xref: /openbmc/linux/mm/rmap.c (revision 94c7b6fc)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_mutex
27  *         anon_vma->rwsem
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within bdi.wb->list_lock in __sync_single_inode)
39  *
40  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
41  *   ->tasklist_lock
42  *     pte map lock
43  */
44 
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	struct anon_vma *anon_vma;
71 
72 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 	if (anon_vma) {
74 		atomic_set(&anon_vma->refcount, 1);
75 		/*
76 		 * Initialise the anon_vma root to point to itself. If called
77 		 * from fork, the root will be reset to the parents anon_vma.
78 		 */
79 		anon_vma->root = anon_vma;
80 	}
81 
82 	return anon_vma;
83 }
84 
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 {
87 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
88 
89 	/*
90 	 * Synchronize against page_lock_anon_vma_read() such that
91 	 * we can safely hold the lock without the anon_vma getting
92 	 * freed.
93 	 *
94 	 * Relies on the full mb implied by the atomic_dec_and_test() from
95 	 * put_anon_vma() against the acquire barrier implied by
96 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
97 	 *
98 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
99 	 *   down_read_trylock()		  atomic_dec_and_test()
100 	 *   LOCK				  MB
101 	 *   atomic_read()			  rwsem_is_locked()
102 	 *
103 	 * LOCK should suffice since the actual taking of the lock must
104 	 * happen _before_ what follows.
105 	 */
106 	might_sleep();
107 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
108 		anon_vma_lock_write(anon_vma);
109 		anon_vma_unlock_write(anon_vma);
110 	}
111 
112 	kmem_cache_free(anon_vma_cachep, anon_vma);
113 }
114 
115 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
116 {
117 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
118 }
119 
120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
121 {
122 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123 }
124 
125 static void anon_vma_chain_link(struct vm_area_struct *vma,
126 				struct anon_vma_chain *avc,
127 				struct anon_vma *anon_vma)
128 {
129 	avc->vma = vma;
130 	avc->anon_vma = anon_vma;
131 	list_add(&avc->same_vma, &vma->anon_vma_chain);
132 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
133 }
134 
135 /**
136  * anon_vma_prepare - attach an anon_vma to a memory region
137  * @vma: the memory region in question
138  *
139  * This makes sure the memory mapping described by 'vma' has
140  * an 'anon_vma' attached to it, so that we can associate the
141  * anonymous pages mapped into it with that anon_vma.
142  *
143  * The common case will be that we already have one, but if
144  * not we either need to find an adjacent mapping that we
145  * can re-use the anon_vma from (very common when the only
146  * reason for splitting a vma has been mprotect()), or we
147  * allocate a new one.
148  *
149  * Anon-vma allocations are very subtle, because we may have
150  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
151  * and that may actually touch the spinlock even in the newly
152  * allocated vma (it depends on RCU to make sure that the
153  * anon_vma isn't actually destroyed).
154  *
155  * As a result, we need to do proper anon_vma locking even
156  * for the new allocation. At the same time, we do not want
157  * to do any locking for the common case of already having
158  * an anon_vma.
159  *
160  * This must be called with the mmap_sem held for reading.
161  */
162 int anon_vma_prepare(struct vm_area_struct *vma)
163 {
164 	struct anon_vma *anon_vma = vma->anon_vma;
165 	struct anon_vma_chain *avc;
166 
167 	might_sleep();
168 	if (unlikely(!anon_vma)) {
169 		struct mm_struct *mm = vma->vm_mm;
170 		struct anon_vma *allocated;
171 
172 		avc = anon_vma_chain_alloc(GFP_KERNEL);
173 		if (!avc)
174 			goto out_enomem;
175 
176 		anon_vma = find_mergeable_anon_vma(vma);
177 		allocated = NULL;
178 		if (!anon_vma) {
179 			anon_vma = anon_vma_alloc();
180 			if (unlikely(!anon_vma))
181 				goto out_enomem_free_avc;
182 			allocated = anon_vma;
183 		}
184 
185 		anon_vma_lock_write(anon_vma);
186 		/* page_table_lock to protect against threads */
187 		spin_lock(&mm->page_table_lock);
188 		if (likely(!vma->anon_vma)) {
189 			vma->anon_vma = anon_vma;
190 			anon_vma_chain_link(vma, avc, anon_vma);
191 			allocated = NULL;
192 			avc = NULL;
193 		}
194 		spin_unlock(&mm->page_table_lock);
195 		anon_vma_unlock_write(anon_vma);
196 
197 		if (unlikely(allocated))
198 			put_anon_vma(allocated);
199 		if (unlikely(avc))
200 			anon_vma_chain_free(avc);
201 	}
202 	return 0;
203 
204  out_enomem_free_avc:
205 	anon_vma_chain_free(avc);
206  out_enomem:
207 	return -ENOMEM;
208 }
209 
210 /*
211  * This is a useful helper function for locking the anon_vma root as
212  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
213  * have the same vma.
214  *
215  * Such anon_vma's should have the same root, so you'd expect to see
216  * just a single mutex_lock for the whole traversal.
217  */
218 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
219 {
220 	struct anon_vma *new_root = anon_vma->root;
221 	if (new_root != root) {
222 		if (WARN_ON_ONCE(root))
223 			up_write(&root->rwsem);
224 		root = new_root;
225 		down_write(&root->rwsem);
226 	}
227 	return root;
228 }
229 
230 static inline void unlock_anon_vma_root(struct anon_vma *root)
231 {
232 	if (root)
233 		up_write(&root->rwsem);
234 }
235 
236 /*
237  * Attach the anon_vmas from src to dst.
238  * Returns 0 on success, -ENOMEM on failure.
239  */
240 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
241 {
242 	struct anon_vma_chain *avc, *pavc;
243 	struct anon_vma *root = NULL;
244 
245 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
246 		struct anon_vma *anon_vma;
247 
248 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
249 		if (unlikely(!avc)) {
250 			unlock_anon_vma_root(root);
251 			root = NULL;
252 			avc = anon_vma_chain_alloc(GFP_KERNEL);
253 			if (!avc)
254 				goto enomem_failure;
255 		}
256 		anon_vma = pavc->anon_vma;
257 		root = lock_anon_vma_root(root, anon_vma);
258 		anon_vma_chain_link(dst, avc, anon_vma);
259 	}
260 	unlock_anon_vma_root(root);
261 	return 0;
262 
263  enomem_failure:
264 	unlink_anon_vmas(dst);
265 	return -ENOMEM;
266 }
267 
268 /*
269  * Attach vma to its own anon_vma, as well as to the anon_vmas that
270  * the corresponding VMA in the parent process is attached to.
271  * Returns 0 on success, non-zero on failure.
272  */
273 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
274 {
275 	struct anon_vma_chain *avc;
276 	struct anon_vma *anon_vma;
277 
278 	/* Don't bother if the parent process has no anon_vma here. */
279 	if (!pvma->anon_vma)
280 		return 0;
281 
282 	/*
283 	 * First, attach the new VMA to the parent VMA's anon_vmas,
284 	 * so rmap can find non-COWed pages in child processes.
