xref: /openbmc/linux/mm/rmap.c (revision 981ab3f1)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27  *         mapping->i_mmap_rwsem
28  *           anon_vma->rwsem
29  *             mm->page_table_lock or pte_lock
30  *               zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31  *               swap_lock (in swap_duplicate, swap_info_get)
32  *                 mmlist_lock (in mmput, drain_mmlist and others)
33  *                 mapping->private_lock (in __set_page_dirty_buffers)
34  *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35  *                     mapping->tree_lock (widely used)
36  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
39  *                   mapping->tree_lock (widely used, in set_page_dirty,
40  *                             in arch-dependent flush_dcache_mmap_lock,
41  *                             within bdi.wb->list_lock in __sync_single_inode)
42  *
43  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
44  *   ->tasklist_lock
45  *     pte map lock
46  */
47 
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66 
67 #include <asm/tlbflush.h>
68 
69 #include <trace/events/tlb.h>
70 
71 #include "internal.h"
72 
73 static struct kmem_cache *anon_vma_cachep;
74 static struct kmem_cache *anon_vma_chain_cachep;
75 
76 static inline struct anon_vma *anon_vma_alloc(void)
77 {
78 	struct anon_vma *anon_vma;
79 
80 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
81 	if (anon_vma) {
82 		atomic_set(&anon_vma->refcount, 1);
83 		anon_vma->degree = 1;	/* Reference for first vma */
84 		anon_vma->parent = anon_vma;
85 		/*
86 		 * Initialise the anon_vma root to point to itself. If called
87 		 * from fork, the root will be reset to the parents anon_vma.
88 		 */
89 		anon_vma->root = anon_vma;
90 	}
91 
92 	return anon_vma;
93 }
94 
95 static inline void anon_vma_free(struct anon_vma *anon_vma)
96 {
97 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
98 
99 	/*
100 	 * Synchronize against page_lock_anon_vma_read() such that
101 	 * we can safely hold the lock without the anon_vma getting
102 	 * freed.
103 	 *
104 	 * Relies on the full mb implied by the atomic_dec_and_test() from
105 	 * put_anon_vma() against the acquire barrier implied by
106 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
107 	 *
108 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
109 	 *   down_read_trylock()		  atomic_dec_and_test()
110 	 *   LOCK				  MB
111 	 *   atomic_read()			  rwsem_is_locked()
112 	 *
113 	 * LOCK should suffice since the actual taking of the lock must
114 	 * happen _before_ what follows.
115 	 */
116 	might_sleep();
117 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
118 		anon_vma_lock_write(anon_vma);
119 		anon_vma_unlock_write(anon_vma);
120 	}
121 
122 	kmem_cache_free(anon_vma_cachep, anon_vma);
123 }
124 
125 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
126 {
127 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
128 }
129 
130 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
131 {
132 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
133 }
134 
135 static void anon_vma_chain_link(struct vm_area_struct *vma,
136 				struct anon_vma_chain *avc,
137 				struct anon_vma *anon_vma)
138 {
139 	avc->vma = vma;
140 	avc->anon_vma = anon_vma;
141 	list_add(&avc->same_vma, &vma->anon_vma_chain);
142 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
143 }
144 
145 /**
146  * __anon_vma_prepare - attach an anon_vma to a memory region
147  * @vma: the memory region in question
148  *
149  * This makes sure the memory mapping described by 'vma' has
150  * an 'anon_vma' attached to it, so that we can associate the
151  * anonymous pages mapped into it with that anon_vma.
152  *
153  * The common case will be that we already have one, which
154  * is handled inline by anon_vma_prepare(). But if
155  * not we either need to find an adjacent mapping that we
156  * can re-use the anon_vma from (very common when the only
157  * reason for splitting a vma has been mprotect()), or we
158  * allocate a new one.
159  *
160  * Anon-vma allocations are very subtle, because we may have
161  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
162  * and that may actually touch the spinlock even in the newly
163  * allocated vma (it depends on RCU to make sure that the
164  * anon_vma isn't actually destroyed).
165  *
166  * As a result, we need to do proper anon_vma locking even
167  * for the new allocation. At the same time, we do not want
168  * to do any locking for the common case of already having
169  * an anon_vma.
170  *
171  * This must be called with the mmap_sem held for reading.
172  */
173 int __anon_vma_prepare(struct vm_area_struct *vma)
174 {
175 	struct mm_struct *mm = vma->vm_mm;
176 	struct anon_vma *anon_vma, *allocated;
177 	struct anon_vma_chain *avc;
178 
179 	might_sleep();
180 
181 	avc = anon_vma_chain_alloc(GFP_KERNEL);
182 	if (!avc)
183 		goto out_enomem;
184 
185 	anon_vma = find_mergeable_anon_vma(vma);
186 	allocated = NULL;
187 	if (!anon_vma) {
188 		anon_vma = anon_vma_alloc();
189 		if (unlikely(!anon_vma))
190 			goto out_enomem_free_avc;
191 		allocated = anon_vma;
192 	}
193 
194 	anon_vma_lock_write(anon_vma);
195 	/* page_table_lock to protect against threads */
196 	spin_lock(&mm->page_table_lock);
197 	if (likely(!vma->anon_vma)) {
198 		vma->anon_vma = anon_vma;
199 		anon_vma_chain_link(vma, avc, anon_vma);
200 		/* vma reference or self-parent link for new root */
201 		anon_vma->degree++;
202 		allocated = NULL;
203 		avc = NULL;
204 	}
205 	spin_unlock(&mm->page_table_lock);
206 	anon_vma_unlock_write(anon_vma);
207 
208 	if (unlikely(allocated))
209 		put_anon_vma(allocated);
210 	if (unlikely(avc))
211 		anon_vma_chain_free(avc);
212 
213 	return 0;
214 
215  out_enomem_free_avc:
216 	anon_vma_chain_free(avc);
217  out_enomem:
218 	return -ENOMEM;
219 }
220 
221 /*
222  * This is a useful helper function for locking the anon_vma root as
223  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
224  * have the same vma.
225  *
226  * Such anon_vma's should have the same root, so you'd expect to see
227  * just a single mutex_lock for the whole traversal.
228  */
229 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
230 {
231 	struct anon_vma *new_root = anon_vma->root;
232 	if (new_root != root) {
233 		if (WARN_ON_ONCE(root))
234 			up_write(&root->rwsem);
235 		root = new_root;
236 		down_write(&root->rwsem);
237 	}
238 	return root;
239 }
240 
241 static inline void unlock_anon_vma_root(struct anon_vma *root)
242 {
243 	if (root)
244 		up_write(&root->rwsem);
245 }
246 
247 /*
248  * Attach the anon_vmas from src to dst.
249  * Returns 0 on success, -ENOMEM on failure.
250  *
251  * If dst->anon_vma is NULL this function tries to find and reuse existing
252  * anon_vma which has no vmas and only one child anon_vma. This prevents
253  * degradation of anon_vma hierarchy to endless linear chain in case of
254  * constantly forking task. On the other hand, an anon_vma with more than one
255  * child isn't reused even if there was no alive vma, thus rmap walker has a
256  * good chance of avoiding scanning the whole hierarchy when it searches where
257  * page is mapped.
