xref: /openbmc/linux/mm/rmap.c (revision abfbd895)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_rwsem
27  *         anon_vma->rwsem
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *                 mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34  *                   mapping->tree_lock (widely used)
35  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
36  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
37  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
38  *                 mapping->tree_lock (widely used, in set_page_dirty,
39  *                           in arch-dependent flush_dcache_mmap_lock,
40  *                           within bdi.wb->list_lock in __sync_single_inode)
41  *
42  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
43  *   ->tasklist_lock
44  *     pte map lock
45  */
46 
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/export.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/backing-dev.h>
62 #include <linux/page_idle.h>
63 
64 #include <asm/tlbflush.h>
65 
66 #include <trace/events/tlb.h>
67 
68 #include "internal.h"
69 
70 static struct kmem_cache *anon_vma_cachep;
71 static struct kmem_cache *anon_vma_chain_cachep;
72 
73 static inline struct anon_vma *anon_vma_alloc(void)
74 {
75 	struct anon_vma *anon_vma;
76 
77 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
78 	if (anon_vma) {
79 		atomic_set(&anon_vma->refcount, 1);
80 		anon_vma->degree = 1;	/* Reference for first vma */
81 		anon_vma->parent = anon_vma;
82 		/*
83 		 * Initialise the anon_vma root to point to itself. If called
84 		 * from fork, the root will be reset to the parents anon_vma.
85 		 */
86 		anon_vma->root = anon_vma;
87 	}
88 
89 	return anon_vma;
90 }
91 
92 static inline void anon_vma_free(struct anon_vma *anon_vma)
93 {
94 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
95 
96 	/*
97 	 * Synchronize against page_lock_anon_vma_read() such that
98 	 * we can safely hold the lock without the anon_vma getting
99 	 * freed.
100 	 *
101 	 * Relies on the full mb implied by the atomic_dec_and_test() from
102 	 * put_anon_vma() against the acquire barrier implied by
103 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
104 	 *
105 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
106 	 *   down_read_trylock()		  atomic_dec_and_test()
107 	 *   LOCK				  MB
108 	 *   atomic_read()			  rwsem_is_locked()
109 	 *
110 	 * LOCK should suffice since the actual taking of the lock must
111 	 * happen _before_ what follows.
112 	 */
113 	might_sleep();
114 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
115 		anon_vma_lock_write(anon_vma);
116 		anon_vma_unlock_write(anon_vma);
117 	}
118 
119 	kmem_cache_free(anon_vma_cachep, anon_vma);
120 }
121 
122 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
123 {
124 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
125 }
126 
127 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
128 {
129 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
130 }
131 
132 static void anon_vma_chain_link(struct vm_area_struct *vma,
133 				struct anon_vma_chain *avc,
134 				struct anon_vma *anon_vma)
135 {
136 	avc->vma = vma;
137 	avc->anon_vma = anon_vma;
138 	list_add(&avc->same_vma, &vma->anon_vma_chain);
139 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
140 }
141 
142 /**
143  * anon_vma_prepare - attach an anon_vma to a memory region
144  * @vma: the memory region in question
145  *
146  * This makes sure the memory mapping described by 'vma' has
147  * an 'anon_vma' attached to it, so that we can associate the
148  * anonymous pages mapped into it with that anon_vma.
149  *
150  * The common case will be that we already have one, but if
151  * not we either need to find an adjacent mapping that we
152  * can re-use the anon_vma from (very common when the only
153  * reason for splitting a vma has been mprotect()), or we
154  * allocate a new one.
155  *
156  * Anon-vma allocations are very subtle, because we may have
157  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
158  * and that may actually touch the spinlock even in the newly
159  * allocated vma (it depends on RCU to make sure that the
160  * anon_vma isn't actually destroyed).
161  *
162  * As a result, we need to do proper anon_vma locking even
163  * for the new allocation. At the same time, we do not want
164  * to do any locking for the common case of already having
165  * an anon_vma.
166  *
167  * This must be called with the mmap_sem held for reading.
168  */
169 int anon_vma_prepare(struct vm_area_struct *vma)
170 {
171 	struct anon_vma *anon_vma = vma->anon_vma;
172 	struct anon_vma_chain *avc;
173 
174 	might_sleep();
175 	if (unlikely(!anon_vma)) {
176 		struct mm_struct *mm = vma->vm_mm;
177 		struct anon_vma *allocated;
178 
179 		avc = anon_vma_chain_alloc(GFP_KERNEL);
180 		if (!avc)
181 			goto out_enomem;
182 
183 		anon_vma = find_mergeable_anon_vma(vma);
184 		allocated = NULL;
185 		if (!anon_vma) {
186 			anon_vma = anon_vma_alloc();
187 			if (unlikely(!anon_vma))
188 				goto out_enomem_free_avc;
189 			allocated = anon_vma;
190 		}
191 
192 		anon_vma_lock_write(anon_vma);
193 		/* page_table_lock to protect against threads */
194 		spin_lock(&mm->page_table_lock);
195 		if (likely(!vma->anon_vma)) {
196 			vma->anon_vma = anon_vma;
197 			anon_vma_chain_link(vma, avc, anon_vma);
198 			/* vma reference or self-parent link for new root */
199 			anon_vma->degree++;
200 			allocated = NULL;
201 			avc = NULL;
202 		}
203 		spin_unlock(&mm->page_table_lock);
204 		anon_vma_unlock_write(anon_vma);
205 
206 		if (unlikely(allocated))
207 			put_anon_vma(allocated);
208 		if (unlikely(avc))
209 			anon_vma_chain_free(avc);
210 	}
211 	return 0;
212 
213  out_enomem_free_avc:
214 	anon_vma_chain_free(avc);
215  out_enomem:
216 	return -ENOMEM;
217 }
218 
219 /*
220  * This is a useful helper function for locking the anon_vma root as
221  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
222  * have the same vma.
223  *
224  * Such anon_vma's should have the same root, so you'd expect to see
225  * just a single mutex_lock for the whole traversal.
226  */
227 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
228 {
229 	struct anon_vma *new_root = anon_vma->root;
230 	if (new_root != root) {
231 		if (WARN_ON_ONCE(root))
232 			up_write(&root->rwsem);
233 		root = new_root;
234 		down_write(&root->rwsem);
235 	}
236 	return root;
237 }
238 
239 static inline void unlock_anon_vma_root(struct anon_vma *root)
240 {
241 	if (root)
242 		up_write(&root->rwsem);
243 }
244 
245 /*
246  * Attach the anon_vmas from src to dst.
247  * Returns 0 on success, -ENOMEM on failure.