285 	 */
286 	if (anon_vma_clone(vma, pvma))
287 		return -ENOMEM;
288 
289 	/* Then add our own anon_vma. */
290 	anon_vma = anon_vma_alloc();
291 	if (!anon_vma)
292 		goto out_error;
293 	avc = anon_vma_chain_alloc(GFP_KERNEL);
294 	if (!avc)
295 		goto out_error_free_anon_vma;
296 
297 	/*
298 	 * The root anon_vma's spinlock is the lock actually used when we
299 	 * lock any of the anon_vmas in this anon_vma tree.
300 	 */
301 	anon_vma->root = pvma->anon_vma->root;
302 	/*
303 	 * With refcounts, an anon_vma can stay around longer than the
304 	 * process it belongs to. The root anon_vma needs to be pinned until
305 	 * this anon_vma is freed, because the lock lives in the root.
306 	 */
307 	get_anon_vma(anon_vma->root);
308 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
309 	vma->anon_vma = anon_vma;
310 	anon_vma_lock_write(anon_vma);
311 	anon_vma_chain_link(vma, avc, anon_vma);
312 	anon_vma_unlock_write(anon_vma);
313 
314 	return 0;
315 
316  out_error_free_anon_vma:
317 	put_anon_vma(anon_vma);
318  out_error:
319 	unlink_anon_vmas(vma);
320 	return -ENOMEM;
321 }
322 
323 void unlink_anon_vmas(struct vm_area_struct *vma)
324 {
325 	struct anon_vma_chain *avc, *next;
326 	struct anon_vma *root = NULL;
327 
328 	/*
329 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
330 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
331 	 */
332 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
333 		struct anon_vma *anon_vma = avc->anon_vma;
334 
335 		root = lock_anon_vma_root(root, anon_vma);
336 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
337 
338 		/*
339 		 * Leave empty anon_vmas on the list - we'll need
340 		 * to free them outside the lock.
341 		 */
342 		if (RB_EMPTY_ROOT(&anon_vma->rb_root))
343 			continue;
344 
345 		list_del(&avc->same_vma);
346 		anon_vma_chain_free(avc);
347 	}
348 	unlock_anon_vma_root(root);
349 
350 	/*
351 	 * Iterate the list once more, it now only contains empty and unlinked
352 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
353 	 * needing to write-acquire the anon_vma->root->rwsem.
354 	 */
355 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
356 		struct anon_vma *anon_vma = avc->anon_vma;
357 
358 		put_anon_vma(anon_vma);
359 
360 		list_del(&avc->same_vma);
361 		anon_vma_chain_free(avc);
362 	}
363 }
364 
365 static void anon_vma_ctor(void *data)
366 {
367 	struct anon_vma *anon_vma = data;
368 
369 	init_rwsem(&anon_vma->rwsem);
370 	atomic_set(&anon_vma->refcount, 0);
371 	anon_vma->rb_root = RB_ROOT;
372 }
373 
374 void __init anon_vma_init(void)
375 {
376 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
377 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
378 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
379 }
380 
381 /*
382  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
383  *
384  * Since there is no serialization what so ever against page_remove_rmap()
385  * the best this function can do is return a locked anon_vma that might
386  * have been relevant to this page.
387  *
388  * The page might have been remapped to a different anon_vma or the anon_vma
389  * returned may already be freed (and even reused).
390  *
391  * In case it was remapped to a different anon_vma, the new anon_vma will be a
392  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
393  * ensure that any anon_vma obtained from the page will still be valid for as
394  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
395  *
396  * All users of this function must be very careful when walking the anon_vma
397  * chain and verify that the page in question is indeed mapped in it
398  * [ something equivalent to page_mapped_in_vma() ].
399  *
400  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
401  * that the anon_vma pointer from page->mapping is valid if there is a
402  * mapcount, we can dereference the anon_vma after observing those.
403  */
404 struct anon_vma *page_get_anon_vma(struct page *page)
405 {
406 	struct anon_vma *anon_vma = NULL;
407 	unsigned long anon_mapping;
408 
409 	rcu_read_lock();
410 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
411 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
412 		goto out;
413 	if (!page_mapped(page))
414 		goto out;
415 
416 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
417 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
418 		anon_vma = NULL;
419 		goto out;
420 	}
421 
422 	/*
423 	 * If this page is still mapped, then its anon_vma cannot have been
424 	 * freed.  But if it has been unmapped, we have no security against the
425 	 * anon_vma structure being freed and reused (for another anon_vma:
426 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
427 	 * above cannot corrupt).
428 	 */
429 	if (!page_mapped(page)) {
430 		rcu_read_unlock();
431 		put_anon_vma(anon_vma);
432 		return NULL;
433 	}
434 out:
435 	rcu_read_unlock();
436 
437 	return anon_vma;
438 }
439 
440 /*
441  * Similar to page_get_anon_vma() except it locks the anon_vma.
442  *
443  * Its a little more complex as it tries to keep the fast path to a single
444  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
445  * reference like with page_get_anon_vma() and then block on the mutex.
446  */
447 struct anon_vma *page_lock_anon_vma_read(struct page *page)
448 {
449 	struct anon_vma *anon_vma = NULL;
450 	struct anon_vma *root_anon_vma;
451 	unsigned long anon_mapping;
452 
453 	rcu_read_lock();
454 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
455 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
456 		goto out;
457 	if (!page_mapped(page))
458 		goto out;
459 
460 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
461 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
462 	if (down_read_trylock(&root_anon_vma->rwsem)) {
463 		/*
464 		 * If the page is still mapped, then this anon_vma is still
465 		 * its anon_vma, and holding the mutex ensures that it will
466 		 * not go away, see anon_vma_free().
467 		 */
468 		if (!page_mapped(page)) {
469 			up_read(&root_anon_vma->rwsem);
470 			anon_vma = NULL;
471 		}
472 		goto out;
473 	}
474 
475 	/* trylock failed, we got to sleep */
476 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
477 		anon_vma = NULL;
478 		goto out;
479 	}
480 
481 	if (!page_mapped(page)) {
482 		rcu_read_unlock();
483 		put_anon_vma(anon_vma);
484 		return NULL;
485 	}
486 
487 	/* we pinned the anon_vma, its safe to sleep */
488 	rcu_read_unlock();
489 	anon_vma_lock_read(anon_vma);
490 
491 	if (atomic_dec_and_test(&anon_vma->refcount)) {
492 		/*
493 		 * Oops, we held the last refcount, release the lock
494 		 * and bail -- can't simply use put_anon_vma() because
495 		 * we'll deadlock on the anon_vma_lock_write() recursion.
496 		 */
497 		anon_vma_unlock_read(anon_vma);
498 		__put_anon_vma(anon_vma);
499 		anon_vma = NULL;
500 	}
501 
502 	return anon_vma;
503 
504 out:
505 	rcu_read_unlock();
506 	return anon_vma;
507 }
508 
509 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
510 {
511 	anon_vma_unlock_read(anon_vma);
512 }
513 
514 /*
515  * At what user virtual address is page expected in @vma?
