1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem (vmtruncate_range) 25 * mm->mmap_sem 26 * page->flags PG_locked (lock_page) 27 * mapping->i_mmap_lock 28 * anon_vma->lock 29 * mm->page_table_lock or pte_lock 30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * inode_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within inode_lock in __sync_single_inode) 39 */ 40 41 #include <linux/mm.h> 42 #include <linux/pagemap.h> 43 #include <linux/swap.h> 44 #include <linux/swapops.h> 45 #include <linux/slab.h> 46 #include <linux/init.h> 47 #include <linux/rmap.h> 48 #include <linux/rcupdate.h> 49 #include <linux/module.h> 50 #include <linux/kallsyms.h> 51 #include <linux/memcontrol.h> 52 53 #include <asm/tlbflush.h> 54 55 struct kmem_cache *anon_vma_cachep; 56 57 /* This must be called under the mmap_sem. */ 58 int anon_vma_prepare(struct vm_area_struct *vma) 59 { 60 struct anon_vma *anon_vma = vma->anon_vma; 61 62 might_sleep(); 63 if (unlikely(!anon_vma)) { 64 struct mm_struct *mm = vma->vm_mm; 65 struct anon_vma *allocated, *locked; 66 67 anon_vma = find_mergeable_anon_vma(vma); 68 if (anon_vma) { 69 allocated = NULL; 70 locked = anon_vma; 71 spin_lock(&locked->lock); 72 } else { 73 anon_vma = anon_vma_alloc(); 74 if (unlikely(!anon_vma)) 75 return -ENOMEM; 76 allocated = anon_vma; 77 locked = NULL; 78 } 79 80 /* page_table_lock to protect against threads */ 81 spin_lock(&mm->page_table_lock); 82 if (likely(!vma->anon_vma)) { 83 vma->anon_vma = anon_vma; 84 list_add_tail(&vma->anon_vma_node, &anon_vma->head); 85 allocated = NULL; 86 } 87 spin_unlock(&mm->page_table_lock); 88 89 if (locked) 90 spin_unlock(&locked->lock); 91 if (unlikely(allocated)) 92 anon_vma_free(allocated); 93 } 94 return 0; 95 } 96 97 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) 98 { 99 BUG_ON(vma->anon_vma != next->anon_vma); 100 list_del(&next->anon_vma_node); 101 } 102 103 void __anon_vma_link(struct vm_area_struct *vma) 104 { 105 struct anon_vma *anon_vma = vma->anon_vma; 106 107 if (anon_vma) 108 list_add_tail(&vma->anon_vma_node, &anon_vma->head); 109 } 110 111 void anon_vma_link(struct vm_area_struct *vma) 112 { 113 struct anon_vma *anon_vma = vma->anon_vma; 114 115 if (anon_vma) { 116 spin_lock(&anon_vma->lock); 117 list_add_tail(&vma->anon_vma_node, &anon_vma->head); 118 spin_unlock(&anon_vma->lock); 119 } 120 } 121 122 void anon_vma_unlink(struct vm_area_struct *vma) 123 { 124 struct anon_vma *anon_vma = vma->anon_vma; 125 int empty; 126 127 if (!anon_vma) 128 return; 129 130 spin_lock(&anon_vma->lock); 131 list_del(&vma->anon_vma_node); 132 133 /* We must garbage collect the anon_vma if it's empty */ 134 empty = list_empty(&anon_vma->head); 135 spin_unlock(&anon_vma->lock); 136 137 if (empty) 138 anon_vma_free(anon_vma); 139 } 140 141 static void anon_vma_ctor(void *data) 142 { 143 struct anon_vma *anon_vma = data; 144 145 spin_lock_init(&anon_vma->lock); 146 INIT_LIST_HEAD(&anon_vma->head); 147 } 148 149 void __init anon_vma_init(void) 150 { 151 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 152 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 153 } 154 155 /* 156 * Getting a lock on a stable anon_vma from a page off the LRU is 157 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 158 */ 159 static struct anon_vma *page_lock_anon_vma(struct page *page) 160 { 161 struct anon_vma *anon_vma; 162 unsigned long anon_mapping; 163 164 rcu_read_lock(); 165 anon_mapping = (unsigned long) page->mapping; 166 if (!