248  *
249  * If dst->anon_vma is NULL this function tries to find and reuse existing
250  * anon_vma which has no vmas and only one child anon_vma. This prevents
251  * degradation of anon_vma hierarchy to endless linear chain in case of
252  * constantly forking task. On the other hand, an anon_vma with more than one
253  * child isn't reused even if there was no alive vma, thus rmap walker has a
254  * good chance of avoiding scanning the whole hierarchy when it searches where
255  * page is mapped.
256  */
257 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
258 {
259 	struct anon_vma_chain *avc, *pavc;
260 	struct anon_vma *root = NULL;
261 
262 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
263 		struct anon_vma *anon_vma;
264 
265 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
266 		if (unlikely(!avc)) {
267 			unlock_anon_vma_root(root);
268 			root = NULL;
269 			avc = anon_vma_chain_alloc(GFP_KERNEL);
270 			if (!avc)
271 				goto enomem_failure;
272 		}
273 		anon_vma = pavc->anon_vma;
274 		root = lock_anon_vma_root(root, anon_vma);
275 		anon_vma_chain_link(dst, avc, anon_vma);
276 
277 		/*
278 		 * Reuse existing anon_vma if its degree lower than two,
279 		 * that means it has no vma and only one anon_vma child.
280 		 *
281 		 * Do not chose parent anon_vma, otherwise first child
282 		 * will always reuse it. Root anon_vma is never reused:
283 		 * it has self-parent reference and at least one child.
284 		 */
285 		if (!dst->anon_vma && anon_vma != src->anon_vma &&
286 				anon_vma->degree < 2)
287 			dst->anon_vma = anon_vma;
288 	}
289 	if (dst->anon_vma)
290 		dst->anon_vma->degree++;
291 	unlock_anon_vma_root(root);
292 	return 0;
293 
294  enomem_failure:
295 	/*
296 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
297 	 * decremented in unlink_anon_vmas().
298 	 * We can safely do this because callers of anon_vma_clone() don't care
299 	 * about dst->anon_vma if anon_vma_clone() failed.
300 	 */
301 	dst->anon_vma = NULL;
302 	unlink_anon_vmas(dst);
303 	return -ENOMEM;
304 }
305 
306 /*
307  * Attach vma to its own anon_vma, as well as to the anon_vmas that
308  * the corresponding VMA in the parent process is attached to.
309  * Returns 0 on success, non-zero on failure.
310  */
311 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
312 {
313 	struct anon_vma_chain *avc;
314 	struct anon_vma *anon_vma;
315 	int error;
316 
317 	/* Don't bother if the parent process has no anon_vma here. */
318 	if (!pvma->anon_vma)
319 		return 0;
320 
321 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
322 	vma->anon_vma = NULL;
323 
324 	/*
325 	 * First, attach the new VMA to the parent VMA's anon_vmas,
326 	 * so rmap can find non-COWed pages in child processes.
327 	 */
328 	error = anon_vma_clone(vma, pvma);
329 	if (error)
330 		return error;
331 
332 	/* An existing anon_vma has been reused, all done then. */
333 	if (vma->anon_vma)
334 		return 0;
335 
336 	/* Then add our own anon_vma. */
337 	anon_vma = anon_vma_alloc();
338 	if (!anon_vma)
339 		goto out_error;
340 	avc = anon_vma_chain_alloc(GFP_KERNEL);
341 	if (!avc)
342 		goto out_error_free_anon_vma;
343 
344 	/*
345 	 * The root anon_vma's spinlock is the lock actually used when we
346 	 * lock any of the anon_vmas in this anon_vma tree.
347 	 */
348 	anon_vma->root = pvma->anon_vma->root;
349 	anon_vma->parent = pvma->anon_vma;
350 	/*
351 	 * With refcounts, an anon_vma can stay around longer than the
352 	 * process it belongs to. The root anon_vma needs to be pinned until
353 	 * this anon_vma is freed, because the lock lives in the root.
354 	 */
355 	get_anon_vma(anon_vma->root);
356 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
357 	vma->anon_vma = anon_vma;
358 	anon_vma_lock_write(anon_vma);
359 	anon_vma_chain_link(vma, avc, anon_vma);
360 	anon_vma->parent->degree++;
361 	anon_vma_unlock_write(anon_vma);
362 
363 	return 0;
364 
365  out_error_free_anon_vma:
366 	put_anon_vma(anon_vma);
367  out_error:
368 	unlink_anon_vmas(vma);
369 	return -ENOMEM;
370 }
371 
372 void unlink_anon_vmas(struct vm_area_struct *vma)
373 {
374 	struct anon_vma_chain *avc, *next;
375 	struct anon_vma *root = NULL;
376 
377 	/*
378 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
379 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
380 	 */
381 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
382 		struct anon_vma *anon_vma = avc->anon_vma;
383 
384 		root = lock_anon_vma_root(root, anon_vma);
385 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
386 
387 		/*
388 		 * Leave empty anon_vmas on the list - we'll need
389 		 * to free them outside the lock.
390 		 */
391 		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
392 			anon_vma->parent->degree--;
393 			continue;
394 		}
395 
396 		list_del(&avc->same_vma);
397 		anon_vma_chain_free(avc);
398 	}
399 	if (vma->anon_vma)
400 		vma->anon_vma->degree--;
401 	unlock_anon_vma_root(root);
402 
403 	/*
404 	 * Iterate the list once more, it now only contains empty and unlinked
405 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
406 	 * needing to write-acquire the anon_vma->root->rwsem.
407 	 */
408 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
409 		struct anon_vma *anon_vma = avc->anon_vma;
410 
411 		BUG_ON(anon_vma->degree);
412 		put_anon_vma(anon_vma);
413 
414 		list_del(&avc->same_vma);
415 		anon_vma_chain_free(avc);
416 	}
417 }
418 
419 static void anon_vma_ctor(void *data)
420 {
421 	struct anon_vma *anon_vma = data;
422 
423 	init_rwsem(&anon_vma->rwsem);
424 	atomic_set(&anon_vma->refcount, 0);
425 	anon_vma->rb_root = RB_ROOT;
426 }
427 
428 void __init anon_vma_init(void)
429 {
430 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
431 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
432 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
433 }
434 
435 /*
436  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
437  *
438  * Since there is no serialization what so ever against page_remove_rmap()
439  * the best this function can do is return a locked anon_vma that might
440  * have been relevant to this page.
441  *
442  * The page might have been remapped to a different anon_vma or the anon_vma
443  * returned may already be freed (and even reused).
444  *
445  * In case it was remapped to a different anon_vma, the new anon_vma will be a
446  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
447  * ensure that any anon_vma obtained from the page will still be valid for as
448  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
449  *
450  * All users of this function must be very careful when walking the anon_vma
451  * chain and verify that the page in question is indeed mapped in it
452  * [ something equivalent to page_mapped_in_vma() ].