516  */
517 static inline unsigned long
518 __vma_address(struct page *page, struct vm_area_struct *vma)
519 {
520 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
521 
522 	if (unlikely(is_vm_hugetlb_page(vma)))
523 		pgoff = page->index << huge_page_order(page_hstate(page));
524 
525 	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
526 }
527 
528 inline unsigned long
529 vma_address(struct page *page, struct vm_area_struct *vma)
530 {
531 	unsigned long address = __vma_address(page, vma);
532 
533 	/* page should be within @vma mapping range */
534 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
535 
536 	return address;
537 }
538 
539 /*
540  * At what user virtual address is page expected in vma?
541  * Caller should check the page is actually part of the vma.
542  */
543 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
544 {
545 	unsigned long address;
546 	if (PageAnon(page)) {
547 		struct anon_vma *page__anon_vma = page_anon_vma(page);
548 		/*
549 		 * Note: swapoff's unuse_vma() is more efficient with this
550 		 * check, and needs it to match anon_vma when KSM is active.
551 		 */
552 		if (!vma->anon_vma || !page__anon_vma ||
553 		    vma->anon_vma->root != page__anon_vma->root)
554 			return -EFAULT;
555 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
556 		if (!vma->vm_file ||
557 		    vma->vm_file->f_mapping != page->mapping)
558 			return -EFAULT;
559 	} else
560 		return -EFAULT;
561 	address = __vma_address(page, vma);
562 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
563 		return -EFAULT;
564 	return address;
565 }
566 
567 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
568 {
569 	pgd_t *pgd;
570 	pud_t *pud;
571 	pmd_t *pmd = NULL;
572 	pmd_t pmde;
573 
574 	pgd = pgd_offset(mm, address);
575 	if (!pgd_present(*pgd))
576 		goto out;
577 
578 	pud = pud_offset(pgd, address);
579 	if (!pud_present(*pud))
580 		goto out;
581 
582 	pmd = pmd_offset(pud, address);
583 	/*
584 	 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
585 	 * without holding anon_vma lock for write.  So when looking for a
586 	 * genuine pmde (in which to find pte), test present and !THP together.
587 	 */
588 	pmde = ACCESS_ONCE(*pmd);
589 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
590 		pmd = NULL;
591 out:
592 	return pmd;
593 }
594 
595 /*
596  * Check that @page is mapped at @address into @mm.
597  *
598  * If @sync is false, page_check_address may perform a racy check to avoid
599  * the page table lock when the pte is not present (helpful when reclaiming
600  * highly shared pages).
601  *
602  * On success returns with pte mapped and locked.
603  */
604 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
605 			  unsigned long address, spinlock_t **ptlp, int sync)
606 {
607 	pmd_t *pmd;
608 	pte_t *pte;
609 	spinlock_t *ptl;
610 
611 	if (unlikely(PageHuge(page))) {
612 		/* when pud is not present, pte will be NULL */
613 		pte = huge_pte_offset(mm, address);
614 		if (!pte)
615 			return NULL;
616 
617 		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
618 		goto check;
619 	}
620 
621 	pmd = mm_find_pmd(mm, address);
622 	if (!pmd)
623 		return NULL;
624 
625 	pte = pte_offset_map(pmd, address);
626 	/* Make a quick check before getting the lock */
627 	if (!sync && !pte_present(*pte)) {
628 		pte_unmap(pte);
629 		return NULL;
630 	}
631 
632 	ptl = pte_lockptr(mm, pmd);
633 check:
634 	spin_lock(ptl);
635 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
636 		*ptlp = ptl;
637 		return pte;
638 	}
639 	pte_unmap_unlock(pte, ptl);
640 	return NULL;
641 }
642 
643 /**
644  * page_mapped_in_vma - check whether a page is really mapped in a VMA
645  * @page: the page to test
646  * @vma: the VMA to test
647  *
648  * Returns 1 if the page is mapped into the page tables of the VMA, 0
649  * if the page is not mapped into the page tables of this VMA.  Only
650  * valid for normal file or anonymous VMAs.
651  */
652 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
653 {
654 	unsigned long address;
655 	pte_t *pte;
656 	spinlock_t *ptl;
657 
658 	address = __vma_address(page, vma);
659 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
660 		return 0;
661 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
662 	if (!pte)			/* the page is not in this mm */
663 		return 0;
664 	pte_unmap_unlock(pte, ptl);
665 
666 	return 1;
667 }
668 
669 struct page_referenced_arg {
670 	int mapcount;
671 	int referenced;
672 	unsigned long vm_flags;
673 	struct mem_cgroup *memcg;
674 };
675 /*
676  * arg: page_referenced_arg will be passed
677  */
678 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
679 			unsigned long address, void *arg)
680 {
681 	struct mm_struct *mm = vma->vm_mm;
682 	spinlock_t *ptl;
683 	int referenced = 0;
684 	struct page_referenced_arg *pra = arg;
685 
686 	if (unlikely(PageTransHuge(page))) {
687 		pmd_t *pmd;
688 
689 		/*
690 		 * rmap might return false positives; we must filter
691 		 * these out using page_check_address_pmd().
692 		 */
693 		pmd = page_check_address_pmd(page, mm, address,
694 					     PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
695 		if (!pmd)
696 			return SWAP_AGAIN;
697 
698 		if (vma->vm_flags & VM_LOCKED) {
699 			spin_unlock(ptl);
700 			pra->vm_flags |= VM_LOCKED;
701 			return SWAP_FAIL; /* To break the loop */
702 		}
703 
704 		/* go ahead even if the pmd is pmd_trans_splitting() */
705 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
706 			referenced++;
707 		spin_unlock(ptl);
708 	} else {
709 		pte_t *pte;
710 
711 		/*
712 		 * rmap might return false positives; we must filter
713 		 * these out using page_check_address().
714 		 */
715 		pte = page_check_address(page, mm, address, &ptl, 0);
716 		if (!pte)
717 			return SWAP_AGAIN;
718 
719 		if (vma->vm_flags & VM_LOCKED) {
720 			pte_unmap_unlock(pte, ptl);
721 			pra->vm_flags |= VM_LOCKED;
722 			return SWAP_FAIL; /* To break the loop */
723 		}
724 
725 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
726 			/*
727 			 * Don't treat a reference through a sequentially read
728 			 * mapping as such.  If the page has been used in
729 			 * another mapping, we will catch it; if this other
730 			 * mapping is already gone, the unmap path will have
731 			 * set PG_referenced or activated the page.