258  */
259 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
260 {
261 	struct anon_vma_chain *avc, *pavc;
262 	struct anon_vma *root = NULL;
263 
264 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
265 		struct anon_vma *anon_vma;
266 
267 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
268 		if (unlikely(!avc)) {
269 			unlock_anon_vma_root(root);
270 			root = NULL;
271 			avc = anon_vma_chain_alloc(GFP_KERNEL);
272 			if (!avc)
273 				goto enomem_failure;
274 		}
275 		anon_vma = pavc->anon_vma;
276 		root = lock_anon_vma_root(root, anon_vma);
277 		anon_vma_chain_link(dst, avc, anon_vma);
278 
279 		/*
280 		 * Reuse existing anon_vma if its degree lower than two,
281 		 * that means it has no vma and only one anon_vma child.
282 		 *
283 		 * Do not chose parent anon_vma, otherwise first child
284 		 * will always reuse it. Root anon_vma is never reused:
285 		 * it has self-parent reference and at least one child.
286 		 */
287 		if (!dst->anon_vma && anon_vma != src->anon_vma &&
288 				anon_vma->degree < 2)
289 			dst->anon_vma = anon_vma;
290 	}
291 	if (dst->anon_vma)
292 		dst->anon_vma->degree++;
293 	unlock_anon_vma_root(root);
294 	return 0;
295 
296  enomem_failure:
297 	/*
298 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
299 	 * decremented in unlink_anon_vmas().
300 	 * We can safely do this because callers of anon_vma_clone() don't care
301 	 * about dst->anon_vma if anon_vma_clone() failed.
302 	 */
303 	dst->anon_vma = NULL;
304 	unlink_anon_vmas(dst);
305 	return -ENOMEM;
306 }
307 
308 /*
309  * Attach vma to its own anon_vma, as well as to the anon_vmas that
310  * the corresponding VMA in the parent process is attached to.
311  * Returns 0 on success, non-zero on failure.
312  */
313 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
314 {
315 	struct anon_vma_chain *avc;
316 	struct anon_vma *anon_vma;
317 	int error;
318 
319 	/* Don't bother if the parent process has no anon_vma here. */
320 	if (!pvma->anon_vma)
321 		return 0;
322 
323 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
324 	vma->anon_vma = NULL;
325 
326 	/*
327 	 * First, attach the new VMA to the parent VMA's anon_vmas,
328 	 * so rmap can find non-COWed pages in child processes.
329 	 */
330 	error = anon_vma_clone(vma, pvma);
331 	if (error)
332 		return error;
333 
334 	/* An existing anon_vma has been reused, all done then. */
335 	if (vma->anon_vma)
336 		return 0;
337 
338 	/* Then add our own anon_vma. */
339 	anon_vma = anon_vma_alloc();
340 	if (!anon_vma)
341 		goto out_error;
342 	avc = anon_vma_chain_alloc(GFP_KERNEL);
343 	if (!avc)
344 		goto out_error_free_anon_vma;
345 
346 	/*
347 	 * The root anon_vma's spinlock is the lock actually used when we
348 	 * lock any of the anon_vmas in this anon_vma tree.
349 	 */
350 	anon_vma->root = pvma->anon_vma->root;
351 	anon_vma->parent = pvma->anon_vma;
352 	/*
353 	 * With refcounts, an anon_vma can stay around longer than the
354 	 * process it belongs to. The root anon_vma needs to be pinned until
355 	 * this anon_vma is freed, because the lock lives in the root.
356 	 */
357 	get_anon_vma(anon_vma->root);
358 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
359 	vma->anon_vma = anon_vma;
360 	anon_vma_lock_write(anon_vma);
361 	anon_vma_chain_link(vma, avc, anon_vma);
362 	anon_vma->parent->degree++;
363 	anon_vma_unlock_write(anon_vma);
364 
365 	return 0;
366 
367  out_error_free_anon_vma:
368 	put_anon_vma(anon_vma);
369  out_error:
370 	unlink_anon_vmas(vma);
371 	return -ENOMEM;
372 }
373 
374 void unlink_anon_vmas(struct vm_area_struct *vma)
375 {
376 	struct anon_vma_chain *avc, *next;
377 	struct anon_vma *root = NULL;
378 
379 	/*
380 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
381 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
382 	 */
383 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
384 		struct anon_vma *anon_vma = avc->anon_vma;
385 
386 		root = lock_anon_vma_root(root, anon_vma);
387 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
388 
389 		/*
390 		 * Leave empty anon_vmas on the list - we'll need
391 		 * to free them outside the lock.
392 		 */
393 		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
394 			anon_vma->parent->degree--;
395 			continue;
396 		}
397 
398 		list_del(&avc->same_vma);
399 		anon_vma_chain_free(avc);
400 	}
401 	if (vma->anon_vma)
402 		vma->anon_vma->degree--;
403 	unlock_anon_vma_root(root);
404 
405 	/*
406 	 * Iterate the list once more, it now only contains empty and unlinked
407 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
408 	 * needing to write-acquire the anon_vma->root->rwsem.
409 	 */
410 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
411 		struct anon_vma *anon_vma = avc->anon_vma;
412 
413 		VM_WARN_ON(anon_vma->degree);
414 		put_anon_vma(anon_vma);
415 
416 		list_del(&avc->same_vma);
417 		anon_vma_chain_free(avc);
418 	}
419 }
420 
421 static void anon_vma_ctor(void *data)
422 {
423 	struct anon_vma *anon_vma = data;
424 
425 	init_rwsem(&anon_vma->rwsem);
426 	atomic_set(&anon_vma->refcount, 0);
427 	anon_vma->rb_root = RB_ROOT;
428 }
429 
430 void __init anon_vma_init(void)
431 {
432 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
433 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
434 			anon_vma_ctor);
435 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
436 			SLAB_PANIC|SLAB_ACCOUNT);
437 }
438 
439 /*
440  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
441  *
442  * Since there is no serialization what so ever against page_remove_rmap()
443  * the best this function can do is return a locked anon_vma that might
444  * have been relevant to this page.
445  *
446  * The page might have been remapped to a different anon_vma or the anon_vma
447  * returned may already be freed (and even reused).
448  *
449  * In case it was remapped to a different anon_vma, the new anon_vma will be a
450  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
451  * ensure that any anon_vma obtained from the page will still be valid for as
452  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
453  *
454  * All users of this function must be very careful when walking the anon_vma
455  * chain and verify that the page in question is indeed mapped in it
456  * [ something equivalent to page_mapped_in_vma() ].
457  *
458  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
459  * that the anon_vma pointer from page->mapping is valid if there is a
460  * mapcount, we can dereference the anon_vma after observing those.
