1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) 27 * mapping->i_mmap_rwsem 28 * anon_vma->rwsem 29 * mm->page_table_lock or pte_lock 30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) 35 * mapping->tree_lock (widely used) 36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 38 * sb_lock (within inode_lock in fs/fs-writeback.c) 39 * mapping->tree_lock (widely used, in set_page_dirty, 40 * in arch-dependent flush_dcache_mmap_lock, 41 * within bdi.wb->list_lock in __sync_single_inode) 42 * 43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 44 * ->tasklist_lock 45 * pte map lock 46 */ 47 48 #include <linux/mm.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sched/task.h> 51 #include <linux/pagemap.h> 52 #include <linux/swap.h> 53 #include <linux/swapops.h> 54 #include <linux/slab.h> 55 #include <linux/init.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/rcupdate.h> 59 #include <linux/export.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/migrate.h> 63 #include <linux/hugetlb.h> 64 #include <linux/backing-dev.h> 65 #include <linux/page_idle.h> 66 67 #include <asm/tlbflush.h> 68 69 #include <trace/events/tlb.h> 70 71 #include "internal.h" 72 73 static struct kmem_cache *anon_vma_cachep; 74 static struct kmem_cache *anon_vma_chain_cachep; 75 76 static inline struct anon_vma *anon_vma_alloc(void) 77 { 78 struct anon_vma *anon_vma; 79 80 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 81 if (anon_vma) { 82 atomic_set(&anon_vma->refcount, 1); 83 anon_vma->degree = 1; /* Reference for first vma */ 84 anon_vma->parent = anon_vma; 85 /* 86 * Initialise the anon_vma root to point to itself. If called 87 * from fork, the root will be reset to the parents anon_vma. 88 */ 89 anon_vma->root = anon_vma; 90 } 91 92 return anon_vma; 93 } 94 95 static inline void anon_vma_free(struct anon_vma *anon_vma) 96 { 97 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 98 99 /* 100 * Synchronize against page_lock_anon_vma_read() such that 101 * we can safely hold the lock without the anon_vma getting 102 * freed. 103 * 104 * Relies on the full mb implied by the atomic_dec_and_test() from 105 * put_anon_vma() against the acquire barrier implied by 106 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 107 * 108 * page_lock_anon_vma_read() VS put_anon_vma() 109 * down_read_trylock() atomic_dec_and_test() 110 * LOCK MB 111 * atomic_read() rwsem_is_locked() 112 * 113 * LOCK should suffice since the actual taking of the lock must 114 * happen _before_ what follows. 115 */ 116 might_sleep(); 117 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 118 anon_vma_lock_write(anon_vma); 119 anon_vma_unlock_write(anon_vma); 120 } 121 122 kmem_cache_free(anon_vma_cachep, anon_vma); 123 } 124 125 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 126 { 127 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 128 } 129 130 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 131 { 132 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 133 } 134 135 static void anon_vma_chain_link(struct vm_area_struct *vma, 136 struct anon_vma_chain *avc, 137 struct anon_vma *anon_vma) 138 { 139 avc->vma = vma; 140 avc->anon_vma = anon_vma; 141 list_add(&avc->same_vma, &vma->anon_vma_chain); 142 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 143 } 144 145 /** 146 * __anon_vma_prepare - attach an anon_vma to a memory region 147 * @vma: the memory region in question 148 * 149 * This makes sure the memory mapping described by 'vma' has 150 * an 'anon_vma' attached to it, so that we can associate the 151 * anonymous pages mapped into it with that anon_vma. 152 * 153 * The common case will be that we already have one, which 154 * is handled inline by anon_vma_prepare(). But if 155 * not we either need to find an adjacent mapping that we 156 * can re-use the anon_vma from (very common when the only 157 * reason for splitting a vma has been mprotect()), or we 158 * allocate a new one. 159 * 160 * Anon-vma allocations are very subtle, because we may have 161 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 162 * and that may actually touch the spinlock even in the newly 163 * allocated vma (it depends on RCU to make sure that the 164 * anon_vma isn't actually destroyed). 165 * 166 * As a result, we need to do proper anon_vma locking even 167 * for the new allocation. At the same time, we do not want 168 * to do any locking for the common case of already having 169 * an anon_vma. 170 * 171 * This must be called with the mmap_sem held for reading. 172 */ 173 int __anon_vma_prepare(struct vm_area_struct *vma) 174 { 175 struct mm_struct *mm = vma->vm_mm; 176 struct anon_vma *anon_vma, *allocated; 177 struct anon_vma_chain *avc; 178 179 might_sleep(); 180 181 avc = anon_vma_chain_alloc(GFP_KERNEL); 182 if (!avc) 183 goto out_enomem; 184 185 anon_vma = find_mergeable_anon_vma(vma); 186 allocated = NULL; 187 if (!anon_vma) { 188 anon_vma = anon_vma_alloc(); 189 if (unlikely(!anon_vma)) 190 goto out_enomem_free_avc; 191 allocated = anon_vma; 192 } 193 194 anon_vma_lock_write(anon_vma); 195 /* page_table_lock to protect against threads */ 196 spin_lock(&mm->page_table_lock); 197 if (likely(!vma->anon_vma)) { 198 vma->anon_vma = anon_vma; 199 anon_vma_chain_link(vma, avc, anon_vma); 200 /* vma reference or self-parent link for new root */ 201 anon_vma->degree++; 202 allocated = NULL; 203 avc = NULL; 204 } 205 spin_unlock(&mm->page_table_lock); 206 anon_vma_unlock_write(anon_vma); 207 208 if (unlikely(allocated)) 209 put_anon_vma(allocated); 210 if (unlikely(avc)) 211 anon_vma_chain_free(avc); 212 213 return 0; 214 215 out_enomem_free_avc: 216 anon_vma_chain_free(avc); 217 out_enomem: 218 return -ENOMEM; 219 } 220 221 /* 222 * This is a useful helper function for locking the anon_vma root as 223 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 224 * have the same vma. 225 * 226 * Such anon_vma's should have the same root, so you'd expect to see 227 * just a single mutex_lock for the whole traversal. 228 */ 229 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 230 { 231 struct anon_vma *new_root = anon_vma->root; 232 if (new_root != root) { 233 if (WARN_ON_ONCE(root)) 234 up_write(&root->rwsem); 235 root = new_root; 236 down_write(&root->rwsem); 237 } 238 return root; 239 } 240 241 static inline void unlock_anon_vma_root(struct anon_vma *root) 242 { 243 if (root) 244 up_write(&root->rwsem); 245 } 246 247 /* 248 * Attach the anon_vmas from src to dst. 249 * Returns 0 on success, -ENOMEM on failure. 