xref: /openbmc/linux/mm/rmap.c (revision 93dc544c)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  */
40 
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 #include <linux/memcontrol.h>
52 
53 #include <asm/tlbflush.h>
54 
55 struct kmem_cache *anon_vma_cachep;
56 
57 /* This must be called under the mmap_sem. */
58 int anon_vma_prepare(struct vm_area_struct *vma)
59 {
60 	struct anon_vma *anon_vma = vma->anon_vma;
61 
62 	might_sleep();
63 	if (unlikely(!anon_vma)) {
64 		struct mm_struct *mm = vma->vm_mm;
65 		struct anon_vma *allocated, *locked;
66 
67 		anon_vma = find_mergeable_anon_vma(vma);
68 		if (anon_vma) {
69 			allocated = NULL;
70 			locked = anon_vma;
71 			spin_lock(&locked->lock);
72 		} else {
73 			anon_vma = anon_vma_alloc();
74 			if (unlikely(!anon_vma))
75 				return -ENOMEM;
76 			allocated = anon_vma;
77 			locked = NULL;
78 		}
79 
80 		/* page_table_lock to protect against threads */
81 		spin_lock(&mm->page_table_lock);
82 		if (likely(!vma->anon_vma)) {
83 			vma->anon_vma = anon_vma;
84 			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
85 			allocated = NULL;
86 		}
87 		spin_unlock(&mm->page_table_lock);
88 
89 		if (locked)
90 			spin_unlock(&locked->lock);
91 		if (unlikely(allocated))
92 			anon_vma_free(allocated);
93 	}
94 	return 0;
95 }
96 
97 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
98 {
99 	BUG_ON(vma->anon_vma != next->anon_vma);
100 	list_del(&next->anon_vma_node);
101 }
102 
103 void __anon_vma_link(struct vm_area_struct *vma)
104 {
105 	struct anon_vma *anon_vma = vma->anon_vma;
106 
107 	if (anon_vma)
108 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
109 }
110 
111 void anon_vma_link(struct vm_area_struct *vma)
112 {
113 	struct anon_vma *anon_vma = vma->anon_vma;
114 
115 	if (anon_vma) {
116 		spin_lock(&anon_vma->lock);
117 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
118 		spin_unlock(&anon_vma->lock);
119 	}
120 }
121 
122 void anon_vma_unlink(struct vm_area_struct *vma)
123 {
124 	struct anon_vma *anon_vma = vma->anon_vma;
125 	int empty;
126 
127 	if (!anon_vma)
128 		return;
129 
130 	spin_lock(&anon_vma->lock);
131 	list_del(&vma->anon_vma_node);
132 
133 	/* We must garbage collect the anon_vma if it's empty */
134 	empty = list_empty(&anon_vma->head);
135 	spin_unlock(&anon_vma->lock);
136 
137 	if (empty)
138 		anon_vma_free(anon_vma);
139 }
140 
141 static void anon_vma_ctor(void *data)
142 {
143 	struct anon_vma *anon_vma = data;
144 
145 	spin_lock_init(&anon_vma->lock);
146 	INIT_LIST_HEAD(&anon_vma->head);
147 }
148 
149 void __init anon_vma_init(void)
150 {
151 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
152 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
153 }
154 
155 /*
156  * Getting a lock on a stable anon_vma from a page off the LRU is
157  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
158  */
159 static struct anon_vma *page_lock_anon_vma(struct page *page)
160 {
161 	struct anon_vma *anon_vma;
162 	unsigned long anon_mapping;
163 
164 	rcu_read_lock();
165 	anon_mapping = (unsigned long) page->mapping;
166 	if (!(anon_mapping & PAGE_MAPPING_ANON))
167 		goto out;
168 	if (!page_mapped(page))
169 		goto out;
170 
171 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
172 	spin_lock(&anon_vma->lock);
173 	return anon_vma;
174 out:
175 	rcu_read_unlock();
176 	return NULL;
177 }
178 
179 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
180 {
181 	spin_unlock(&anon_vma->lock);
182 	rcu_read_unlock();
183 }
184 
185 /*
186  * At what user virtual address is page expected in @vma?