(anon_mapping & PAGE_MAPPING_ANON)) 167 goto out; 168 if (!page_mapped(page)) 169 goto out; 170 171 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 172 spin_lock(&anon_vma->lock); 173 return anon_vma; 174 out: 175 rcu_read_unlock(); 176 return NULL; 177 } 178 179 static void page_unlock_anon_vma(struct anon_vma *anon_vma) 180 { 181 spin_unlock(&anon_vma->lock); 182 rcu_read_unlock(); 183 } 184 185 /* 186 * At what user virtual address is page expected in @vma? 187 * Returns virtual address or -EFAULT if page's index/offset is not 188 * within the range mapped the @vma. 189 */ 190 static inline unsigned long 191 vma_address(struct page *page, struct vm_area_struct *vma) 192 { 193 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 194 unsigned long address; 195 196 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 197 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 198 /* page should be within @vma mapping range */ 199 return -EFAULT; 200 } 201 return address; 202 } 203 204 /* 205 * At what user virtual address is page expected in vma? checking that the 206 * page matches the vma: currently only used on anon pages, by unuse_vma; 207 */ 208 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 209 { 210 if (PageAnon(page)) { 211 if ((void *)vma->anon_vma != 212 (void *)page->mapping - PAGE_MAPPING_ANON) 213 return -EFAULT; 214 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 215 if (!vma->vm_file || 216 vma->vm_file->f_mapping != page->mapping) 217 return -EFAULT; 218 } else 219 return -EFAULT; 220 return vma_address(page, vma); 221 } 222 223 /* 224 * Check that @page is mapped at @address into @mm. 225 * 226 * On success returns with pte mapped and locked. 227 */ 228 pte_t *page_check_address(struct page *page, struct mm_struct *mm, 229 unsigned long address, spinlock_t **ptlp) 230 { 231 pgd_t *pgd; 232 pud_t *pud; 233 pmd_t *pmd; 234 pte_t *pte; 235 spinlock_t *ptl; 236 237 pgd = pgd_offset(mm, address); 238 if (!pgd_present(*pgd)) 239 return NULL; 240 241 pud = pud_offset(pgd, address); 242 if (!pud_present(*pud)) 243 return NULL; 244 245 pmd = pmd_offset(pud, address); 246 if (!pmd_present(*pmd)) 247 return NULL; 248 249 pte = pte_offset_map(pmd, address); 250 /* Make a quick check before getting the lock */ 251 if (!pte_present(*pte)) { 252 pte_unmap(pte); 253 return NULL; 254 } 255 256 ptl = pte_lockptr(mm, pmd); 257 spin_lock(ptl); 258 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 259 *ptlp = ptl; 260 return pte; 261 } 262 pte_unmap_unlock(pte, ptl); 263 return NULL; 264 } 265 266 /* 267 * Subfunctions of page_referenced: page_referenced_one called 268 * repeatedly from either page_referenced_anon or page_referenced_file. 269 */ 270 static int page_referenced_one(struct page *page, 271 struct vm_area_struct *vma, unsigned int *mapcount) 272 { 273 struct mm_struct *mm = vma->vm_mm; 274 unsigned long address; 275 pte_t *pte; 276 spinlock_t *ptl; 277 int referenced = 0; 278 279 address = vma_address(page, vma); 280 if (address == -EFAULT) 281 goto out; 282 283 pte = page_check_address(page, mm, address, &ptl); 284 if (!pte) 285 goto out; 286 287 if (vma->vm_flags & VM_LOCKED) { 288 referenced++; 289 *mapcount = 1; /* break early from loop */ 290 } else if (ptep_clear_flush_young(vma, address, pte)) 291 referenced++; 292 293 /* Pretend the page is referenced if the task has the 294 swap token and is in the middle of a page fault. */ 295 if (mm != current->mm && has_swap_token(mm) && 296 rwsem_is_locked(&mm->mmap_sem)) 297 referenced++; 298 299 (*mapcount)--; 300 pte_unmap_unlock(pte, ptl); 301 out: 302 return referenced; 303 } 304 305 static int page_referenced_anon(struct