250 * 251 * If dst->anon_vma is NULL this function tries to find and reuse existing 252 * anon_vma which has no vmas and only one child anon_vma. This prevents 253 * degradation of anon_vma hierarchy to endless linear chain in case of 254 * constantly forking task. On the other hand, an anon_vma with more than one 255 * child isn't reused even if there was no alive vma, thus rmap walker has a 256 * good chance of avoiding scanning the whole hierarchy when it searches where 257 * page is mapped. 258 */ 259 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 260 { 261 struct anon_vma_chain *avc, *pavc; 262 struct anon_vma *root = NULL; 263 264 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 265 struct anon_vma *anon_vma; 266 267 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 268 if (unlikely(!avc)) { 269 unlock_anon_vma_root(root); 270 root = NULL; 271 avc = anon_vma_chain_alloc(GFP_KERNEL); 272 if (!avc) 273 goto enomem_failure; 274 } 275 anon_vma = pavc->anon_vma; 276 root = lock_anon_vma_root(root, anon_vma); 277 anon_vma_chain_link(dst, avc, anon_vma); 278 279 /* 280 * Reuse existing anon_vma if its degree lower than two, 281 * that means it has no vma and only one anon_vma child. 282 * 283 * Do not chose parent anon_vma, otherwise first child 284 * will always reuse it. Root anon_vma is never reused: 285 * it has self-parent reference and at least one child. 286 */ 287 if (!dst->anon_vma && anon_vma != src->anon_vma && 288 anon_vma->degree < 2) 289 dst->anon_vma = anon_vma; 290 } 291 if (dst->anon_vma) 292 dst->anon_vma->degree++; 293 unlock_anon_vma_root(root); 294 return 0; 295 296 enomem_failure: 297 /* 298 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 299 * decremented in unlink_anon_vmas(). 300 * We can safely do this because callers of anon_vma_clone() don't care 301 * about dst->anon_vma if anon_vma_clone() failed. 302 */ 303 dst->anon_vma = NULL; 304 unlink_anon_vmas(dst); 305 return -ENOMEM; 306 } 307 308 /* 309 * Attach vma to its own anon_vma, as well as to the anon_vmas that 310 * the corresponding VMA in the parent process is attached to. 311 * Returns 0 on success, non-zero on failure. 312 */ 313 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 314 { 315 struct anon_vma_chain *avc; 316 struct anon_vma *anon_vma; 317 int error; 318 319 /* Don't bother if the parent process has no anon_vma here. */ 320 if (!pvma->anon_vma) 321 return 0; 322 323 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 324 vma->anon_vma = NULL; 325 326 /* 327 * First, attach the new VMA to the parent VMA's anon_vmas, 328 * so rmap can find non-COWed pages in child processes. 329 */ 330 error = anon_vma_clone(vma, pvma); 331 if (error) 332 return error; 333 334 /* An existing anon_vma has been reused, all done then. */ 335 if (vma->anon_vma) 336 return 0; 337 338 /* Then add our own anon_vma. */ 339 anon_vma = anon_vma_alloc(); 340 if (!anon_vma) 341 goto out_error; 342 avc = anon_vma_chain_alloc(GFP_KERNEL); 343 if (!avc) 344 goto out_error_free_anon_vma; 345 346 /* 347 * The root anon_vma's spinlock is the lock actually used when we 348 * lock any of the anon_vmas in this anon_vma tree. 349 */ 350 anon_vma->root = pvma->anon_vma->root; 351 anon_vma->parent = pvma->anon_vma; 352 /* 353 * With refcounts, an anon_vma can stay around longer than the 354 * process it belongs to. The root anon_vma needs to be pinned until 355 * this anon_vma is freed, because the lock lives in the root. 356 */ 357 get_anon_vma(anon_vma->root); 358 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 359 vma->anon_vma = anon_vma; 360 anon_vma_lock_write(anon_vma); 361 anon_vma_chain_link(vma, avc, anon_vma); 362 anon_vma->parent->degree++; 363 anon_vma_unlock_write(anon_vma); 364 365 return 0; 366 367 out_error_free_anon_vma: 368 put_anon_vma(anon_vma); 369 out_error: 370 unlink_anon_vmas(vma); 371 return -ENOMEM; 372 } 373 374 void unlink_anon_vmas(struct vm_area_struct *vma) 375 { 376 struct anon_vma_chain *avc, *next; 377 struct anon_vma *root = NULL; 378 379 /* 380 * Unlink each anon_vma chained to the VMA. This list is ordered 381 * from newest to oldest, ensuring the root anon_vma gets freed last. 382 */ 383 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 384 struct anon_vma *anon_vma = avc->anon_vma; 385 386 root = lock_anon_vma_root(root, anon_vma); 387 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 388 389 /* 390 * Leave empty anon_vmas on the list - we'll need 391 * to free them outside the lock. 392 */ 393 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) { 394 anon_vma->parent->degree--; 395 continue; 396 } 397 398 list_del(&avc->same_vma); 399 anon_vma_chain_free(avc); 400 } 401 if (vma->anon_vma) 402 vma->anon_vma->degree--; 403 unlock_anon_vma_root(root); 404 405 /* 406 * Iterate the list once more, it now only contains empty and unlinked 407 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 408 * needing to write-acquire the anon_vma->root->rwsem. 409 */ 410 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 411 struct anon_vma *anon_vma = avc->anon_vma; 412 413 VM_WARN_ON(anon_vma->degree); 414 put_anon_vma(anon_vma); 415 416 list_del(&avc->same_vma); 417 anon_vma_chain_free(avc); 418 } 419 } 420 421 static void anon_vma_ctor(void *data) 422 { 423 struct anon_vma *anon_vma = data; 424 425 init_rwsem(&anon_vma->rwsem); 426 atomic_set(&anon_vma->refcount, 0); 427 anon_vma->rb_root = RB_ROOT; 428 } 429 430 void __init anon_vma_init(void) 431 { 432 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 433 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 434 anon_vma_ctor); 435 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 436 SLAB_PANIC|SLAB_ACCOUNT); 437 } 438 439 /* 440 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 441 * 442 * Since there is no serialization what so ever against page_remove_rmap() 443 * the best this function can do is return a locked anon_vma that might 444 * have been relevant to this page. 445 * 446 * The page might have been remapped to a different anon_vma or the anon_vma 447 * returned may already be freed (and even reused). 448 * 449 * In case it was remapped to a different anon_vma, the new anon_vma will be a 450 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 451 * ensure that any anon_vma obtained from the page will still be valid for as 452 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 453 * 454 * All users of this function must be very careful when walking the anon_vma 455 * chain and verify that the page in question is indeed mapped in it 456 * [ something equivalent to page_mapped_in_vma() ]. 