461  */
462 struct anon_vma *page_get_anon_vma(struct page *page)
463 {
464 	struct anon_vma *anon_vma = NULL;
465 	unsigned long anon_mapping;
466 
467 	rcu_read_lock();
468 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
469 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
470 		goto out;
471 	if (!page_mapped(page))
472 		goto out;
473 
474 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
475 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
476 		anon_vma = NULL;
477 		goto out;
478 	}
479 
480 	/*
481 	 * If this page is still mapped, then its anon_vma cannot have been
482 	 * freed.  But if it has been unmapped, we have no security against the
483 	 * anon_vma structure being freed and reused (for another anon_vma:
484 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
485 	 * above cannot corrupt).
486 	 */
487 	if (!page_mapped(page)) {
488 		rcu_read_unlock();
489 		put_anon_vma(anon_vma);
490 		return NULL;
491 	}
492 out:
493 	rcu_read_unlock();
494 
495 	return anon_vma;
496 }
497 
498 /*
499  * Similar to page_get_anon_vma() except it locks the anon_vma.
500  *
501  * Its a little more complex as it tries to keep the fast path to a single
502  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
503  * reference like with page_get_anon_vma() and then block on the mutex.
504  */
505 struct anon_vma *page_lock_anon_vma_read(struct page *page)
506 {
507 	struct anon_vma *anon_vma = NULL;
508 	struct anon_vma *root_anon_vma;
509 	unsigned long anon_mapping;
510 
511 	rcu_read_lock();
512 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
513 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
514 		goto out;
515 	if (!page_mapped(page))
516 		goto out;
517 
518 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
519 	root_anon_vma = READ_ONCE(anon_vma->root);
520 	if (down_read_trylock(&root_anon_vma->rwsem)) {
521 		/*
522 		 * If the page is still mapped, then this anon_vma is still
523 		 * its anon_vma, and holding the mutex ensures that it will
524 		 * not go away, see anon_vma_free().
525 		 */
526 		if (!page_mapped(page)) {
527 			up_read(&root_anon_vma->rwsem);
528 			anon_vma = NULL;
529 		}
530 		goto out;
531 	}
532 
533 	/* trylock failed, we got to sleep */
534 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
535 		anon_vma = NULL;
536 		goto out;
537 	}
538 
539 	if (!page_mapped(page)) {
540 		rcu_read_unlock();
541 		put_anon_vma(anon_vma);
542 		return NULL;
543 	}
544 
545 	/* we pinned the anon_vma, its safe to sleep */
546 	rcu_read_unlock();
547 	anon_vma_lock_read(anon_vma);
548 
549 	if (atomic_dec_and_test(&anon_vma->refcount)) {
550 		/*
551 		 * Oops, we held the last refcount, release the lock
552 		 * and bail -- can't simply use put_anon_vma() because
553 		 * we'll deadlock on the anon_vma_lock_write() recursion.
554 		 */
555 		anon_vma_unlock_read(anon_vma);
556 		__put_anon_vma(anon_vma);
557 		anon_vma = NULL;
558 	}
559 
560 	return anon_vma;
561 
562 out:
563 	rcu_read_unlock();
564 	return anon_vma;
565 }
566 
567 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
568 {
569 	anon_vma_unlock_read(anon_vma);
570 }
571 
572 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
573 /*
574  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
575  * important if a PTE was dirty when it was unmapped that it's flushed
576  * before any IO is initiated on the page to prevent lost writes. Similarly,
577  * it must be flushed before freeing to prevent data leakage.
578  */
579 void try_to_unmap_flush(void)
580 {
581 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
582 
583 	if (!tlb_ubc->flush_required)
584 		return;
585 
586 	arch_tlbbatch_flush(&tlb_ubc->arch);
587 	tlb_ubc->flush_required = false;
588 	tlb_ubc->writable = false;
589 }
590 
591 /* Flush iff there are potentially writable TLB entries that can race with IO */
592 void try_to_unmap_flush_dirty(void)
593 {
594 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
595 
596 	if (tlb_ubc->writable)
597 		try_to_unmap_flush();
598 }
599 
600 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
601 {
602 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
603 
604 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
605 	tlb_ubc->flush_required = true;
606 
607 	/*
608 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
609 	 * before the PTE is cleared.
610 	 */
611 	barrier();
612 	mm->tlb_flush_batched = true;
613 
614 	/*
615 	 * If the PTE was dirty then it's best to assume it's writable. The
616 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
617 	 * before the page is queued for IO.
618 	 */
619 	if (writable)
620 		tlb_ubc->writable = true;
621 }
622 
623 /*
624  * Returns true if the TLB flush should be deferred to the end of a batch of
625  * unmap operations to reduce IPIs.
626  */
627 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
628 {
629 	bool should_defer = false;
630 
631 	if (!(flags & TTU_BATCH_FLUSH))
632 		return false;
633 
634 	/* If remote CPUs need to be flushed then defer batch the flush */
635 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
636 		should_defer = true;
637 	put_cpu();
638 
639 	return should_defer;
640 }
641 
642 /*
643  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
644  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
645  * operation such as mprotect or munmap to race between reclaim unmapping
646  * the page and flushing the page. If this race occurs, it potentially allows
647  * access to data via a stale TLB entry. Tracking all mm's that have TLB
648  * batching in flight would be expensive during reclaim so instead track
649  * whether TLB batching occurred in the past and if so then do a flush here
650  * if required. This will cost one additional flush per reclaim cycle paid
651  * by the first operation at risk such as mprotect and mumap.
652  *
653  * This must be called under the PTL so that an access to tlb_flush_batched
654  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
655  * via the PTL.
656  */
657 void flush_tlb_batched_pending(struct mm_struct *mm)
658 {
659 	if (mm->tlb_flush_batched) {
660 		flush_tlb_mm(mm);
661 
662 		/*
663 		 * Do not allow the compiler to re-order the clearing of
664 		 * tlb_flush_batched before the tlb is flushed.
665 		 */
666 		barrier();
667 		mm->tlb_flush_batched = false;
668 	}
669 }
670 #else
671 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
672 {
673 }
674 
675 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
676 {
677 	return false;
678 }
679 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
680 
681 /*
682  * At what user virtual address is page expected in vma?
683  * Caller should check the page is actually part of the vma.
684  */
685 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
686 {
687 	unsigned long address;
688 	if (PageAnon(page)) {
689 		struct anon_vma *page__anon_vma = page_anon_vma(page);
690 		/*
691 		 * Note: swapoff's unuse_vma() is more efficient with this
692 		 * check, and needs it to match anon_vma when KSM is active.
693 		 */
694 		if (!vma->anon_vma || !page__anon_vma ||
695 		    vma->anon_vma->root != page__anon_vma->root)
696 			return -EFAULT;
697 	} else if (page->mapping) {
698 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
699 			return -EFAULT;
700 	} else
701 		return -EFAULT;
702 	address = __vma_address(page, vma);
703 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
704 		return -EFAULT;
705 	return address;
706 }
707 
708 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
709 {
710 	pgd_t *pgd;
711 	p4d_t *p4d;
712 	pud_t *pud;
713 	pmd_t *pmd = NULL;
714 	pmd_t pmde;
715 
716 	pgd = pgd_offset(mm, address);
717 	if (!pgd_present(*pgd))
718 		goto out;
719 
720 	p4d = p4d_offset(pgd, address);
721 	if (!p4d_present(*p4d))
722 		goto out;
723 
724 	pud = pud_offset(p4d, address);
725 	if (!pud_present(*pud))
726 		goto out;
727 
728 	pmd = pmd_offset(pud, address);
729 	/*
730 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
731 	 * without holding anon_vma lock for write.  So when looking for a
732 	 * genuine pmde (in which to find pte), test present and !THP together.