732 			 */
733 			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
734 				referenced++;
735 		}
736 		pte_unmap_unlock(pte, ptl);
737 	}
738 
739 	if (referenced) {
740 		pra->referenced++;
741 		pra->vm_flags |= vma->vm_flags;
742 	}
743 
744 	pra->mapcount--;
745 	if (!pra->mapcount)
746 		return SWAP_SUCCESS; /* To break the loop */
747 
748 	return SWAP_AGAIN;
749 }
750 
751 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
752 {
753 	struct page_referenced_arg *pra = arg;
754 	struct mem_cgroup *memcg = pra->memcg;
755 
756 	if (!mm_match_cgroup(vma->vm_mm, memcg))
757 		return true;
758 
759 	return false;
760 }
761 
762 /**
763  * page_referenced - test if the page was referenced
764  * @page: the page to test
765  * @is_locked: caller holds lock on the page
766  * @memcg: target memory cgroup
767  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
768  *
769  * Quick test_and_clear_referenced for all mappings to a page,
770  * returns the number of ptes which referenced the page.
771  */
772 int page_referenced(struct page *page,
773 		    int is_locked,
774 		    struct mem_cgroup *memcg,
775 		    unsigned long *vm_flags)
776 {
777 	int ret;
778 	int we_locked = 0;
779 	struct page_referenced_arg pra = {
780 		.mapcount = page_mapcount(page),
781 		.memcg = memcg,
782 	};
783 	struct rmap_walk_control rwc = {
784 		.rmap_one = page_referenced_one,
785 		.arg = (void *)&pra,
786 		.anon_lock = page_lock_anon_vma_read,
787 	};
788 
789 	*vm_flags = 0;
790 	if (!page_mapped(page))
791 		return 0;
792 
793 	if (!page_rmapping(page))
794 		return 0;
795 
796 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
797 		we_locked = trylock_page(page);
798 		if (!we_locked)
799 			return 1;
800 	}
801 
802 	/*
803 	 * If we are reclaiming on behalf of a cgroup, skip
804 	 * counting on behalf of references from different
805 	 * cgroups
806 	 */
807 	if (memcg) {
808 		rwc.invalid_vma = invalid_page_referenced_vma;
809 	}
810 
811 	ret = rmap_walk(page, &rwc);
812 	*vm_flags = pra.vm_flags;
813 
814 	if (we_locked)
815 		unlock_page(page);
816 
817 	return pra.referenced;
818 }
819 
820 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
821 			    unsigned long address, void *arg)
822 {
823 	struct mm_struct *mm = vma->vm_mm;
824 	pte_t *pte;
825 	spinlock_t *ptl;
826 	int ret = 0;
827 	int *cleaned = arg;
828 
829 	pte = page_check_address(page, mm, address, &ptl, 1);
830 	if (!pte)
831 		goto out;
832 
833 	if (pte_dirty(*pte) || pte_write(*pte)) {
834 		pte_t entry;
835 
836 		flush_cache_page(vma, address, pte_pfn(*pte));
837 		entry = ptep_clear_flush(vma, address, pte);
838 		entry = pte_wrprotect(entry);
839 		entry = pte_mkclean(entry);
840 		set_pte_at(mm, address, pte, entry);
841 		ret = 1;
842 	}
843 
844 	pte_unmap_unlock(pte, ptl);
845 
846 	if (ret) {
847 		mmu_notifier_invalidate_page(mm, address);
848 		(*cleaned)++;
849 	}
850 out:
851 	return SWAP_AGAIN;
852 }
853 
854 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
855 {
856 	if (vma->vm_flags & VM_SHARED)
857 		return false;
858 
859 	return true;
860 }
861 
862 int page_mkclean(struct page *page)
863 {
864 	int cleaned = 0;
865 	struct address_space *mapping;
866 	struct rmap_walk_control rwc = {
867 		.arg = (void *)&cleaned,
868 		.rmap_one = page_mkclean_one,
869 		.invalid_vma = invalid_mkclean_vma,
870 	};
871 
872 	BUG_ON(!PageLocked(page));
873 
874 	if (!page_mapped(page))
875 		return 0;
876 
877 	mapping = page_mapping(page);
878 	if (!mapping)
879 		return 0;
880 
881 	rmap_walk(page, &rwc);
882 
883 	return cleaned;
884 }
885 EXPORT_SYMBOL_GPL(page_mkclean);
886 
887 /**
888  * page_move_anon_rmap - move a page to our anon_vma
889  * @page:	the page to move to our anon_vma
890  * @vma:	the vma the page belongs to
891  * @address:	the user virtual address mapped
892  *
893  * When a page belongs exclusively to one process after a COW event,
894  * that page can be moved into the anon_vma that belongs to just that
895  * process, so the rmap code will not search the parent or sibling
896  * processes.
897  */
898 void page_move_anon_rmap(struct page *page,
899 	struct vm_area_struct *vma, unsigned long address)
900 {
901 	struct anon_vma *anon_vma = vma->anon_vma;
902 
903 	VM_BUG_ON_PAGE(!PageLocked(page), page);
904 	VM_BUG_ON(!anon_vma);
905 	VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
906 
907 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
908 	page->mapping = (struct address_space *) anon_vma;
909 }
910 
911 /**
912  * __page_set_anon_rmap - set up new anonymous rmap
913  * @page:	Page to add to rmap
914  * @vma:	VM area to add page to.
915  * @address:	User virtual address of the mapping
916  * @exclusive:	the page is exclusively owned by the current process
917  */
918 static void __page_set_anon_rmap(struct page *page,
919 	struct vm_area_struct *vma, unsigned long address, int exclusive)
920 {
921 	struct anon_vma *anon_vma = vma->anon_vma;
922 
923 	BUG_ON(!anon_vma);
924 
925 	if (PageAnon(page))
926 		return;
927 
928 	/*
929 	 * If the page isn't exclusively mapped into this vma,
930 	 * we must use the _oldest_ possible anon_vma for the
931 	 * page mapping!
932 	 */
933 	if (!exclusive)
934 		anon_vma = anon_vma->root;
935 
936 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
937 	page->mapping = (struct address_space *) anon_vma;
938 	page->index = linear_page_index(vma, address);
939 }
940 
941 /**
942  * __page_check_anon_rmap - sanity check anonymous rmap addition
943  * @page:	the page to add the mapping to
944  * @vma:	the vm area in which the mapping is added
945  * @address:	the user virtual address mapped
946  */
947 static void __page_check_anon_rmap(struct page *page,
948 	struct vm_area_struct *vma, unsigned long address)
949 {
950 #ifdef CONFIG_DEBUG_VM
951 	/*
952 	 * The page's anon-rmap details (mapping and index) are guaranteed to
953 	 * be set up correctly at this point.
954 	 *
955 	 * We have exclusion against page_add_anon_rmap because the caller
956 	 * always holds the page locked, except if called from page_dup_rmap,
957 	 * in which case the page is already known to be setup.
958 	 *
959 	 * We have exclusion against page_add_new_anon_rmap because those pages
960 	 * are initially only visible via the pagetables, and the pte is locked
961 	 * over the call to page_add_new_anon_rmap.
962 	 */
963 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
964 	BUG_ON(page->index != linear_page_index(vma, address));
965 #endif
966 }
967 
968 /**
969  * page_add_anon_rmap - add pte mapping to an anonymous page
970  * @page:	the page to add the mapping to
971  * @vma:	the vm area in which the mapping is added
972  * @address:	the user virtual address mapped
973  *
974  * The caller needs to hold the pte lock, and the page must be locked in
975  * the anon_vma case: to serialize mapping,index checking after setting,
976  * and to ensure that PageAnon is not being upgraded racily to PageKsm
977  * (but PageKsm is never downgraded to PageAnon).