453  *
454  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
455  * that the anon_vma pointer from page->mapping is valid if there is a
456  * mapcount, we can dereference the anon_vma after observing those.
457  */
458 struct anon_vma *page_get_anon_vma(struct page *page)
459 {
460 	struct anon_vma *anon_vma = NULL;
461 	unsigned long anon_mapping;
462 
463 	rcu_read_lock();
464 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
465 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
466 		goto out;
467 	if (!page_mapped(page))
468 		goto out;
469 
470 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
471 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
472 		anon_vma = NULL;
473 		goto out;
474 	}
475 
476 	/*
477 	 * If this page is still mapped, then its anon_vma cannot have been
478 	 * freed.  But if it has been unmapped, we have no security against the
479 	 * anon_vma structure being freed and reused (for another anon_vma:
480 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
481 	 * above cannot corrupt).
482 	 */
483 	if (!page_mapped(page)) {
484 		rcu_read_unlock();
485 		put_anon_vma(anon_vma);
486 		return NULL;
487 	}
488 out:
489 	rcu_read_unlock();
490 
491 	return anon_vma;
492 }
493 
494 /*
495  * Similar to page_get_anon_vma() except it locks the anon_vma.
496  *
497  * Its a little more complex as it tries to keep the fast path to a single
498  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
499  * reference like with page_get_anon_vma() and then block on the mutex.
500  */
501 struct anon_vma *page_lock_anon_vma_read(struct page *page)
502 {
503 	struct anon_vma *anon_vma = NULL;
504 	struct anon_vma *root_anon_vma;
505 	unsigned long anon_mapping;
506 
507 	rcu_read_lock();
508 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
509 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
510 		goto out;
511 	if (!page_mapped(page))
512 		goto out;
513 
514 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
515 	root_anon_vma = READ_ONCE(anon_vma->root);
516 	if (down_read_trylock(&root_anon_vma->rwsem)) {
517 		/*
518 		 * If the page is still mapped, then this anon_vma is still
519 		 * its anon_vma, and holding the mutex ensures that it will
520 		 * not go away, see anon_vma_free().
521 		 */
522 		if (!page_mapped(page)) {
523 			up_read(&root_anon_vma->rwsem);
524 			anon_vma = NULL;
525 		}
526 		goto out;
527 	}
528 
529 	/* trylock failed, we got to sleep */
530 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
531 		anon_vma = NULL;
532 		goto out;
533 	}
534 
535 	if (!page_mapped(page)) {
536 		rcu_read_unlock();
537 		put_anon_vma(anon_vma);
538 		return NULL;
539 	}
540 
541 	/* we pinned the anon_vma, its safe to sleep */
542 	rcu_read_unlock();
543 	anon_vma_lock_read(anon_vma);
544 
545 	if (atomic_dec_and_test(&anon_vma->refcount)) {
546 		/*
547 		 * Oops, we held the last refcount, release the lock
548 		 * and bail -- can't simply use put_anon_vma() because
549 		 * we'll deadlock on the anon_vma_lock_write() recursion.
550 		 */
551 		anon_vma_unlock_read(anon_vma);
552 		__put_anon_vma(anon_vma);
553 		anon_vma = NULL;
554 	}
555 
556 	return anon_vma;
557 
558 out:
559 	rcu_read_unlock();
560 	return anon_vma;
561 }
562 
563 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
564 {
565 	anon_vma_unlock_read(anon_vma);
566 }
567 
568 /*
569  * At what user virtual address is page expected in @vma?
570  */
571 static inline unsigned long
572 __vma_address(struct page *page, struct vm_area_struct *vma)
573 {
574 	pgoff_t pgoff = page_to_pgoff(page);
575 	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
576 }
577 
578 inline unsigned long
579 vma_address(struct page *page, struct vm_area_struct *vma)
580 {
581 	unsigned long address = __vma_address(page, vma);
582 
583 	/* page should be within @vma mapping range */
584 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
585 
586 	return address;
587 }
588 
589 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
590 static void percpu_flush_tlb_batch_pages(void *data)
591 {
592 	/*
593 	 * All TLB entries are flushed on the assumption that it is
594 	 * cheaper to flush all TLBs and let them be refilled than
595 	 * flushing individual PFNs. Note that we do not track mm's
596 	 * to flush as that might simply be multiple full TLB flushes
597 	 * for no gain.
598 	 */
599 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
600 	flush_tlb_local();
601 }
602 
603 /*
604  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
605  * important if a PTE was dirty when it was unmapped that it's flushed
606  * before any IO is initiated on the page to prevent lost writes. Similarly,
607  * it must be flushed before freeing to prevent data leakage.
608  */
609 void try_to_unmap_flush(void)
610 {
611 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
612 	int cpu;
613 
614 	if (!tlb_ubc->flush_required)
615 		return;
616 
617 	cpu = get_cpu();
618 
619 	trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL);
620 
621 	if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask))
622 		percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask);
623 
624 	if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) {
625 		smp_call_function_many(&tlb_ubc->cpumask,
626 			percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true);
627 	}
628 	cpumask_clear(&tlb_ubc->cpumask);
629 	tlb_ubc->flush_required = false;
630 	tlb_ubc->writable = false;
631 	put_cpu();
632 }
633 
634 /* Flush iff there are potentially writable TLB entries that can race with IO */
635 void try_to_unmap_flush_dirty(void)
636 {
637 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
638 
639 	if (tlb_ubc->writable)
640 		try_to_unmap_flush();
641 }
642 
643 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
644 		struct page *page, bool writable)
645 {
646 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
647 
648 	cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
649 	tlb_ubc->flush_required = true;
650 
651 	/*
652 	 * If the PTE was dirty then it's best to assume it's writable. The
653 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
654 	 * before the page is queued for IO.
655 	 */
656 	if (writable)
657 		tlb_ubc->writable = true;
658 }
659 
660 /*
661  * Returns true if the TLB flush should be deferred to the end of a batch of
662  * unmap operations to reduce IPIs.
663  */
664 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
665 {
666 	bool should_defer = false;
667 
668 	if (!(flags & TTU_BATCH_FLUSH))
669 		return false;
670 
671 	/* If remote CPUs need to be flushed then defer batch the flush */
672 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
673 		should_defer = true;
674 	put_cpu();
675 
676 	return should_defer;
677 }
678 #else
679 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
680 		struct page *page, bool writable)
681 {
682 }
683 
684 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
685 {
686 	return false;
687 }
688 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
689 
690 /*
691  * At what user virtual address is page expected in vma?
692  * Caller should check the page is actually part of the vma.