page *page, 306 struct mem_cgroup *mem_cont) 307 { 308 unsigned int mapcount; 309 struct anon_vma *anon_vma; 310 struct vm_area_struct *vma; 311 int referenced = 0; 312 313 anon_vma = page_lock_anon_vma(page); 314 if (!anon_vma) 315 return referenced; 316 317 mapcount = page_mapcount(page); 318 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 319 /* 320 * If we are reclaiming on behalf of a cgroup, skip 321 * counting on behalf of references from different 322 * cgroups 323 */ 324 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 325 continue; 326 referenced += page_referenced_one(page, vma, &mapcount); 327 if (!mapcount) 328 break; 329 } 330 331 page_unlock_anon_vma(anon_vma); 332 return referenced; 333 } 334 335 /** 336 * page_referenced_file - referenced check for object-based rmap 337 * @page: the page we're checking references on. 338 * @mem_cont: target memory controller 339 * 340 * For an object-based mapped page, find all the places it is mapped and 341 * check/clear the referenced flag. This is done by following the page->mapping 342 * pointer, then walking the chain of vmas it holds. It returns the number 343 * of references it found. 344 * 345 * This function is only called from page_referenced for object-based pages. 346 */ 347 static int page_referenced_file(struct page *page, 348 struct mem_cgroup *mem_cont) 349 { 350 unsigned int mapcount; 351 struct address_space *mapping = page->mapping; 352 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 353 struct vm_area_struct *vma; 354 struct prio_tree_iter iter; 355 int referenced = 0; 356 357 /* 358 * The caller's checks on page->mapping and !PageAnon have made 359 * sure that this is a file page: the check for page->mapping 360 * excludes the case just before it gets set on an anon page. 361 */ 362 BUG_ON(PageAnon(page)); 363 364 /* 365 * The page lock not only makes sure that page->mapping cannot 366 * suddenly be NULLified by truncation, it makes sure that the 367 * structure at mapping cannot be freed and reused yet, 368 * so we can safely take mapping->i_mmap_lock. 369 */ 370 BUG_ON(!PageLocked(page)); 371 372 spin_lock(&mapping->i_mmap_lock); 373 374 /* 375 * i_mmap_lock does not stabilize mapcount at all, but mapcount 376 * is more likely to be accurate if we note it after spinning. 377 */ 378 mapcount = page_mapcount(page); 379 380 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 381 /* 382 * If we are reclaiming on behalf of a cgroup, skip 383 * counting on behalf of references from different 384 * cgroups 385 */ 386 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 387 continue; 388 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) 389 == (VM_LOCKED|VM_MAYSHARE)) { 390 referenced++; 391 break; 392 } 393 referenced += page_referenced_one(page, vma, &mapcount); 394 if (!mapcount) 395 break; 396 } 397 398 spin_unlock(&mapping->i_mmap_lock); 399 return referenced; 400 } 401 402 /** 403 * page_referenced - test if the page was referenced 404 * @page: the page to test 405 * @is_locked: caller holds lock on the page 406 * @mem_cont: target memory controller 407 * 408 * Quick test_and_clear_referenced for all mappings to a page, 409 * returns the number of ptes which referenced the page. 410 */ 411 int page_referenced(struct page *page, int is_locked, 412 struct mem_cgroup *mem_cont) 413 { 414 int referenced = 0; 415 416 if (TestClearPageReferenced(page)) 417 referenced++; 418 419 if (page_mapped(page) && page->mapping) { 420 if (PageAnon(page)) 421 referenced += page_referenced_anon(page, mem_cont); 422 else if (is_locked) 423 referenced += page_referenced_file(page, mem_cont); 424 else if (TestSetPageLocked(page)) 425 referenced++; 426 else { 427 if (page->mapping) 428 referenced += 429 page_referenced_file(page, mem_cont); 430 unlock_page(page); 431 } 432 } 433 434 if (page_test_and_clear_young(page)) 435 referenced++; 436 437 return referenced; 438 } 439 440 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma) 441 { 442 struct mm_struct *mm = vma->vm_mm; 443 unsigned long address; 444 pte_t *pte; 445 spinlock_t *ptl; 446 int ret = 0; 447 448 address = vma_address(page, vma); 449 if (address == -EFAULT) 450 goto out; 451 452 pte = page_check_address(page, mm, address, &ptl); 453 if (!pte) 454 goto out; 455 456 if (pte_dirty(*pte) || pte_write(*pte)) { 457 pte_t entry; 458 459 flush_cache_page(vma, address, pte_pfn(*pte)); 460 entry = ptep_clear_flush(vma, address, pte); 461 entry = pte_wrprotect(entry); 462 entry = pte_mkclean(entry); 463 set_pte_at(mm, address, pte, entry); 464 ret = 1; 465 } 466 467 pte_unmap_unlock(pte, ptl); 468 out: 469 return ret; 470 } 471 472 static int page_mkclean_file(struct address_space *mapping, struct page *page) 473 { 474 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 475 struct vm_area_struct *vma; 476 struct prio_tree_iter iter; 477 int ret = 0; 478 479 BUG_ON(PageAnon(page)); 480 481 spin_lock(&mapping->i_mmap_lock); 482 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 483 if (vma->vm_flags & VM_SHARED) 484 ret += page_mkclean_one(page, vma); 485 } 486 spin_unlock(&mapping->i_mmap_lock); 487 return ret; 488 } 489 490 int page_mkclean(struct page *page) 491 { 492 int ret = 0; 493 494 BUG_ON(!PageLocked(page)); 495 496 if (page_mapped(page)) { 497 struct address_space *mapping = page_mapping(page); 498 if (mapping) { 499 ret = page_mkclean_file(mapping, page); 500 if (page_test_dirty(page)) { 501 page_clear_dirty(page); 502 ret = 1; 503 } 504 } 505 } 506 507 return ret; 508 } 509 EXPORT_SYMBOL_GPL(page_mkclean); 510 511 /** 512 * __page_set_anon_rmap - setup new anonymous rmap 513 * @page: the page to add the mapping to 514 * @vma: the vm area in which the mapping is added 515 * @address: the user virtual address mapped 516 */ 517 static void __page_set_anon_rmap(struct page *page, 518 struct vm_area_struct *vma, unsigned long address) 519 { 520 struct anon_vma *anon_vma = vma->anon_vma; 521 522 BUG_ON(!anon_vma); 523 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 524 page->mapping = (struct address_space *) anon_vma; 525 526 page->index = linear_page_index(vma, address); 527 528 /* 529 * nr_mapped state can be updated without turning off 530 * interrupts because it is not modified via interrupt. 531 */ 532 __inc_zone_page_state(page, NR_ANON_PAGES); 533 } 534 535 /** 536 * __page_check_anon_rmap - sanity check anonymous rmap addition 537 * @page: the page to add the mapping to 538 * @vma: the vm area in which the mapping is added 539 * @address: the user virtual address mapped 540 */ 541 static void __page_check_anon_rmap(struct page *page, 542 struct vm_area_struct *vma, unsigned long address) 543 { 544 #ifdef CONFIG_DEBUG_VM 545 /* 546 * The page's anon-rmap details (mapping and index) are guaranteed to 547 * be set up correctly at this point. 548 * 549 * We have exclusion against page_add_anon_rmap because the caller 550 * always holds the page locked, except if called from page_dup_rmap, 551 * in which case the page is already known to be setup. 