457 * 458 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 459 * that the anon_vma pointer from page->mapping is valid if there is a 460 * mapcount, we can dereference the anon_vma after observing those. 461 */ 462 struct anon_vma *page_get_anon_vma(struct page *page) 463 { 464 struct anon_vma *anon_vma = NULL; 465 unsigned long anon_mapping; 466 467 rcu_read_lock(); 468 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 469 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 470 goto out; 471 if (!page_mapped(page)) 472 goto out; 473 474 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 475 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 476 anon_vma = NULL; 477 goto out; 478 } 479 480 /* 481 * If this page is still mapped, then its anon_vma cannot have been 482 * freed. But if it has been unmapped, we have no security against the 483 * anon_vma structure being freed and reused (for another anon_vma: 484 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 485 * above cannot corrupt). 486 */ 487 if (!page_mapped(page)) { 488 rcu_read_unlock(); 489 put_anon_vma(anon_vma); 490 return NULL; 491 } 492 out: 493 rcu_read_unlock(); 494 495 return anon_vma; 496 } 497 498 /* 499 * Similar to page_get_anon_vma() except it locks the anon_vma. 500 * 501 * Its a little more complex as it tries to keep the fast path to a single 502 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 503 * reference like with page_get_anon_vma() and then block on the mutex. 504 */ 505 struct anon_vma *page_lock_anon_vma_read(struct page *page) 506 { 507 struct anon_vma *anon_vma = NULL; 508 struct anon_vma *root_anon_vma; 509 unsigned long anon_mapping; 510 511 rcu_read_lock(); 512 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 513 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 514 goto out; 515 if (!page_mapped(page)) 516 goto out; 517 518 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 519 root_anon_vma = READ_ONCE(anon_vma->root); 520 if (down_read_trylock(&root_anon_vma->rwsem)) { 521 /* 522 * If the page is still mapped, then this anon_vma is still 523 * its anon_vma, and holding the mutex ensures that it will 524 * not go away, see anon_vma_free(). 525 */ 526 if (!page_mapped(page)) { 527 up_read(&root_anon_vma->rwsem); 528 anon_vma = NULL; 529 } 530 goto out; 531 } 532 533 /* trylock failed, we got to sleep */ 534 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 535 anon_vma = NULL; 536 goto out; 537 } 538 539 if (!page_mapped(page)) { 540 rcu_read_unlock(); 541 put_anon_vma(anon_vma); 542 return NULL; 543 } 544 545 /* we pinned the anon_vma, its safe to sleep */ 546 rcu_read_unlock(); 547 anon_vma_lock_read(anon_vma); 548 549 if (atomic_dec_and_test(&anon_vma->refcount)) { 550 /* 551 * Oops, we held the last refcount, release the lock 552 * and bail -- can't simply use put_anon_vma() because 553 * we'll deadlock on the anon_vma_lock_write() recursion. 554 */ 555 anon_vma_unlock_read(anon_vma); 556 __put_anon_vma(anon_vma); 557 anon_vma = NULL; 558 } 559 560 return anon_vma; 561 562 out: 563 rcu_read_unlock(); 564 return anon_vma; 565 } 566 567 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 568 { 569 anon_vma_unlock_read(anon_vma); 570 } 571 572 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 573 /* 574 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 575 * important if a PTE was dirty when it was unmapped that it's flushed 576 * before any IO is initiated on the page to prevent lost writes. Similarly, 577 * it must be flushed before freeing to prevent data leakage. 578 */ 579 void try_to_unmap_flush(void) 580 { 581 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 582 int cpu; 583 584 if (!tlb_ubc->flush_required) 585 return; 586 587 cpu = get_cpu(); 588 589 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) { 590 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 591 local_flush_tlb(); 592 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL); 593 } 594 595 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) 596 flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL); 597 cpumask_clear(&tlb_ubc->cpumask); 598 tlb_ubc->flush_required = false; 599 tlb_ubc->writable = false; 600 put_cpu(); 601 } 602 603 /* Flush iff there are potentially writable TLB entries that can race with IO */ 604 void try_to_unmap_flush_dirty(void) 605 { 606 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 607 608 if (tlb_ubc->writable) 609 try_to_unmap_flush(); 610 } 611 612 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 613 { 614 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 615 616 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm)); 617 tlb_ubc->flush_required = true; 618 619 /* 620 * If the PTE was dirty then it's best to assume it's writable. The 621 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 622 * before the page is queued for IO. 623 */ 624 if (writable) 625 tlb_ubc->writable = true; 626 } 627 628 /* 629 * Returns true if the TLB flush should be deferred to the end of a batch of 630 * unmap operations to reduce IPIs. 631 */ 632 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 633 { 634 bool should_defer = false; 635 636 if (!(flags & TTU_BATCH_FLUSH)) 637 return false; 638 639 /* If remote CPUs need to be flushed then defer batch the flush */ 640 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 641 should_defer = true; 642 put_cpu(); 643 644 return should_defer; 645 } 646 #else 647 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 648 { 649 } 650 651 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 652 { 653 return false; 654 } 655 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 656 657 /* 658 * At what user virtual address is page expected in vma? 659 * Caller should check the page is actually part of the vma. 660 */ 661 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 662 { 663 unsigned long address; 664 if (PageAnon(page)) { 665 struct anon_vma *page__anon_vma = page_anon_vma(page); 666 /* 667 * Note: swapoff's unuse_vma() is more efficient with this 668 * check, and needs it to match anon_vma when KSM is active. 