733 	 */
734 	pmde = *pmd;
735 	barrier();
736 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
737 		pmd = NULL;
738 out:
739 	return pmd;
740 }
741 
742 struct page_referenced_arg {
743 	int mapcount;
744 	int referenced;
745 	unsigned long vm_flags;
746 	struct mem_cgroup *memcg;
747 };
748 /*
749  * arg: page_referenced_arg will be passed
750  */
751 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
752 			unsigned long address, void *arg)
753 {
754 	struct page_referenced_arg *pra = arg;
755 	struct page_vma_mapped_walk pvmw = {
756 		.page = page,
757 		.vma = vma,
758 		.address = address,
759 	};
760 	int referenced = 0;
761 
762 	while (page_vma_mapped_walk(&pvmw)) {
763 		address = pvmw.address;
764 
765 		if (vma->vm_flags & VM_LOCKED) {
766 			page_vma_mapped_walk_done(&pvmw);
767 			pra->vm_flags |= VM_LOCKED;
768 			return false; /* To break the loop */
769 		}
770 
771 		if (pvmw.pte) {
772 			if (ptep_clear_flush_young_notify(vma, address,
773 						pvmw.pte)) {
774 				/*
775 				 * Don't treat a reference through
776 				 * a sequentially read mapping as such.
777 				 * If the page has been used in another mapping,
778 				 * we will catch it; if this other mapping is
779 				 * already gone, the unmap path will have set
780 				 * PG_referenced or activated the page.
781 				 */
782 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
783 					referenced++;
784 			}
785 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
786 			if (pmdp_clear_flush_young_notify(vma, address,
787 						pvmw.pmd))
788 				referenced++;
789 		} else {
790 			/* unexpected pmd-mapped page? */
791 			WARN_ON_ONCE(1);
792 		}
793 
794 		pra->mapcount--;
795 	}
796 
797 	if (referenced)
798 		clear_page_idle(page);
799 	if (test_and_clear_page_young(page))
800 		referenced++;
801 
802 	if (referenced) {
803 		pra->referenced++;
804 		pra->vm_flags |= vma->vm_flags;
805 	}
806 
807 	if (!pra->mapcount)
808 		return false; /* To break the loop */
809 
810 	return true;
811 }
812 
813 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
814 {
815 	struct page_referenced_arg *pra = arg;
816 	struct mem_cgroup *memcg = pra->memcg;
817 
818 	if (!mm_match_cgroup(vma->vm_mm, memcg))
819 		return true;
820 
821 	return false;
822 }
823 
824 /**
825  * page_referenced - test if the page was referenced
826  * @page: the page to test
827  * @is_locked: caller holds lock on the page
828  * @memcg: target memory cgroup
829  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
830  *
831  * Quick test_and_clear_referenced for all mappings to a page,
832  * returns the number of ptes which referenced the page.
833  */
834 int page_referenced(struct page *page,
835 		    int is_locked,
836 		    struct mem_cgroup *memcg,
837 		    unsigned long *vm_flags)
838 {
839 	int we_locked = 0;
840 	struct page_referenced_arg pra = {
841 		.mapcount = total_mapcount(page),
842 		.memcg = memcg,
843 	};
844 	struct rmap_walk_control rwc = {
845 		.rmap_one = page_referenced_one,
846 		.arg = (void *)&pra,
847 		.anon_lock = page_lock_anon_vma_read,
848 	};
849 
850 	*vm_flags = 0;
851 	if (!page_mapped(page))
852 		return 0;
853 
854 	if (!page_rmapping(page))
855 		return 0;
856 
857 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
858 		we_locked = trylock_page(page);
859 		if (!we_locked)
860 			return 1;
861 	}
862 
863 	/*
864 	 * If we are reclaiming on behalf of a cgroup, skip
865 	 * counting on behalf of references from different
866 	 * cgroups
867 	 */
868 	if (memcg) {
869 		rwc.invalid_vma = invalid_page_referenced_vma;
870 	}
871 
872 	rmap_walk(page, &rwc);
873 	*vm_flags = pra.vm_flags;
874 
875 	if (we_locked)
876 		unlock_page(page);
877 
878 	return pra.referenced;
879 }
880 
881 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
882 			    unsigned long address, void *arg)
883 {
884 	struct page_vma_mapped_walk pvmw = {
885 		.page = page,
886 		.vma = vma,
887 		.address = address,
888 		.flags = PVMW_SYNC,
889 	};
890 	int *cleaned = arg;
891 	bool invalidation_needed = false;
892 
893 	while (page_vma_mapped_walk(&pvmw)) {
894 		int ret = 0;
895 		if (pvmw.pte) {
896 			pte_t entry;
897 			pte_t *pte = pvmw.pte;
898 
899 			if (!pte_dirty(*pte) && !pte_write(*pte))
900 				continue;
901 
902 			flush_cache_page(vma, pvmw.address, pte_pfn(*pte));
903 			entry = ptep_clear_flush(vma, pvmw.address, pte);
904 			entry = pte_wrprotect(entry);
905 			entry = pte_mkclean(entry);
906 			set_pte_at(vma->vm_mm, pvmw.address, pte, entry);
907 			ret = 1;
908 		} else {
909 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
910 			pmd_t *pmd = pvmw.pmd;
911 			pmd_t entry;
912 
913 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
914 				continue;
915 
916 			flush_cache_page(vma, pvmw.address, page_to_pfn(page));
917 			entry = pmdp_huge_clear_flush(vma, pvmw.address, pmd);
918 			entry = pmd_wrprotect(entry);
919 			entry = pmd_mkclean(entry);
920 			set_pmd_at(vma->vm_mm, pvmw.address, pmd, entry);
921 			ret = 1;
922 #else
923 			/* unexpected pmd-mapped page? */
924 			WARN_ON_ONCE(1);
925 #endif
926 		}
927 
928 		if (ret) {
929 			(*cleaned)++;
930 			invalidation_needed = true;
931 		}
932 	}
933 
934 	if (invalidation_needed) {
935 		mmu_notifier_invalidate_range(vma->vm_mm, address,
936 				address + (1UL << compound_order(page)));
937 	}
938 
939 	return true;
940 }
941 
942 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
943 {
944 	if (vma->vm_flags & VM_SHARED)
945 		return false;
946 
947 	return true;
948 }
949 
950 int page_mkclean(struct page *page)
951 {
952 	int cleaned = 0;
953 	struct address_space *mapping;
954 	struct rmap_walk_control rwc = {
955 		.arg = (void *)&cleaned,
956 		.rmap_one = page_mkclean_one,
957 		.invalid_vma = invalid_mkclean_vma,
958 	};
959 
960 	BUG_ON(!PageLocked(page));
961 
962 	if (!page_mapped(page))
963 		return 0;
964 
965 	mapping = page_mapping(page);
966 	if (!mapping)
967 		return 0;
968 
969 	rmap_walk(page, &rwc);
970 
971 	return cleaned;
972 }
973 EXPORT_SYMBOL_GPL(page_mkclean);
974 
975 /**
976  * page_move_anon_rmap - move a page to our anon_vma
977  * @page:	the page to move to our anon_vma
978  * @vma:	the vma the page belongs to
979  *
980  * When a page belongs exclusively to one process after a COW event,
981  * that page can be moved into the anon_vma that belongs to just that
982  * process, so the rmap code will not search the parent or sibling
983  * processes.