552 * 553 * We have exclusion against page_add_new_anon_rmap because those pages 554 * are initially only visible via the pagetables, and the pte is locked 555 * over the call to page_add_new_anon_rmap. 556 */ 557 struct anon_vma *anon_vma = vma->anon_vma; 558 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 559 BUG_ON(page->mapping != (struct address_space *)anon_vma); 560 BUG_ON(page->index != linear_page_index(vma, address)); 561 #endif 562 } 563 564 /** 565 * page_add_anon_rmap - add pte mapping to an anonymous page 566 * @page: the page to add the mapping to 567 * @vma: the vm area in which the mapping is added 568 * @address: the user virtual address mapped 569 * 570 * The caller needs to hold the pte lock and the page must be locked. 571 */ 572 void page_add_anon_rmap(struct page *page, 573 struct vm_area_struct *vma, unsigned long address) 574 { 575 VM_BUG_ON(!PageLocked(page)); 576 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 577 if (atomic_inc_and_test(&page->_mapcount)) 578 __page_set_anon_rmap(page, vma, address); 579 else 580 __page_check_anon_rmap(page, vma, address); 581 } 582 583 /** 584 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 585 * @page: the page to add the mapping to 586 * @vma: the vm area in which the mapping is added 587 * @address: the user virtual address mapped 588 * 589 * Same as page_add_anon_rmap but must only be called on *new* pages. 590 * This means the inc-and-test can be bypassed. 591 * Page does not have to be locked. 592 */ 593 void page_add_new_anon_rmap(struct page *page, 594 struct vm_area_struct *vma, unsigned long address) 595 { 596 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 597 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */ 598 __page_set_anon_rmap(page, vma, address); 599 } 600 601 /** 602 * page_add_file_rmap - add pte mapping to a file page 603 * @page: the page to add the mapping to 604 * 605 * The caller needs to hold the pte lock. 606 */ 607 void page_add_file_rmap(struct page *page) 608 { 609 if (atomic_inc_and_test(&page->_mapcount)) 610 __inc_zone_page_state(page, NR_FILE_MAPPED); 611 } 612 613 #ifdef CONFIG_DEBUG_VM 614 /** 615 * page_dup_rmap - duplicate pte mapping to a page 616 * @page: the page to add the mapping to 617 * @vma: the vm area being duplicated 618 * @address: the user virtual address mapped 619 * 620 * For copy_page_range only: minimal extract from page_add_file_rmap / 621 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's 622 * quicker. 623 * 624 * The caller needs to hold the pte lock. 625 */ 626 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) 627 { 628 BUG_ON(page_mapcount(page) == 0); 629 if (PageAnon(page)) 630 __page_check_anon_rmap(page, vma, address); 631 atomic_inc(&page->_mapcount); 632 } 633 #endif 634 635 /** 636 * page_remove_rmap - take down pte mapping from a page 637 * @page: page to remove mapping from 638 * @vma: the vm area in which the mapping is removed 639 * 640 * The caller needs to hold the pte lock. 641 */ 642 void page_remove_rmap(struct page *page, struct vm_area_struct *vma) 643 { 644 if (atomic_add_negative(-1, &page->_mapcount)) { 645 if (unlikely(page_mapcount(page) < 0)) { 646 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page)); 647 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page)); 648 printk (KERN_EMERG " page->flags = %lx\n", page->flags); 649 printk (KERN_EMERG " page->count = %x\n", page_count(page)); 650 printk (KERN_EMERG " page->mapping = %p\n", page->mapping); 651 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops); 652 if (vma->vm_ops) { 653 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault); 654 } 655 if (vma->vm_file && vma->vm_file->f_op) 656 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap); 657 BUG(); 658 } 659 660 /* 661 * It would be tidy to reset the PageAnon mapping here, 662 * but that might overwrite a racing page_add_anon_rmap 663 * which increments mapcount after us but sets mapping 664 * before us: so leave the reset to free_hot_cold_page, 665 * and remember that it's only reliable while mapped. 