187  * Returns virtual address or -EFAULT if page's index/offset is not
188  * within the range mapped the @vma.
189  */
190 static inline unsigned long
191 vma_address(struct page *page, struct vm_area_struct *vma)
192 {
193 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
194 	unsigned long address;
195 
196 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
197 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
198 		/* page should be within @vma mapping range */
199 		return -EFAULT;
200 	}
201 	return address;
202 }
203 
204 /*
205  * At what user virtual address is page expected in vma? checking that the
206  * page matches the vma: currently only used on anon pages, by unuse_vma;
207  */
208 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
209 {
210 	if (PageAnon(page)) {
211 		if ((void *)vma->anon_vma !=
212 		    (void *)page->mapping - PAGE_MAPPING_ANON)
213 			return -EFAULT;
214 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
215 		if (!vma->vm_file ||
216 		    vma->vm_file->f_mapping != page->mapping)
217 			return -EFAULT;
218 	} else
219 		return -EFAULT;
220 	return vma_address(page, vma);
221 }
222 
223 /*
224  * Check that @page is mapped at @address into @mm.
225  *
226  * On success returns with pte mapped and locked.
227  */
228 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
229 			  unsigned long address, spinlock_t **ptlp)
230 {
231 	pgd_t *pgd;
232 	pud_t *pud;
233 	pmd_t *pmd;
234 	pte_t *pte;
235 	spinlock_t *ptl;
236 
237 	pgd = pgd_offset(mm, address);
238 	if (!pgd_present(*pgd))
239 		return NULL;
240 
241 	pud = pud_offset(pgd, address);
242 	if (!pud_present(*pud))
243 		return NULL;
244 
245 	pmd = pmd_offset(pud, address);
246 	if (!pmd_present(*pmd))
247 		return NULL;
248 
249 	pte = pte_offset_map(pmd, address);
250 	/* Make a quick check before getting the lock */
251 	if (!pte_present(*pte)) {
252 		pte_unmap(pte);
253 		return NULL;
254 	}
255 
256 	ptl = pte_lockptr(mm, pmd);
257 	spin_lock(ptl);
258 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
259 		*ptlp = ptl;
260 		return pte;
261 	}
262 	pte_unmap_unlock(pte, ptl);
263 	return NULL;
264 }
265 
266 /*
267  * Subfunctions of page_referenced: page_referenced_one called
268  * repeatedly from either page_referenced_anon or page_referenced_file.
269  */
270 static int page_referenced_one(struct page *page,
271 	struct vm_area_struct *vma, unsigned int *mapcount)
272 {
273 	struct mm_struct *mm = vma->vm_mm;
274 	unsigned long address;
275 	pte_t *pte;
276 	spinlock_t *ptl;
277 	int referenced = 0;
278 
279 	address = vma_address(page, vma);
280 	if (address == -EFAULT)
281 		goto out;
282 
283 	pte = page_check_address(page, mm, address, &ptl);
284 	if (!pte)
285 		goto out;
286 
287 	if (vma->vm_flags & VM_LOCKED) {
288 		referenced++;
289 		*mapcount = 1;	/* break early from loop */
290 	} else if (ptep_clear_flush_young(vma, address, pte))
291 		referenced++;
292 
293 	/* Pretend the page is referenced if the task has the
294 	   swap token and is in the middle of a page fault. */
295 	if (mm != current->mm && has_swap_token(mm) &&
296 			rwsem_is_locked(&mm->mmap_sem))
297 		referenced++;
298 
299 	(*mapcount)--;
300 	pte_unmap_unlock(pte, ptl);
301 out:
302 	return referenced;
303 }
304 
305 static int page_referenced_anon(struct page *page,
306 				struct mem_cgroup *mem_cont)
307 {
308 	unsigned int mapcount;
309 	struct anon_vma *anon_vma;
310 	struct vm_area_struct *vma;
311 	int referenced = 0;
312 
313 	anon_vma = page_lock_anon_vma(page);
314 	if (!anon_vma)
315 		return referenced;
316 
317 	mapcount = page_mapcount(page);
318 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
319 		/*
320 		 * If we are reclaiming on behalf of a cgroup, skip
321 		 * counting on behalf of references from different
322 		 * cgroups
323 		 */
324 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
325 			continue;
326 		referenced += page_referenced_one(page, vma, &mapcount);
327 		if (!mapcount)
328 			break;
329 	}
330 
331 	page_unlock_anon_vma(anon_vma);
332 	return referenced;
333 }
334 
335 /**
336  * page_referenced_file - referenced check for object-based rmap
337  * @page: the page we're checking references on.
