1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * page->flags PG_locked (lock_page) 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * folio_lock_memcg move_lock (in block_dirty_folio) 36 * i_pages lock (widely used) 37 * lruvec->lru_lock (in folio_lruvec_lock_irq) 38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 40 * sb_lock (within inode_lock in fs/fs-writeback.c) 41 * i_pages lock (widely used, in set_page_dirty, 42 * in arch-dependent flush_dcache_mmap_lock, 43 * within bdi.wb->list_lock in __sync_single_inode) 44 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 47 * pte map lock 48 * 49 * hugetlbfs PageHuge() take locks in this order: 50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 51 * vma_lock (hugetlb specific lock for pmd_sharing) 52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 53 * page->flags PG_locked (lock_page) 54 */ 55 56 #include <linux/mm.h> 57 #include <linux/sched/mm.h> 58 #include <linux/sched/task.h> 59 #include <linux/pagemap.h> 60 #include <linux/swap.h> 61 #include <linux/swapops.h> 62 #include <linux/slab.h> 63 #include <linux/init.h> 64 #include <linux/ksm.h> 65 #include <linux/rmap.h> 66 #include <linux/rcupdate.h> 67 #include <linux/export.h> 68 #include <linux/memcontrol.h> 69 #include <linux/mmu_notifier.h> 70 #include <linux/migrate.h> 71 #include <linux/hugetlb.h> 72 #include <linux/huge_mm.h> 73 #include <linux/backing-dev.h> 74 #include <linux/page_idle.h> 75 #include <linux/memremap.h> 76 #include <linux/userfaultfd_k.h> 77 #include <linux/mm_inline.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/tlb.h> 83 #include <trace/events/migrate.h> 84 85 #include "internal.h" 86 87 static struct kmem_cache *anon_vma_cachep; 88 static struct kmem_cache *anon_vma_chain_cachep; 89 90 static inline struct anon_vma *anon_vma_alloc(void) 91 { 92 struct anon_vma *anon_vma; 93 94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 95 if (anon_vma) { 96 atomic_set(&anon_vma->refcount, 1); 97 anon_vma->num_children = 0; 98 anon_vma->num_active_vmas = 0; 99 anon_vma->parent = anon_vma; 100 /* 101 * Initialise the anon_vma root to point to itself. If called 102 * from fork, the root will be reset to the parents anon_vma. 103 */ 104 anon_vma->root = anon_vma; 105 } 106 107 return anon_vma; 108 } 109 110 static inline void anon_vma_free(struct anon_vma *anon_vma) 111 { 112 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 113 114 /* 115 * Synchronize against folio_lock_anon_vma_read() such that 116 * we can safely hold the lock without the anon_vma getting 117 * freed. 118 * 119 * Relies on the full mb implied by the atomic_dec_and_test() from 120 * put_anon_vma() against the acquire barrier implied by 121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 122 * 123 * folio_lock_anon_vma_read() VS put_anon_vma() 124 * down_read_trylock() atomic_dec_and_test() 125 * LOCK MB 126 * atomic_read() rwsem_is_locked() 127 * 128 * LOCK should suffice since the actual taking of the lock must 129 * happen _before_ what follows. 130 */ 131 might_sleep(); 132 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 133 anon_vma_lock_write(anon_vma); 134 anon_vma_unlock_write(anon_vma); 135 } 136 137 kmem_cache_free(anon_vma_cachep, anon_vma); 138 } 139 140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 141 { 142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 143 } 144 145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 146 { 147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 148 } 149 150 static void anon_vma_chain_link(struct vm_area_struct *vma, 151 struct anon_vma_chain *avc, 152 struct anon_vma *anon_vma) 153 { 154 avc->vma = vma; 155 avc->anon_vma = anon_vma; 156 list_add(&avc->same_vma, &vma->anon_vma_chain); 157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 158 } 159 160 /** 161 * __anon_vma_prepare - attach an anon_vma to a memory region 162 * @vma: the memory region in question 163 * 164 * This makes sure the memory mapping described by 'vma' has 165 * an 'anon_vma' attached to it, so that we can associate the 166 * anonymous pages mapped into it with that anon_vma. 167 * 168 * The common case will be that we already have one, which 169 * is handled inline by anon_vma_prepare(). But if 170 * not we either need to find an adjacent mapping that we 171 * can re-use the anon_vma from (very common when the only 172 * reason for splitting a vma has been mprotect()), or we 173 * allocate a new one. 174 * 175 * Anon-vma allocations are very subtle, because we may have 176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 177 * and that may actually touch the rwsem even in the newly 178 * allocated vma (it depends on RCU to make sure that the 179 * anon_vma isn't actually destroyed). 180 * 181 * As a result, we need to do proper anon_vma locking even 182 * for the new allocation. At the same time, we do not want 183 * to do any locking for the common case of already having 184 * an anon_vma. 185 * 186 * This must be called with the mmap_lock held for reading. 187 */ 188 int __anon_vma_prepare(struct vm_area_struct *vma) 189 { 190 struct mm_struct *mm = vma->vm_mm; 191 struct anon_vma *anon_vma, *allocated; 192 struct anon_vma_chain *avc; 193 194 might_sleep(); 195 196 avc = anon_vma_chain_alloc(GFP_KERNEL); 197 if (!avc) 198 goto out_enomem; 199 200 anon_vma = find_mergeable_anon_vma(vma); 201 allocated = NULL; 202 if (!anon_vma) { 203 anon_vma = anon_vma_alloc(); 204 if (unlikely(!anon_vma)) 205 goto out_enomem_free_avc; 206 anon_vma->num_children++; /* self-parent link for new root */ 207 allocated = anon_vma; 208 } 209 210 anon_vma_lock_write(anon_vma); 211 /* page_table_lock to protect against threads */ 212 spin_lock(&mm->page_table_lock); 213 if (likely(!vma->anon_vma)) { 214 vma->anon_vma = anon_vma; 215 anon_vma_chain_link(vma, avc, anon_vma); 216 anon_vma->num_active_vmas++; 217 allocated = NULL; 218 avc = NULL; 219 } 220 spin_unlock(&mm->page_table_lock); 221 anon_vma_unlock_write(anon_vma); 222 223 if (unlikely(allocated)) 224 put_anon_vma(allocated); 225 if (unlikely(avc)) 226 anon_vma_chain_free(avc); 227 228 return 0; 229 230 out_enomem_free_avc: 231 anon_vma_chain_free(avc); 232 out_enomem: 233 return -ENOMEM; 234 } 235 236 /* 237 * This is a useful helper function for locking the anon_vma root as 238 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 239 * have the same vma. 240 * 241 * Such anon_vma's should have the same root, so you'd expect to see 242 * just a single mutex_lock for the whole traversal. 243 */ 244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 245 { 246 struct anon_vma *new_root = anon_vma->root; 247 if (new_root != root) { 248 if (WARN_ON_ONCE(root)) 249 up_write(&root->rwsem); 250 root = new_root; 251 down_write(&root->rwsem); 252 } 253 return root; 254 } 255 256 static inline void unlock_anon_vma_root(struct anon_vma *root) 257 { 258 if (root) 259 up_write(&root->rwsem); 260 } 261 262 /* 263 * Attach the anon_vmas from src to dst. 264 * Returns 0 on success, -ENOMEM on failure. 265 * 266 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 267 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 268 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 269 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 270 * call, we can identify this case by checking (!dst->anon_vma && 271 * src->anon_vma). 272 * 273 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 274 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 275 * This prevents degradation of anon_vma hierarchy to endless linear chain in 276 * case of constantly forking task. On the other hand, an anon_vma with more 277 * than one child isn't reused even if there was no alive vma, thus rmap 278 * walker has a good chance of avoiding scanning the whole hierarchy when it 279 * searches where page is mapped. 280 */ 281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 282 { 283 struct anon_vma_chain *avc, *pavc; 284 struct anon_vma *root = NULL; 285 286 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 287 struct anon_vma *anon_vma; 288 289 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 290 if (unlikely(!avc)) { 291 unlock_anon_vma_root(root); 292 root = NULL; 293 avc = anon_vma_chain_alloc(GFP_KERNEL); 294 if (!avc) 295 goto enomem_failure; 296 } 297 anon_vma = pavc->anon_vma; 298 root = lock_anon_vma_root(root, anon_vma); 299 anon_vma_chain_link(dst, avc, anon_vma); 300 301 /* 302 * Reuse existing anon_vma if it has no vma and only one 303 * anon_vma child. 304 * 305 * Root anon_vma is never reused: 306 * it has self-parent reference and at least one child. 307 */ 308 if (!dst->anon_vma && src->anon_vma && 309 anon_vma->num_children < 2 && 310 anon_vma->num_active_vmas == 0) 311 dst->anon_vma = anon_vma; 312 } 313 if (dst->anon_vma) 314 dst->anon_vma->num_active_vmas++; 315 unlock_anon_vma_root(root); 316 return 0; 317 318 enomem_failure: 319 /* 320 * dst->anon_vma is dropped here otherwise its num_active_vmas can 321 * be incorrectly decremented in unlink_anon_vmas(). 322 * We can safely do this because callers of anon_vma_clone() don't care 323 * about dst->anon_vma if anon_vma_clone() failed. 324 */ 325 dst->anon_vma = NULL; 326 unlink_anon_vmas(dst); 327 return -ENOMEM; 328 } 329 330 /* 331 * Attach vma to its own anon_vma, as well as to the anon_vmas that 332 * the corresponding VMA in the parent process is attached to. 333 * Returns 0 on success, non-zero on failure. 334 */ 335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 336 { 337 struct anon_vma_chain *avc; 338 struct anon_vma *anon_vma; 339 int error; 340 341 /* Don't bother if the parent process has no anon_vma here. */ 342 if (!pvma->anon_vma) 343 return 0; 344 345 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 346 vma->anon_vma = NULL; 347 348 /* 349 * First, attach the new VMA to the parent VMA's anon_vmas, 350 * so rmap can find non-COWed pages in child processes. 