978  */
979 void page_add_anon_rmap(struct page *page,
980 	struct vm_area_struct *vma, unsigned long address)
981 {
982 	do_page_add_anon_rmap(page, vma, address, 0);
983 }
984 
985 /*
986  * Special version of the above for do_swap_page, which often runs
987  * into pages that are exclusively owned by the current process.
988  * Everybody else should continue to use page_add_anon_rmap above.
989  */
990 void do_page_add_anon_rmap(struct page *page,
991 	struct vm_area_struct *vma, unsigned long address, int exclusive)
992 {
993 	int first = atomic_inc_and_test(&page->_mapcount);
994 	if (first) {
995 		/*
996 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
997 		 * these counters are not modified in interrupt context, and
998 		 * pte lock(a spinlock) is held, which implies preemption
999 		 * disabled.
1000 		 */
1001 		if (PageTransHuge(page))
1002 			__inc_zone_page_state(page,
1003 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1004 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1005 				hpage_nr_pages(page));
1006 	}
1007 	if (unlikely(PageKsm(page)))
1008 		return;
1009 
1010 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1011 	/* address might be in next vma when migration races vma_adjust */
1012 	if (first)
1013 		__page_set_anon_rmap(page, vma, address, exclusive);
1014 	else
1015 		__page_check_anon_rmap(page, vma, address);
1016 }
1017 
1018 /**
1019  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1020  * @page:	the page to add the mapping to
1021  * @vma:	the vm area in which the mapping is added
1022  * @address:	the user virtual address mapped
1023  *
1024  * Same as page_add_anon_rmap but must only be called on *new* pages.
1025  * This means the inc-and-test can be bypassed.
1026  * Page does not have to be locked.
1027  */
1028 void page_add_new_anon_rmap(struct page *page,
1029 	struct vm_area_struct *vma, unsigned long address)
1030 {
1031 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1032 	SetPageSwapBacked(page);
1033 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1034 	if (PageTransHuge(page))
1035 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1036 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1037 			hpage_nr_pages(page));
1038 	__page_set_anon_rmap(page, vma, address, 1);
1039 
1040 	VM_BUG_ON_PAGE(PageLRU(page), page);
1041 	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
1042 		SetPageActive(page);
1043 		lru_cache_add(page);
1044 		return;
1045 	}
1046 
1047 	if (!TestSetPageMlocked(page)) {
1048 		/*
1049 		 * We use the irq-unsafe __mod_zone_page_stat because this
1050 		 * counter is not modified from interrupt context, and the pte
1051 		 * lock is held(spinlock), which implies preemption disabled.
1052 		 */
1053 		__mod_zone_page_state(page_zone(page), NR_MLOCK,
1054 				    hpage_nr_pages(page));
1055 		count_vm_event(UNEVICTABLE_PGMLOCKED);
1056 	}
1057 	add_page_to_unevictable_list(page);
1058 }
1059 
1060 /**
1061  * page_add_file_rmap - add pte mapping to a file page
1062  * @page: the page to add the mapping to
1063  *
1064  * The caller needs to hold the pte lock.
1065  */
1066 void page_add_file_rmap(struct page *page)
1067 {
1068 	bool locked;
1069 	unsigned long flags;
1070 
1071 	mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1072 	if (atomic_inc_and_test(&page->_mapcount)) {
1073 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1074 		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1075 	}
1076 	mem_cgroup_end_update_page_stat(page, &locked, &flags);
1077 }
1078 
1079 /**
1080  * page_remove_rmap - take down pte mapping from a page
1081  * @page: page to remove mapping from
1082  *
1083  * The caller needs to hold the pte lock.
1084  */
1085 void page_remove_rmap(struct page *page)
1086 {
1087 	bool anon = PageAnon(page);
1088 	bool locked;
1089 	unsigned long flags;
1090 
1091 	/*
1092 	 * The anon case has no mem_cgroup page_stat to update; but may
1093 	 * uncharge_page() below, where the lock ordering can deadlock if
1094 	 * we hold the lock against page_stat move: so avoid it on anon.
1095 	 */
1096 	if (!anon)
1097 		mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1098 
1099 	/* page still mapped by someone else? */
1100 	if (!atomic_add_negative(-1, &page->_mapcount))
1101 		goto out;
1102 
1103 	/*
1104 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1105 	 * and not charged by memcg for now.
1106 	 *
1107 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1108 	 * these counters are not modified in interrupt context, and
1109 	 * these counters are not modified in interrupt context, and
1110 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1111 	 */
1112 	if (unlikely(PageHuge(page)))
1113 		goto out;
1114 	if (anon) {
1115 		mem_cgroup_uncharge_page(page);
1116 		if (PageTransHuge(page))
1117 			__dec_zone_page_state(page,
1118 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1119 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1120 				-hpage_nr_pages(page));
1121 	} else {
1122 		__dec_zone_page_state(page, NR_FILE_MAPPED);
1123 		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1124 		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1125 	}
1126 	if (unlikely(PageMlocked(page)))
1127 		clear_page_mlock(page);
1128 	/*
1129 	 * It would be tidy to reset the PageAnon mapping here,
1130 	 * but that might overwrite a racing page_add_anon_rmap
1131 	 * which increments mapcount after us but sets mapping
1132 	 * before us: so leave the reset to free_hot_cold_page,
1133 	 * and remember that it's only reliable while mapped.
1134 	 * Leaving it set also helps swapoff to reinstate ptes
1135 	 * faster for those pages still in swapcache.
1136 	 */
1137 	return;
1138 out:
1139 	if (!anon)
1140 		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1141 }
1142 
1143 /*
1144  * @arg: enum ttu_flags will be passed to this argument
1145  */
1146 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1147 		     unsigned long address, void *arg)
1148 {
1149 	struct mm_struct *mm = vma->vm_mm;
1150 	pte_t *pte;
1151 	pte_t pteval;
1152 	spinlock_t *ptl;
1153 	int ret = SWAP_AGAIN;
1154 	enum ttu_flags flags = (enum ttu_flags)arg;
1155 
1156 	pte = page_check_address(page, mm, address, &ptl, 0);
1157 	if (!pte)
1158 		goto out;
1159 
1160 	/*
1161 	 * If the page is mlock()d, we cannot swap it out.
1162 	 * If it's recently referenced (perhaps page_referenced
1163 	 * skipped over this mm) then we should reactivate it.