666 * Leaving it set also helps swapoff to reinstate ptes 667 * faster for those pages still in swapcache. 668 */ 669 if (page_test_dirty(page)) { 670 page_clear_dirty(page); 671 set_page_dirty(page); 672 } 673 mem_cgroup_uncharge_page(page); 674 675 __dec_zone_page_state(page, 676 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED); 677 } 678 } 679 680 /* 681 * Subfunctions of try_to_unmap: try_to_unmap_one called 682 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 683 */ 684 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 685 int migration) 686 { 687 struct mm_struct *mm = vma->vm_mm; 688 unsigned long address; 689 pte_t *pte; 690 pte_t pteval; 691 spinlock_t *ptl; 692 int ret = SWAP_AGAIN; 693 694 address = vma_address(page, vma); 695 if (address == -EFAULT) 696 goto out; 697 698 pte = page_check_address(page, mm, address, &ptl); 699 if (!pte) 700 goto out; 701 702 /* 703 * If the page is mlock()d, we cannot swap it out. 704 * If it's recently referenced (perhaps page_referenced 705 * skipped over this mm) then we should reactivate it. 706 */ 707 if (!migration && ((vma->vm_flags & VM_LOCKED) || 708 (ptep_clear_flush_young(vma, address, pte)))) { 709 ret = SWAP_FAIL; 710 goto out_unmap; 711 } 712 713 /* Nuke the page table entry. */ 714 flush_cache_page(vma, address, page_to_pfn(page)); 715 pteval = ptep_clear_flush(vma, address, pte); 716 717 /* Move the dirty bit to the physical page now the pte is gone. */ 718 if (pte_dirty(pteval)) 719 set_page_dirty(page); 720 721 /* Update high watermark before we lower rss */ 722 update_hiwater_rss(mm); 723 724 if (PageAnon(page)) { 725 swp_entry_t entry = { .val = page_private(page) }; 726 727 if (PageSwapCache(page)) { 728 /* 729 * Store the swap location in the pte. 730 * See handle_pte_fault() ... 731 */ 732 swap_duplicate(entry); 733 if (list_empty(&mm->mmlist)) { 734 spin_lock(&mmlist_lock); 735 if (list_empty(&mm->mmlist)) 736 list_add(&mm->mmlist, &init_mm.mmlist); 737 spin_unlock(&mmlist_lock); 738 } 739 dec_mm_counter(mm, anon_rss); 740 #ifdef CONFIG_MIGRATION 741 } else { 742 /* 743 * Store the pfn of the page in a special migration 744 * pte. do_swap_page() will wait until the migration 745 * pte is removed and then restart fault handling. 746 */ 747 BUG_ON(!migration); 748 entry = make_migration_entry(page, pte_write(pteval)); 749 #endif 750 } 751 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 752 BUG_ON(pte_file(*pte)); 753 } else 754 #ifdef CONFIG_MIGRATION 755 if (migration) { 756 /* Establish migration entry for a file page */ 757 swp_entry_t entry; 758 entry = make_migration_entry(page, pte_write(pteval)); 759 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 760 } else 761 #endif 762 dec_mm_counter(mm, file_rss); 763 764 765 page_remove_rmap(page, vma); 766 page_cache_release(page); 767 768 out_unmap: 769 pte_unmap_unlock(pte, ptl); 770 out: 771 return ret; 772 } 773 774 /* 775 * objrmap doesn't work for nonlinear VMAs because the assumption that 776 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 777 * Consequently, given a particular page and its ->index, we cannot locate the 778 * ptes which are mapping that page without an exhaustive linear search. 