984  */
985 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
986 {
987 	struct anon_vma *anon_vma = vma->anon_vma;
988 
989 	page = compound_head(page);
990 
991 	VM_BUG_ON_PAGE(!PageLocked(page), page);
992 	VM_BUG_ON_VMA(!anon_vma, vma);
993 
994 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
995 	/*
996 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
997 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
998 	 * PageAnon()) will not see one without the other.
999 	 */
1000 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1001 }
1002 
1003 /**
1004  * __page_set_anon_rmap - set up new anonymous rmap
1005  * @page:	Page to add to rmap
1006  * @vma:	VM area to add page to.
1007  * @address:	User virtual address of the mapping
1008  * @exclusive:	the page is exclusively owned by the current process
1009  */
1010 static void __page_set_anon_rmap(struct page *page,
1011 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1012 {
1013 	struct anon_vma *anon_vma = vma->anon_vma;
1014 
1015 	BUG_ON(!anon_vma);
1016 
1017 	if (PageAnon(page))
1018 		return;
1019 
1020 	/*
1021 	 * If the page isn't exclusively mapped into this vma,
1022 	 * we must use the _oldest_ possible anon_vma for the
1023 	 * page mapping!
1024 	 */
1025 	if (!exclusive)
1026 		anon_vma = anon_vma->root;
1027 
1028 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1029 	page->mapping = (struct address_space *) anon_vma;
1030 	page->index = linear_page_index(vma, address);
1031 }
1032 
1033 /**
1034  * __page_check_anon_rmap - sanity check anonymous rmap addition
1035  * @page:	the page to add the mapping to
1036  * @vma:	the vm area in which the mapping is added
1037  * @address:	the user virtual address mapped
1038  */
1039 static void __page_check_anon_rmap(struct page *page,
1040 	struct vm_area_struct *vma, unsigned long address)
1041 {
1042 #ifdef CONFIG_DEBUG_VM
1043 	/*
1044 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1045 	 * be set up correctly at this point.
1046 	 *
1047 	 * We have exclusion against page_add_anon_rmap because the caller
1048 	 * always holds the page locked, except if called from page_dup_rmap,
1049 	 * in which case the page is already known to be setup.
1050 	 *
1051 	 * We have exclusion against page_add_new_anon_rmap because those pages
1052 	 * are initially only visible via the pagetables, and the pte is locked
1053 	 * over the call to page_add_new_anon_rmap.
1054 	 */
1055 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1056 	BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1057 #endif
1058 }
1059 
1060 /**
1061  * page_add_anon_rmap - add pte mapping to an anonymous page
1062  * @page:	the page to add the mapping to
1063  * @vma:	the vm area in which the mapping is added
1064  * @address:	the user virtual address mapped
1065  * @compound:	charge the page as compound or small page
1066  *
1067  * The caller needs to hold the pte lock, and the page must be locked in
1068  * the anon_vma case: to serialize mapping,index checking after setting,
1069  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1070  * (but PageKsm is never downgraded to PageAnon).
1071  */
1072 void page_add_anon_rmap(struct page *page,
1073 	struct vm_area_struct *vma, unsigned long address, bool compound)
1074 {
1075 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1076 }
1077 
1078 /*
1079  * Special version of the above for do_swap_page, which often runs
1080  * into pages that are exclusively owned by the current process.
1081  * Everybody else should continue to use page_add_anon_rmap above.
1082  */
1083 void do_page_add_anon_rmap(struct page *page,
1084 	struct vm_area_struct *vma, unsigned long address, int flags)
1085 {
1086 	bool compound = flags & RMAP_COMPOUND;
1087 	bool first;
1088 
1089 	if (compound) {
1090 		atomic_t *mapcount;
1091 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1092 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1093 		mapcount = compound_mapcount_ptr(page);
1094 		first = atomic_inc_and_test(mapcount);
1095 	} else {
1096 		first = atomic_inc_and_test(&page->_mapcount);
1097 	}
1098 
1099 	if (first) {
1100 		int nr = compound ? hpage_nr_pages(page) : 1;
1101 		/*
1102 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1103 		 * these counters are not modified in interrupt context, and
1104 		 * pte lock(a spinlock) is held, which implies preemption
1105 		 * disabled.
1106 		 */
1107 		if (compound)
1108 			__inc_node_page_state(page, NR_ANON_THPS);
1109 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1110 	}
1111 	if (unlikely(PageKsm(page)))
1112 		return;
1113 
1114 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1115 
1116 	/* address might be in next vma when migration races vma_adjust */
1117 	if (first)
1118 		__page_set_anon_rmap(page, vma, address,
1119 				flags & RMAP_EXCLUSIVE);
1120 	else
1121 		__page_check_anon_rmap(page, vma, address);
1122 }
1123 
1124 /**
1125  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1126  * @page:	the page to add the mapping to
1127  * @vma:	the vm area in which the mapping is added
1128  * @address:	the user virtual address mapped
1129  * @compound:	charge the page as compound or small page
1130  *
1131  * Same as page_add_anon_rmap but must only be called on *new* pages.
1132  * This means the inc-and-test can be bypassed.
1133  * Page does not have to be locked.
1134  */
1135 void page_add_new_anon_rmap(struct page *page,
1136 	struct vm_area_struct *vma, unsigned long address, bool compound)
1137 {
1138 	int nr = compound ? hpage_nr_pages(page) : 1;
1139 
1140 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1141 	__SetPageSwapBacked(page);
1142 	if (compound) {
1143 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1144 		/* increment count (starts at -1) */
1145 		atomic_set(compound_mapcount_ptr(page), 0);
1146 		__inc_node_page_state(page, NR_ANON_THPS);
1147 	} else {
1148 		/* Anon THP always mapped first with PMD */
1149 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1150 		/* increment count (starts at -1) */
1151 		atomic_set(&page->_mapcount, 0);
1152 	}
1153 	__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1154 	__page_set_anon_rmap(page, vma, address, 1);
1155 }
1156 
1157 /**
1158  * page_add_file_rmap - add pte mapping to a file page
1159  * @page: the page to add the mapping to
1160  *
1161  * The caller needs to hold the pte lock.