338  * @mem_cont: target memory controller
339  *
340  * For an object-based mapped page, find all the places it is mapped and
341  * check/clear the referenced flag.  This is done by following the page->mapping
342  * pointer, then walking the chain of vmas it holds.  It returns the number
343  * of references it found.
344  *
345  * This function is only called from page_referenced for object-based pages.
346  */
347 static int page_referenced_file(struct page *page,
348 				struct mem_cgroup *mem_cont)
349 {
350 	unsigned int mapcount;
351 	struct address_space *mapping = page->mapping;
352 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
353 	struct vm_area_struct *vma;
354 	struct prio_tree_iter iter;
355 	int referenced = 0;
356 
357 	/*
358 	 * The caller's checks on page->mapping and !PageAnon have made
359 	 * sure that this is a file page: the check for page->mapping
360 	 * excludes the case just before it gets set on an anon page.
361 	 */
362 	BUG_ON(PageAnon(page));
363 
364 	/*
365 	 * The page lock not only makes sure that page->mapping cannot
366 	 * suddenly be NULLified by truncation, it makes sure that the
367 	 * structure at mapping cannot be freed and reused yet,
368 	 * so we can safely take mapping->i_mmap_lock.
369 	 */
370 	BUG_ON(!PageLocked(page));
371 
372 	spin_lock(&mapping->i_mmap_lock);
373 
374 	/*
375 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
376 	 * is more likely to be accurate if we note it after spinning.
377 	 */
378 	mapcount = page_mapcount(page);
379 
380 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
381 		/*
382 		 * If we are reclaiming on behalf of a cgroup, skip
383 		 * counting on behalf of references from different
384 		 * cgroups
385 		 */
386 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
387 			continue;
388 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
389 				  == (VM_LOCKED|VM_MAYSHARE)) {
390 			referenced++;
391 			break;
392 		}
393 		referenced += page_referenced_one(page, vma, &mapcount);
394 		if (!mapcount)
395 			break;
396 	}
397 
398 	spin_unlock(&mapping->i_mmap_lock);
399 	return referenced;
400 }
401 
402 /**
403  * page_referenced - test if the page was referenced
404  * @page: the page to test
405  * @is_locked: caller holds lock on the page
406  * @mem_cont: target memory controller
407  *
408  * Quick test_and_clear_referenced for all mappings to a page,
409  * returns the number of ptes which referenced the page.