1164 	 */
1165 	if (!(flags & TTU_IGNORE_MLOCK)) {
1166 		if (vma->vm_flags & VM_LOCKED)
1167 			goto out_mlock;
1168 
1169 		if (flags & TTU_MUNLOCK)
1170 			goto out_unmap;
1171 	}
1172 	if (!(flags & TTU_IGNORE_ACCESS)) {
1173 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1174 			ret = SWAP_FAIL;
1175 			goto out_unmap;
1176 		}
1177   	}
1178 
1179 	/* Nuke the page table entry. */
1180 	flush_cache_page(vma, address, page_to_pfn(page));
1181 	pteval = ptep_clear_flush(vma, address, pte);
1182 
1183 	/* Move the dirty bit to the physical page now the pte is gone. */
1184 	if (pte_dirty(pteval))
1185 		set_page_dirty(page);
1186 
1187 	/* Update high watermark before we lower rss */
1188 	update_hiwater_rss(mm);
1189 
1190 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1191 		if (!PageHuge(page)) {
1192 			if (PageAnon(page))
1193 				dec_mm_counter(mm, MM_ANONPAGES);
1194 			else
1195 				dec_mm_counter(mm, MM_FILEPAGES);
1196 		}
1197 		set_pte_at(mm, address, pte,
1198 			   swp_entry_to_pte(make_hwpoison_entry(page)));
1199 	} else if (pte_unused(pteval)) {
1200 		/*
1201 		 * The guest indicated that the page content is of no
1202 		 * interest anymore. Simply discard the pte, vmscan
1203 		 * will take care of the rest.
1204 		 */
1205 		if (PageAnon(page))
1206 			dec_mm_counter(mm, MM_ANONPAGES);
1207 		else
1208 			dec_mm_counter(mm, MM_FILEPAGES);
1209 	} else if (PageAnon(page)) {
1210 		swp_entry_t entry = { .val = page_private(page) };
1211 		pte_t swp_pte;
1212 
1213 		if (PageSwapCache(page)) {
1214 			/*
1215 			 * Store the swap location in the pte.
1216 			 * See handle_pte_fault() ...
1217 			 */
1218 			if (swap_duplicate(entry) < 0) {
1219 				set_pte_at(mm, address, pte, pteval);
1220 				ret = SWAP_FAIL;
1221 				goto out_unmap;
1222 			}
1223 			if (list_empty(&mm->mmlist)) {
1224 				spin_lock(&mmlist_lock);
1225 				if (list_empty(&mm->mmlist))
1226 					list_add(&mm->mmlist, &init_mm.mmlist);
1227 				spin_unlock(&mmlist_lock);
1228 			}
1229 			dec_mm_counter(mm, MM_ANONPAGES);
1230 			inc_mm_counter(mm, MM_SWAPENTS);
1231 		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1232 			/*
1233 			 * Store the pfn of the page in a special migration
1234 			 * pte. do_swap_page() will wait until the migration
1235 			 * pte is removed and then restart fault handling.
1236 			 */
1237 			BUG_ON(!(flags & TTU_MIGRATION));
1238 			entry = make_migration_entry(page, pte_write(pteval));
1239 		}
1240 		swp_pte = swp_entry_to_pte(entry);
1241 		if (pte_soft_dirty(pteval))
1242 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1243 		set_pte_at(mm, address, pte, swp_pte);
1244 		BUG_ON(pte_file(*pte));
1245 	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1246 		   (flags & TTU_MIGRATION)) {
1247 		/* Establish migration entry for a file page */
1248 		swp_entry_t entry;
1249 		entry = make_migration_entry(page, pte_write(pteval));
1250 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1251 	} else
1252 		dec_mm_counter(mm, MM_FILEPAGES);
1253 
1254 	page_remove_rmap(page);
1255 	page_cache_release(page);
1256 
1257 out_unmap:
1258 	pte_unmap_unlock(pte, ptl);
1259 	if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1260 		mmu_notifier_invalidate_page(mm, address);
1261 out:
1262 	return ret;
1263 
1264 out_mlock:
1265 	pte_unmap_unlock(pte, ptl);
1266 
1267 
1268 	/*
1269 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1270 	 * unstable result and race. Plus, We can't wait here because
1271 	 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1272 	 * if trylock failed, the page remain in evictable lru and later
1273 	 * vmscan could retry to move the page to unevictable lru if the
1274 	 * page is actually mlocked.
1275 	 */
1276 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1277 		if (vma->vm_flags & VM_LOCKED) {
1278 			mlock_vma_page(page);
1279 			ret = SWAP_MLOCK;
1280 		}
1281 		up_read(&vma->vm_mm->mmap_sem);
1282 	}
1283 	return ret;
1284 }
1285 
1286 /*
1287  * objrmap doesn't work for nonlinear VMAs because the assumption that
1288  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1289  * Consequently, given a particular page and its ->index, we cannot locate the
1290  * ptes which are mapping that page without an exhaustive linear search.
1291  *
1292  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1293  * maps the file to which the target page belongs.  The ->vm_private_data field
1294  * holds the current cursor into that scan.  Successive searches will circulate
1295  * around the vma's virtual address space.
1296  *
1297  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1298  * more scanning pressure is placed against them as well.   Eventually pages
1299  * will become fully unmapped and are eligible for eviction.
1300  *
1301  * For very sparsely populated VMAs this is a little inefficient - chances are
1302  * there there won't be many ptes located within the scan cluster.  In this case
1303  * maybe we could scan further - to the end of the pte page, perhaps.
1304  *
1305  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1306  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1307  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1308  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1309  */
1310 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1311 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1312 
1313 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1314 		struct vm_area_struct *vma, struct page *check_page)
1315 {
1316 	struct mm_struct *mm = vma->vm_mm;
1317 	pmd_t *pmd;
1318 	pte_t *pte;
1319 	pte_t pteval;
1320 	spinlock_t *ptl;
1321 	struct page *page;
1322 	unsigned long address;
1323 	unsigned long mmun_start;	/* For mmu_notifiers */
1324 	unsigned long mmun_end;		/* For mmu_notifiers */
1325 	unsigned long end;
1326 	int ret = SWAP_AGAIN;
1327 	int locked_vma = 0;
1328 
1329 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1330 	end = address + CLUSTER_SIZE;
1331 	if (address < vma->vm_start)
1332 		address = vma->vm_start;
1333 	if (end > vma->vm_end)
1334 		end = vma->vm_end;
1335 
1336 	pmd = mm_find_pmd(mm, address);
1337 	if (!pmd)
1338 		return ret;
1339 
1340 	mmun_start = address;
1341 	mmun_end   = end;
1342 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1343 
1344 	/*
1345 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1346 	 * keep the sem while scanning the cluster for mlocking pages.
1347 	 */
1348 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1349 		locked_vma = (vma->vm_flags & VM_LOCKED);
1350 		if (!locked_vma)
1351 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1352 	}
1353 
1354 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1355 
1356 	/* Update high watermark before we lower rss */
1357 	update_hiwater_rss(mm);
1358 
1359 	for (; address < end; pte++, address += PAGE_SIZE) {
1360 		if (!pte_present(*pte))
1361 			continue;
1362 		page = vm_normal_page(vma, address, *pte);
1363 		BUG_ON(!page || PageAnon(page));
1364 
1365 		if (locked_vma) {
1366 			if (page == check_page) {
1367 				/* we know we have check_page locked */
1368 				mlock_vma_page(page);
1369 				ret = SWAP_MLOCK;
1370 			} else if (trylock_page(page)) {
1371 				/*
1372 				 * If we can lock the page, perform mlock.