1162  */
1163 void page_add_file_rmap(struct page *page, bool compound)
1164 {
1165 	int i, nr = 1;
1166 
1167 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1168 	lock_page_memcg(page);
1169 	if (compound && PageTransHuge(page)) {
1170 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1171 			if (atomic_inc_and_test(&page[i]._mapcount))
1172 				nr++;
1173 		}
1174 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1175 			goto out;
1176 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1177 		__inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1178 	} else {
1179 		if (PageTransCompound(page) && page_mapping(page)) {
1180 			VM_WARN_ON_ONCE(!PageLocked(page));
1181 
1182 			SetPageDoubleMap(compound_head(page));
1183 			if (PageMlocked(page))
1184 				clear_page_mlock(compound_head(page));
1185 		}
1186 		if (!atomic_inc_and_test(&page->_mapcount))
1187 			goto out;
1188 	}
1189 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1190 out:
1191 	unlock_page_memcg(page);
1192 }
1193 
1194 static void page_remove_file_rmap(struct page *page, bool compound)
1195 {
1196 	int i, nr = 1;
1197 
1198 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1199 	lock_page_memcg(page);
1200 
1201 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1202 	if (unlikely(PageHuge(page))) {
1203 		/* hugetlb pages are always mapped with pmds */
1204 		atomic_dec(compound_mapcount_ptr(page));
1205 		goto out;
1206 	}
1207 
1208 	/* page still mapped by someone else? */
1209 	if (compound && PageTransHuge(page)) {
1210 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1211 			if (atomic_add_negative(-1, &page[i]._mapcount))
1212 				nr++;
1213 		}
1214 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1215 			goto out;
1216 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1217 		__dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1218 	} else {
1219 		if (!atomic_add_negative(-1, &page->_mapcount))
1220 			goto out;
1221 	}
1222 
1223 	/*
1224 	 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1225 	 * these counters are not modified in interrupt context, and
1226 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1227 	 */
1228 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1229 
1230 	if (unlikely(PageMlocked(page)))
1231 		clear_page_mlock(page);
1232 out:
1233 	unlock_page_memcg(page);
1234 }
1235 
1236 static void page_remove_anon_compound_rmap(struct page *page)
1237 {
1238 	int i, nr;
1239 
1240 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1241 		return;
1242 
1243 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1244 	if (unlikely(PageHuge(page)))
1245 		return;
1246 
1247 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1248 		return;
1249 
1250 	__dec_node_page_state(page, NR_ANON_THPS);
1251 
1252 	if (TestClearPageDoubleMap(page)) {
1253 		/*
1254 		 * Subpages can be mapped with PTEs too. Check how many of
1255 		 * themi are still mapped.
1256 		 */
1257 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1258 			if (atomic_add_negative(-1, &page[i]._mapcount))
1259 				nr++;
1260 		}
1261 	} else {
1262 		nr = HPAGE_PMD_NR;
1263 	}
1264 
1265 	if (unlikely(PageMlocked(page)))
1266 		clear_page_mlock(page);
1267 
1268 	if (nr) {
1269 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1270 		deferred_split_huge_page(page);
1271 	}
1272 }
1273 
1274 /**
1275  * page_remove_rmap - take down pte mapping from a page
1276  * @page:	page to remove mapping from
1277  * @compound:	uncharge the page as compound or small page
1278  *
1279  * The caller needs to hold the pte lock.
1280  */
1281 void page_remove_rmap(struct page *page, bool compound)
1282 {
1283 	if (!PageAnon(page))
1284 		return page_remove_file_rmap(page, compound);
1285 
1286 	if (compound)
1287 		return page_remove_anon_compound_rmap(page);
1288 
1289 	/* page still mapped by someone else? */
1290 	if (!atomic_add_negative(-1, &page->_mapcount))
1291 		return;
1292 
1293 	/*
1294 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1295 	 * these counters are not modified in interrupt context, and
1296 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1297 	 */
1298 	__dec_node_page_state(page, NR_ANON_MAPPED);
1299 
1300 	if (unlikely(PageMlocked(page)))
1301 		clear_page_mlock(page);
1302 
1303 	if (PageTransCompound(page))
1304 		deferred_split_huge_page(compound_head(page));
1305 
1306 	/*
1307 	 * It would be tidy to reset the PageAnon mapping here,
1308 	 * but that might overwrite a racing page_add_anon_rmap
1309 	 * which increments mapcount after us but sets mapping
1310 	 * before us: so leave the reset to free_hot_cold_page,
1311 	 * and remember that it's only reliable while mapped.
1312 	 * Leaving it set also helps swapoff to reinstate ptes
1313 	 * faster for those pages still in swapcache.
1314 	 */
1315 }
1316 
1317 /*
1318  * @arg: enum ttu_flags will be passed to this argument
1319  */
1320 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1321 		     unsigned long address, void *arg)
1322 {
1323 	struct mm_struct *mm = vma->vm_mm;
1324 	struct page_vma_mapped_walk pvmw = {
1325 		.page = page,
1326 		.vma = vma,
1327 		.address = address,
1328 	};
1329 	pte_t pteval;
1330 	struct page *subpage;
1331 	bool ret = true, invalidation_needed = false;
1332 	enum ttu_flags flags = (enum ttu_flags)arg;
1333 
1334 	/* munlock has nothing to gain from examining un-locked vmas */
1335 	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1336 		return true;
1337 
1338 	if (flags & TTU_SPLIT_HUGE_PMD) {
1339 		split_huge_pmd_address(vma, address,
1340 				flags & TTU_MIGRATION, page);
1341 	}
1342 
1343 	while (page_vma_mapped_walk(&pvmw)) {
1344 		/*
1345 		 * If the page is mlock()d, we cannot swap it out.
1346 		 * If it's recently referenced (perhaps page_referenced
1347 		 * skipped over this mm) then we should reactivate it.
1348 		 */
1349 		if (!(flags & TTU_IGNORE_MLOCK)) {
1350 			if (vma->vm_flags & VM_LOCKED) {
1351 				/* PTE-mapped THP are never mlocked */
1352 				if (!PageTransCompound(page)) {
1353 					/*
1354 					 * Holding pte lock, we do *not* need
1355 					 * mmap_sem here
1356 					 */
1357 					mlock_vma_page(page);
1358 				}
1359 				ret = false;
1360 				page_vma_mapped_walk_done(&pvmw);
1361 				break;
1362 			}
1363 			if (flags & TTU_MUNLOCK)
1364 				continue;
1365 		}
1366 
1367 		/* Unexpected PMD-mapped THP? */
1368 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1369 
1370 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1371 
1372 		if (!(flags & TTU_IGNORE_ACCESS)) {
1373 			if (ptep_clear_flush_young_notify(vma, pvmw.address,
1374 						pvmw.pte)) {
1375 				ret = false;
1376 				page_vma_mapped_walk_done(&pvmw);
1377 				break;
1378 			}
1379 		}
1380 
1381 		/* Nuke the page table entry. */
1382 		flush_cache_page(vma, pvmw.address, pte_pfn(*pvmw.pte));
1383 		if (should_defer_flush(mm, flags)) {
1384 			/*
1385 			 * We clear the PTE but do not flush so potentially
1386 			 * a remote CPU could still be writing to the page.