693  */
694 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
695 {
696 	unsigned long address;
697 	if (PageAnon(page)) {
698 		struct anon_vma *page__anon_vma = page_anon_vma(page);
699 		/*
700 		 * Note: swapoff's unuse_vma() is more efficient with this
701 		 * check, and needs it to match anon_vma when KSM is active.
702 		 */
703 		if (!vma->anon_vma || !page__anon_vma ||
704 		    vma->anon_vma->root != page__anon_vma->root)
705 			return -EFAULT;
706 	} else if (page->mapping) {
707 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
708 			return -EFAULT;
709 	} else
710 		return -EFAULT;
711 	address = __vma_address(page, vma);
712 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
713 		return -EFAULT;
714 	return address;
715 }
716 
717 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
718 {
719 	pgd_t *pgd;
720 	pud_t *pud;
721 	pmd_t *pmd = NULL;
722 	pmd_t pmde;
723 
724 	pgd = pgd_offset(mm, address);
725 	if (!pgd_present(*pgd))
726 		goto out;
727 
728 	pud = pud_offset(pgd, address);
729 	if (!pud_present(*pud))
730 		goto out;
731 
732 	pmd = pmd_offset(pud, address);
733 	/*
734 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
735 	 * without holding anon_vma lock for write.  So when looking for a
736 	 * genuine pmde (in which to find pte), test present and !THP together.
737 	 */
738 	pmde = *pmd;
739 	barrier();
740 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
741 		pmd = NULL;
742 out:
743 	return pmd;
744 }
745 
746 /*
747  * Check that @page is mapped at @address into @mm.
748  *
749  * If @sync is false, page_check_address may perform a racy check to avoid
750  * the page table lock when the pte is not present (helpful when reclaiming
751  * highly shared pages).
752  *
753  * On success returns with pte mapped and locked.
754  */
755 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
756 			  unsigned long address, spinlock_t **ptlp, int sync)
757 {
758 	pmd_t *pmd;
759 	pte_t *pte;
760 	spinlock_t *ptl;
761 
762 	if (unlikely(PageHuge(page))) {
763 		/* when pud is not present, pte will be NULL */
764 		pte = huge_pte_offset(mm, address);
765 		if (!pte)
766 			return NULL;
767 
768 		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
769 		goto check;
770 	}
771 
772 	pmd = mm_find_pmd(mm, address);
773 	if (!pmd)
774 		return NULL;
775 
776 	pte = pte_offset_map(pmd, address);
777 	/* Make a quick check before getting the lock */
778 	if (!sync && !pte_present(*pte)) {
779 		pte_unmap(pte);
780 		return NULL;
781 	}
782 
783 	ptl = pte_lockptr(mm, pmd);
784 check:
785 	spin_lock(ptl);
786 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
787 		*ptlp = ptl;
788 		return pte;
789 	}
790 	pte_unmap_unlock(pte, ptl);
791 	return NULL;
792 }
793 
794 /**
795  * page_mapped_in_vma - check whether a page is really mapped in a VMA
796  * @page: the page to test
797  * @vma: the VMA to test
798  *
799  * Returns 1 if the page is mapped into the page tables of the VMA, 0
800  * if the page is not mapped into the page tables of this VMA.  Only
801  * valid for normal file or anonymous VMAs.
802  */
803 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
804 {
805 	unsigned long address;
806 	pte_t *pte;
807 	spinlock_t *ptl;
808 
809 	address = __vma_address(page, vma);
810 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
811 		return 0;
812 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
813 	if (!pte)			/* the page is not in this mm */
814 		return 0;
815 	pte_unmap_unlock(pte, ptl);
816 
817 	return 1;
818 }
819 
820 struct page_referenced_arg {
821 	int mapcount;
822 	int referenced;
823 	unsigned long vm_flags;
824 	struct mem_cgroup *memcg;
825 };
826 /*
827  * arg: page_referenced_arg will be passed
828  */
829 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
830 			unsigned long address, void *arg)
831 {
832 	struct mm_struct *mm = vma->vm_mm;
833 	spinlock_t *ptl;
834 	int referenced = 0;
835 	struct page_referenced_arg *pra = arg;
836 
837 	if (unlikely(PageTransHuge(page))) {
838 		pmd_t *pmd;
839 
840 		/*
841 		 * rmap might return false positives; we must filter
842 		 * these out using page_check_address_pmd().
843 		 */
844 		pmd = page_check_address_pmd(page, mm, address,
845 					     PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
846 		if (!pmd)
847 			return SWAP_AGAIN;
848 
849 		if (vma->vm_flags & VM_LOCKED) {
850 			spin_unlock(ptl);
851 			pra->vm_flags |= VM_LOCKED;
852 			return SWAP_FAIL; /* To break the loop */
853 		}
854 
855 		/* go ahead even if the pmd is pmd_trans_splitting() */
856 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
857 			referenced++;
858 		spin_unlock(ptl);
859 	} else {
860 		pte_t *pte;
861 
862 		/*
863 		 * rmap might return false positives; we must filter
864 		 * these out using page_check_address().
865 		 */
866 		pte = page_check_address(page, mm, address, &ptl, 0);
867 		if (!pte)
868 			return SWAP_AGAIN;
869 
870 		if (vma->vm_flags & VM_LOCKED) {
871 			pte_unmap_unlock(pte, ptl);
872 			pra->vm_flags |= VM_LOCKED;
873 			return SWAP_FAIL; /* To break the loop */
874 		}
875 
876 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
877 			/*
878 			 * Don't treat a reference through a sequentially read
879 			 * mapping as such.  If the page has been used in
880 			 * another mapping, we will catch it; if this other
881 			 * mapping is already gone, the unmap path will have
882 			 * set PG_referenced or activated the page.
883 			 */
884 			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
885 				referenced++;
886 		}
887 		pte_unmap_unlock(pte, ptl);
888 	}
889 
890 	if (referenced)
891 		clear_page_idle(page);
892 	if (test_and_clear_page_young(page))
893 		referenced++;
894 
895 	if (referenced) {
896 		pra->referenced++;
897 		pra->vm_flags |= vma->vm_flags;
898 	}
899 
900 	pra->mapcount--;
901 	if (!pra->mapcount)
902 		return SWAP_SUCCESS; /* To break the loop */
903 
904 	return SWAP_AGAIN;
905 }
906 
907 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
908 {
909 	struct page_referenced_arg *pra = arg;
910 	struct mem_cgroup *memcg = pra->memcg;
911 
912 	if (!mm_match_cgroup(vma->vm_mm, memcg))
913 		return true;
914 
915 	return false;
916 }
917 
918 /**
919  * page_referenced - test if the page was referenced
920  * @page: the page to test
921  * @is_locked: caller holds lock on the page
922  * @memcg: target memory cgroup
923  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
924  *
925  * Quick test_and_clear_referenced for all mappings to a page,
926  * returns the number of ptes which referenced the page.