410  */
411 int page_referenced(struct page *page, int is_locked,
412 			struct mem_cgroup *mem_cont)
413 {
414 	int referenced = 0;
415 
416 	if (TestClearPageReferenced(page))
417 		referenced++;
418 
419 	if (page_mapped(page) && page->mapping) {
420 		if (PageAnon(page))
421 			referenced += page_referenced_anon(page, mem_cont);
422 		else if (is_locked)
423 			referenced += page_referenced_file(page, mem_cont);
424 		else if (TestSetPageLocked(page))
425 			referenced++;
426 		else {
427 			if (page->mapping)
428 				referenced +=
429 					page_referenced_file(page, mem_cont);
430 			unlock_page(page);
431 		}
432 	}
433 
434 	if (page_test_and_clear_young(page))
435 		referenced++;
436 
437 	return referenced;
438 }
439 
440 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
441 {
442 	struct mm_struct *mm = vma->vm_mm;
443 	unsigned long address;
444 	pte_t *pte;
445 	spinlock_t *ptl;
446 	int ret = 0;
447 
448 	address = vma_address(page, vma);
449 	if (address == -EFAULT)
450 		goto out;
451 
452 	pte = page_check_address(page, mm, address, &ptl);
453 	if (!pte)
454 		goto out;
455 
456 	if (pte_dirty(*pte) || pte_write(*pte)) {
457 		pte_t entry;
458 
459 		flush_cache_page(vma, address, pte_pfn(*pte));
460 		entry = ptep_clear_flush(vma, address, pte);
461 		entry = pte_wrprotect(entry);
462 		entry = pte_mkclean(entry);
463 		set_pte_at(mm, address, pte, entry);
464 		ret = 1;
465 	}
466 
467 	pte_unmap_unlock(pte, ptl);
468 out:
469 	return ret;
470 }
471 
472 static int page_mkclean_file(struct address_space *mapping, struct page *page)
473 {
474 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
475 	struct vm_area_struct *vma;
476 	struct prio_tree_iter iter;
477 	int ret = 0;
478 
479 	BUG_ON(PageAnon(page));
480 
481 	spin_lock(&mapping->i_mmap_lock);
482 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
483 		if (vma->vm_flags & VM_SHARED)
484 			ret += page_mkclean_one(page, vma);
485 	}
486 	spin_unlock(&mapping->i_mmap_lock);
487 	return ret;
488 }
489 
490 int page_mkclean(struct page *page)
491 {
492 	int ret = 0;
493 
494 	BUG_ON(!PageLocked(page));
495 
496 	if (page_mapped(page)) {
497 		struct address_space *mapping = page_mapping(page);
498 		if (mapping) {
499 			ret = page_mkclean_file(mapping, page);
500 			if (page_test_dirty(page)) {
501 				page_clear_dirty(page);
502 				ret = 1;
503 			}
504 		}
505 	}
506 
507 	return ret;
508 }
509 EXPORT_SYMBOL_GPL(page_mkclean);
510 
511 /**
512  * __page_set_anon_rmap - setup new anonymous rmap
513  * @page:	the page to add the mapping to
514  * @vma:	the vm area in which the mapping is added
515  * @address:	the user virtual address mapped
516  */
517 static void __page_set_anon_rmap(struct page *page,
518 	struct vm_area_struct *vma, unsigned long address)
519 {
520 	struct anon_vma *anon_vma = vma->anon_vma;
521 
522 	BUG_ON(!anon_vma);
523 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
524 	page->mapping = (struct address_space *) anon_vma;
525 
526 	page->index = linear_page_index(vma, address);
527 
528 	/*
529 	 * nr_mapped state can be updated without turning off
530 	 * interrupts because it is not modified via interrupt.
531 	 */
532 	__inc_zone_page_state(page, NR_ANON_PAGES);
533 }
534 
535 /**
536  * __page_check_anon_rmap - sanity check anonymous rmap addition
537  * @page:	the page to add the mapping to
538  * @vma:	the vm area in which the mapping is added
539  * @address:	the user virtual address mapped
540  */
541 static void __page_check_anon_rmap(struct page *page,
542 	struct vm_area_struct *vma, unsigned long address)
543 {
544 #ifdef CONFIG_DEBUG_VM
545 	/*
546 	 * The page's anon-rmap details (mapping and index) are guaranteed to
547 	 * be set up correctly at this point.