779 * 780 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 781 * maps the file to which the target page belongs. The ->vm_private_data field 782 * holds the current cursor into that scan. Successive searches will circulate 783 * around the vma's virtual address space. 784 * 785 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 786 * more scanning pressure is placed against them as well. Eventually pages 787 * will become fully unmapped and are eligible for eviction. 788 * 789 * For very sparsely populated VMAs this is a little inefficient - chances are 790 * there there won't be many ptes located within the scan cluster. In this case 791 * maybe we could scan further - to the end of the pte page, perhaps. 792 */ 793 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 794 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 795 796 static void try_to_unmap_cluster(unsigned long cursor, 797 unsigned int *mapcount, struct vm_area_struct *vma) 798 { 799 struct mm_struct *mm = vma->vm_mm; 800 pgd_t *pgd; 801 pud_t *pud; 802 pmd_t *pmd; 803 pte_t *pte; 804 pte_t pteval; 805 spinlock_t *ptl; 806 struct page *page; 807 unsigned long address; 808 unsigned long end; 809 810 address = (vma->vm_start + cursor) & CLUSTER_MASK; 811 end = address + CLUSTER_SIZE; 812 if (address < vma->vm_start) 813 address = vma->vm_start; 814 if (end > vma->vm_end) 815 end = vma->vm_end; 816 817 pgd = pgd_offset(mm, address); 818 if (!pgd_present(*pgd)) 819 return; 820 821 pud = pud_offset(pgd, address); 822 if (!pud_present(*pud)) 823 return; 824 825 pmd = pmd_offset(pud, address); 826 if (!pmd_present(*pmd)) 827 return; 828 829 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 830 831 /* Update high watermark before we lower rss */ 832 update_hiwater_rss(mm); 833 834 for (; address < end; pte++, address += PAGE_SIZE) { 835 if (!pte_present(*pte)) 836 continue; 837 page = vm_normal_page(vma, address, *pte); 838 BUG_ON(!page || PageAnon(page)); 839 840 if (ptep_clear_flush_young(vma, address, pte)) 841 continue; 842 843 /* Nuke the page table entry. */ 844 flush_cache_page(vma, address, pte_pfn(*pte)); 845 pteval = ptep_clear_flush(vma, address, pte); 846 847 /* If nonlinear, store the file page offset in the pte. */ 848 if (page->index != linear_page_index(vma, address)) 849 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 850 851 /* Move the dirty bit to the physical page now the pte is gone. */ 852 if (pte_dirty(pteval)) 853 set_page_dirty(page); 854 855 page_remove_rmap(page, vma); 856 page_cache_release(page); 857 dec_mm_counter(mm, file_rss); 858 (*mapcount)--; 859 } 860 pte_unmap_unlock(pte - 1, ptl); 861 } 862 863 static int try_to_unmap_anon(struct page *page, int migration) 864 { 865 struct anon_vma *anon_vma; 866 struct vm_area_struct *vma; 867 int ret = SWAP_AGAIN; 868 869 anon_vma = page_lock_anon_vma(page); 870 if (!anon_vma) 871 return ret; 872 873 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 874 ret = try_to_unmap_one(page, vma, migration); 875 if (ret == SWAP_FAIL || !page_mapped(page)) 876 break; 877 } 878 879 page_unlock_anon_vma(anon_vma); 880 return ret; 881 } 882 883 /** 884 * try_to_unmap_file - unmap file page using the object-based rmap method 885 * @page: the page to unmap 886 * @migration: migration flag 887 * 888 * Find all the mappings of a page using the mapping pointer and the vma chains 889 * contained in the address_space struct it points to. 890 * 891 * This function is only called from try_to_unmap for object-based pages. 