1373 				 * Otherwise leave the page alone, it will be
1374 				 * eventually encountered again later.
1375 				 */
1376 				mlock_vma_page(page);
1377 				unlock_page(page);
1378 			}
1379 			continue;	/* don't unmap */
1380 		}
1381 
1382 		if (ptep_clear_flush_young_notify(vma, address, pte))
1383 			continue;
1384 
1385 		/* Nuke the page table entry. */
1386 		flush_cache_page(vma, address, pte_pfn(*pte));
1387 		pteval = ptep_clear_flush(vma, address, pte);
1388 
1389 		/* If nonlinear, store the file page offset in the pte. */
1390 		if (page->index != linear_page_index(vma, address)) {
1391 			pte_t ptfile = pgoff_to_pte(page->index);
1392 			if (pte_soft_dirty(pteval))
1393 				ptfile = pte_file_mksoft_dirty(ptfile);
1394 			set_pte_at(mm, address, pte, ptfile);
1395 		}
1396 
1397 		/* Move the dirty bit to the physical page now the pte is gone. */
1398 		if (pte_dirty(pteval))
1399 			set_page_dirty(page);
1400 
1401 		page_remove_rmap(page);
1402 		page_cache_release(page);
1403 		dec_mm_counter(mm, MM_FILEPAGES);
1404 		(*mapcount)--;
1405 	}
1406 	pte_unmap_unlock(pte - 1, ptl);
1407 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1408 	if (locked_vma)
1409 		up_read(&vma->vm_mm->mmap_sem);
1410 	return ret;
1411 }
1412 
1413 static int try_to_unmap_nonlinear(struct page *page,
1414 		struct address_space *mapping, void *arg)
1415 {
1416 	struct vm_area_struct *vma;
1417 	int ret = SWAP_AGAIN;
1418 	unsigned long cursor;
1419 	unsigned long max_nl_cursor = 0;
1420 	unsigned long max_nl_size = 0;
1421 	unsigned int mapcount;
1422 
1423 	list_for_each_entry(vma,
1424 		&mapping->i_mmap_nonlinear, shared.nonlinear) {
1425 
1426 		cursor = (unsigned long) vma->vm_private_data;
1427 		if (cursor > max_nl_cursor)
1428 			max_nl_cursor = cursor;
1429 		cursor = vma->vm_end - vma->vm_start;
1430 		if (cursor > max_nl_size)
1431 			max_nl_size = cursor;
1432 	}
1433 
1434 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1435 		return SWAP_FAIL;
1436 	}
1437 
1438 	/*
1439 	 * We don't try to search for this page in the nonlinear vmas,
1440 	 * and page_referenced wouldn't have found it anyway.  Instead
1441 	 * just walk the nonlinear vmas trying to age and unmap some.
1442 	 * The mapcount of the page we came in with is irrelevant,
1443 	 * but even so use it as a guide to how hard we should try?
1444 	 */
1445 	mapcount = page_mapcount(page);
1446 	if (!mapcount)
1447 		return ret;
1448 
1449 	cond_resched();
1450 
1451 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1452 	if (max_nl_cursor == 0)
1453 		max_nl_cursor = CLUSTER_SIZE;
1454 
1455 	do {
1456 		list_for_each_entry(vma,
1457 			&mapping->i_mmap_nonlinear, shared.nonlinear) {
1458 
1459 			cursor = (unsigned long) vma->vm_private_data;
1460 			while (cursor < max_nl_cursor &&
1461 				cursor < vma->vm_end - vma->vm_start) {
1462 				if (try_to_unmap_cluster(cursor, &mapcount,
1463 						vma, page) == SWAP_MLOCK)
1464 					ret = SWAP_MLOCK;
1465 				cursor += CLUSTER_SIZE;
1466 				vma->vm_private_data = (void *) cursor;
1467 				if ((int)mapcount <= 0)
1468 					return ret;
1469 			}
1470 			vma->vm_private_data = (void *) max_nl_cursor;
1471 		}
1472 		cond_resched();
1473 		max_nl_cursor += CLUSTER_SIZE;
1474 	} while (max_nl_cursor <= max_nl_size);
1475 
1476 	/*
1477 	 * Don't loop forever (perhaps all the remaining pages are
1478 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1479 	 * vmas, now forgetting on which ones it had fallen behind.
1480 	 */
1481 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1482 		vma->vm_private_data = NULL;
1483 
1484 	return ret;
1485 }
1486 
1487 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1488 {
1489 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1490 
1491 	if (!maybe_stack)
1492 		return false;
1493 
1494 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1495 						VM_STACK_INCOMPLETE_SETUP)
1496 		return true;
1497 
1498 	return false;
1499 }
1500 
1501 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1502 {
1503 	return is_vma_temporary_stack(vma);
1504 }
1505 
1506 static int page_not_mapped(struct page *page)
1507 {
1508 	return !page_mapped(page);
1509 };
1510 
1511 /**
1512  * try_to_unmap - try to remove all page table mappings to a page
1513  * @page: the page to get unmapped
1514  * @flags: action and flags
1515  *
1516  * Tries to remove all the page table entries which are mapping this
1517  * page, used in the pageout path.  Caller must hold the page lock.
1518  * Return values are:
1519  *
1520  * SWAP_SUCCESS	- we succeeded in removing all mappings
1521  * SWAP_AGAIN	- we missed a mapping, try again later
1522  * SWAP_FAIL	- the page is unswappable
1523  * SWAP_MLOCK	- page is mlocked.
1524  */
1525 int try_to_unmap(struct page *page, enum ttu_flags flags)
1526 {
1527 	int ret;
1528 	struct rmap_walk_control rwc = {
1529 		.rmap_one = try_to_unmap_one,
1530 		.arg = (void *)flags,
1531 		.done = page_not_mapped,
1532 		.file_nonlinear = try_to_unmap_nonlinear,
1533 		.anon_lock = page_lock_anon_vma_read,
1534 	};
1535 
1536 	VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1537 
1538 	/*
1539 	 * During exec, a temporary VMA is setup and later moved.
1540 	 * The VMA is moved under the anon_vma lock but not the
1541 	 * page tables leading to a race where migration cannot
1542 	 * find the migration ptes. Rather than increasing the
1543 	 * locking requirements of exec(), migration skips
1544 	 * temporary VMAs until after exec() completes.
1545 	 */
1546 	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1547 		rwc.invalid_vma = invalid_migration_vma;
1548 
1549 	ret = rmap_walk(page, &rwc);
1550 
1551 	if (ret != SWAP_MLOCK && !page_mapped(page))
1552 		ret = SWAP_SUCCESS;
1553 	return ret;
1554 }
1555 
1556 /**
1557  * try_to_munlock - try to munlock a page
1558  * @page: the page to be munlocked
1559  *
1560  * Called from munlock code.  Checks all of the VMAs mapping the page
1561  * to make sure nobody else has this page mlocked. The page will be
1562  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1563  *
1564  * Return values are:
1565  *
1566  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1567  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1568  * SWAP_FAIL	- page cannot be located at present
1569  * SWAP_MLOCK	- page is now mlocked.