927  */
928 int page_referenced(struct page *page,
929 		    int is_locked,
930 		    struct mem_cgroup *memcg,
931 		    unsigned long *vm_flags)
932 {
933 	int ret;
934 	int we_locked = 0;
935 	struct page_referenced_arg pra = {
936 		.mapcount = page_mapcount(page),
937 		.memcg = memcg,
938 	};
939 	struct rmap_walk_control rwc = {
940 		.rmap_one = page_referenced_one,
941 		.arg = (void *)&pra,
942 		.anon_lock = page_lock_anon_vma_read,
943 	};
944 
945 	*vm_flags = 0;
946 	if (!page_mapped(page))
947 		return 0;
948 
949 	if (!page_rmapping(page))
950 		return 0;
951 
952 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
953 		we_locked = trylock_page(page);
954 		if (!we_locked)
955 			return 1;
956 	}
957 
958 	/*
959 	 * If we are reclaiming on behalf of a cgroup, skip
960 	 * counting on behalf of references from different
961 	 * cgroups
962 	 */
963 	if (memcg) {
964 		rwc.invalid_vma = invalid_page_referenced_vma;
965 	}
966 
967 	ret = rmap_walk(page, &rwc);
968 	*vm_flags = pra.vm_flags;
969 
970 	if (we_locked)
971 		unlock_page(page);
972 
973 	return pra.referenced;
974 }
975 
976 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
977 			    unsigned long address, void *arg)
978 {
979 	struct mm_struct *mm = vma->vm_mm;
980 	pte_t *pte;
981 	spinlock_t *ptl;
982 	int ret = 0;
983 	int *cleaned = arg;
984 
985 	pte = page_check_address(page, mm, address, &ptl, 1);
986 	if (!pte)
987 		goto out;
988 
989 	if (pte_dirty(*pte) || pte_write(*pte)) {
990 		pte_t entry;
991 
992 		flush_cache_page(vma, address, pte_pfn(*pte));
993 		entry = ptep_clear_flush(vma, address, pte);
994 		entry = pte_wrprotect(entry);
995 		entry = pte_mkclean(entry);
996 		set_pte_at(mm, address, pte, entry);
997 		ret = 1;
998 	}
999 
1000 	pte_unmap_unlock(pte, ptl);
1001 
1002 	if (ret) {
1003 		mmu_notifier_invalidate_page(mm, address);
1004 		(*cleaned)++;
1005 	}
1006 out:
1007 	return SWAP_AGAIN;
1008 }
1009 
1010 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1011 {
1012 	if (vma->vm_flags & VM_SHARED)
1013 		return false;
1014 
1015 	return true;
1016 }
1017 
1018 int page_mkclean(struct page *page)
1019 {
1020 	int cleaned = 0;
1021 	struct address_space *mapping;
1022 	struct rmap_walk_control rwc = {
1023 		.arg = (void *)&cleaned,
1024 		.rmap_one = page_mkclean_one,
1025 		.invalid_vma = invalid_mkclean_vma,
1026 	};
1027 
1028 	BUG_ON(!PageLocked(page));
1029 
1030 	if (!page_mapped(page))
1031 		return 0;
1032 
1033 	mapping = page_mapping(page);
1034 	if (!mapping)
1035 		return 0;
1036 
1037 	rmap_walk(page, &rwc);
1038 
1039 	return cleaned;
1040 }
1041 EXPORT_SYMBOL_GPL(page_mkclean);
1042 
1043 /**
1044  * page_move_anon_rmap - move a page to our anon_vma
1045  * @page:	the page to move to our anon_vma
1046  * @vma:	the vma the page belongs to
1047  * @address:	the user virtual address mapped
1048  *
1049  * When a page belongs exclusively to one process after a COW event,
1050  * that page can be moved into the anon_vma that belongs to just that
1051  * process, so the rmap code will not search the parent or sibling
1052  * processes.
1053  */
1054 void page_move_anon_rmap(struct page *page,
1055 	struct vm_area_struct *vma, unsigned long address)
1056 {
1057 	struct anon_vma *anon_vma = vma->anon_vma;
1058 
1059 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1060 	VM_BUG_ON_VMA(!anon_vma, vma);
1061 	VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
1062 
1063 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1064 	/*
1065 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1066 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1067 	 * PageAnon()) will not see one without the other.
1068 	 */
1069 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1070 }
1071 
1072 /**
1073  * __page_set_anon_rmap - set up new anonymous rmap
1074  * @page:	Page to add to rmap
1075  * @vma:	VM area to add page to.
1076  * @address:	User virtual address of the mapping
1077  * @exclusive:	the page is exclusively owned by the current process
1078  */
1079 static void __page_set_anon_rmap(struct page *page,
1080 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1081 {
1082 	struct anon_vma *anon_vma = vma->anon_vma;
1083 
1084 	BUG_ON(!anon_vma);
1085 
1086 	if (PageAnon(page))
1087 		return;
1088 
1089 	/*
1090 	 * If the page isn't exclusively mapped into this vma,
1091 	 * we must use the _oldest_ possible anon_vma for the
1092 	 * page mapping!
1093 	 */
1094 	if (!exclusive)
1095 		anon_vma = anon_vma->root;
1096 
1097 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1098 	page->mapping = (struct address_space *) anon_vma;
1099 	page->index = linear_page_index(vma, address);
1100 }
1101 
1102 /**
1103  * __page_check_anon_rmap - sanity check anonymous rmap addition
1104  * @page:	the page to add the mapping to
1105  * @vma:	the vm area in which the mapping is added
1106  * @address:	the user virtual address mapped
1107  */
1108 static void __page_check_anon_rmap(struct page *page,
1109 	struct vm_area_struct *vma, unsigned long address)
1110 {
1111 #ifdef CONFIG_DEBUG_VM
1112 	/*
1113 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1114 	 * be set up correctly at this point.
1115 	 *
1116 	 * We have exclusion against page_add_anon_rmap because the caller
1117 	 * always holds the page locked, except if called from page_dup_rmap,
1118 	 * in which case the page is already known to be setup.
1119 	 *
1120 	 * We have exclusion against page_add_new_anon_rmap because those pages
1121 	 * are initially only visible via the pagetables, and the pte is locked
1122 	 * over the call to page_add_new_anon_rmap.