351 */ 352 error = anon_vma_clone(vma, pvma); 353 if (error) 354 return error; 355 356 /* An existing anon_vma has been reused, all done then. */ 357 if (vma->anon_vma) 358 return 0; 359 360 /* Then add our own anon_vma. */ 361 anon_vma = anon_vma_alloc(); 362 if (!anon_vma) 363 goto out_error; 364 anon_vma->num_active_vmas++; 365 avc = anon_vma_chain_alloc(GFP_KERNEL); 366 if (!avc) 367 goto out_error_free_anon_vma; 368 369 /* 370 * The root anon_vma's rwsem is the lock actually used when we 371 * lock any of the anon_vmas in this anon_vma tree. 372 */ 373 anon_vma->root = pvma->anon_vma->root; 374 anon_vma->parent = pvma->anon_vma; 375 /* 376 * With refcounts, an anon_vma can stay around longer than the 377 * process it belongs to. The root anon_vma needs to be pinned until 378 * this anon_vma is freed, because the lock lives in the root. 379 */ 380 get_anon_vma(anon_vma->root); 381 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 382 vma->anon_vma = anon_vma; 383 anon_vma_lock_write(anon_vma); 384 anon_vma_chain_link(vma, avc, anon_vma); 385 anon_vma->parent->num_children++; 386 anon_vma_unlock_write(anon_vma); 387 388 return 0; 389 390 out_error_free_anon_vma: 391 put_anon_vma(anon_vma); 392 out_error: 393 unlink_anon_vmas(vma); 394 return -ENOMEM; 395 } 396 397 void unlink_anon_vmas(struct vm_area_struct *vma) 398 { 399 struct anon_vma_chain *avc, *next; 400 struct anon_vma *root = NULL; 401 402 /* 403 * Unlink each anon_vma chained to the VMA. This list is ordered 404 * from newest to oldest, ensuring the root anon_vma gets freed last. 405 */ 406 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 407 struct anon_vma *anon_vma = avc->anon_vma; 408 409 root = lock_anon_vma_root(root, anon_vma); 410 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 411 412 /* 413 * Leave empty anon_vmas on the list - we'll need 414 * to free them outside the lock. 415 */ 416 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 417 anon_vma->parent->num_children--; 418 continue; 419 } 420 421 list_del(&avc->same_vma); 422 anon_vma_chain_free(avc); 423 } 424 if (vma->anon_vma) { 425 vma->anon_vma->num_active_vmas--; 426 427 /* 428 * vma would still be needed after unlink, and anon_vma will be prepared 429 * when handle fault. 430 */ 431 vma->anon_vma = NULL; 432 } 433 unlock_anon_vma_root(root); 434 435 /* 436 * Iterate the list once more, it now only contains empty and unlinked 437 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 438 * needing to write-acquire the anon_vma->root->rwsem. 439 */ 440 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 441 struct anon_vma *anon_vma = avc->anon_vma; 442 443 VM_WARN_ON(anon_vma->num_children); 444 VM_WARN_ON(anon_vma->num_active_vmas); 445 put_anon_vma(anon_vma); 446 447 list_del(&avc->same_vma); 448 anon_vma_chain_free(avc); 449 } 450 } 451 452 static void anon_vma_ctor(void *data) 453 { 454 struct anon_vma *anon_vma = data; 455 456 init_rwsem(&anon_vma->rwsem); 457 atomic_set(&anon_vma->refcount, 0); 458 anon_vma->rb_root = RB_ROOT_CACHED; 459 } 460 461 void __init anon_vma_init(void) 462 { 463 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 464 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 465 anon_vma_ctor); 466 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 467 SLAB_PANIC|SLAB_ACCOUNT); 468 } 469 470 /* 471 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 472 * 473 * Since there is no serialization what so ever against page_remove_rmap() 474 * the best this function can do is return a refcount increased anon_vma 475 * that might have been relevant to this page. 476 * 477 * The page might have been remapped to a different anon_vma or the anon_vma 478 * returned may already be freed (and even reused). 479 * 480 * In case it was remapped to a different anon_vma, the new anon_vma will be a 481 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 482 * ensure that any anon_vma obtained from the page will still be valid for as 483 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 484 * 485 * All users of this function must be very careful when walking the anon_vma 486 * chain and verify that the page in question is indeed mapped in it 487 * [ something equivalent to page_mapped_in_vma() ]. 488 * 489 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 490 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 491 * if there is a mapcount, we can dereference the anon_vma after observing 492 * those. 493 */ 494 struct anon_vma *folio_get_anon_vma(struct folio *folio) 495 { 496 struct anon_vma *anon_vma = NULL; 497 unsigned long anon_mapping; 498 499 rcu_read_lock(); 500 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 501 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 502 goto out; 503 if (!folio_mapped(folio)) 504 goto out; 505 506 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 507 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 508 anon_vma = NULL; 509 goto out; 510 } 511 512 /* 513 * If this folio is still mapped, then its anon_vma cannot have been 514 * freed. But if it has been unmapped, we have no security against the 515 * anon_vma structure being freed and reused (for another anon_vma: 516 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 517 * above cannot corrupt). 518 */ 519 if (!folio_mapped(folio)) { 520 rcu_read_unlock(); 521 put_anon_vma(anon_vma); 522 return NULL; 523 } 524 out: 525 rcu_read_unlock(); 526 527 return anon_vma; 528 } 529 530 /* 531 * Similar to folio_get_anon_vma() except it locks the anon_vma. 532 * 533 * Its a little more complex as it tries to keep the fast path to a single 534 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 535 * reference like with folio_get_anon_vma() and then block on the mutex 536 * on !rwc->try_lock case. 537 */ 538 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 539 struct rmap_walk_control *rwc) 540 { 541 struct anon_vma *anon_vma = NULL; 542 struct anon_vma *root_anon_vma; 543 unsigned long anon_mapping; 544 545 rcu_read_lock(); 546 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 547 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 548 goto out; 549 if (!folio_mapped(folio)) 550 goto out; 551 552 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 553 root_anon_vma = READ_ONCE(anon_vma->root); 554 if (down_read_trylock(&root_anon_vma->rwsem)) { 555 /* 556 * If the folio is still mapped, then this anon_vma is still 557 * its anon_vma, and holding the mutex ensures that it will 558 * not go away, see anon_vma_free(). 559 */ 560 if (!folio_mapped(folio)) { 561 up_read(&root_anon_vma->rwsem); 562 anon_vma = NULL; 563 } 564 goto out; 565 } 566 567 if (rwc && rwc->try_lock) { 568 anon_vma = NULL; 569 rwc->contended = true; 570 goto out; 571 } 572 573 /* trylock failed, we got to sleep */ 574 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 575 anon_vma = NULL; 576 goto out; 577 } 578 579 if (!folio_mapped(folio)) { 580 rcu_read_unlock(); 581 put_anon_vma(anon_vma); 582 return NULL; 583 } 584 585 /* we pinned the anon_vma, its safe to sleep */ 586 rcu_read_unlock(); 587 anon_vma_lock_read(anon_vma); 588 589 if (atomic_dec_and_test(&anon_vma->refcount)) { 590 /* 591 * Oops, we held the last refcount, release the lock 592 * and bail -- can't simply use put_anon_vma() because 593 * we'll deadlock on the anon_vma_lock_write() recursion. 594 */ 595 anon_vma_unlock_read(anon_vma); 596 __put_anon_vma(anon_vma); 597 anon_vma = NULL; 598 } 599 600 return anon_vma; 601 602 out: 603 rcu_read_unlock(); 604 return anon_vma; 605 } 606 607 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 608 /* 609 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 610 * important if a PTE was dirty when it was unmapped that it's flushed 611 * before any IO is initiated on the page to prevent lost writes. Similarly, 612 * it must be flushed before freeing to prevent data leakage. 613 */ 614 void try_to_unmap_flush(void) 615 { 616 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 617 618 if (!tlb_ubc->flush_required) 619 return; 620 621 arch_tlbbatch_flush(&tlb_ubc->arch); 622 tlb_ubc->flush_required = false; 623 tlb_ubc->writable = false; 624 } 625 626 /* Flush iff there are potentially writable TLB entries that can race with IO */ 627 void try_to_unmap_flush_dirty(void) 628 { 629 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 630 631 if (tlb_ubc->writable) 632 try_to_unmap_flush(); 633 } 634 635 /* 636 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 637 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 638 */ 639 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 640 #define TLB_FLUSH_BATCH_PENDING_MASK \ 641 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 642 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 643 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 644 645 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 646 unsigned long uaddr) 647 { 648 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 649 int batch; 650 bool writable = pte_dirty(pteval); 651 652 if (!pte_accessible(mm, pteval)) 653 return; 654 655 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr); 656 tlb_ubc->flush_required = true; 657 658 /* 659 * Ensure compiler does not re-order the setting of tlb_flush_batched 660 * before the PTE is cleared. 661 */ 662 barrier(); 663 batch = atomic_read(&mm->tlb_flush_batched); 664 retry: 665 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 666 /* 667 * Prevent `pending' from catching up with `flushed' because of 668 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 669 * `pending' becomes large. 670 */ 671 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 672 goto retry; 673 } else { 674 atomic_inc(&mm->tlb_flush_batched); 675 } 676 677 /* 678 * If the PTE was dirty then it's best to assume it's writable. The 679 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 680 * before the page is queued for IO. 681 */ 682 if (writable) 683 tlb_ubc->writable = true; 684 } 685 686 /* 687 * Returns true if the TLB flush should be deferred to the end of a batch of 688 * unmap operations to reduce IPIs. 689 */ 690 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 691 { 692 if (!