1570  */
1571 int try_to_munlock(struct page *page)
1572 {
1573 	int ret;
1574 	struct rmap_walk_control rwc = {
1575 		.rmap_one = try_to_unmap_one,
1576 		.arg = (void *)TTU_MUNLOCK,
1577 		.done = page_not_mapped,
1578 		/*
1579 		 * We don't bother to try to find the munlocked page in
1580 		 * nonlinears. It's costly. Instead, later, page reclaim logic
1581 		 * may call try_to_unmap() and recover PG_mlocked lazily.
1582 		 */
1583 		.file_nonlinear = NULL,
1584 		.anon_lock = page_lock_anon_vma_read,
1585 
1586 	};
1587 
1588 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1589 
1590 	ret = rmap_walk(page, &rwc);
1591 	return ret;
1592 }
1593 
1594 void __put_anon_vma(struct anon_vma *anon_vma)
1595 {
1596 	struct anon_vma *root = anon_vma->root;
1597 
1598 	anon_vma_free(anon_vma);
1599 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1600 		anon_vma_free(root);
1601 }
1602 
1603 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1604 					struct rmap_walk_control *rwc)
1605 {
1606 	struct anon_vma *anon_vma;
1607 
1608 	if (rwc->anon_lock)
1609 		return rwc->anon_lock(page);
1610 
1611 	/*
1612 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1613 	 * because that depends on page_mapped(); but not all its usages
1614 	 * are holding mmap_sem. Users without mmap_sem are required to
1615 	 * take a reference count to prevent the anon_vma disappearing
1616 	 */
1617 	anon_vma = page_anon_vma(page);
1618 	if (!anon_vma)
1619 		return NULL;
1620 
1621 	anon_vma_lock_read(anon_vma);
1622 	return anon_vma;
1623 }
1624 
1625 /*
1626  * rmap_walk_anon - do something to anonymous page using the object-based
1627  * rmap method
1628  * @page: the page to be handled
1629  * @rwc: control variable according to each walk type
1630  *
1631  * Find all the mappings of a page using the mapping pointer and the vma chains
1632  * contained in the anon_vma struct it points to.
1633  *
1634  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1635  * where the page was found will be held for write.  So, we won't recheck
1636  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1637  * LOCKED.
1638  */
1639 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1640 {
1641 	struct anon_vma *anon_vma;
1642 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1643 	struct anon_vma_chain *avc;
1644 	int ret = SWAP_AGAIN;
1645 
1646 	anon_vma = rmap_walk_anon_lock(page, rwc);
1647 	if (!anon_vma)
1648 		return ret;
1649 
1650 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1651 		struct vm_area_struct *vma = avc->vma;
1652 		unsigned long address = vma_address(page, vma);
1653 
1654 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1655 			continue;
1656 
1657 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1658 		if (ret != SWAP_AGAIN)
1659 			break;
1660 		if (rwc->done && rwc->done(page))
1661 			break;
1662 	}
1663 	anon_vma_unlock_read(anon_vma);
1664 	return ret;
1665 }
1666 
1667 /*
1668  * rmap_walk_file - do something to file page using the object-based rmap method
1669  * @page: the page to be handled
1670  * @rwc: control variable according to each walk type
1671  *
1672  * Find all the mappings of a page using the mapping pointer and the vma chains
1673  * contained in the address_space struct it points to.
1674  *
1675  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1676  * where the page was found will be held for write.  So, we won't recheck
1677  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1678  * LOCKED.
1679  */
1680 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1681 {
1682 	struct address_space *mapping = page->mapping;
1683 	pgoff_t pgoff = page->index << compound_order(page);
1684 	struct vm_area_struct *vma;
1685 	int ret = SWAP_AGAIN;
1686 
1687 	/*
1688 	 * The page lock not only makes sure that page->mapping cannot
1689 	 * suddenly be NULLified by truncation, it makes sure that the
1690 	 * structure at mapping cannot be freed and reused yet,
1691 	 * so we can safely take mapping->i_mmap_mutex.
1692 	 */
1693 	VM_BUG_ON(!PageLocked(page));
1694 
1695 	if (!mapping)
1696 		return ret;
1697 	mutex_lock(&mapping->i_mmap_mutex);
1698 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1699 		unsigned long address = vma_address(page, vma);
1700 
1701 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1702 			continue;
1703 
1704 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1705 		if (ret != SWAP_AGAIN)
1706 			goto done;
1707 		if (rwc->done && rwc->done(page))
1708 			goto done;
1709 	}
1710 
1711 	if (!rwc->file_nonlinear)
1712 		goto done;
1713 
1714 	if (list_empty(&mapping->i_mmap_nonlinear))
1715 		goto done;
1716 
1717 	ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1718 
1719 done:
1720 	mutex_unlock(&mapping->i_mmap_mutex);
1721 	return ret;
1722 }
1723 
1724 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1725 {
1726 	if (unlikely(PageKsm(page)))
1727 		return rmap_walk_ksm(page, rwc);
1728 	else if (PageAnon(page))
1729 		return rmap_walk_anon(page, rwc);
1730 	else
1731 		return rmap_walk_file(page, rwc);
1732 }
1733 
1734 #ifdef CONFIG_HUGETLB_PAGE
1735 /*
1736  * The following three functions are for anonymous (private mapped) hugepages.
1737  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1738  * and no lru code, because we handle hugepages differently from common pages.
1739  */
1740 static void __hugepage_set_anon_rmap(struct page *page,
1741 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1742 {
1743 	struct anon_vma *anon_vma = vma->anon_vma;
1744 
1745 	BUG_ON(!anon_vma);
1746 
1747 	if (PageAnon(page))
1748 		return;
1749 	if (!exclusive)
1750 		anon_vma = anon_vma->root;
1751 
1752 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1753 	page->mapping = (struct address_space *) anon_vma;
1754 	page->index = linear_page_index(vma, address);
1755 }
1756 
1757 void hugepage_add_anon_rmap(struct page *page,
1758 			    struct vm_area_struct *vma, unsigned long address)
1759 {
1760 	struct anon_vma *anon_vma = vma->anon_vma;
1761 	int first;
1762 
1763 	BUG_ON(!PageLocked(page));
1764 	BUG_ON(!anon_vma);
1765 	/* address might be in next vma when migration races vma_adjust */
1766 	first = atomic_inc_and_test(&page->_mapcount);
1767 	if (first)
1768 		__hugepage_set_anon_rmap(page, vma, address, 0);
1769 }
1770 
1771 void hugepage_add_new_anon_rmap(struct page *page,
1772 			struct vm_area_struct *vma, unsigned long address)
1773 {
1774 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1775 	atomic_set(&page->_mapcount, 0);
1776 	__hugepage_set_anon_rmap(page, vma, address, 1);
1777 }
1778 #endif /* CONFIG_HUGETLB_PAGE */
1779