669 */ 670 if (!vma->anon_vma || !page__anon_vma || 671 vma->anon_vma->root != page__anon_vma->root) 672 return -EFAULT; 673 } else if (page->mapping) { 674 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) 675 return -EFAULT; 676 } else 677 return -EFAULT; 678 address = __vma_address(page, vma); 679 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 680 return -EFAULT; 681 return address; 682 } 683 684 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 685 { 686 pgd_t *pgd; 687 pud_t *pud; 688 pmd_t *pmd = NULL; 689 pmd_t pmde; 690 691 pgd = pgd_offset(mm, address); 692 if (!pgd_present(*pgd)) 693 goto out; 694 695 pud = pud_offset(pgd, address); 696 if (!pud_present(*pud)) 697 goto out; 698 699 pmd = pmd_offset(pud, address); 700 /* 701 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 702 * without holding anon_vma lock for write. So when looking for a 703 * genuine pmde (in which to find pte), test present and !THP together. 704 */ 705 pmde = *pmd; 706 barrier(); 707 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 708 pmd = NULL; 709 out: 710 return pmd; 711 } 712 713 struct page_referenced_arg { 714 int mapcount; 715 int referenced; 716 unsigned long vm_flags; 717 struct mem_cgroup *memcg; 718 }; 719 /* 720 * arg: page_referenced_arg will be passed 721 */ 722 static int page_referenced_one(struct page *page, struct vm_area_struct *vma, 723 unsigned long address, void *arg) 724 { 725 struct page_referenced_arg *pra = arg; 726 struct page_vma_mapped_walk pvmw = { 727 .page = page, 728 .vma = vma, 729 .address = address, 730 }; 731 int referenced = 0; 732 733 while (page_vma_mapped_walk(&pvmw)) { 734 address = pvmw.address; 735 736 if (vma->vm_flags & VM_LOCKED) { 737 page_vma_mapped_walk_done(&pvmw); 738 pra->vm_flags |= VM_LOCKED; 739 return SWAP_FAIL; /* To break the loop */ 740 } 741 742 if (pvmw.pte) { 743 if (ptep_clear_flush_young_notify(vma, address, 744 pvmw.pte)) { 745 /* 746 * Don't treat a reference through 747 * a sequentially read mapping as such. 748 * If the page has been used in another mapping, 749 * we will catch it; if this other mapping is 750 * already gone, the unmap path will have set 751 * PG_referenced or activated the page. 752 */ 753 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 754 referenced++; 755 } 756 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 757 if (pmdp_clear_flush_young_notify(vma, address, 758 pvmw.pmd)) 759 referenced++; 760 } else { 761 /* unexpected pmd-mapped page? */ 762 WARN_ON_ONCE(1); 763 } 764 765 pra->mapcount--; 766 } 767 768 if (referenced) 769 clear_page_idle(page); 770 if (test_and_clear_page_young(page)) 771 referenced++; 772 773 if (referenced) { 774 pra->referenced++; 775 pra->vm_flags |= vma->vm_flags; 776 } 777 778 if (!pra->mapcount) 779 return SWAP_SUCCESS; /* To break the loop */ 780 781 return SWAP_AGAIN; 782 } 783 784 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 785 { 786 struct page_referenced_arg *pra = arg; 787 struct mem_cgroup *memcg = pra->memcg; 788 789 if (!mm_match_cgroup(vma->vm_mm, memcg)) 790 return true; 791 792 return false; 793 } 794 795 /** 796 * page_referenced - test if the page was referenced 797 * @page: the page to test 798 * @is_locked: caller holds lock on the page 799 * @memcg: target memory cgroup 800 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 801 * 802 * Quick test_and_clear_referenced for all mappings to a page, 803 * returns the number of ptes which referenced the page. 804 */ 805 int page_referenced(struct page *page, 806 int is_locked, 807 struct mem_cgroup *memcg, 808 unsigned long *vm_flags) 809 { 810 int ret; 811 int we_locked = 0; 812 struct page_referenced_arg pra = { 813 .mapcount = total_mapcount(page), 814 .memcg = memcg, 815 }; 816 struct rmap_walk_control rwc = { 817 .rmap_one = page_referenced_one, 818 .arg = (void *)&pra, 819 .anon_lock = page_lock_anon_vma_read, 820 }; 821 822 *vm_flags = 0; 823 if (!page_mapped(page)) 824 return 0; 825 826 if (!page_rmapping(page)) 827 return 0; 828 829 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 830 we_locked = trylock_page(page); 831 if (!we_locked) 832 return 1; 833 } 834 835 /* 836 * If we are reclaiming on behalf of a cgroup, skip 837 * counting on behalf of references from different 838 * cgroups 839 */ 840 if (memcg) { 841 rwc.invalid_vma = invalid_page_referenced_vma; 842 } 843 844 ret = rmap_walk(page, &rwc); 845 *vm_flags = pra.vm_flags; 846 847 if (we_locked) 848 unlock_page(page); 849 850 return pra.referenced; 851 } 852 853 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 854 unsigned long address, void *arg) 855 { 856 struct page_vma_mapped_walk pvmw = { 857 .page = page, 858 .vma = vma, 859 .address = address, 860 .flags = PVMW_SYNC, 861 }; 862 int *cleaned = arg; 863 864 while (page_vma_mapped_walk(&pvmw)) { 865 int ret = 0; 866 address = pvmw.address; 867 if (pvmw.pte) { 868 pte_t entry; 869 pte_t *pte = pvmw.pte; 870 871 if (!pte_dirty(*pte) && !pte_write(*pte)) 872 continue; 873 874 flush_cache_page(vma, address, pte_pfn(*pte)); 875 entry = ptep_clear_flush(vma, address, pte); 876 entry = pte_wrprotect(entry); 877 entry = pte_mkclean(entry); 878 set_pte_at(vma->vm_mm, address, pte, entry); 879 ret = 1; 880 } else { 881 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 882 pmd_t *pmd = pvmw.pmd; 883 pmd_t entry; 884 885 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 886 continue; 887 888 flush_cache_page(vma, address, page_to_pfn(page)); 889 entry = pmdp_huge_clear_flush(vma, address, pmd); 890 entry = pmd_wrprotect(entry); 891 entry = pmd_mkclean(entry); 892 set_pmd_at(vma->vm_mm, address, pmd, entry); 893 ret = 1; 894 #else 895 /* unexpected pmd-mapped page? */ 896 WARN_ON_ONCE(1); 897 #endif 898 } 899 900 if (ret) { 901 mmu_notifier_invalidate_page(vma->vm_mm, address); 902 (*cleaned)++; 903 } 904 } 905 906 return SWAP_AGAIN; 907 } 908 909 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 910 { 911 if (vma->vm_flags & VM_SHARED) 912 return false; 913 914 return true; 915 } 916 917 int page_mkclean(struct page *page) 918 { 919 int cleaned = 0; 920 struct address_space *mapping; 921 struct rmap_walk_control rwc = { 922 .arg = (void *)&cleaned, 923 .rmap_one = page_mkclean_one, 924 .invalid_vma = invalid_mkclean_vma, 925 }; 926 927 BUG_ON(!PageLocked(page)); 928 929 if (!page_mapped(page)) 930 return 0; 931 932 mapping = page_mapping(page); 933 if (!mapping) 934 return 0; 935 936 rmap_walk(page, &rwc); 937 938 return cleaned; 939 } 940 EXPORT_SYMBOL_GPL(page_mkclean); 941 942 /** 943 * page_move_anon_rmap - move a page to our anon_vma 944 * @page: the page to move to our anon_vma 945 * @vma: the vma the page belongs to 946 * 947 * When a page belongs exclusively to one process after a COW event, 948 * that page can be moved into the anon_vma that belongs to just that 949 * process, so the rmap code will not search the parent or sibling 950 * processes. 