548 	 *
549 	 * We have exclusion against page_add_anon_rmap because the caller
550 	 * always holds the page locked, except if called from page_dup_rmap,
551 	 * in which case the page is already known to be setup.
552 	 *
553 	 * We have exclusion against page_add_new_anon_rmap because those pages
554 	 * are initially only visible via the pagetables, and the pte is locked
555 	 * over the call to page_add_new_anon_rmap.
556 	 */
557 	struct anon_vma *anon_vma = vma->anon_vma;
558 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
559 	BUG_ON(page->mapping != (struct address_space *)anon_vma);
560 	BUG_ON(page->index != linear_page_index(vma, address));
561 #endif
562 }
563 
564 /**
565  * page_add_anon_rmap - add pte mapping to an anonymous page
566  * @page:	the page to add the mapping to
567  * @vma:	the vm area in which the mapping is added
568  * @address:	the user virtual address mapped
569  *
570  * The caller needs to hold the pte lock and the page must be locked.
571  */
572 void page_add_anon_rmap(struct page *page,
573 	struct vm_area_struct *vma, unsigned long address)
574 {
575 	VM_BUG_ON(!PageLocked(page));
576 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
577 	if (atomic_inc_and_test(&page->_mapcount))
578 		__page_set_anon_rmap(page, vma, address);
579 	else
580 		__page_check_anon_rmap(page, vma, address);
581 }
582 
583 /**
584  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
585  * @page:	the page to add the mapping to
586  * @vma:	the vm area in which the mapping is added
587  * @address:	the user virtual address mapped
588  *
589  * Same as page_add_anon_rmap but must only be called on *new* pages.
590  * This means the inc-and-test can be bypassed.
591  * Page does not have to be locked.
592  */
593 void page_add_new_anon_rmap(struct page *page,
594 	struct vm_area_struct *vma, unsigned long address)
595 {
596 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
597 	atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
598 	__page_set_anon_rmap(page, vma, address);
599 }
600 
601 /**
602  * page_add_file_rmap - add pte mapping to a file page
603  * @page: the page to add the mapping to
604  *
605  * The caller needs to hold the pte lock.
606  */
607 void page_add_file_rmap(struct page *page)
608 {
609 	if (atomic_inc_and_test(&page->_mapcount))
610 		__inc_zone_page_state(page, NR_FILE_MAPPED);
611 }
612 
613 #ifdef CONFIG_DEBUG_VM
614 /**
615  * page_dup_rmap - duplicate pte mapping to a page
616  * @page:	the page to add the mapping to
617  * @vma:	the vm area being duplicated
618  * @address:	the user virtual address mapped
619  *
620  * For copy_page_range only: minimal extract from page_add_file_rmap /
621  * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
622  * quicker.
623  *
624  * The caller needs to hold the pte lock.
625  */
626 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
627 {
628 	BUG_ON(page_mapcount(page) == 0);
629 	if (PageAnon(page))
630 		__page_check_anon_rmap(page, vma, address);
631 	atomic_inc(&page->_mapcount);
632 }
633 #endif
634 
635 /**
636  * page_remove_rmap - take down pte mapping from a page
637  * @page: page to remove mapping from
638  * @vma: the vm area in which the mapping is removed
639  *
640  * The caller needs to hold the pte lock.
641  */
642 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
643 {
644 	if (atomic_add_negative(-1, &page->_mapcount)) {
645 		if (unlikely(page_mapcount(page) < 0)) {
646 			printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
647 			printk (KERN_EMERG "  page pfn = %lx\n", page_to_pfn(page));
648 			printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
649 			printk (KERN_EMERG "  page->count = %x\n", page_count(page));
650 			printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
651 			print_symbol (KERN_EMERG "  vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
652 			if (vma->vm_ops) {
653 				print_symbol (KERN_EMERG "  vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
654 			}
655 			if (vma->vm_file && vma->vm_file->f_op)
656 				print_symbol (KERN_EMERG "  vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
657 			BUG();
658 		}
659 
660 		/*
661 		 * It would be tidy to reset the PageAnon mapping here,
662 		 * but that might overwrite a racing page_add_anon_rmap
663 		 * which increments mapcount after us but sets mapping
664 		 * before us: so leave the reset to free_hot_cold_page,
665 		 * and remember that it's only reliable while mapped.