(flags & TTU_BATCH_FLUSH)) 693 return false; 694 695 return arch_tlbbatch_should_defer(mm); 696 } 697 698 /* 699 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 700 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 701 * operation such as mprotect or munmap to race between reclaim unmapping 702 * the page and flushing the page. If this race occurs, it potentially allows 703 * access to data via a stale TLB entry. Tracking all mm's that have TLB 704 * batching in flight would be expensive during reclaim so instead track 705 * whether TLB batching occurred in the past and if so then do a flush here 706 * if required. This will cost one additional flush per reclaim cycle paid 707 * by the first operation at risk such as mprotect and mumap. 708 * 709 * This must be called under the PTL so that an access to tlb_flush_batched 710 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 711 * via the PTL. 712 */ 713 void flush_tlb_batched_pending(struct mm_struct *mm) 714 { 715 int batch = atomic_read(&mm->tlb_flush_batched); 716 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 717 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 718 719 if (pending != flushed) { 720 arch_flush_tlb_batched_pending(mm); 721 /* 722 * If the new TLB flushing is pending during flushing, leave 723 * mm->tlb_flush_batched as is, to avoid losing flushing. 724 */ 725 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 726 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 727 } 728 } 729 #else 730 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 731 unsigned long uaddr) 732 { 733 } 734 735 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 736 { 737 return false; 738 } 739 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 740 741 /* 742 * At what user virtual address is page expected in vma? 743 * Caller should check the page is actually part of the vma. 744 */ 745 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 746 { 747 struct folio *folio = page_folio(page); 748 if (folio_test_anon(folio)) { 749 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 750 /* 751 * Note: swapoff's unuse_vma() is more efficient with this 752 * check, and needs it to match anon_vma when KSM is active. 753 */ 754 if (!vma->anon_vma || !page__anon_vma || 755 vma->anon_vma->root != page__anon_vma->root) 756 return -EFAULT; 757 } else if (!vma->vm_file) { 758 return -EFAULT; 759 } else if (vma->vm_file->f_mapping != folio->mapping) { 760 return -EFAULT; 761 } 762 763 return vma_address(page, vma); 764 } 765 766 /* 767 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 768 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 769 * represents. 770 */ 771 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 772 { 773 pgd_t *pgd; 774 p4d_t *p4d; 775 pud_t *pud; 776 pmd_t *pmd = NULL; 777 778 pgd = pgd_offset(mm, address); 779 if (!pgd_present(*pgd)) 780 goto out; 781 782 p4d = p4d_offset(pgd, address); 783 if (!p4d_present(*p4d)) 784 goto out; 785 786 pud = pud_offset(p4d, address); 787 if (!pud_present(*pud)) 788 goto out; 789 790 pmd = pmd_offset(pud, address); 791 out: 792 return pmd; 793 } 794 795 struct folio_referenced_arg { 796 int mapcount; 797 int referenced; 798 unsigned long vm_flags; 799 struct mem_cgroup *memcg; 800 }; 801 /* 802 * arg: folio_referenced_arg will be passed 803 */ 804 static bool folio_referenced_one(struct folio *folio, 805 struct vm_area_struct *vma, unsigned long address, void *arg) 806 { 807 struct folio_referenced_arg *pra = arg; 808 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 809 int referenced = 0; 810 811 while (page_vma_mapped_walk(&pvmw)) { 812 address = pvmw.address; 813 814 if ((vma->vm_flags & VM_LOCKED) && 815 (!folio_test_large(folio) || !pvmw.pte)) { 816 /* Restore the mlock which got missed */ 817 mlock_vma_folio(folio, vma, !pvmw.pte); 818 page_vma_mapped_walk_done(&pvmw); 819 pra->vm_flags |= VM_LOCKED; 820 return false; /* To break the loop */ 821 } 822 823 if (pvmw.pte) { 824 if (lru_gen_enabled() && 825 pte_young(ptep_get(pvmw.pte))) { 826 lru_gen_look_around(&pvmw); 827 referenced++; 828 } 829 830 if (ptep_clear_flush_young_notify(vma, address, 831 pvmw.pte)) 832 referenced++; 833 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 834 if (pmdp_clear_flush_young_notify(vma, address, 835 pvmw.pmd)) 836 referenced++; 837 } else { 838 /* unexpected pmd-mapped folio? */ 839 WARN_ON_ONCE(1); 840 } 841 842 pra->mapcount--; 843 } 844 845 if (referenced) 846 folio_clear_idle(folio); 847 if (folio_test_clear_young(folio)) 848 referenced++; 849 850 if (referenced) { 851 pra->referenced++; 852 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 853 } 854 855 if (!pra->mapcount) 856 return false; /* To break the loop */ 857 858 return true; 859 } 860 861 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 862 { 863 struct folio_referenced_arg *pra = arg; 864 struct mem_cgroup *memcg = pra->memcg; 865 866 /* 867 * Ignore references from this mapping if it has no recency. If the 868 * folio has been used in another mapping, we will catch it; if this 869 * other mapping is already gone, the unmap path will have set the 870 * referenced flag or activated the folio in zap_pte_range(). 871 */ 872 if (!vma_has_recency(vma)) 873 return true; 874 875 /* 876 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 877 * of references from different cgroups. 878 */ 879 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 880 return true; 881 882 return false; 883 } 884 885 /** 886 * folio_referenced() - Test if the folio was referenced. 887 * @folio: The folio to test. 888 * @is_locked: Caller holds lock on the folio. 889 * @memcg: target memory cgroup 890 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 891 * 892 * Quick test_and_clear_referenced for all mappings of a folio, 893 * 894 * Return: The number of mappings which referenced the folio. Return -1 if 895 * the function bailed out due to rmap lock contention. 896 */ 897 int folio_referenced(struct folio *folio, int is_locked, 898 struct mem_cgroup *memcg, unsigned long *vm_flags) 899 { 900 int we_locked = 0; 901 struct folio_referenced_arg pra = { 902 .mapcount = folio_mapcount(folio), 903 .memcg = memcg, 904 }; 905 struct rmap_walk_control rwc = { 906 .rmap_one = folio_referenced_one, 907 .arg = (void *)&pra, 908 .anon_lock = folio_lock_anon_vma_read, 909 .try_lock = true, 910 .invalid_vma = invalid_folio_referenced_vma, 911 }; 912 913 *vm_flags = 0; 914 if (!pra.mapcount) 915 return 0; 916 917 if (!folio_raw_mapping(folio)) 918 return 0; 919 920 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 921 we_locked = folio_trylock(folio); 922 if (!we_locked) 923 return 1; 924 } 925 926 rmap_walk(folio, &rwc); 927 *vm_flags = pra.vm_flags; 928 929 if (we_locked) 930 folio_unlock(folio); 931 932 return rwc.contended ? -1 : pra.referenced; 933 } 934 935 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 936 { 937 int cleaned = 0; 938 struct vm_area_struct *vma = pvmw->vma; 939 struct mmu_notifier_range range; 940 unsigned long address = pvmw->address; 941 942 /* 943 * We have to assume the worse case ie pmd for invalidation. Note that 944 * the folio can not be freed from this function. 945 */ 946 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 947 vma->vm_mm, address, vma_address_end(pvmw)); 948 mmu_notifier_invalidate_range_start(&range); 949 950 while (page_vma_mapped_walk(pvmw)) { 951 int ret = 0; 952 953 address = pvmw->address; 954 if (pvmw->pte) { 955 pte_t *pte = pvmw->pte; 956 pte_t entry = ptep_get(pte); 957 958 if (!pte_dirty(entry) && !pte_write(entry)) 959 continue; 960 961 flush_cache_page(vma, address, pte_pfn(entry)); 962 entry = ptep_clear_flush(vma, address, pte); 963 entry = pte_wrprotect(entry); 964 entry = pte_mkclean(entry); 965 set_pte_at(vma->vm_mm, address, pte, entry); 966 ret = 1; 967 } else { 968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 969 pmd_t *pmd = pvmw->pmd; 970 pmd_t entry; 971 972 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 973 continue; 974 975 flush_cache_range(vma, address, 976 address + HPAGE_PMD_SIZE); 977 entry = pmdp_invalidate(vma, address, pmd); 978 entry = pmd_wrprotect(entry); 979 entry = pmd_mkclean(entry); 980 set_pmd_at(vma->vm_mm, address, pmd, entry); 981 ret = 1; 982 #else 983 /* unexpected pmd-mapped folio? */ 984 WARN_ON_ONCE(1); 985 #endif 986 } 987 988 if (ret) 989 cleaned++; 990 } 991 992 mmu_notifier_invalidate_range_end(&range); 993 994 return cleaned; 995 } 996 997 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 998 unsigned long address, void *arg) 999 { 1000 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1001 int *cleaned = arg; 1002 1003 *cleaned += page_vma_mkclean_one(&pvmw); 1004 1005 return true; 1006 } 1007 1008 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1009 { 1010 if (vma->vm_flags & VM_SHARED) 1011 return false; 1012 1013 return true; 1014 } 1015 1016 int folio_mkclean(struct folio *folio) 1017 { 1018 int cleaned = 0; 1019 struct address_space *mapping; 1020 struct rmap_walk_control rwc = { 1021 .arg = (void *)&cleaned, 1022 .rmap_one = page_mkclean_one, 1023 .invalid_vma = invalid_mkclean_vma, 1024 }; 1025 1026 BUG_ON(!folio_test_locked(folio)); 1027 1028 if (!folio_mapped(folio)) 1029 return 0; 1030 1031 mapping = folio_mapping(folio); 1032 if (!mapping) 1033 return 0; 1034 1035 rmap_walk(folio, &rwc); 1036 1037 return cleaned; 1038 } 1039 EXPORT_SYMBOL_GPL(folio_mkclean); 1040 1041 /** 1042 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1043 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1044 * within the @vma of shared mappings. And since clean PTEs 1045 * should also be readonly, write protects them too. 1046 * @pfn: start pfn. 1047 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1048 * @pgoff: page offset that the @pfn mapped with. 1049 * @vma: vma that @pfn mapped within. 