1387 			 * If the entry was previously clean then the
1388 			 * architecture must guarantee that a clear->dirty
1389 			 * transition on a cached TLB entry is written through
1390 			 * and traps if the PTE is unmapped.
1391 			 */
1392 			pteval = ptep_get_and_clear(mm, pvmw.address,
1393 						    pvmw.pte);
1394 
1395 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1396 		} else {
1397 			pteval = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1398 		}
1399 
1400 		/* Move the dirty bit to the page. Now the pte is gone. */
1401 		if (pte_dirty(pteval))
1402 			set_page_dirty(page);
1403 
1404 		/* Update high watermark before we lower rss */
1405 		update_hiwater_rss(mm);
1406 
1407 		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1408 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1409 			if (PageHuge(page)) {
1410 				int nr = 1 << compound_order(page);
1411 				hugetlb_count_sub(nr, mm);
1412 				set_huge_swap_pte_at(mm, pvmw.address,
1413 						     pvmw.pte, pteval,
1414 						     vma_mmu_pagesize(vma));
1415 			} else {
1416 				dec_mm_counter(mm, mm_counter(page));
1417 				set_pte_at(mm, pvmw.address, pvmw.pte, pteval);
1418 			}
1419 
1420 		} else if (pte_unused(pteval)) {
1421 			/*
1422 			 * The guest indicated that the page content is of no
1423 			 * interest anymore. Simply discard the pte, vmscan
1424 			 * will take care of the rest.
1425 			 */
1426 			dec_mm_counter(mm, mm_counter(page));
1427 		} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1428 				(flags & TTU_MIGRATION)) {
1429 			swp_entry_t entry;
1430 			pte_t swp_pte;
1431 			/*
1432 			 * Store the pfn of the page in a special migration
1433 			 * pte. do_swap_page() will wait until the migration
1434 			 * pte is removed and then restart fault handling.
1435 			 */
1436 			entry = make_migration_entry(subpage,
1437 					pte_write(pteval));
1438 			swp_pte = swp_entry_to_pte(entry);
1439 			if (pte_soft_dirty(pteval))
1440 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1441 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1442 		} else if (PageAnon(page)) {
1443 			swp_entry_t entry = { .val = page_private(subpage) };
1444 			pte_t swp_pte;
1445 			/*
1446 			 * Store the swap location in the pte.
1447 			 * See handle_pte_fault() ...
1448 			 */
1449 			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1450 				WARN_ON_ONCE(1);
1451 				ret = false;
1452 				page_vma_mapped_walk_done(&pvmw);
1453 				break;
1454 			}
1455 
1456 			/* MADV_FREE page check */
1457 			if (!PageSwapBacked(page)) {
1458 				if (!PageDirty(page)) {
1459 					dec_mm_counter(mm, MM_ANONPAGES);
1460 					goto discard;
1461 				}
1462 
1463 				/*
1464 				 * If the page was redirtied, it cannot be
1465 				 * discarded. Remap the page to page table.
1466 				 */
1467 				set_pte_at(mm, pvmw.address, pvmw.pte, pteval);
1468 				SetPageSwapBacked(page);
1469 				ret = false;
1470 				page_vma_mapped_walk_done(&pvmw);
1471 				break;
1472 			}
1473 
1474 			if (swap_duplicate(entry) < 0) {
1475 				set_pte_at(mm, pvmw.address, pvmw.pte, pteval);
1476 				ret = false;
1477 				page_vma_mapped_walk_done(&pvmw);
1478 				break;
1479 			}
1480 			if (list_empty(&mm->mmlist)) {
1481 				spin_lock(&mmlist_lock);
1482 				if (list_empty(&mm->mmlist))
1483 					list_add(&mm->mmlist, &init_mm.mmlist);
1484 				spin_unlock(&mmlist_lock);
1485 			}
1486 			dec_mm_counter(mm, MM_ANONPAGES);
1487 			inc_mm_counter(mm, MM_SWAPENTS);
1488 			swp_pte = swp_entry_to_pte(entry);
1489 			if (pte_soft_dirty(pteval))
1490 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1491 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1492 		} else
1493 			dec_mm_counter(mm, mm_counter_file(page));
1494 discard:
1495 		page_remove_rmap(subpage, PageHuge(page));
1496 		put_page(page);
1497 		invalidation_needed = true;
1498 	}
1499 
1500 	if (invalidation_needed)
1501 		mmu_notifier_invalidate_range(mm, address,
1502 				address + (1UL << compound_order(page)));
1503 	return ret;
1504 }
1505 
1506 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1507 {
1508 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1509 
1510 	if (!maybe_stack)
1511 		return false;
1512 
1513 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1514 						VM_STACK_INCOMPLETE_SETUP)
1515 		return true;
1516 
1517 	return false;
1518 }
1519 
1520 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1521 {
1522 	return is_vma_temporary_stack(vma);
1523 }
1524 
1525 static int page_mapcount_is_zero(struct page *page)
1526 {
1527 	return !total_mapcount(page);
1528 }
1529 
1530 /**
1531  * try_to_unmap - try to remove all page table mappings to a page
1532  * @page: the page to get unmapped
1533  * @flags: action and flags
1534  *
1535  * Tries to remove all the page table entries which are mapping this
1536  * page, used in the pageout path.  Caller must hold the page lock.
1537  *
1538  * If unmap is successful, return true. Otherwise, false.
1539  */
1540 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1541 {
1542 	struct rmap_walk_control rwc = {
1543 		.rmap_one = try_to_unmap_one,
1544 		.arg = (void *)flags,
1545 		.done = page_mapcount_is_zero,
1546 		.anon_lock = page_lock_anon_vma_read,
1547 	};
1548 
1549 	/*
1550 	 * During exec, a temporary VMA is setup and later moved.
1551 	 * The VMA is moved under the anon_vma lock but not the
1552 	 * page tables leading to a race where migration cannot
1553 	 * find the migration ptes. Rather than increasing the
1554 	 * locking requirements of exec(), migration skips
1555 	 * temporary VMAs until after exec() completes.
