_range_end() 1654 * 1655 * See Documentation/vm/mmu_notifier.rst 1656 */ 1657 page_remove_rmap(subpage, PageHuge(page)); 1658 put_page(page); 1659 } 1660 1661 mmu_notifier_invalidate_range_end(&range); 1662 1663 return ret; 1664 } 1665 1666 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1667 { 1668 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1669 1670 if (!maybe_stack) 1671 return false; 1672 1673 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1674 VM_STACK_INCOMPLETE_SETUP) 1675 return true; 1676 1677 return false; 1678 } 1679 1680 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1681 { 1682 return is_vma_temporary_stack(vma); 1683 } 1684 1685 static int page_mapcount_is_zero(struct page *page) 1686 { 1687 return !total_mapcount(page); 1688 } 1689 1690 /** 1691 * try_to_unmap - try to remove all page table mappings to a page 1692 * @page: the page to get unmapped 1693 * @flags: action and flags 1694 * 1695 * Tries to remove all the page table entries which are mapping this 1696 * page, used in the pageout path. Caller must hold the page lock. 1697 * 1698 * If unmap is successful, return true. Otherwise, false. 1699 */ 1700 bool try_to_unmap(struct page *page, enum ttu_flags flags) 1701 { 1702 struct rmap_walk_control rwc = { 1703 .rmap_one = try_to_unmap_one, 1704 .arg = (void *)flags, 1705 .done = page_mapcount_is_zero, 1706 .anon_lock = page_lock_anon_vma_read, 1707 }; 1708 1709 /* 1710 * During exec, a temporary VMA is setup and later moved. 1711 * The VMA is moved under the anon_vma lock but not the 1712 * page tables leading to a race where migration cannot 1713 * find the migration ptes. Rather than increasing the 1714 * locking requirements of exec(), migration skips 1715 * temporary VMAs until after exec() completes. 1716 */ 1717 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE)) 1718 && !PageKsm(page) && PageAnon(page)) 1719 rwc.invalid_vma = invalid_migration_vma; 1720 1721 if (flags & TTU_RMAP_LOCKED) 1722 rmap_walk_locked(page, &rwc); 1723 else 1724 rmap_walk(page, &rwc); 1725 1726 return !page_mapcount(page) ? true : false; 1727 } 1728 1729 static int page_not_mapped(struct page *page) 1730 { 1731 return !page_mapped(page); 1732 }; 1733 1734 /** 1735 * try_to_munlock - try to munlock a page 1736 * @page: the page to be munlocked 1737 * 1738 * Called from munlock code. Checks all of the VMAs mapping the page 1739 * to make sure nobody else has this page mlocked. The page will be 1740 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1741 */ 1742 1743 void try_to_munlock(struct page *page) 1744 { 1745 struct rmap_walk_control rwc = { 1746 .rmap_one = try_to_unmap_one, 1747 .arg = (void *)TTU_MUNLOCK, 1748 .done = page_not_mapped, 1749 .anon_lock = page_lock_anon_vma_read, 1750 1751 }; 1752 1753 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 1754 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 1755 1756 rmap_walk(page, &rwc); 1757 } 1758 1759 void __put_anon_vma(struct anon_vma *anon_vma) 1760 { 1761 struct anon_vma *root = anon_vma->root; 1762 1763 anon_vma_free(anon_vma); 1764 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1765 anon_vma_free(root); 1766 } 1767 1768 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 1769 struct rmap_walk_control *rwc) 1770 { 1771 struct anon_vma *anon_vma; 1772 1773 if (rwc->anon_lock) 1774 return rwc->anon_lock(page); 1775 1776 /* 1777 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1778 * because that depends on page_mapped(); but not all its usages 1779 * are holding mmap_sem. Users without mmap_sem are required to 1780 * take a reference count to prevent the anon_vma disappearing 1781 */ 1782 anon_vma = page_anon_vma(page); 1783 if (!anon_vma) 1784 return NULL; 1785 1786 anon_vma_lock_read(anon_vma); 1787 return anon_vma; 1788 } 1789 1790 /* 1791 * rmap_walk_anon - do something to anonymous page using the object-based 1792 * rmap method 1793 * @page: the page to be handled 1794 * @rwc: control variable according to each walk type 1795 * 1796 * Find all the mappings of a page using the mapping pointer and the vma chains 1797 * contained in the anon_vma struct it points to. 1798 * 1799 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1800 * where the page was found will be held for write. So, we won't recheck 1801 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1802 * LOCKED. 