1050 * 1051 * Returns the number of cleaned PTEs (including PMDs). 1052 */ 1053 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1054 struct vm_area_struct *vma) 1055 { 1056 struct page_vma_mapped_walk pvmw = { 1057 .pfn = pfn, 1058 .nr_pages = nr_pages, 1059 .pgoff = pgoff, 1060 .vma = vma, 1061 .flags = PVMW_SYNC, 1062 }; 1063 1064 if (invalid_mkclean_vma(vma, NULL)) 1065 return 0; 1066 1067 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); 1068 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1069 1070 return page_vma_mkclean_one(&pvmw); 1071 } 1072 1073 int folio_total_mapcount(struct folio *folio) 1074 { 1075 int mapcount = folio_entire_mapcount(folio); 1076 int nr_pages; 1077 int i; 1078 1079 /* In the common case, avoid the loop when no pages mapped by PTE */ 1080 if (folio_nr_pages_mapped(folio) == 0) 1081 return mapcount; 1082 /* 1083 * Add all the PTE mappings of those pages mapped by PTE. 1084 * Limit the loop to folio_nr_pages_mapped()? 1085 * Perhaps: given all the raciness, that may be a good or a bad idea. 1086 */ 1087 nr_pages = folio_nr_pages(folio); 1088 for (i = 0; i < nr_pages; i++) 1089 mapcount += atomic_read(&folio_page(folio, i)->_mapcount); 1090 1091 /* But each of those _mapcounts was based on -1 */ 1092 mapcount += nr_pages; 1093 return mapcount; 1094 } 1095 1096 /** 1097 * page_move_anon_rmap - move a page to our anon_vma 1098 * @page: the page to move to our anon_vma 1099 * @vma: the vma the page belongs to 1100 * 1101 * When a page belongs exclusively to one process after a COW event, 1102 * that page can be moved into the anon_vma that belongs to just that 1103 * process, so the rmap code will not search the parent or sibling 1104 * processes. 1105 */ 1106 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1107 { 1108 void *anon_vma = vma->anon_vma; 1109 struct folio *folio = page_folio(page); 1110 1111 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1112 VM_BUG_ON_VMA(!anon_vma, vma); 1113 1114 anon_vma += PAGE_MAPPING_ANON; 1115 /* 1116 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1117 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1118 * folio_test_anon()) will not see one without the other. 1119 */ 1120 WRITE_ONCE(folio->mapping, anon_vma); 1121 SetPageAnonExclusive(page); 1122 } 1123 1124 /** 1125 * __page_set_anon_rmap - set up new anonymous rmap 1126 * @folio: Folio which contains page. 1127 * @page: Page to add to rmap. 1128 * @vma: VM area to add page to. 1129 * @address: User virtual address of the mapping 1130 * @exclusive: the page is exclusively owned by the current process 1131 */ 1132 static void __page_set_anon_rmap(struct folio *folio, struct page *page, 1133 struct vm_area_struct *vma, unsigned long address, int exclusive) 1134 { 1135 struct anon_vma *anon_vma = vma->anon_vma; 1136 1137 BUG_ON(!anon_vma); 1138 1139 if (folio_test_anon(folio)) 1140 goto out; 1141 1142 /* 1143 * If the page isn't exclusively mapped into this vma, 1144 * we must use the _oldest_ possible anon_vma for the 1145 * page mapping! 1146 */ 1147 if (!exclusive) 1148 anon_vma = anon_vma->root; 1149 1150 /* 1151 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1152 * Make sure the compiler doesn't split the stores of anon_vma and 1153 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1154 * could mistake the mapping for a struct address_space and crash. 1155 */ 1156 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1157 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1158 folio->index = linear_page_index(vma, address); 1159 out: 1160 if (exclusive) 1161 SetPageAnonExclusive(page); 1162 } 1163 1164 /** 1165 * __page_check_anon_rmap - sanity check anonymous rmap addition 1166 * @folio: The folio containing @page. 1167 * @page: the page to check the mapping of 1168 * @vma: the vm area in which the mapping is added 1169 * @address: the user virtual address mapped 1170 */ 1171 static void __page_check_anon_rmap(struct folio *folio, struct page *page, 1172 struct vm_area_struct *vma, unsigned long address) 1173 { 1174 /* 1175 * The page's anon-rmap details (mapping and index) are guaranteed to 1176 * be set up correctly at this point. 1177 * 1178 * We have exclusion against page_add_anon_rmap because the caller 1179 * always holds the page locked. 1180 * 1181 * We have exclusion against page_add_new_anon_rmap because those pages 1182 * are initially only visible via the pagetables, and the pte is locked 1183 * over the call to page_add_new_anon_rmap. 1184 */ 1185 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1186 folio); 1187 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1188 page); 1189 } 1190 1191 /** 1192 * page_add_anon_rmap - add pte mapping to an anonymous page 1193 * @page: the page to add the mapping to 1194 * @vma: the vm area in which the mapping is added 1195 * @address: the user virtual address mapped 1196 * @flags: the rmap flags 1197 * 1198 * The caller needs to hold the pte lock, and the page must be locked in 1199 * the anon_vma case: to serialize mapping,index checking after setting, 1200 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1201 * (but PageKsm is never downgraded to PageAnon). 1202 */ 1203 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 1204 unsigned long address, rmap_t flags) 1205 { 1206 struct folio *folio = page_folio(page); 1207 atomic_t *mapped = &folio->_nr_pages_mapped; 1208 int nr = 0, nr_pmdmapped = 0; 1209 bool compound = flags & RMAP_COMPOUND; 1210 bool first = true; 1211 1212 /* Is page being mapped by PTE? Is this its first map to be added? */ 1213 if (likely(!compound)) { 1214 first = atomic_inc_and_test(&page->_mapcount); 1215 nr = first; 1216 if (first && folio_test_large(folio)) { 1217 nr = atomic_inc_return_relaxed(mapped); 1218 nr = (nr < COMPOUND_MAPPED); 1219 } 1220 } else if (folio_test_pmd_mappable(folio)) { 1221 /* That test is redundant: it's for safety or to optimize out */ 1222 1223 first = atomic_inc_and_test(&folio->_entire_mapcount); 1224 if (first) { 1225 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1226 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1227 nr_pmdmapped = folio_nr_pages(folio); 1228 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1229 /* Raced ahead of a remove and another add? */ 1230 if (unlikely(nr < 0)) 1231 nr = 0; 1232 } else { 1233 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1234 nr = 0; 1235 } 1236 } 1237 } 1238 1239 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 1240 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 1241 1242 if (nr_pmdmapped) 1243 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped); 1244 if (nr) 1245 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1246 1247 if (likely(!folio_test_ksm(folio))) { 1248 /* address might be in next vma when migration races vma_merge */ 1249 if (first) 1250 __page_set_anon_rmap(folio, page, vma, address, 1251 !!(flags & RMAP_EXCLUSIVE)); 1252 else 1253 __page_check_anon_rmap(folio, page, vma, address); 1254 } 1255 1256 mlock_vma_folio(folio, vma, compound); 1257 } 1258 1259 /** 1260 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1261 * @folio: The folio to add the mapping to. 1262 * @vma: the vm area in which the mapping is added 1263 * @address: the user virtual address mapped 1264 * 1265 * Like page_add_anon_rmap() but must only be called on *new* folios. 1266 * This means the inc-and-test can be bypassed. 1267 * The folio does not have to be locked. 1268 * 1269 * If the folio is large, it is accounted as a THP. As the folio 1270 * is new, it's assumed to be mapped exclusively by a single process. 1271 */ 1272 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1273 unsigned long address) 1274 { 1275 int nr; 1276 1277 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1278 __folio_set_swapbacked(folio); 1279 1280 if (likely(!folio_test_pmd_mappable(folio))) { 1281 /* increment count (starts at -1) */ 1282 atomic_set(&folio->_mapcount, 0); 1283 nr = 1; 1284 } else { 1285 /* increment count (starts at -1) */ 1286 atomic_set(&folio->_entire_mapcount, 0); 1287 atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED); 1288 nr = folio_nr_pages(folio); 1289 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr); 1290 } 1291 1292 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1293 __page_set_anon_rmap(folio, &folio->page, vma, address, 1); 1294 } 1295 1296 /** 1297 * folio_add_file_rmap_range - add pte mapping to page range of a folio 1298 * @folio: The folio to add the mapping to 1299 * @page: The first page to add 1300 * @nr_pages: The number of pages which will be mapped 1301 * @vma: the vm area in which the mapping is added 1302 * @compound: charge the page as compound or small page 1303 * 1304 * The page range of folio is defined by [first_page, first_page + nr_pages) 1305 * 1306 * The caller needs to hold the pte lock. 1307 */ 1308 void folio_add_file_rmap_range(struct folio *folio, struct page *page, 1309 unsigned int nr_pages, struct vm_area_struct *vma, 1310 bool compound) 1311 { 1312 atomic_t *mapped = &folio->_nr_pages_mapped; 1313 unsigned int nr_pmdmapped = 0, first; 1314 int nr = 0; 1315 1316 VM_WARN_ON_FOLIO(compound && !folio_test_pmd_mappable(folio), folio); 1317 1318 /* Is page being mapped by PTE? Is this its first map to be added? */ 1319 if (likely(!compound)) { 1320 do { 1321 first = atomic_inc_and_test(&page->_mapcount); 1322 if (first && folio_test_large(folio)) { 1323 first = atomic_inc_return_relaxed(mapped); 1324 first = (first < COMPOUND_MAPPED); 1325 } 1326 1327 if (first) 1328 nr++; 1329 } while (page++, --nr_pages > 0); 1330 } else if (folio_test_pmd_mappable(folio)) { 1331 /* That test is redundant: it's for safety or to optimize out */ 1332 1333 first = atomic_inc_and_test(&folio->_entire_mapcount); 1334 if (first) { 1335 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1336 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1337 nr_pmdmapped = folio_nr_pages(folio); 1338 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1339 /* Raced ahead of a remove and another add? */ 1340 if (unlikely(nr < 0)) 1341 nr = 0; 1342 } else { 1343 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1344 nr = 0; 1345 } 1346 } 1347 } 1348 1349 if (nr_pmdmapped) 1350 __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ? 