951 */ 952 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 953 { 954 struct anon_vma *anon_vma = vma->anon_vma; 955 956 page = compound_head(page); 957 958 VM_BUG_ON_PAGE(!PageLocked(page), page); 959 VM_BUG_ON_VMA(!anon_vma, vma); 960 961 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 962 /* 963 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 964 * simultaneously, so a concurrent reader (eg page_referenced()'s 965 * PageAnon()) will not see one without the other. 966 */ 967 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 968 } 969 970 /** 971 * __page_set_anon_rmap - set up new anonymous rmap 972 * @page: Page to add to rmap 973 * @vma: VM area to add page to. 974 * @address: User virtual address of the mapping 975 * @exclusive: the page is exclusively owned by the current process 976 */ 977 static void __page_set_anon_rmap(struct page *page, 978 struct vm_area_struct *vma, unsigned long address, int exclusive) 979 { 980 struct anon_vma *anon_vma = vma->anon_vma; 981 982 BUG_ON(!anon_vma); 983 984 if (PageAnon(page)) 985 return; 986 987 /* 988 * If the page isn't exclusively mapped into this vma, 989 * we must use the _oldest_ possible anon_vma for the 990 * page mapping! 991 */ 992 if (!exclusive) 993 anon_vma = anon_vma->root; 994 995 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 996 page->mapping = (struct address_space *) anon_vma; 997 page->index = linear_page_index(vma, address); 998 } 999 1000 /** 1001 * __page_check_anon_rmap - sanity check anonymous rmap addition 1002 * @page: the page to add the mapping to 1003 * @vma: the vm area in which the mapping is added 1004 * @address: the user virtual address mapped 1005 */ 1006 static void __page_check_anon_rmap(struct page *page, 1007 struct vm_area_struct *vma, unsigned long address) 1008 { 1009 #ifdef CONFIG_DEBUG_VM 1010 /* 1011 * The page's anon-rmap details (mapping and index) are guaranteed to 1012 * be set up correctly at this point. 1013 * 1014 * We have exclusion against page_add_anon_rmap because the caller 1015 * always holds the page locked, except if called from page_dup_rmap, 1016 * in which case the page is already known to be setup. 1017 * 1018 * We have exclusion against page_add_new_anon_rmap because those pages 1019 * are initially only visible via the pagetables, and the pte is locked 1020 * over the call to page_add_new_anon_rmap. 1021 */ 1022 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1023 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address)); 1024 #endif 1025 } 1026 1027 /** 1028 * page_add_anon_rmap - add pte mapping to an anonymous page 1029 * @page: the page to add the mapping to 1030 * @vma: the vm area in which the mapping is added 1031 * @address: the user virtual address mapped 1032 * @compound: charge the page as compound or small page 1033 * 1034 * The caller needs to hold the pte lock, and the page must be locked in 1035 * the anon_vma case: to serialize mapping,index checking after setting, 1036 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1037 * (but PageKsm is never downgraded to PageAnon). 1038 */ 1039 void page_add_anon_rmap(struct page *page, 1040 struct vm_area_struct *vma, unsigned long address, bool compound) 1041 { 1042 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); 1043 } 1044 1045 /* 1046 * Special version of the above for do_swap_page, which often runs 1047 * into pages that are exclusively owned by the current process. 1048 * Everybody else should continue to use page_add_anon_rmap above. 1049 */ 1050 void do_page_add_anon_rmap(struct page *page, 1051 struct vm_area_struct *vma, unsigned long address, int flags) 1052 { 1053 bool compound = flags & RMAP_COMPOUND; 1054 bool first; 1055 1056 if (compound) { 1057 atomic_t *mapcount; 1058 VM_BUG_ON_PAGE(!PageLocked(page), page); 1059 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1060 mapcount = compound_mapcount_ptr(page); 1061 first = atomic_inc_and_test(mapcount); 1062 } else { 1063 first = atomic_inc_and_test(&page->_mapcount); 1064 } 1065 1066 if (first) { 1067 int nr = compound ? hpage_nr_pages(page) : 1; 1068 /* 1069 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1070 * these counters are not modified in interrupt context, and 1071 * pte lock(a spinlock) is held, which implies preemption 1072 * disabled. 1073 */ 1074 if (compound) 1075 __inc_node_page_state(page, NR_ANON_THPS); 1076 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); 1077 } 1078 if (unlikely(PageKsm(page))) 1079 return; 1080 1081 VM_BUG_ON_PAGE(!PageLocked(page), page); 1082 1083 /* address might be in next vma when migration races vma_adjust */ 1084 if (first) 1085 __page_set_anon_rmap(page, vma, address, 1086 flags & RMAP_EXCLUSIVE); 1087 else 1088 __page_check_anon_rmap(page, vma, address); 1089 } 1090 1091 /** 1092 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1093 * @page: the page to add the mapping to 1094 * @vma: the vm area in which the mapping is added 1095 * @address: the user virtual address mapped 1096 * @compound: charge the page as compound or small page 1097 * 1098 * Same as page_add_anon_rmap but must only be called on *new* pages. 1099 * This means the inc-and-test can be bypassed. 1100 * Page does not have to be locked. 1101 */ 1102 void page_add_new_anon_rmap(struct page *page, 1103 struct vm_area_struct *vma, unsigned long address, bool compound) 1104 { 1105 int nr = compound ? hpage_nr_pages(page) : 1; 1106 1107 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1108 __SetPageSwapBacked(page); 1109 if (compound) { 1110 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1111 /* increment count (starts at -1) */ 1112 atomic_set(compound_mapcount_ptr(page), 0); 1113 __inc_node_page_state(page, NR_ANON_THPS); 1114 } else { 1115 /* Anon THP always mapped first with PMD */ 1116 VM_BUG_ON_PAGE(PageTransCompound(page), page); 1117 /* increment count (starts at -1) */ 1118 atomic_set(&page->_mapcount, 0); 1119 } 1120 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); 1121 __page_set_anon_rmap(page, vma, address, 1); 1122 } 1123 1124 /** 1125 * page_add_file_rmap - add pte mapping to a file page 1126 * @page: the page to add the mapping to 1127 * 1128 * The caller needs to hold the pte lock. 1129 */ 1130 void page_add_file_rmap(struct page *page, bool compound) 1131 { 1132 int i, nr = 1; 1133 1134 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1135 lock_page_memcg(page); 1136 if (compound && PageTransHuge(page)) { 1137 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1138 