1803 */ 1804 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, 1805 bool locked) 1806 { 1807 struct anon_vma *anon_vma; 1808 pgoff_t pgoff_start, pgoff_end; 1809 struct anon_vma_chain *avc; 1810 1811 if (locked) { 1812 anon_vma = page_anon_vma(page); 1813 /* anon_vma disappear under us? */ 1814 VM_BUG_ON_PAGE(!anon_vma, page); 1815 } else { 1816 anon_vma = rmap_walk_anon_lock(page, rwc); 1817 } 1818 if (!anon_vma) 1819 return; 1820 1821 pgoff_start = page_to_pgoff(page); 1822 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; 1823 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 1824 pgoff_start, pgoff_end) { 1825 struct vm_area_struct *vma = avc->vma; 1826 unsigned long address = vma_address(page, vma); 1827 1828 cond_resched(); 1829 1830 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1831 continue; 1832 1833 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 1834 break; 1835 if (rwc->done && rwc->done(page)) 1836 break; 1837 } 1838 1839 if (!locked) 1840 anon_vma_unlock_read(anon_vma); 1841 } 1842 1843 /* 1844 * rmap_walk_file - do something to file page using the object-based rmap method 1845 * @page: the page to be handled 1846 * @rwc: control variable according to each walk type 1847 * 1848 * Find all the mappings of a page using the mapping pointer and the vma chains 1849 * contained in the address_space struct it points to. 1850 * 1851 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1852 * where the page was found will be held for write. So, we won't recheck 1853 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1854 * LOCKED. 1855 */ 1856 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, 1857 bool locked) 1858 { 1859 struct address_space *mapping = page_mapping(page); 1860 pgoff_t pgoff_start, pgoff_end; 1861 struct vm_area_struct *vma; 1862 1863 /* 1864 * The page lock not only makes sure that page->mapping cannot 1865 * suddenly be NULLified by truncation, it makes sure that the 1866 * structure at mapping cannot be freed and reused yet, 1867 * so we can safely take mapping->i_mmap_rwsem. 1868 */ 1869 VM_BUG_ON_PAGE(!PageLocked(page), page); 1870 1871 if (!mapping) 1872 return; 1873 1874 pgoff_start = page_to_pgoff(page); 1875 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; 1876 if (!locked) 1877 i_mmap_lock_read(mapping); 1878 vma_interval_tree_foreach(vma, &mapping->i_mmap, 1879 pgoff_start, pgoff_end) { 1880 unsigned long address = vma_address(page, vma); 1881 1882 cond_resched(); 1883 1884 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1885 continue; 1886 1887 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 1888 goto done; 1889 if (rwc->done && rwc->done(page)) 1890 goto done; 1891 } 1892 1893 done: 1894 if (!locked) 1895 i_mmap_unlock_read(mapping); 1896 } 1897 1898 void rmap_walk(struct page *page, struct rmap_walk_control *rwc) 1899 { 1900 if (unlikely(PageKsm(page))) 1901 rmap_walk_ksm(page, rwc); 1902 else if (PageAnon(page)) 1903 rmap_walk_anon(page, rwc, false); 1904 else 1905 rmap_walk_file(page, rwc, false); 1906 } 1907 1908 /* Like rmap_walk, but caller holds relevant rmap lock */ 1909 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) 1910 { 1911 /* no ksm support for now */ 1912 VM_BUG_ON_PAGE(PageKsm(page), page); 1913 if (PageAnon(page)) 1914 rmap_walk_anon(page, rwc, true); 1915 else 1916 rmap_walk_file(page, rwc, true); 1917 } 1918 1919 #ifdef CONFIG_HUGETLB_PAGE 1920 /* 1921 * The following two functions are for anonymous (private mapped) hugepages. 1922 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1923 * and no lru code, because we handle hugepages differently from common pages. 1924 */ 1925 void hugepage_add_anon_rmap(struct page *page, 1926 struct vm_area_struct *vma, unsigned long address) 1927 { 1928 struct anon_vma *anon_vma = vma->anon_vma; 1929 int first; 1930 1931 BUG_ON(!PageLocked(page)); 1932 BUG_ON(!anon_vma); 1933 /* address might be in next vma when migration races vma_adjust */ 1934 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 1935 if (first) 1936 __page_set_anon_rmap(page, vma, address, 0); 1937 } 1938 1939 void hugepage_add_new_anon_rmap(struct page *page, 1940 struct vm_area_struct *vma, unsigned long address) 1941 { 1942 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1943 atomic_set(compound_mapcount_ptr(page), 0); 1944 __page_set_anon_rmap(page, vma, address, 1); 1945 } 1946 #endif /* CONFIG_HUGETLB_PAGE */ 1947