892 */ 893 static int try_to_unmap_file(struct page *page, int migration) 894 { 895 struct address_space *mapping = page->mapping; 896 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 897 struct vm_area_struct *vma; 898 struct prio_tree_iter iter; 899 int ret = SWAP_AGAIN; 900 unsigned long cursor; 901 unsigned long max_nl_cursor = 0; 902 unsigned long max_nl_size = 0; 903 unsigned int mapcount; 904 905 spin_lock(&mapping->i_mmap_lock); 906 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 907 ret = try_to_unmap_one(page, vma, migration); 908 if (ret == SWAP_FAIL || !page_mapped(page)) 909 goto out; 910 } 911 912 if (list_empty(&mapping->i_mmap_nonlinear)) 913 goto out; 914 915 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 916 shared.vm_set.list) { 917 if ((vma->vm_flags & VM_LOCKED) && !migration) 918 continue; 919 cursor = (unsigned long) vma->vm_private_data; 920 if (cursor > max_nl_cursor) 921 max_nl_cursor = cursor; 922 cursor = vma->vm_end - vma->vm_start; 923 if (cursor > max_nl_size) 924 max_nl_size = cursor; 925 } 926 927 if (max_nl_size == 0) { /* any nonlinears locked or reserved */ 928 ret = SWAP_FAIL; 929 goto out; 930 } 931 932 /* 933 * We don't try to search for this page in the nonlinear vmas, 934 * and page_referenced wouldn't have found it anyway. Instead 935 * just walk the nonlinear vmas trying to age and unmap some. 936 * The mapcount of the page we came in with is irrelevant, 937 * but even so use it as a guide to how hard we should try? 938 */ 939 mapcount = page_mapcount(page); 940 if (!mapcount) 941 goto out; 942 cond_resched_lock(&mapping->i_mmap_lock); 943 944 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 945 if (max_nl_cursor == 0) 946 max_nl_cursor = CLUSTER_SIZE; 947 948 do { 949 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 950 shared.vm_set.list) { 951 if ((vma->vm_flags & VM_LOCKED) && !migration) 952 continue; 953 cursor = (unsigned long) vma->vm_private_data; 954 while ( cursor < max_nl_cursor && 955 cursor < vma->vm_end - vma->vm_start) { 956 try_to_unmap_cluster(cursor, &mapcount, vma); 957 cursor += CLUSTER_SIZE; 958 vma->vm_private_data = (void *) cursor; 959 if ((int)mapcount <= 0) 960 goto out; 961 } 962 vma->vm_private_data = (void *) max_nl_cursor; 963 } 964 cond_resched_lock(&mapping->i_mmap_lock); 965 max_nl_cursor += CLUSTER_SIZE; 966 } while (max_nl_cursor <= max_nl_size); 967 968 /* 969 * Don't loop forever (perhaps all the remaining pages are 970 * in locked vmas). Reset cursor on all unreserved nonlinear 971 * vmas, now forgetting on which ones it had fallen behind. 972 */ 973 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 974 vma->vm_private_data = NULL; 975 out: 976 spin_unlock(&mapping->i_mmap_lock); 977 return ret; 978 } 979 980 /** 981 * try_to_unmap - try to remove all page table mappings to a page 982 * @page: the page to get unmapped 983 * @migration: migration flag 984 * 985 * Tries to remove all the page table entries which are mapping this 986 * page, used in the pageout path. Caller must hold the page lock. 987 * Return values are: 988 * 989 * SWAP_SUCCESS - we succeeded in removing all mappings 990 * SWAP_AGAIN - we missed a mapping, try again later 991 * SWAP_FAIL - the page is unswappable 992 */ 993 int try_to_unmap(struct page *page, int migration) 994 { 995 int ret; 996 997 BUG_ON(!PageLocked(page)); 998 999 if (PageAnon(page)) 1000 ret = try_to_unmap_anon(page, migration); 1001 else 1002 ret = try_to_unmap_file(page, migration); 1003 1004 if (!page_mapped(page)) 1005 ret = SWAP_SUCCESS; 1006 return ret; 1007 } 1008 1009