1351 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped); 1352 if (nr) 1353 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr); 1354 1355 mlock_vma_folio(folio, vma, compound); 1356 } 1357 1358 /** 1359 * page_add_file_rmap - add pte mapping to a file page 1360 * @page: the page to add the mapping to 1361 * @vma: the vm area in which the mapping is added 1362 * @compound: charge the page as compound or small page 1363 * 1364 * The caller needs to hold the pte lock. 1365 */ 1366 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma, 1367 bool compound) 1368 { 1369 struct folio *folio = page_folio(page); 1370 unsigned int nr_pages; 1371 1372 VM_WARN_ON_ONCE_PAGE(compound && !PageTransHuge(page), page); 1373 1374 if (likely(!compound)) 1375 nr_pages = 1; 1376 else 1377 nr_pages = folio_nr_pages(folio); 1378 1379 folio_add_file_rmap_range(folio, page, nr_pages, vma, compound); 1380 } 1381 1382 /** 1383 * page_remove_rmap - take down pte mapping from a page 1384 * @page: page to remove mapping from 1385 * @vma: the vm area from which the mapping is removed 1386 * @compound: uncharge the page as compound or small page 1387 * 1388 * The caller needs to hold the pte lock. 1389 */ 1390 void page_remove_rmap(struct page *page, struct vm_area_struct *vma, 1391 bool compound) 1392 { 1393 struct folio *folio = page_folio(page); 1394 atomic_t *mapped = &folio->_nr_pages_mapped; 1395 int nr = 0, nr_pmdmapped = 0; 1396 bool last; 1397 enum node_stat_item idx; 1398 1399 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1400 1401 /* Hugetlb pages are not counted in NR_*MAPPED */ 1402 if (unlikely(folio_test_hugetlb(folio))) { 1403 /* hugetlb pages are always mapped with pmds */ 1404 atomic_dec(&folio->_entire_mapcount); 1405 return; 1406 } 1407 1408 /* Is page being unmapped by PTE? Is this its last map to be removed? */ 1409 if (likely(!compound)) { 1410 last = atomic_add_negative(-1, &page->_mapcount); 1411 nr = last; 1412 if (last && folio_test_large(folio)) { 1413 nr = atomic_dec_return_relaxed(mapped); 1414 nr = (nr < COMPOUND_MAPPED); 1415 } 1416 } else if (folio_test_pmd_mappable(folio)) { 1417 /* That test is redundant: it's for safety or to optimize out */ 1418 1419 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1420 if (last) { 1421 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped); 1422 if (likely(nr < COMPOUND_MAPPED)) { 1423 nr_pmdmapped = folio_nr_pages(folio); 1424 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1425 /* Raced ahead of another remove and an add? */ 1426 if (unlikely(nr < 0)) 1427 nr = 0; 1428 } else { 1429 /* An add of COMPOUND_MAPPED raced ahead */ 1430 nr = 0; 1431 } 1432 } 1433 } 1434 1435 if (nr_pmdmapped) { 1436 if (folio_test_anon(folio)) 1437 idx = NR_ANON_THPS; 1438 else if (folio_test_swapbacked(folio)) 1439 idx = NR_SHMEM_PMDMAPPED; 1440 else 1441 idx = NR_FILE_PMDMAPPED; 1442 __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped); 1443 } 1444 if (nr) { 1445 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1446 __lruvec_stat_mod_folio(folio, idx, -nr); 1447 1448 /* 1449 * Queue anon THP for deferred split if at least one 1450 * page of the folio is unmapped and at least one page 1451 * is still mapped. 1452 */ 1453 if (folio_test_pmd_mappable(folio) && folio_test_anon(folio)) 1454 if (!compound || nr < nr_pmdmapped) 1455 deferred_split_folio(folio); 1456 } 1457 1458 /* 1459 * It would be tidy to reset folio_test_anon mapping when fully 1460 * unmapped, but that might overwrite a racing page_add_anon_rmap 1461 * which increments mapcount after us but sets mapping before us: 1462 * so leave the reset to free_pages_prepare, and remember that 1463 * it's only reliable while mapped. 1464 */ 1465 1466 munlock_vma_folio(folio, vma, compound); 1467 } 1468 1469 /* 1470 * @arg: enum ttu_flags will be passed to this argument 1471 */ 1472 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1473 unsigned long address, void *arg) 1474 { 1475 struct mm_struct *mm = vma->vm_mm; 1476 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1477 pte_t pteval; 1478 struct page *subpage; 1479 bool anon_exclusive, ret = true; 1480 struct mmu_notifier_range range; 1481 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1482 unsigned long pfn; 1483 unsigned long hsz = 0; 1484 1485 /* 1486 * When racing against e.g. zap_pte_range() on another cpu, 1487 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1488 * try_to_unmap() may return before page_mapped() has become false, 1489 * if page table locking is skipped: use TTU_SYNC to wait for that. 1490 */ 1491 if (flags & TTU_SYNC) 1492 pvmw.flags = PVMW_SYNC; 1493 1494 if (flags & TTU_SPLIT_HUGE_PMD) 1495 split_huge_pmd_address(vma, address, false, folio); 1496 1497 /* 1498 * For THP, we have to assume the worse case ie pmd for invalidation. 1499 * For hugetlb, it could be much worse if we need to do pud 1500 * invalidation in the case of pmd sharing. 1501 * 1502 * Note that the folio can not be freed in this function as call of 1503 * try_to_unmap() must hold a reference on the folio. 1504 */ 1505 range.end = vma_address_end(&pvmw); 1506 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1507 address, range.end); 1508 if (folio_test_hugetlb(folio)) { 1509 /* 1510 * If sharing is possible, start and end will be adjusted 1511 * accordingly. 1512 */ 1513 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1514 &range.end); 1515 1516 /* We need the huge page size for set_huge_pte_at() */ 1517 hsz = huge_page_size(hstate_vma(vma)); 1518 } 1519 mmu_notifier_invalidate_range_start(&range); 1520 1521 while (page_vma_mapped_walk(&pvmw)) { 1522 /* Unexpected PMD-mapped THP? */ 1523 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1524 1525 /* 1526 * If the folio is in an mlock()d vma, we must not swap it out. 1527 */ 1528 if (!(flags & TTU_IGNORE_MLOCK) && 1529 (vma->vm_flags & VM_LOCKED)) { 1530 /* Restore the mlock which got missed */ 1531 mlock_vma_folio(folio, vma, false); 1532 page_vma_mapped_walk_done(&pvmw); 1533 ret = false; 1534 break; 1535 } 1536 1537 pfn = pte_pfn(ptep_get(pvmw.pte)); 1538 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1539 address = pvmw.address; 1540 anon_exclusive = folio_test_anon(folio) && 1541 PageAnonExclusive(subpage); 1542 1543 if (folio_test_hugetlb(folio)) { 1544 bool anon = folio_test_anon(folio); 1545 1546 /* 1547 * The try_to_unmap() is only passed a hugetlb page 1548 * in the case where the hugetlb page is poisoned. 1549 */ 1550 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1551 /* 1552 * huge_pmd_unshare may unmap an entire PMD page. 1553 * There is no way of knowing exactly which PMDs may 1554 * be cached for this mm, so we must flush them all. 1555 * start/end were already adjusted above to cover this 1556 * range. 1557 */ 1558 flush_cache_range(vma, range.start, range.end); 1559 1560 /* 1561 * To call huge_pmd_unshare, i_mmap_rwsem must be 1562 * held in write mode. Caller needs to explicitly 1563 * do this outside rmap routines. 1564 * 1565 * We also must hold hugetlb vma_lock in write mode. 1566 * Lock order dictates acquiring vma_lock BEFORE 1567 * i_mmap_rwsem. We can only try lock here and fail 1568 * if unsuccessful. 1569 */ 1570 if (!anon) { 1571 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1572 if (!hugetlb_vma_trylock_write(vma)) { 1573 page_vma_mapped_walk_done(&pvmw); 1574 ret = false; 1575 break; 1576 } 1577 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1578 hugetlb_vma_unlock_write(vma); 1579 flush_tlb_range(vma, 1580 range.start, range.end); 1581 /* 1582 * The ref count of the PMD page was 1583 * dropped which is part of the way map 1584 * counting is done for shared PMDs. 1585 * Return 'true' here. When there is 1586 * no other sharing, huge_pmd_unshare 1587 * returns false and we will unmap the 1588 * actual page and drop map count 1589 * to zero. 1590 */ 1591 page_vma_mapped_walk_done(&pvmw); 1592 break; 1593 } 1594 hugetlb_vma_unlock_write(vma); 1595 } 1596 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1597 } else { 1598 flush_cache_page(vma, address, pfn); 1599 /* Nuke the page table entry. */ 1600 if (should_defer_flush(mm, flags)) { 1601 /* 1602 * We clear the PTE but do not flush so potentially 1603 * a remote CPU could still be writing to the folio. 1604 * If the entry was previously clean then the 1605 * architecture must guarantee that a clear->dirty 1606 * transition on a cached TLB entry is written through 1607 * and traps if the PTE is unmapped. 