1556 	 */
1557 	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1558 		rwc.invalid_vma = invalid_migration_vma;
1559 
1560 	if (flags & TTU_RMAP_LOCKED)
1561 		rmap_walk_locked(page, &rwc);
1562 	else
1563 		rmap_walk(page, &rwc);
1564 
1565 	return !page_mapcount(page) ? true : false;
1566 }
1567 
1568 static int page_not_mapped(struct page *page)
1569 {
1570 	return !page_mapped(page);
1571 };
1572 
1573 /**
1574  * try_to_munlock - try to munlock a page
1575  * @page: the page to be munlocked
1576  *
1577  * Called from munlock code.  Checks all of the VMAs mapping the page
1578  * to make sure nobody else has this page mlocked. The page will be
1579  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1580  */
1581 
1582 void try_to_munlock(struct page *page)
1583 {
1584 	struct rmap_walk_control rwc = {
1585 		.rmap_one = try_to_unmap_one,
1586 		.arg = (void *)TTU_MUNLOCK,
1587 		.done = page_not_mapped,
1588 		.anon_lock = page_lock_anon_vma_read,
1589 
1590 	};
1591 
1592 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1593 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1594 
1595 	rmap_walk(page, &rwc);
1596 }
1597 
1598 void __put_anon_vma(struct anon_vma *anon_vma)
1599 {
1600 	struct anon_vma *root = anon_vma->root;
1601 
1602 	anon_vma_free(anon_vma);
1603 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1604 		anon_vma_free(root);
1605 }
1606 
1607 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1608 					struct rmap_walk_control *rwc)
1609 {
1610 	struct anon_vma *anon_vma;
1611 
1612 	if (rwc->anon_lock)
1613 		return rwc->anon_lock(page);
1614 
1615 	/*
1616 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1617 	 * because that depends on page_mapped(); but not all its usages
1618 	 * are holding mmap_sem. Users without mmap_sem are required to
1619 	 * take a reference count to prevent the anon_vma disappearing
1620 	 */
1621 	anon_vma = page_anon_vma(page);
1622 	if (!anon_vma)
1623 		return NULL;
1624 
1625 	anon_vma_lock_read(anon_vma);
1626 	return anon_vma;
1627 }
1628 
1629 /*
1630  * rmap_walk_anon - do something to anonymous page using the object-based
1631  * rmap method
1632  * @page: the page to be handled
1633  * @rwc: control variable according to each walk type
1634  *
1635  * Find all the mappings of a page using the mapping pointer and the vma chains
1636  * contained in the anon_vma struct it points to.
1637  *
1638  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1639  * where the page was found will be held for write.  So, we won't recheck
1640  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1641  * LOCKED.
1642  */
1643 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1644 		bool locked)
1645 {
1646 	struct anon_vma *anon_vma;
1647 	pgoff_t pgoff_start, pgoff_end;
1648 	struct anon_vma_chain *avc;
1649 
1650 	if (locked) {
1651 		anon_vma = page_anon_vma(page);
1652 		/* anon_vma disappear under us? */
1653 		VM_BUG_ON_PAGE(!anon_vma, page);
1654 	} else {
1655 		anon_vma = rmap_walk_anon_lock(page, rwc);
1656 	}
1657 	if (!anon_vma)
1658 		return;
1659 
1660 	pgoff_start = page_to_pgoff(page);
1661 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1662 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1663 			pgoff_start, pgoff_end) {
1664 		struct vm_area_struct *vma = avc->vma;
1665 		unsigned long address = vma_address(page, vma);
1666 
1667 		cond_resched();
1668 
1669 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1670 			continue;
1671 
1672 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1673 			break;
1674 		if (rwc->done && rwc->done(page))
1675 			break;
1676 	}
1677 
1678 	if (!locked)
1679 		anon_vma_unlock_read(anon_vma);
1680 }
1681 
1682 /*
1683  * rmap_walk_file - do something to file page using the object-based rmap method
1684  * @page: the page to be handled
1685  * @rwc: control variable according to each walk type
1686  *
1687  * Find all the mappings of a page using the mapping pointer and the vma chains
1688  * contained in the address_space struct it points to.
1689  *
1690  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1691  * where the page was found will be held for write.  So, we won't recheck
1692  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1693  * LOCKED.
1694  */
1695 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1696 		bool locked)
1697 {
1698 	struct address_space *mapping = page_mapping(page);
1699 	pgoff_t pgoff_start, pgoff_end;
1700 	struct vm_area_struct *vma;
1701 
1702 	/*
1703 	 * The page lock not only makes sure that page->mapping cannot
1704 	 * suddenly be NULLified by truncation, it makes sure that the
1705 	 * structure at mapping cannot be freed and reused yet,
1706 	 * so we can safely take mapping->i_mmap_rwsem.
1707 	 */
1708 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1709 
1710 	if (!mapping)
1711 		return;
1712 
1713 	pgoff_start = page_to_pgoff(page);
1714 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1715 	if (!locked)
1716 		i_mmap_lock_read(mapping);
1717 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
1718 			pgoff_start, pgoff_end) {
1719 		unsigned long address = vma_address(page, vma);
1720 
1721 		cond_resched();
1722 
1723 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1724 			continue;
1725 
1726 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1727 			goto done;
1728 		if (rwc->done && rwc->done(page))
1729 			goto done;
1730 	}
1731 
1732 done:
1733 	if (!locked)
1734 		i_mmap_unlock_read(mapping);
1735 }
1736 
1737 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1738 {
1739 	if (unlikely(PageKsm(page)))
1740 		rmap_walk_ksm(page, rwc);
1741 	else if (PageAnon(page))
1742 		rmap_walk_anon(page, rwc, false);
1743 	else
1744 		rmap_walk_file(page, rwc, false);
1745 }
1746 
1747 /* Like rmap_walk, but caller holds relevant rmap lock */
1748 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1749 {
1750 	/* no ksm support for now */
1751 	VM_BUG_ON_PAGE(PageKsm(page), page);
1752 	if (PageAnon(page))
1753 		rmap_walk_anon(page, rwc, true);
1754 	else
1755 		rmap_walk_file(page, rwc, true);
1756 }
1757 
1758 #ifdef CONFIG_HUGETLB_PAGE
1759 /*
1760  * The following three functions are for anonymous (private mapped) hugepages.
1761  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1762  * and no lru code, because we handle hugepages differently from common pages.
1763  */
1764 static void __hugepage_set_anon_rmap(struct page *page,
1765 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1766 {
1767 	struct anon_vma *anon_vma = vma->anon_vma;
1768 
1769 	BUG_ON(!anon_vma);
1770 
1771 	if (PageAnon(page))
1772 		return;
1773 	if (!exclusive)
1774 		anon_vma = anon_vma->root;
1775 
1776 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1777 	page->mapping = (struct address_space *) anon_vma;
1778 	page->index = linear_page_index(vma, address);
1779 }
1780 
1781 void hugepage_add_anon_rmap(struct page *page,
1782 			    struct vm_area_struct *vma, unsigned long address)
1783 {
1784 	struct anon_vma *anon_vma = vma->anon_vma;
1785 	int first;
1786 
1787 	BUG_ON(!PageLocked(page));
1788 	BUG_ON(!anon_vma);
1789 	/* address might be in next vma when migration races vma_adjust */
1790 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1791 	if (first)
1792 		__hugepage_set_anon_rmap(page, vma, address, 0);
1793 }
1794 
1795 void hugepage_add_new_anon_rmap(struct page *page,
1796 			struct vm_area_struct *vma, unsigned long address)
1797 {
1798 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1799 	atomic_set(compound_mapcount_ptr(page), 0);
1800 	__hugepage_set_anon_rmap(page, vma, address, 1);
1801 }
1802 #endif /* CONFIG_HUGETLB_PAGE */
1803