1123 	 */
1124 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1125 	BUG_ON(page->index != linear_page_index(vma, address));
1126 #endif
1127 }
1128 
1129 /**
1130  * page_add_anon_rmap - add pte mapping to an anonymous page
1131  * @page:	the page to add the mapping to
1132  * @vma:	the vm area in which the mapping is added
1133  * @address:	the user virtual address mapped
1134  *
1135  * The caller needs to hold the pte lock, and the page must be locked in
1136  * the anon_vma case: to serialize mapping,index checking after setting,
1137  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1138  * (but PageKsm is never downgraded to PageAnon).
1139  */
1140 void page_add_anon_rmap(struct page *page,
1141 	struct vm_area_struct *vma, unsigned long address)
1142 {
1143 	do_page_add_anon_rmap(page, vma, address, 0);
1144 }
1145 
1146 /*
1147  * Special version of the above for do_swap_page, which often runs
1148  * into pages that are exclusively owned by the current process.
1149  * Everybody else should continue to use page_add_anon_rmap above.
1150  */
1151 void do_page_add_anon_rmap(struct page *page,
1152 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1153 {
1154 	int first = atomic_inc_and_test(&page->_mapcount);
1155 	if (first) {
1156 		/*
1157 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1158 		 * these counters are not modified in interrupt context, and
1159 		 * pte lock(a spinlock) is held, which implies preemption
1160 		 * disabled.
1161 		 */
1162 		if (PageTransHuge(page))
1163 			__inc_zone_page_state(page,
1164 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1165 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1166 				hpage_nr_pages(page));
1167 	}
1168 	if (unlikely(PageKsm(page)))
1169 		return;
1170 
1171 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1172 	/* address might be in next vma when migration races vma_adjust */
1173 	if (first)
1174 		__page_set_anon_rmap(page, vma, address, exclusive);
1175 	else
1176 		__page_check_anon_rmap(page, vma, address);
1177 }
1178 
1179 /**
1180  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1181  * @page:	the page to add the mapping to
1182  * @vma:	the vm area in which the mapping is added
1183  * @address:	the user virtual address mapped
1184  *
1185  * Same as page_add_anon_rmap but must only be called on *new* pages.
1186  * This means the inc-and-test can be bypassed.
1187  * Page does not have to be locked.
1188  */
1189 void page_add_new_anon_rmap(struct page *page,
1190 	struct vm_area_struct *vma, unsigned long address)
1191 {
1192 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1193 	SetPageSwapBacked(page);
1194 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1195 	if (PageTransHuge(page))
1196 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1197 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1198 			hpage_nr_pages(page));
1199 	__page_set_anon_rmap(page, vma, address, 1);
1200 }
1201 
1202 /**
1203  * page_add_file_rmap - add pte mapping to a file page
1204  * @page: the page to add the mapping to
1205  *
1206  * The caller needs to hold the pte lock.
1207  */
1208 void page_add_file_rmap(struct page *page)
1209 {
1210 	struct mem_cgroup *memcg;
1211 
1212 	memcg = mem_cgroup_begin_page_stat(page);
1213 	if (atomic_inc_and_test(&page->_mapcount)) {
1214 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1215 		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1216 	}
1217 	mem_cgroup_end_page_stat(memcg);
1218 }
1219 
1220 static void page_remove_file_rmap(struct page *page)
1221 {
1222 	struct mem_cgroup *memcg;
1223 
1224 	memcg = mem_cgroup_begin_page_stat(page);
1225 
1226 	/* page still mapped by someone else? */
1227 	if (!atomic_add_negative(-1, &page->_mapcount))
1228 		goto out;
1229 
1230 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1231 	if (unlikely(PageHuge(page)))
1232 		goto out;
1233 
1234 	/*
1235 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1236 	 * these counters are not modified in interrupt context, and
1237 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1238 	 */
1239 	__dec_zone_page_state(page, NR_FILE_MAPPED);
1240 	mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1241 
1242 	if (unlikely(PageMlocked(page)))
1243 		clear_page_mlock(page);
1244 out:
1245 	mem_cgroup_end_page_stat(memcg);
1246 }
1247 
1248 /**
1249  * page_remove_rmap - take down pte mapping from a page
1250  * @page: page to remove mapping from
1251  *
1252  * The caller needs to hold the pte lock.
1253  */
1254 void page_remove_rmap(struct page *page)
1255 {
1256 	if (!PageAnon(page)) {
1257 		page_remove_file_rmap(page);
1258 		return;
1259 	}
1260 
1261 	/* page still mapped by someone else? */
1262 	if (!atomic_add_negative(-1, &page->_mapcount))
1263 		return;
1264 
1265 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1266 	if (unlikely(PageHuge(page)))
1267 		return;
1268 
1269 	/*
1270 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1271 	 * these counters are not modified in interrupt context, and
1272 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1273 	 */
1274 	if (PageTransHuge(page))
1275 		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1276 
1277 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1278 			      -hpage_nr_pages(page));
1279 
1280 	if (unlikely(PageMlocked(page)))
1281 		clear_page_mlock(page);
1282 
1283 	/*
1284 	 * It would be tidy to reset the PageAnon mapping here,
1285 	 * but that might overwrite a racing page_add_anon_rmap
1286 	 * which increments mapcount after us but sets mapping
1287 	 * before us: so leave the reset to free_hot_cold_page,
1288 	 * and remember that it's only reliable while mapped.
1289 	 * Leaving it set also helps swapoff to reinstate ptes
1290 	 * faster for those pages still in swapcache.
1291 	 */
1292 }
1293 
1294 /*
1295  * @arg: enum ttu_flags will be passed to this argument
1296  */
1297 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1298 		     unsigned long address, void *arg)
1299 {
1300 	struct mm_struct *mm = vma->vm_mm;
1301 	pte_t *pte;
1302 	pte_t pteval;
1303 	spinlock_t *ptl;
1304 	int ret = SWAP_AGAIN;
1305 	enum ttu_flags flags = (enum ttu_flags)arg;
1306 
1307 	/* munlock has nothing to gain from examining un-locked vmas */
1308 	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1309 		goto out;
1310 
1311 	pte = page_check_address(page, mm, address, &ptl, 0);
1312 	if (!pte)
1313 		goto out;
1314 
1315 	/*
1316 	 * If the page is mlock()d, we cannot swap it out.
1317 	 * If it's recently referenced (perhaps page_referenced
1318 	 * skipped over this mm) then we should reactivate it.