666 		 * Leaving it set also helps swapoff to reinstate ptes
667 		 * faster for those pages still in swapcache.
668 		 */
669 		if (page_test_dirty(page)) {
670 			page_clear_dirty(page);
671 			set_page_dirty(page);
672 		}
673 		mem_cgroup_uncharge_page(page);
674 
675 		__dec_zone_page_state(page,
676 				PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
677 	}
678 }
679 
680 /*
681  * Subfunctions of try_to_unmap: try_to_unmap_one called
682  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
683  */
684 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
685 				int migration)
686 {
687 	struct mm_struct *mm = vma->vm_mm;
688 	unsigned long address;
689 	pte_t *pte;
690 	pte_t pteval;
691 	spinlock_t *ptl;
692 	int ret = SWAP_AGAIN;
693 
694 	address = vma_address(page, vma);
695 	if (address == -EFAULT)
696 		goto out;
697 
698 	pte = page_check_address(page, mm, address, &ptl);
699 	if (!pte)
700 		goto out;
701 
702 	/*
703 	 * If the page is mlock()d, we cannot swap it out.
704 	 * If it's recently referenced (perhaps page_referenced
705 	 * skipped over this mm) then we should reactivate it.
706 	 */
707 	if (!migration && ((vma->vm_flags & VM_LOCKED) ||
708 			(ptep_clear_flush_young(vma, address, pte)))) {
709 		ret = SWAP_FAIL;
710 		goto out_unmap;
711 	}
712 
713 	/* Nuke the page table entry. */
714 	flush_cache_page(vma, address, page_to_pfn(page));
715 	pteval = ptep_clear_flush(vma, address, pte);
716 
717 	/* Move the dirty bit to the physical page now the pte is gone. */
718 	if (pte_dirty(pteval))
719 		set_page_dirty(page);
720 
721 	/* Update high watermark before we lower rss */
722 	update_hiwater_rss(mm);
723 
724 	if (PageAnon(page)) {
725 		swp_entry_t entry = { .val = page_private(page) };
726 
727 		if (PageSwapCache(page)) {
728 			/*
729 			 * Store the swap location in the pte.
730 			 * See handle_pte_fault() ...
731 			 */
732 			swap_duplicate(entry);
733 			if (list_empty(&mm->mmlist)) {
734 				spin_lock(&mmlist_lock);
735 				if (list_empty(&mm->mmlist))
736 					list_add(&mm->mmlist, &init_mm.mmlist);
737 				spin_unlock(&mmlist_lock);
738 			}
739 			dec_mm_counter(mm, anon_rss);
740 #ifdef CONFIG_MIGRATION
741 		} else {
742 			/*
743 			 * Store the pfn of the page in a special migration
744 			 * pte. do_swap_page() will wait until the migration
745 			 * pte is removed and then restart fault handling.
746 			 */
747 			BUG_ON(!migration);
748 			entry = make_migration_entry(page, pte_write(pteval));
749 #endif
750 		}
751 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
752 		BUG_ON(pte_file(*pte));
753 	} else
754 #ifdef CONFIG_MIGRATION
755 	if (migration) {
756 		/* Establish migration entry for a file page */
757 		swp_entry_t entry;
758 		entry = make_migration_entry(page, pte_write(pteval));
759 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
760 	} else
761 #endif
762 		dec_mm_counter(mm, file_rss);
763 
764 
765 	page_remove_rmap(page, vma);
766 	page_cache_release(page);
767 
768 out_unmap:
769 	pte_unmap_unlock(pte, ptl);
770 out:
771 	return ret;
772 }
773 
774 /*
775  * objrmap doesn't work for nonlinear VMAs because the assumption that
776  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
777  * Consequently, given a particular page and its ->index, we cannot locate the
778  * ptes which are mapping that page without an exhaustive linear search.