if (atomic_inc_and_test(&page[i]._mapcount)) 1139 nr++; 1140 } 1141 if (!atomic_inc_and_test(compound_mapcount_ptr(page))) 1142 goto out; 1143 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 1144 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED); 1145 } else { 1146 if (PageTransCompound(page) && page_mapping(page)) { 1147 VM_WARN_ON_ONCE(!PageLocked(page)); 1148 1149 SetPageDoubleMap(compound_head(page)); 1150 if (PageMlocked(page)) 1151 clear_page_mlock(compound_head(page)); 1152 } 1153 if (!atomic_inc_and_test(&page->_mapcount)) 1154 goto out; 1155 } 1156 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr); 1157 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); 1158 out: 1159 unlock_page_memcg(page); 1160 } 1161 1162 static void page_remove_file_rmap(struct page *page, bool compound) 1163 { 1164 int i, nr = 1; 1165 1166 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1167 lock_page_memcg(page); 1168 1169 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1170 if (unlikely(PageHuge(page))) { 1171 /* hugetlb pages are always mapped with pmds */ 1172 atomic_dec(compound_mapcount_ptr(page)); 1173 goto out; 1174 } 1175 1176 /* page still mapped by someone else? */ 1177 if (compound && PageTransHuge(page)) { 1178 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1179 if (atomic_add_negative(-1, &page[i]._mapcount)) 1180 nr++; 1181 } 1182 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1183 goto out; 1184 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 1185 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED); 1186 } else { 1187 if (!atomic_add_negative(-1, &page->_mapcount)) 1188 goto out; 1189 } 1190 1191 /* 1192 * We use the irq-unsafe __{inc|mod}_zone_page_state because 1193 * these counters are not modified in interrupt context, and 1194 * pte lock(a spinlock) is held, which implies preemption disabled. 1195 */ 1196 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr); 1197 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); 1198 1199 if (unlikely(PageMlocked(page))) 1200 clear_page_mlock(page); 1201 out: 1202 unlock_page_memcg(page); 1203 } 1204 1205 static void page_remove_anon_compound_rmap(struct page *page) 1206 { 1207 int i, nr; 1208 1209 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1210 return; 1211 1212 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1213 if (unlikely(PageHuge(page))) 1214 return; 1215 1216 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1217 return; 1218 1219 __dec_node_page_state(page, NR_ANON_THPS); 1220 1221 if (TestClearPageDoubleMap(page)) { 1222 /* 1223 * Subpages can be mapped with PTEs too. Check how many of 1224 * themi are still mapped. 1225 */ 1226 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1227 if (atomic_add_negative(-1, &page[i]._mapcount)) 1228 nr++; 1229 } 1230 } else { 1231 nr = HPAGE_PMD_NR; 1232 } 1233 1234 if (unlikely(PageMlocked(page))) 1235 clear_page_mlock(page); 1236 1237 if (nr) { 1238 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr); 1239 deferred_split_huge_page(page); 1240 } 1241 } 1242 1243 /** 1244 * page_remove_rmap - take down pte mapping from a page 1245 * @page: page to remove mapping from 1246 * @compound: uncharge the page as compound or small page 1247 * 1248 * The caller needs to hold the pte lock. 1249 */ 1250 void page_remove_rmap(struct page *page, bool compound) 1251 { 1252 if (!PageAnon(page)) 1253 return page_remove_file_rmap(page, compound); 1254 1255 if (compound) 1256 return page_remove_anon_compound_rmap(page); 1257 1258 /* page still mapped by someone else? */ 1259 if (!atomic_add_negative(-1, &page->_mapcount)) 1260 return; 1261 1262 /* 1263 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1264 * these counters are not modified in interrupt context, and 1265 * pte lock(a spinlock) is held, which implies preemption disabled. 1266 */ 1267 __dec_node_page_state(page, NR_ANON_MAPPED); 1268 1269 if (unlikely(PageMlocked(page))) 1270 clear_page_mlock(page); 1271 1272 if (PageTransCompound(page)) 1273 deferred_split_huge_page(compound_head(page)); 1274 1275 /* 1276 * It would be tidy to reset the PageAnon mapping here, 1277 * but that might overwrite a racing page_add_anon_rmap 1278 * which increments mapcount after us but sets mapping 1279 * before us: so leave the reset to free_hot_cold_page, 1280 * and remember that it's only reliable while mapped. 1281 * Leaving it set also helps swapoff to reinstate ptes 1282 * faster for those pages still in swapcache. 1283 */ 1284 } 1285 1286 struct rmap_private { 1287 enum ttu_flags flags; 1288 int lazyfreed; 1289 }; 1290 1291 /* 1292 * @arg: enum ttu_flags will be passed to this argument 1293 */ 1294 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1295 unsigned long address, void *arg) 1296 { 1297 struct mm_struct *mm = vma->vm_mm; 1298 struct page_vma_mapped_walk pvmw = { 1299 .page = page, 1300 .vma = vma, 1301 .address = address, 1302 }; 1303 pte_t pteval; 1304 struct page *subpage; 1305 int ret = SWAP_AGAIN; 1306 struct rmap_private *rp = arg; 1307 enum ttu_flags flags = rp->flags; 1308 1309 /* munlock has nothing to gain from examining un-locked vmas */ 1310 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) 1311 return SWAP_AGAIN; 1312 1313 if (flags & TTU_SPLIT_HUGE_PMD) { 1314 split_huge_pmd_address(vma, address, 1315 flags & TTU_MIGRATION, page); 1316 } 1317 1318 while (page_vma_mapped_walk(&pvmw)) { 1319 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); 1320 address = pvmw.address; 1321 1322 /* Unexpected PMD-mapped THP? */ 1323 VM_BUG_ON_PAGE(!pvmw.pte, page); 1324 1325 /* 1326 * If the page is mlock()d, we cannot swap it out. 1327 * If it's recently referenced (perhaps page_referenced 1328 * skipped over this mm) then we should reactivate it. 1329 */ 1330 if (!(flags & TTU_IGNORE_MLOCK)) { 1331 if (vma->vm_flags & VM_LOCKED) { 1332 /* PTE-mapped THP are never mlocked */ 1333 if (!PageTransCompound(page)) { 1334 /* 1335 * Holding pte lock, we do *not* need 1336 * mmap_sem here 1337 */ 1338 mlock_vma_page(page); 1339 } 1340 ret = SWAP_MLOCK; 1341 page_vma_mapped_walk_done(&pvmw); 1342 break; 1343 } 1344 if (flags & TTU_MUNLOCK) 1345 continue; 1346 } 1347 1348 if (!