1319 	 */
1320 	if (!(flags & TTU_IGNORE_MLOCK)) {
1321 		if (vma->vm_flags & VM_LOCKED) {
1322 			/* Holding pte lock, we do *not* need mmap_sem here */
1323 			mlock_vma_page(page);
1324 			ret = SWAP_MLOCK;
1325 			goto out_unmap;
1326 		}
1327 		if (flags & TTU_MUNLOCK)
1328 			goto out_unmap;
1329 	}
1330 	if (!(flags & TTU_IGNORE_ACCESS)) {
1331 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1332 			ret = SWAP_FAIL;
1333 			goto out_unmap;
1334 		}
1335   	}
1336 
1337 	/* Nuke the page table entry. */
1338 	flush_cache_page(vma, address, page_to_pfn(page));
1339 	if (should_defer_flush(mm, flags)) {
1340 		/*
1341 		 * We clear the PTE but do not flush so potentially a remote
1342 		 * CPU could still be writing to the page. If the entry was
1343 		 * previously clean then the architecture must guarantee that
1344 		 * a clear->dirty transition on a cached TLB entry is written
1345 		 * through and traps if the PTE is unmapped.
1346 		 */
1347 		pteval = ptep_get_and_clear(mm, address, pte);
1348 
1349 		set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
1350 	} else {
1351 		pteval = ptep_clear_flush(vma, address, pte);
1352 	}
1353 
1354 	/* Move the dirty bit to the physical page now the pte is gone. */
1355 	if (pte_dirty(pteval))
1356 		set_page_dirty(page);
1357 
1358 	/* Update high watermark before we lower rss */
1359 	update_hiwater_rss(mm);
1360 
1361 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1362 		if (PageHuge(page)) {
1363 			hugetlb_count_sub(1 << compound_order(page), mm);
1364 		} else {
1365 			if (PageAnon(page))
1366 				dec_mm_counter(mm, MM_ANONPAGES);
1367 			else
1368 				dec_mm_counter(mm, MM_FILEPAGES);
1369 		}
1370 		set_pte_at(mm, address, pte,
1371 			   swp_entry_to_pte(make_hwpoison_entry(page)));
1372 	} else if (pte_unused(pteval)) {
1373 		/*
1374 		 * The guest indicated that the page content is of no
1375 		 * interest anymore. Simply discard the pte, vmscan
1376 		 * will take care of the rest.
1377 		 */
1378 		if (PageAnon(page))
1379 			dec_mm_counter(mm, MM_ANONPAGES);
1380 		else
1381 			dec_mm_counter(mm, MM_FILEPAGES);
1382 	} else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1383 		swp_entry_t entry;
1384 		pte_t swp_pte;
1385 		/*
1386 		 * Store the pfn of the page in a special migration
1387 		 * pte. do_swap_page() will wait until the migration
1388 		 * pte is removed and then restart fault handling.
1389 		 */
1390 		entry = make_migration_entry(page, pte_write(pteval));
1391 		swp_pte = swp_entry_to_pte(entry);
1392 		if (pte_soft_dirty(pteval))
1393 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1394 		set_pte_at(mm, address, pte, swp_pte);
1395 	} else if (PageAnon(page)) {
1396 		swp_entry_t entry = { .val = page_private(page) };
1397 		pte_t swp_pte;
1398 		/*
1399 		 * Store the swap location in the pte.
1400 		 * See handle_pte_fault() ...
1401 		 */
1402 		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1403 		if (swap_duplicate(entry) < 0) {
1404 			set_pte_at(mm, address, pte, pteval);
1405 			ret = SWAP_FAIL;
1406 			goto out_unmap;
1407 		}
1408 		if (list_empty(&mm->mmlist)) {
1409 			spin_lock(&mmlist_lock);
1410 			if (list_empty(&mm->mmlist))
1411 				list_add(&mm->mmlist, &init_mm.mmlist);
1412 			spin_unlock(&mmlist_lock);
1413 		}
1414 		dec_mm_counter(mm, MM_ANONPAGES);
1415 		inc_mm_counter(mm, MM_SWAPENTS);
1416 		swp_pte = swp_entry_to_pte(entry);
1417 		if (pte_soft_dirty(pteval))
1418 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1419 		set_pte_at(mm, address, pte, swp_pte);
1420 	} else
1421 		dec_mm_counter(mm, MM_FILEPAGES);
1422 
1423 	page_remove_rmap(page);
1424 	page_cache_release(page);
1425 
1426 out_unmap:
1427 	pte_unmap_unlock(pte, ptl);
1428 	if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
1429 		mmu_notifier_invalidate_page(mm, address);
1430 out:
1431 	return ret;
1432 }
1433 
1434 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1435 {
1436 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1437 
1438 	if (!maybe_stack)
1439 		return false;
1440 
1441 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1442 						VM_STACK_INCOMPLETE_SETUP)
1443 		return true;
1444 
1445 	return false;
1446 }
1447 
1448 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1449 {
1450 	return is_vma_temporary_stack(vma);
1451 }
1452 
1453 static int page_not_mapped(struct page *page)
1454 {
1455 	return !page_mapped(page);
1456 };
1457 
1458 /**
1459  * try_to_unmap - try to remove all page table mappings to a page
1460  * @page: the page to get unmapped
1461  * @flags: action and flags
1462  *
1463  * Tries to remove all the page table entries which are mapping this
1464  * page, used in the pageout path.  Caller must hold the page lock.
1465  * Return values are:
1466  *
1467  * SWAP_SUCCESS	- we succeeded in removing all mappings
1468  * SWAP_AGAIN	- we missed a mapping, try again later
1469  * SWAP_FAIL	- the page is unswappable
1470  * SWAP_MLOCK	- page is mlocked.
1471  */
1472 int try_to_unmap(struct page *page, enum ttu_flags flags)
1473 {
1474 	int ret;
1475 	struct rmap_walk_control rwc = {
1476 		.rmap_one = try_to_unmap_one,
1477 		.arg = (void *)flags,
1478 		.done = page_not_mapped,
1479 		.anon_lock = page_lock_anon_vma_read,
1480 	};
1481 
1482 	VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1483 
1484 	/*
1485 	 * During exec, a temporary VMA is setup and later moved.
1486 	 * The VMA is moved under the anon_vma lock but not the
1487 	 * page tables leading to a race where migration cannot
1488 	 * find the migration ptes. Rather than increasing the
1489 	 * locking requirements of exec(), migration skips
1490 	 * temporary VMAs until after exec() completes.
1491 	 */
1492 	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1493 		rwc.invalid_vma = invalid_migration_vma;
1494 
1495 	ret = rmap_walk(page, &rwc);
1496 
1497 	if (ret != SWAP_MLOCK && !page_mapped(page))
1498 		ret = SWAP_SUCCESS;
1499 	return ret;
1500 }
1501 
1502 /**
1503  * try_to_munlock - try to munlock a page
1504  * @page: the page to be munlocked
1505  *
1506  * Called from munlock code.  Checks all of the VMAs mapping the page
1507  * to make sure nobody else has this page mlocked. The page will be
1508  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1509  *
1510  * Return values are:
1511  *
1512  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1513  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1514  * SWAP_FAIL	- page cannot be located at present
1515  * SWAP_MLOCK	- page is now mlocked.