1608 */ 1609 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1610 1611 set_tlb_ubc_flush_pending(mm, pteval, address); 1612 } else { 1613 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1614 } 1615 } 1616 1617 /* 1618 * Now the pte is cleared. If this pte was uffd-wp armed, 1619 * we may want to replace a none pte with a marker pte if 1620 * it's file-backed, so we don't lose the tracking info. 1621 */ 1622 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1623 1624 /* Set the dirty flag on the folio now the pte is gone. */ 1625 if (pte_dirty(pteval)) 1626 folio_mark_dirty(folio); 1627 1628 /* Update high watermark before we lower rss */ 1629 update_hiwater_rss(mm); 1630 1631 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 1632 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1633 if (folio_test_hugetlb(folio)) { 1634 hugetlb_count_sub(folio_nr_pages(folio), mm); 1635 set_huge_pte_at(mm, address, pvmw.pte, pteval, 1636 hsz); 1637 } else { 1638 dec_mm_counter(mm, mm_counter(&folio->page)); 1639 set_pte_at(mm, address, pvmw.pte, pteval); 1640 } 1641 1642 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1643 /* 1644 * The guest indicated that the page content is of no 1645 * interest anymore. Simply discard the pte, vmscan 1646 * will take care of the rest. 1647 * A future reference will then fault in a new zero 1648 * page. When userfaultfd is active, we must not drop 1649 * this page though, as its main user (postcopy 1650 * migration) will not expect userfaults on already 1651 * copied pages. 1652 */ 1653 dec_mm_counter(mm, mm_counter(&folio->page)); 1654 } else if (folio_test_anon(folio)) { 1655 swp_entry_t entry = page_swap_entry(subpage); 1656 pte_t swp_pte; 1657 /* 1658 * Store the swap location in the pte. 1659 * See handle_pte_fault() ... 1660 */ 1661 if (unlikely(folio_test_swapbacked(folio) != 1662 folio_test_swapcache(folio))) { 1663 WARN_ON_ONCE(1); 1664 ret = false; 1665 page_vma_mapped_walk_done(&pvmw); 1666 break; 1667 } 1668 1669 /* MADV_FREE page check */ 1670 if (!folio_test_swapbacked(folio)) { 1671 int ref_count, map_count; 1672 1673 /* 1674 * Synchronize with gup_pte_range(): 1675 * - clear PTE; barrier; read refcount 1676 * - inc refcount; barrier; read PTE 1677 */ 1678 smp_mb(); 1679 1680 ref_count = folio_ref_count(folio); 1681 map_count = folio_mapcount(folio); 1682 1683 /* 1684 * Order reads for page refcount and dirty flag 1685 * (see comments in __remove_mapping()). 1686 */ 1687 smp_rmb(); 1688 1689 /* 1690 * The only page refs must be one from isolation 1691 * plus the rmap(s) (dropped by discard:). 1692 */ 1693 if (ref_count == 1 + map_count && 1694 !folio_test_dirty(folio)) { 1695 dec_mm_counter(mm, MM_ANONPAGES); 1696 goto discard; 1697 } 1698 1699 /* 1700 * If the folio was redirtied, it cannot be 1701 * discarded. Remap the page to page table. 1702 */ 1703 set_pte_at(mm, address, pvmw.pte, pteval); 1704 folio_set_swapbacked(folio); 1705 ret = false; 1706 page_vma_mapped_walk_done(&pvmw); 1707 break; 1708 } 1709 1710 if (swap_duplicate(entry) < 0) { 1711 set_pte_at(mm, address, pvmw.pte, pteval); 1712 ret = false; 1713 page_vma_mapped_walk_done(&pvmw); 1714 break; 1715 } 1716 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1717 swap_free(entry); 1718 set_pte_at(mm, address, pvmw.pte, pteval); 1719 ret = false; 1720 page_vma_mapped_walk_done(&pvmw); 1721 break; 1722 } 1723 1724 /* See page_try_share_anon_rmap(): clear PTE first. */ 1725 if (anon_exclusive && 1726 page_try_share_anon_rmap(subpage)) { 1727 swap_free(entry); 1728 set_pte_at(mm, address, pvmw.pte, pteval); 1729 ret = false; 1730 page_vma_mapped_walk_done(&pvmw); 1731 break; 1732 } 1733 if (list_empty(&mm->mmlist)) { 1734 spin_lock(&mmlist_lock); 1735 if (list_empty(&mm->mmlist)) 1736 list_add(&mm->mmlist, &init_mm.mmlist); 1737 spin_unlock(&mmlist_lock); 1738 } 1739 dec_mm_counter(mm, MM_ANONPAGES); 1740 inc_mm_counter(mm, MM_SWAPENTS); 1741 swp_pte = swp_entry_to_pte(entry); 1742 if (anon_exclusive) 1743 swp_pte = pte_swp_mkexclusive(swp_pte); 1744 if (pte_soft_dirty(pteval)) 1745 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1746 if (pte_uffd_wp(pteval)) 1747 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1748 set_pte_at(mm, address, pvmw.pte, swp_pte); 1749 } else { 1750 /* 1751 * This is a locked file-backed folio, 1752 * so it cannot be removed from the page 1753 * cache and replaced by a new folio before 1754 * mmu_notifier_invalidate_range_end, so no 1755 * concurrent thread might update its page table 1756 * to point at a new folio while a device is 1757 * still using this folio. 1758 * 1759 * See Documentation/mm/mmu_notifier.rst 1760 */ 1761 dec_mm_counter(mm, mm_counter_file(&folio->page)); 1762 } 1763 discard: 1764 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 1765 if (vma->vm_flags & VM_LOCKED) 1766 mlock_drain_local(); 1767 folio_put(folio); 1768 } 1769 1770 mmu_notifier_invalidate_range_end(&range); 1771 1772 return ret; 1773 } 1774 1775 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1776 { 1777 return vma_is_temporary_stack(vma); 1778 } 1779 1780 static int folio_not_mapped(struct folio *folio) 1781 { 1782 return !folio_mapped(folio); 1783 } 1784 1785 /** 1786 * try_to_unmap - Try to remove all page table mappings to a folio. 1787 * @folio: The folio to unmap. 1788 * @flags: action and flags 1789 * 1790 * Tries to remove all the page table entries which are mapping this 1791 * folio. It is the caller's responsibility to check if the folio is 1792 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1793 * 1794 * Context: Caller must hold the folio lock. 1795 */ 1796 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1797 { 1798 struct rmap_walk_control rwc = { 1799 .rmap_one = try_to_unmap_one, 1800 .arg = (void *)flags, 1801 .done = folio_not_mapped, 1802 .anon_lock = folio_lock_anon_vma_read, 1803 }; 1804 1805 if (flags & TTU_RMAP_LOCKED) 1806 rmap_walk_locked(folio, &rwc); 1807 else 1808 rmap_walk(folio, &rwc); 1809 } 1810 1811 /* 1812 * @arg: enum ttu_flags will be passed to this argument. 1813 * 1814 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1815 * containing migration entries. 1816 */ 1817 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 1818 unsigned long address, void *arg) 1819 { 1820 struct mm_struct *mm = vma->vm_mm; 1821 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1822 pte_t pteval; 1823 struct page *subpage; 1824 bool anon_exclusive, ret = true; 1825 struct mmu_notifier_range range; 1826 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1827 unsigned long pfn; 1828 unsigned long hsz = 0; 1829 1830 /* 1831 * When racing against e.g. zap_pte_range() on another cpu, 1832 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1833 * try_to_migrate() may return before page_mapped() has become false, 1834 * if page table locking is skipped: use TTU_SYNC to wait for that. 1835 */ 1836 if (flags & TTU_SYNC) 1837 pvmw.flags = PVMW_SYNC; 1838 1839 /* 1840 * unmap_page() in mm/huge_memory.c is the only user of migration with 1841 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1842 */ 1843 if (flags & TTU_SPLIT_HUGE_PMD) 1844 split_huge_pmd_address(vma, address, true, folio); 1845 1846 /* 1847 * For THP, we have to assume the worse case ie pmd for invalidation. 1848 * For hugetlb, it could be much worse if we need to do pud 1849 * invalidation in the case of pmd sharing. 1850 * 1851 * Note that the page can not be free in this function as call of 1852 * try_to_unmap() must hold a reference on the page. 1853 */ 1854 range.end = vma_address_end(&pvmw); 1855 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1856 address, range.end); 1857 if (folio_test_hugetlb(folio)) { 1858 /* 1859 * If sharing is possible, start and end will be adjusted 1860 * accordingly. 1861 */ 1862 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1863 &range.end); 1864 1865 /* We need the huge page size for set_huge_pte_at() */ 1866 hsz = huge_page_size(hstate_vma(vma)); 1867 } 1868 mmu_notifier_invalidate_range_start(&range); 1869 1870 while (page_vma_mapped_walk(&pvmw)) { 1871 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1872 /* PMD-mapped THP migration entry */ 1873 if (!pvmw.pte) { 1874 subpage = folio_page(folio, 1875 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 1876 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 1877 !folio_test_pmd_mappable(folio), folio); 1878 1879 if (set_pmd_migration_entry(&pvmw, subpage)) { 1880 ret = false; 1881 page_vma_mapped_walk_done(&pvmw); 1882 break; 1883 } 1884 continue; 1885 } 1886 #endif 1887 1888 /* Unexpected PMD-mapped THP? */ 1889 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1890 1891 pfn = pte_pfn(ptep_get(pvmw.pte)); 1892 1893 if (folio_is_zone_device(folio)) { 1894 /* 1895 * Our PTE is a non-present device exclusive entry and 1896 * calculating the subpage as for the common case would 1897 * result in an invalid pointer. 1898 * 1899 * Since only PAGE_SIZE pages can currently be 1900 * migrated, just set it to page. This will need to be 1901 * changed when hugepage migrations to device private 1902 * memory are supported. 1903 */ 1904 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 1905 subpage = &folio->page; 1906 } else { 1907 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1908 } 1909 address = pvmw.address; 1910 anon_exclusive = folio_test_anon(folio) && 1911 PageAnonExclusive(subpage); 1912 1913 if (folio_test_hugetlb(folio)) { 1914 bool anon = folio_test_anon(folio); 1915 1916 /* 1917 * huge_pmd_unshare may unmap an entire PMD page. 1918 * There is no way of knowing exactly which PMDs may 1919 * be cached for this mm, so we must flush them all. 1920 * start/end were already adjusted above to cover this 1921 * range. 1922 */ 1923 flush_cache_range(vma, range.start, range.end); 1924 1925 /* 1926 * To call huge_pmd_unshare, i_mmap_rwsem must be 1927 * held in write mode. Caller needs to explicitly 1928 * do this outside rmap routines. 1929 * 1930 * We also must hold hugetlb vma_lock in write mode. 1931 * Lock order dictates acquiring vma_lock BEFORE 1932 * i_mmap_rwsem. We can only try lock here and 1933 * fail if unsuccessful. 