(flags & TTU_IGNORE_ACCESS)) { 1349 if (ptep_clear_flush_young_notify(vma, address, 1350 pvmw.pte)) { 1351 ret = SWAP_FAIL; 1352 page_vma_mapped_walk_done(&pvmw); 1353 break; 1354 } 1355 } 1356 1357 /* Nuke the page table entry. */ 1358 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1359 if (should_defer_flush(mm, flags)) { 1360 /* 1361 * We clear the PTE but do not flush so potentially 1362 * a remote CPU could still be writing to the page. 1363 * If the entry was previously clean then the 1364 * architecture must guarantee that a clear->dirty 1365 * transition on a cached TLB entry is written through 1366 * and traps if the PTE is unmapped. 1367 */ 1368 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1369 1370 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1371 } else { 1372 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1373 } 1374 1375 /* Move the dirty bit to the page. Now the pte is gone. */ 1376 if (pte_dirty(pteval)) 1377 set_page_dirty(page); 1378 1379 /* Update high watermark before we lower rss */ 1380 update_hiwater_rss(mm); 1381 1382 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1383 if (PageHuge(page)) { 1384 int nr = 1 << compound_order(page); 1385 hugetlb_count_sub(nr, mm); 1386 } else { 1387 dec_mm_counter(mm, mm_counter(page)); 1388 } 1389 1390 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1391 set_pte_at(mm, address, pvmw.pte, pteval); 1392 } else if (pte_unused(pteval)) { 1393 /* 1394 * The guest indicated that the page content is of no 1395 * interest anymore. Simply discard the pte, vmscan 1396 * will take care of the rest. 1397 */ 1398 dec_mm_counter(mm, mm_counter(page)); 1399 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1400 (flags & TTU_MIGRATION)) { 1401 swp_entry_t entry; 1402 pte_t swp_pte; 1403 /* 1404 * Store the pfn of the page in a special migration 1405 * pte. do_swap_page() will wait until the migration 1406 * pte is removed and then restart fault handling. 1407 */ 1408 entry = make_migration_entry(subpage, 1409 pte_write(pteval)); 1410 swp_pte = swp_entry_to_pte(entry); 1411 if (pte_soft_dirty(pteval)) 1412 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1413 set_pte_at(mm, address, pvmw.pte, swp_pte); 1414 } else if (PageAnon(page)) { 1415 swp_entry_t entry = { .val = page_private(subpage) }; 1416 pte_t swp_pte; 1417 /* 1418 * Store the swap location in the pte. 1419 * See handle_pte_fault() ... 1420 */ 1421 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 1422 1423 if (!PageDirty(page) && (flags & TTU_LZFREE)) { 1424 /* It's a freeable page by MADV_FREE */ 1425 dec_mm_counter(mm, MM_ANONPAGES); 1426 rp->lazyfreed++; 1427 goto discard; 1428 } 1429 1430 if (swap_duplicate(entry) < 0) { 1431 set_pte_at(mm, address, pvmw.pte, pteval); 1432 ret = SWAP_FAIL; 1433 page_vma_mapped_walk_done(&pvmw); 1434 break; 1435 } 1436 if (list_empty(&mm->mmlist)) { 1437 spin_lock(&mmlist_lock); 1438 if (list_empty(&mm->mmlist)) 1439 list_add(&mm->mmlist, &init_mm.mmlist); 1440 spin_unlock(&mmlist_lock); 1441 } 1442 dec_mm_counter(mm, MM_ANONPAGES); 1443 inc_mm_counter(mm, MM_SWAPENTS); 1444 swp_pte = swp_entry_to_pte(entry); 1445 if (pte_soft_dirty(pteval)) 1446 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1447 set_pte_at(mm, address, pvmw.pte, swp_pte); 1448 } else 1449 dec_mm_counter(mm, mm_counter_file(page)); 1450 discard: 1451 page_remove_rmap(subpage, PageHuge(page)); 1452 put_page(page); 1453 mmu_notifier_invalidate_page(mm, address); 1454 } 1455 return ret; 1456 } 1457 1458 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1459 { 1460 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1461 1462 if (!maybe_stack) 1463 return false; 1464 1465 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1466 VM_STACK_INCOMPLETE_SETUP) 1467 return true; 1468 1469 return false; 1470 } 1471 1472 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1473 { 1474 return is_vma_temporary_stack(vma); 1475 } 1476 1477 static int page_mapcount_is_zero(struct page *page) 1478 { 1479 return !total_mapcount(page); 1480 } 1481 1482 /** 1483 * try_to_unmap - try to remove all page table mappings to a page 1484 * @page: the page to get unmapped 1485 * @flags: action and flags 1486 * 1487 * Tries to remove all the page table entries which are mapping this 1488 * page, used in the pageout path. Caller must hold the page lock. 1489 * Return values are: 1490 * 1491 * SWAP_SUCCESS - we succeeded in removing all mappings 1492 * SWAP_AGAIN - we missed a mapping, try again later 1493 * SWAP_FAIL - the page is unswappable 1494 * SWAP_MLOCK - page is mlocked. 1495 */ 1496 int try_to_unmap(struct page *page, enum ttu_flags flags) 1497 { 1498 int ret; 1499 struct rmap_private rp = { 1500 .flags = flags, 1501 .lazyfreed = 0, 1502 }; 1503 1504 struct rmap_walk_control rwc = { 1505 .rmap_one = try_to_unmap_one, 1506 .arg = &rp, 1507 .done = page_mapcount_is_zero, 1508 .anon_lock = page_lock_anon_vma_read, 1509 }; 1510 1511 /* 1512 * During exec, a temporary VMA is setup and later moved. 1513 * The VMA is moved under the anon_vma lock but not the 1514 * page tables leading to a race where migration cannot 1515 * find the migration ptes. Rather than increasing the 1516 * locking requirements of exec(), migration skips 1517 * temporary VMAs until after exec() completes. 1518 */ 1519 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) 1520 rwc.invalid_vma = invalid_migration_vma; 1521 1522 if (flags & TTU_RMAP_LOCKED) 1523 ret = rmap_walk_locked(page, &rwc); 1524 else 1525 ret = rmap_walk(page, &rwc); 1526 1527 if (ret != SWAP_MLOCK && !page_mapcount(page)) { 1528 ret = SWAP_SUCCESS; 1529 if (rp.lazyfreed && !PageDirty(page)) 1530 ret = SWAP_LZFREE; 1531 } 1532 return ret; 1533 } 1534 1535 static int page_not_mapped(struct page *page) 1536 { 1537 return !page_mapped(page); 1538 }; 1539 1540 /** 1541 * try_to_munlock - try to munlock a page 1542 * @page: the page to be munlocked 1543 * 1544 * Called from munlock code. Checks all of the VMAs mapping the page 1545 * to make sure nobody else has this page mlocked. The page will be 1546 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1547 * 1548 * Return values are: 1549 * 1550 * SWAP_AGAIN - no vma is holding page mlocked, or, 1551 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1552 * SWAP_FAIL - page cannot be located at present 1553 * SWAP_MLOCK - page is now mlocked. 