1516  */
1517 int try_to_munlock(struct page *page)
1518 {
1519 	int ret;
1520 	struct rmap_walk_control rwc = {
1521 		.rmap_one = try_to_unmap_one,
1522 		.arg = (void *)TTU_MUNLOCK,
1523 		.done = page_not_mapped,
1524 		.anon_lock = page_lock_anon_vma_read,
1525 
1526 	};
1527 
1528 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1529 
1530 	ret = rmap_walk(page, &rwc);
1531 	return ret;
1532 }
1533 
1534 void __put_anon_vma(struct anon_vma *anon_vma)
1535 {
1536 	struct anon_vma *root = anon_vma->root;
1537 
1538 	anon_vma_free(anon_vma);
1539 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1540 		anon_vma_free(root);
1541 }
1542 
1543 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1544 					struct rmap_walk_control *rwc)
1545 {
1546 	struct anon_vma *anon_vma;
1547 
1548 	if (rwc->anon_lock)
1549 		return rwc->anon_lock(page);
1550 
1551 	/*
1552 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1553 	 * because that depends on page_mapped(); but not all its usages
1554 	 * are holding mmap_sem. Users without mmap_sem are required to
1555 	 * take a reference count to prevent the anon_vma disappearing
1556 	 */
1557 	anon_vma = page_anon_vma(page);
1558 	if (!anon_vma)
1559 		return NULL;
1560 
1561 	anon_vma_lock_read(anon_vma);
1562 	return anon_vma;
1563 }
1564 
1565 /*
1566  * rmap_walk_anon - do something to anonymous page using the object-based
1567  * rmap method
1568  * @page: the page to be handled
1569  * @rwc: control variable according to each walk type
1570  *
1571  * Find all the mappings of a page using the mapping pointer and the vma chains
1572  * contained in the anon_vma struct it points to.
1573  *
1574  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1575  * where the page was found will be held for write.  So, we won't recheck
1576  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1577  * LOCKED.
1578  */
1579 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1580 {
1581 	struct anon_vma *anon_vma;
1582 	pgoff_t pgoff;
1583 	struct anon_vma_chain *avc;
1584 	int ret = SWAP_AGAIN;
1585 
1586 	anon_vma = rmap_walk_anon_lock(page, rwc);
1587 	if (!anon_vma)
1588 		return ret;
1589 
1590 	pgoff = page_to_pgoff(page);
1591 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1592 		struct vm_area_struct *vma = avc->vma;
1593 		unsigned long address = vma_address(page, vma);
1594 
1595 		cond_resched();
1596 
1597 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1598 			continue;
1599 
1600 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1601 		if (ret != SWAP_AGAIN)
1602 			break;
1603 		if (rwc->done && rwc->done(page))
1604 			break;
1605 	}
1606 	anon_vma_unlock_read(anon_vma);
1607 	return ret;
1608 }
1609 
1610 /*
1611  * rmap_walk_file - do something to file page using the object-based rmap method
1612  * @page: the page to be handled
1613  * @rwc: control variable according to each walk type
1614  *
1615  * Find all the mappings of a page using the mapping pointer and the vma chains
1616  * contained in the address_space struct it points to.
1617  *
1618  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1619  * where the page was found will be held for write.  So, we won't recheck
1620  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1621  * LOCKED.
1622  */
1623 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1624 {
1625 	struct address_space *mapping = page->mapping;
1626 	pgoff_t pgoff;
1627 	struct vm_area_struct *vma;
1628 	int ret = SWAP_AGAIN;
1629 
1630 	/*
1631 	 * The page lock not only makes sure that page->mapping cannot
1632 	 * suddenly be NULLified by truncation, it makes sure that the
1633 	 * structure at mapping cannot be freed and reused yet,
1634 	 * so we can safely take mapping->i_mmap_rwsem.
1635 	 */
1636 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1637 
1638 	if (!mapping)
1639 		return ret;
1640 
1641 	pgoff = page_to_pgoff(page);
1642 	i_mmap_lock_read(mapping);
1643 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1644 		unsigned long address = vma_address(page, vma);
1645 
1646 		cond_resched();
1647 
1648 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1649 			continue;
1650 
1651 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1652 		if (ret != SWAP_AGAIN)
1653 			goto done;
1654 		if (rwc->done && rwc->done(page))
1655 			goto done;
1656 	}
1657 
1658 done:
1659 	i_mmap_unlock_read(mapping);
1660 	return ret;
1661 }
1662 
1663 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1664 {
1665 	if (unlikely(PageKsm(page)))
1666 		return rmap_walk_ksm(page, rwc);
1667 	else if (PageAnon(page))
1668 		return rmap_walk_anon(page, rwc);
1669 	else
1670 		return rmap_walk_file(page, rwc);
1671 }
1672 
1673 #ifdef CONFIG_HUGETLB_PAGE
1674 /*
1675  * The following three functions are for anonymous (private mapped) hugepages.
1676  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1677  * and no lru code, because we handle hugepages differently from common pages.
1678  */
1679 static void __hugepage_set_anon_rmap(struct page *page,
1680 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1681 {
1682 	struct anon_vma *anon_vma = vma->anon_vma;
1683 
1684 	BUG_ON(!anon_vma);
1685 
1686 	if (PageAnon(page))
1687 		return;
1688 	if (!exclusive)
1689 		anon_vma = anon_vma->root;
1690 
1691 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1692 	page->mapping = (struct address_space *) anon_vma;
1693 	page->index = linear_page_index(vma, address);
1694 }
1695 
1696 void hugepage_add_anon_rmap(struct page *page,
1697 			    struct vm_area_struct *vma, unsigned long address)
1698 {
1699 	struct anon_vma *anon_vma = vma->anon_vma;
1700 	int first;
1701 
1702 	BUG_ON(!PageLocked(page));
1703 	BUG_ON(!anon_vma);
1704 	/* address might be in next vma when migration races vma_adjust */
1705 	first = atomic_inc_and_test(&page->_mapcount);
1706 	if (first)
1707 		__hugepage_set_anon_rmap(page, vma, address, 0);
1708 }
1709 
1710 void hugepage_add_new_anon_rmap(struct page *page,
1711 			struct vm_area_struct *vma, unsigned long address)
1712 {
1713 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1714 	atomic_set(&page->_mapcount, 0);
1715 	__hugepage_set_anon_rmap(page, vma, address, 1);
1716 }
1717 #endif /* CONFIG_HUGETLB_PAGE */
1718