1934 */ 1935 if (!anon) { 1936 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1937 if (!hugetlb_vma_trylock_write(vma)) { 1938 page_vma_mapped_walk_done(&pvmw); 1939 ret = false; 1940 break; 1941 } 1942 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1943 hugetlb_vma_unlock_write(vma); 1944 flush_tlb_range(vma, 1945 range.start, range.end); 1946 1947 /* 1948 * The ref count of the PMD page was 1949 * dropped which is part of the way map 1950 * counting is done for shared PMDs. 1951 * Return 'true' here. When there is 1952 * no other sharing, huge_pmd_unshare 1953 * returns false and we will unmap the 1954 * actual page and drop map count 1955 * to zero. 1956 */ 1957 page_vma_mapped_walk_done(&pvmw); 1958 break; 1959 } 1960 hugetlb_vma_unlock_write(vma); 1961 } 1962 /* Nuke the hugetlb page table entry */ 1963 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1964 } else { 1965 flush_cache_page(vma, address, pfn); 1966 /* Nuke the page table entry. */ 1967 if (should_defer_flush(mm, flags)) { 1968 /* 1969 * We clear the PTE but do not flush so potentially 1970 * a remote CPU could still be writing to the folio. 1971 * If the entry was previously clean then the 1972 * architecture must guarantee that a clear->dirty 1973 * transition on a cached TLB entry is written through 1974 * and traps if the PTE is unmapped. 1975 */ 1976 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1977 1978 set_tlb_ubc_flush_pending(mm, pteval, address); 1979 } else { 1980 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1981 } 1982 } 1983 1984 /* Set the dirty flag on the folio now the pte is gone. */ 1985 if (pte_dirty(pteval)) 1986 folio_mark_dirty(folio); 1987 1988 /* Update high watermark before we lower rss */ 1989 update_hiwater_rss(mm); 1990 1991 if (folio_is_device_private(folio)) { 1992 unsigned long pfn = folio_pfn(folio); 1993 swp_entry_t entry; 1994 pte_t swp_pte; 1995 1996 if (anon_exclusive) 1997 BUG_ON(page_try_share_anon_rmap(subpage)); 1998 1999 /* 2000 * Store the pfn of the page in a special migration 2001 * pte. do_swap_page() will wait until the migration 2002 * pte is removed and then restart fault handling. 2003 */ 2004 entry = pte_to_swp_entry(pteval); 2005 if (is_writable_device_private_entry(entry)) 2006 entry = make_writable_migration_entry(pfn); 2007 else if (anon_exclusive) 2008 entry = make_readable_exclusive_migration_entry(pfn); 2009 else 2010 entry = make_readable_migration_entry(pfn); 2011 swp_pte = swp_entry_to_pte(entry); 2012 2013 /* 2014 * pteval maps a zone device page and is therefore 2015 * a swap pte. 2016 */ 2017 if (pte_swp_soft_dirty(pteval)) 2018 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2019 if (pte_swp_uffd_wp(pteval)) 2020 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2021 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2022 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2023 compound_order(&folio->page)); 2024 /* 2025 * No need to invalidate here it will synchronize on 2026 * against the special swap migration pte. 2027 */ 2028 } else if (PageHWPoison(subpage)) { 2029 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2030 if (folio_test_hugetlb(folio)) { 2031 hugetlb_count_sub(folio_nr_pages(folio), mm); 2032 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2033 hsz); 2034 } else { 2035 dec_mm_counter(mm, mm_counter(&folio->page)); 2036 set_pte_at(mm, address, pvmw.pte, pteval); 2037 } 2038 2039 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2040 /* 2041 * The guest indicated that the page content is of no 2042 * interest anymore. Simply discard the pte, vmscan 2043 * will take care of the rest. 2044 * A future reference will then fault in a new zero 2045 * page. When userfaultfd is active, we must not drop 2046 * this page though, as its main user (postcopy 2047 * migration) will not expect userfaults on already 2048 * copied pages. 2049 */ 2050 dec_mm_counter(mm, mm_counter(&folio->page)); 2051 } else { 2052 swp_entry_t entry; 2053 pte_t swp_pte; 2054 2055 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2056 if (folio_test_hugetlb(folio)) 2057 set_huge_pte_at(mm, address, pvmw.pte, 2058 pteval, hsz); 2059 else 2060 set_pte_at(mm, address, pvmw.pte, pteval); 2061 ret = false; 2062 page_vma_mapped_walk_done(&pvmw); 2063 break; 2064 } 2065 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2066 !anon_exclusive, subpage); 2067 2068 /* See page_try_share_anon_rmap(): clear PTE first. */ 2069 if (anon_exclusive && 2070 page_try_share_anon_rmap(subpage)) { 2071 if (folio_test_hugetlb(folio)) 2072 set_huge_pte_at(mm, address, pvmw.pte, 2073 pteval, hsz); 2074 else 2075 set_pte_at(mm, address, pvmw.pte, pteval); 2076 ret = false; 2077 page_vma_mapped_walk_done(&pvmw); 2078 break; 2079 } 2080 2081 /* 2082 * Store the pfn of the page in a special migration 2083 * pte. do_swap_page() will wait until the migration 2084 * pte is removed and then restart fault handling. 2085 */ 2086 if (pte_write(pteval)) 2087 entry = make_writable_migration_entry( 2088 page_to_pfn(subpage)); 2089 else if (anon_exclusive) 2090 entry = make_readable_exclusive_migration_entry( 2091 page_to_pfn(subpage)); 2092 else 2093 entry = make_readable_migration_entry( 2094 page_to_pfn(subpage)); 2095 if (pte_young(pteval)) 2096 entry = make_migration_entry_young(entry); 2097 if (pte_dirty(pteval)) 2098 entry = make_migration_entry_dirty(entry); 2099 swp_pte = swp_entry_to_pte(entry); 2100 if (pte_soft_dirty(pteval)) 2101 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2102 if (pte_uffd_wp(pteval)) 2103 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2104 if (folio_test_hugetlb(folio)) 2105 set_huge_pte_at(mm, address, pvmw.pte, swp_pte, 2106 hsz); 2107 else 2108 set_pte_at(mm, address, pvmw.pte, swp_pte); 2109 trace_set_migration_pte(address, pte_val(swp_pte), 2110 compound_order(&folio->page)); 2111 /* 2112 * No need to invalidate here it will synchronize on 2113 * against the special swap migration pte. 2114 */ 2115 } 2116 2117 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 2118 if (vma->vm_flags & VM_LOCKED) 2119 mlock_drain_local(); 2120 folio_put(folio); 2121 } 2122 2123 mmu_notifier_invalidate_range_end(&range); 2124 2125 return ret; 2126 } 2127 2128 /** 2129 * try_to_migrate - try to replace all page table mappings with swap entries 2130 * @folio: the folio to replace page table entries for 2131 * @flags: action and flags 2132 * 2133 * Tries to remove all the page table entries which are mapping this folio and 2134 * replace them with special swap entries. Caller must hold the folio lock. 2135 */ 2136 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2137 { 2138 struct rmap_walk_control rwc = { 2139 .rmap_one = try_to_migrate_one, 2140 .arg = (void *)flags, 2141 .done = folio_not_mapped, 2142 .anon_lock = folio_lock_anon_vma_read, 2143 }; 2144 2145 /* 2146 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2147 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2148 */ 2149 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2150 TTU_SYNC | TTU_BATCH_FLUSH))) 2151 return; 2152 2153 if (folio_is_zone_device(folio) && 2154 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2155 return; 2156 2157 /* 2158 * During exec, a temporary VMA is setup and later moved. 2159 * The VMA is moved under the anon_vma lock but not the 2160 * page tables leading to a race where migration cannot 2161 * find the migration ptes. Rather than increasing the 2162 * locking requirements of exec(), migration skips 2163 * temporary VMAs until after exec() completes. 2164 */ 2165 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2166 rwc.invalid_vma = invalid_migration_vma; 2167 2168 if (flags & TTU_RMAP_LOCKED) 2169 rmap_walk_locked(folio, &rwc); 2170 else 2171 rmap_walk(folio, &rwc); 2172 } 2173 2174 #ifdef CONFIG_DEVICE_PRIVATE 2175 struct make_exclusive_args { 2176 struct mm_struct *mm; 2177 unsigned long address; 2178 void *owner; 2179 bool valid; 2180 }; 2181 2182 static bool page_make_device_exclusive_one(struct folio *folio, 2183 struct vm_area_struct *vma, unsigned long address, void *priv) 2184 { 2185 struct mm_struct *mm = vma->vm_mm; 2186 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2187 struct make_exclusive_args *args = priv; 2188 pte_t pteval; 2189 struct page *subpage; 2190 bool ret = true; 2191 struct mmu_notifier_range range; 2192 swp_entry_t entry; 2193 pte_t swp_pte; 2194 pte_t ptent; 2195 2196 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2197 vma->vm_mm, address, min(vma->vm_end, 2198 address + folio_size(folio)), 2199 args->owner); 2200 mmu_notifier_invalidate_range_start(&range); 2201 2202 while (page_vma_mapped_walk(&pvmw)) { 2203 /* Unexpected PMD-mapped THP? */ 2204 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2205 2206 ptent = ptep_get(pvmw.pte); 2207 if (!pte_present(ptent)) { 2208 ret = false; 2209 page_vma_mapped_walk_done(&pvmw); 2210 break; 2211 } 2212 2213 subpage = folio_page(folio, 2214 pte_pfn(ptent) - folio_pfn(folio)); 2215 address = pvmw.address; 2216 2217 /* Nuke the page table entry. */ 2218 flush_cache_page(vma, address, pte_pfn(ptent)); 2219 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2220 2221 /* Set the dirty flag on the folio now the pte is gone. */ 2222 if (pte_dirty(pteval)) 2223 folio_mark_dirty(folio); 2224 2225 /* 2226 * Check that our target page is still mapped at the expected 2227 * address. 2228 */ 2229 if (args->mm == mm && args->address == address && 2230 pte_write(pteval)) 2231 args->valid = true; 2232 2233 /* 2234 * Store the pfn of the page in a special migration 2235 * pte. do_swap_page() will wait until the migration 2236 * pte is removed and then restart fault handling. 2237 */ 2238 if (pte_write(pteval)) 2239 entry = make_writable_device_exclusive_entry( 2240 page_to_pfn(subpage)); 2241 else 2242 entry = make_readable_device_exclusive_entry( 2243 page_to_pfn(subpage)); 2244 swp_pte = swp_entry_to_pte(entry); 2245 if (pte_soft_dirty(pteval)) 2246 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2247 if (pte_uffd_wp(pteval)) 2248 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2249 2250 set_pte_at(mm, address, pvmw.pte, swp_pte); 2251 2252 /* 2253 * There is a reference on the page for the swap entry which has 2254 * been removed, so shouldn't take another. 