1554 */ 1555 int try_to_munlock(struct page *page) 1556 { 1557 int ret; 1558 struct rmap_private rp = { 1559 .flags = TTU_MUNLOCK, 1560 .lazyfreed = 0, 1561 }; 1562 1563 struct rmap_walk_control rwc = { 1564 .rmap_one = try_to_unmap_one, 1565 .arg = &rp, 1566 .done = page_not_mapped, 1567 .anon_lock = page_lock_anon_vma_read, 1568 1569 }; 1570 1571 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 1572 1573 ret = rmap_walk(page, &rwc); 1574 return ret; 1575 } 1576 1577 void __put_anon_vma(struct anon_vma *anon_vma) 1578 { 1579 struct anon_vma *root = anon_vma->root; 1580 1581 anon_vma_free(anon_vma); 1582 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1583 anon_vma_free(root); 1584 } 1585 1586 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 1587 struct rmap_walk_control *rwc) 1588 { 1589 struct anon_vma *anon_vma; 1590 1591 if (rwc->anon_lock) 1592 return rwc->anon_lock(page); 1593 1594 /* 1595 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1596 * because that depends on page_mapped(); but not all its usages 1597 * are holding mmap_sem. Users without mmap_sem are required to 1598 * take a reference count to prevent the anon_vma disappearing 1599 */ 1600 anon_vma = page_anon_vma(page); 1601 if (!anon_vma) 1602 return NULL; 1603 1604 anon_vma_lock_read(anon_vma); 1605 return anon_vma; 1606 } 1607 1608 /* 1609 * rmap_walk_anon - do something to anonymous page using the object-based 1610 * rmap method 1611 * @page: the page to be handled 1612 * @rwc: control variable according to each walk type 1613 * 1614 * Find all the mappings of a page using the mapping pointer and the vma chains 1615 * contained in the anon_vma struct it points to. 1616 * 1617 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1618 * where the page was found will be held for write. So, we won't recheck 1619 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1620 * LOCKED. 1621 */ 1622 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, 1623 bool locked) 1624 { 1625 struct anon_vma *anon_vma; 1626 pgoff_t pgoff_start, pgoff_end; 1627 struct anon_vma_chain *avc; 1628 int ret = SWAP_AGAIN; 1629 1630 if (locked) { 1631 anon_vma = page_anon_vma(page); 1632 /* anon_vma disappear under us? */ 1633 VM_BUG_ON_PAGE(!anon_vma, page); 1634 } else { 1635 anon_vma = rmap_walk_anon_lock(page, rwc); 1636 } 1637 if (!anon_vma) 1638 return ret; 1639 1640 pgoff_start = page_to_pgoff(page); 1641 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; 1642 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 1643 pgoff_start, pgoff_end) { 1644 struct vm_area_struct *vma = avc->vma; 1645 unsigned long address = vma_address(page, vma); 1646 1647 cond_resched(); 1648 1649 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1650 continue; 1651 1652 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1653 if (ret != SWAP_AGAIN) 1654 break; 1655 if (rwc->done && rwc->done(page)) 1656 break; 1657 } 1658 1659 if (!locked) 1660 anon_vma_unlock_read(anon_vma); 1661 return ret; 1662 } 1663 1664 /* 1665 * rmap_walk_file - do something to file page using the object-based rmap method 1666 * @page: the page to be handled 1667 * @rwc: control variable according to each walk type 1668 * 1669 * Find all the mappings of a page using the mapping pointer and the vma chains 1670 * contained in the address_space struct it points to. 1671 * 1672 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1673 * where the page was found will be held for write. So, we won't recheck 1674 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1675 * LOCKED. 1676 */ 1677 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, 1678 bool locked) 1679 { 1680 struct address_space *mapping = page_mapping(page); 1681 pgoff_t pgoff_start, pgoff_end; 1682 struct vm_area_struct *vma; 1683 int ret = SWAP_AGAIN; 1684 1685 /* 1686 * The page lock not only makes sure that page->mapping cannot 1687 * suddenly be NULLified by truncation, it makes sure that the 1688 * structure at mapping cannot be freed and reused yet, 1689 * so we can safely take mapping->i_mmap_rwsem. 1690 */ 1691 VM_BUG_ON_PAGE(!PageLocked(page), page); 1692 1693 if (!mapping) 1694 return ret; 1695 1696 pgoff_start = page_to_pgoff(page); 1697 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; 1698 if (!locked) 1699 i_mmap_lock_read(mapping); 1700 vma_interval_tree_foreach(vma, &mapping->i_mmap, 1701 pgoff_start, pgoff_end) { 1702 unsigned long address = vma_address(page, vma); 1703 1704 cond_resched(); 1705 1706 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1707 continue; 1708 1709 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1710 if (ret != SWAP_AGAIN) 1711 goto done; 1712 if (rwc->done && rwc->done(page)) 1713 goto done; 1714 } 1715 1716 done: 1717 if (!locked) 1718 i_mmap_unlock_read(mapping); 1719 return ret; 1720 } 1721 1722 int rmap_walk(struct page *page, struct rmap_walk_control *rwc) 1723 { 1724 if (unlikely(PageKsm(page))) 1725 return rmap_walk_ksm(page, rwc); 1726 else if (PageAnon(page)) 1727 return rmap_walk_anon(page, rwc, false); 1728 else 1729 return rmap_walk_file(page, rwc, false); 1730 } 1731 1732 /* Like rmap_walk, but caller holds relevant rmap lock */ 1733 int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) 1734 { 1735 /* no ksm support for now */ 1736 VM_BUG_ON_PAGE(PageKsm(page), page); 1737 if (PageAnon(page)) 1738 return rmap_walk_anon(page, rwc, true); 1739 else 1740 return rmap_walk_file(page, rwc, true); 1741 } 1742 1743 #ifdef CONFIG_HUGETLB_PAGE 1744 /* 1745 * The following three functions are for anonymous (private mapped) hugepages. 1746 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1747 * and no lru code, because we handle hugepages differently from common pages. 1748 */ 1749 static void __hugepage_set_anon_rmap(struct page *page, 1750 struct vm_area_struct *vma, unsigned long address, int exclusive) 1751 { 1752 struct anon_vma *anon_vma = vma->anon_vma; 1753 1754 BUG_ON(!anon_vma); 1755 1756 if (PageAnon(page)) 1757 return; 1758 if (!exclusive) 1759 anon_vma = anon_vma->root; 1760 1761 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1762 page->mapping = (struct address_space *) anon_vma; 1763 page->index = linear_page_index(vma, address); 1764 } 1765 1766 void hugepage_add_anon_rmap(struct page *page, 1767 struct vm_area_struct *vma, unsigned long address) 1768 { 1769 struct anon_vma *anon_vma = vma->anon_vma; 1770 int first; 1771 1772 BUG_ON(!PageLocked(page)); 1773 BUG_ON(!anon_vma); 1774 /* address might be in next vma when migration races vma_adjust */ 1775 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 1776 if (first) 1777 __hugepage_set_anon_rmap(page, vma, address, 0); 1778 } 1779 1780 void hugepage_add_new_anon_rmap(struct page *page, 1781 struct vm_area_struct *vma, unsigned long address) 1782 { 1783 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1784 atomic_set(compound_mapcount_ptr(page), 0); 1785 __hugepage_set_anon_rmap(page, vma, address, 1); 1786 } 1787 #endif /* CONFIG_HUGETLB_PAGE */ 1788