2255 */ 2256 page_remove_rmap(subpage, vma, false); 2257 } 2258 2259 mmu_notifier_invalidate_range_end(&range); 2260 2261 return ret; 2262 } 2263 2264 /** 2265 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2266 * @folio: The folio to replace page table entries for. 2267 * @mm: The mm_struct where the folio is expected to be mapped. 2268 * @address: Address where the folio is expected to be mapped. 2269 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2270 * 2271 * Tries to remove all the page table entries which are mapping this 2272 * folio and replace them with special device exclusive swap entries to 2273 * grant a device exclusive access to the folio. 2274 * 2275 * Context: Caller must hold the folio lock. 2276 * Return: false if the page is still mapped, or if it could not be unmapped 2277 * from the expected address. Otherwise returns true (success). 2278 */ 2279 static bool folio_make_device_exclusive(struct folio *folio, 2280 struct mm_struct *mm, unsigned long address, void *owner) 2281 { 2282 struct make_exclusive_args args = { 2283 .mm = mm, 2284 .address = address, 2285 .owner = owner, 2286 .valid = false, 2287 }; 2288 struct rmap_walk_control rwc = { 2289 .rmap_one = page_make_device_exclusive_one, 2290 .done = folio_not_mapped, 2291 .anon_lock = folio_lock_anon_vma_read, 2292 .arg = &args, 2293 }; 2294 2295 /* 2296 * Restrict to anonymous folios for now to avoid potential writeback 2297 * issues. 2298 */ 2299 if (!folio_test_anon(folio)) 2300 return false; 2301 2302 rmap_walk(folio, &rwc); 2303 2304 return args.valid && !folio_mapcount(folio); 2305 } 2306 2307 /** 2308 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2309 * @mm: mm_struct of associated target process 2310 * @start: start of the region to mark for exclusive device access 2311 * @end: end address of region 2312 * @pages: returns the pages which were successfully marked for exclusive access 2313 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2314 * 2315 * Returns: number of pages found in the range by GUP. A page is marked for 2316 * exclusive access only if the page pointer is non-NULL. 2317 * 2318 * This function finds ptes mapping page(s) to the given address range, locks 2319 * them and replaces mappings with special swap entries preventing userspace CPU 2320 * access. On fault these entries are replaced with the original mapping after 2321 * calling MMU notifiers. 2322 * 2323 * A driver using this to program access from a device must use a mmu notifier 2324 * critical section to hold a device specific lock during programming. Once 2325 * programming is complete it should drop the page lock and reference after 2326 * which point CPU access to the page will revoke the exclusive access. 2327 */ 2328 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2329 unsigned long end, struct page **pages, 2330 void *owner) 2331 { 2332 long npages = (end - start) >> PAGE_SHIFT; 2333 long i; 2334 2335 npages = get_user_pages_remote(mm, start, npages, 2336 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2337 pages, NULL); 2338 if (npages < 0) 2339 return npages; 2340 2341 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2342 struct folio *folio = page_folio(pages[i]); 2343 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2344 folio_put(folio); 2345 pages[i] = NULL; 2346 continue; 2347 } 2348 2349 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2350 folio_unlock(folio); 2351 folio_put(folio); 2352 pages[i] = NULL; 2353 } 2354 } 2355 2356 return npages; 2357 } 2358 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2359 #endif 2360 2361 void __put_anon_vma(struct anon_vma *anon_vma) 2362 { 2363 struct anon_vma *root = anon_vma->root; 2364 2365 anon_vma_free(anon_vma); 2366 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2367 anon_vma_free(root); 2368 } 2369 2370 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2371 struct rmap_walk_control *rwc) 2372 { 2373 struct anon_vma *anon_vma; 2374 2375 if (rwc->anon_lock) 2376 return rwc->anon_lock(folio, rwc); 2377 2378 /* 2379 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2380 * because that depends on page_mapped(); but not all its usages 2381 * are holding mmap_lock. Users without mmap_lock are required to 2382 * take a reference count to prevent the anon_vma disappearing 2383 */ 2384 anon_vma = folio_anon_vma(folio); 2385 if (!anon_vma) 2386 return NULL; 2387 2388 if (anon_vma_trylock_read(anon_vma)) 2389 goto out; 2390 2391 if (rwc->try_lock) { 2392 anon_vma = NULL; 2393 rwc->contended = true; 2394 goto out; 2395 } 2396 2397 anon_vma_lock_read(anon_vma); 2398 out: 2399 return anon_vma; 2400 } 2401 2402 /* 2403 * rmap_walk_anon - do something to anonymous page using the object-based 2404 * rmap method 2405 * @folio: the folio to be handled 2406 * @rwc: control variable according to each walk type 2407 * @locked: caller holds relevant rmap lock 2408 * 2409 * Find all the mappings of a folio using the mapping pointer and the vma 2410 * chains contained in the anon_vma struct it points to. 2411 */ 2412 static void rmap_walk_anon(struct folio *folio, 2413 struct rmap_walk_control *rwc, bool locked) 2414 { 2415 struct anon_vma *anon_vma; 2416 pgoff_t pgoff_start, pgoff_end; 2417 struct anon_vma_chain *avc; 2418 2419 if (locked) { 2420 anon_vma = folio_anon_vma(folio); 2421 /* anon_vma disappear under us? */ 2422 VM_BUG_ON_FOLIO(!anon_vma, folio); 2423 } else { 2424 anon_vma = rmap_walk_anon_lock(folio, rwc); 2425 } 2426 if (!anon_vma) 2427 return; 2428 2429 pgoff_start = folio_pgoff(folio); 2430 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2431 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2432 pgoff_start, pgoff_end) { 2433 struct vm_area_struct *vma = avc->vma; 2434 unsigned long address = vma_address(&folio->page, vma); 2435 2436 VM_BUG_ON_VMA(address == -EFAULT, vma); 2437 cond_resched(); 2438 2439 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2440 continue; 2441 2442 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2443 break; 2444 if (rwc->done && rwc->done(folio)) 2445 break; 2446 } 2447 2448 if (!locked) 2449 anon_vma_unlock_read(anon_vma); 2450 } 2451 2452 /* 2453 * rmap_walk_file - do something to file page using the object-based rmap method 2454 * @folio: the folio to be handled 2455 * @rwc: control variable according to each walk type 2456 * @locked: caller holds relevant rmap lock 2457 * 2458 * Find all the mappings of a folio using the mapping pointer and the vma chains 2459 * contained in the address_space struct it points to. 2460 */ 2461 static void rmap_walk_file(struct folio *folio, 2462 struct rmap_walk_control *rwc, bool locked) 2463 { 2464 struct address_space *mapping = folio_mapping(folio); 2465 pgoff_t pgoff_start, pgoff_end; 2466 struct vm_area_struct *vma; 2467 2468 /* 2469 * The page lock not only makes sure that page->mapping cannot 2470 * suddenly be NULLified by truncation, it makes sure that the 2471 * structure at mapping cannot be freed and reused yet, 2472 * so we can safely take mapping->i_mmap_rwsem. 2473 */ 2474 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2475 2476 if (!mapping) 2477 return; 2478 2479 pgoff_start = folio_pgoff(folio); 2480 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2481 if (!locked) { 2482 if (i_mmap_trylock_read(mapping)) 2483 goto lookup; 2484 2485 if (rwc->try_lock) { 2486 rwc->contended = true; 2487 return; 2488 } 2489 2490 i_mmap_lock_read(mapping); 2491 } 2492 lookup: 2493 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2494 pgoff_start, pgoff_end) { 2495 unsigned long address = vma_address(&folio->page, vma); 2496 2497 VM_BUG_ON_VMA(address == -EFAULT, vma); 2498 cond_resched(); 2499 2500 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2501 continue; 2502 2503 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2504 goto done; 2505 if (rwc->done && rwc->done(folio)) 2506 goto done; 2507 } 2508 2509 done: 2510 if (!locked) 2511 i_mmap_unlock_read(mapping); 2512 } 2513 2514 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2515 { 2516 if (unlikely(folio_test_ksm(folio))) 2517 rmap_walk_ksm(folio, rwc); 2518 else if (folio_test_anon(folio)) 2519 rmap_walk_anon(folio, rwc, false); 2520 else 2521 rmap_walk_file(folio, rwc, false); 2522 } 2523 2524 /* Like rmap_walk, but caller holds relevant rmap lock */ 2525 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2526 { 2527 /* no ksm support for now */ 2528 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2529 if (folio_test_anon(folio)) 2530 rmap_walk_anon(folio, rwc, true); 2531 else 2532 rmap_walk_file(folio, rwc, true); 2533 } 2534 2535 #ifdef CONFIG_HUGETLB_PAGE 2536 /* 2537 * The following two functions are for anonymous (private mapped) hugepages. 2538 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2539 * and no lru code, because we handle hugepages differently from common pages. 2540 * 2541 * RMAP_COMPOUND is ignored. 2542 */ 2543 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 2544 unsigned long address, rmap_t flags) 2545 { 2546 struct folio *folio = page_folio(page); 2547 struct anon_vma *anon_vma = vma->anon_vma; 2548 int first; 2549 2550 BUG_ON(!folio_test_locked(folio)); 2551 BUG_ON(!anon_vma); 2552 /* address might be in next vma when migration races vma_merge */ 2553 first = atomic_inc_and_test(&folio->_entire_mapcount); 2554 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 2555 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 2556 if (first) 2557 __page_set_anon_rmap(folio, page, vma, address, 2558 !!(flags & RMAP_EXCLUSIVE)); 2559 } 2560 2561 void hugepage_add_new_anon_rmap(struct folio *folio, 2562 struct vm_area_struct *vma, unsigned long address) 2563 { 2564 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2565 /* increment count (starts at -1) */ 2566 atomic_set(&folio->_entire_mapcount, 0); 2567 folio_clear_hugetlb_restore_reserve(folio); 2568 __page_set_anon_rmap(folio, &folio->page, vma, address, 1); 2569 } 2570 #endif /* CONFIG_HUGETLB_PAGE */ 2571