779  *
780  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
781  * maps the file to which the target page belongs.  The ->vm_private_data field
782  * holds the current cursor into that scan.  Successive searches will circulate
783  * around the vma's virtual address space.
784  *
785  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
786  * more scanning pressure is placed against them as well.   Eventually pages
787  * will become fully unmapped and are eligible for eviction.
788  *
789  * For very sparsely populated VMAs this is a little inefficient - chances are
790  * there there won't be many ptes located within the scan cluster.  In this case
791  * maybe we could scan further - to the end of the pte page, perhaps.
792  */
793 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
794 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
795 
796 static void try_to_unmap_cluster(unsigned long cursor,
797 	unsigned int *mapcount, struct vm_area_struct *vma)
798 {
799 	struct mm_struct *mm = vma->vm_mm;
800 	pgd_t *pgd;
801 	pud_t *pud;
802 	pmd_t *pmd;
803 	pte_t *pte;
804 	pte_t pteval;
805 	spinlock_t *ptl;
806 	struct page *page;
807 	unsigned long address;
808 	unsigned long end;
809 
810 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
811 	end = address + CLUSTER_SIZE;
812 	if (address < vma->vm_start)
813 		address = vma->vm_start;
814 	if (end > vma->vm_end)
815 		end = vma->vm_end;
816 
817 	pgd = pgd_offset(mm, address);
818 	if (!pgd_present(*pgd))
819 		return;
820 
821 	pud = pud_offset(pgd, address);
822 	if (!pud_present(*pud))
823 		return;
824 
825 	pmd = pmd_offset(pud, address);
826 	if (!pmd_present(*pmd))
827 		return;
828 
829 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
830 
831 	/* Update high watermark before we lower rss */
832 	update_hiwater_rss(mm);
833 
834 	for (; address < end; pte++, address += PAGE_SIZE) {
835 		if (!pte_present(*pte))
836 			continue;
837 		page = vm_normal_page(vma, address, *pte);
838 		BUG_ON(!page || PageAnon(page));
839 
840 		if (ptep_clear_flush_young(vma, address, pte))
841 			continue;
842 
843 		/* Nuke the page table entry. */
844 		flush_cache_page(vma, address, pte_pfn(*pte));
845 		pteval = ptep_clear_flush(vma, address, pte);
846 
847 		/* If nonlinear, store the file page offset in the pte. */
848 		if (page->index != linear_page_index(vma, address))
849 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
850 
851 		/* Move the dirty bit to the physical page now the pte is gone. */
852 		if (pte_dirty(pteval))
853 			set_page_dirty(page);
854 
855 		page_remove_rmap(page, vma);
856 		page_cache_release(page);
857 		dec_mm_counter(mm, file_rss);
858 		(*mapcount)--;
859 	}
860 	pte_unmap_unlock(pte - 1, ptl);
861 }
862 
863 static int try_to_unmap_anon(struct page *page, int migration)
864 {
865 	struct anon_vma *anon_vma;
866 	struct vm_area_struct *vma;
867 	int ret = SWAP_AGAIN;
868 
869 	anon_vma = page_lock_anon_vma(page);
870 	if (!anon_vma)
871 		return ret;
872 
873 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
874 		ret = try_to_unmap_one(page, vma, migration);
875 		if (ret == SWAP_FAIL || !page_mapped(page))
876 			break;
877 	}
878 
879 	page_unlock_anon_vma(anon_vma);
880 	return ret;
881 }
882 
883 /**
884  * try_to_unmap_file - unmap file page using the object-based rmap method
885  * @page: the page to unmap
886  * @migration: migration flag
887  *
888  * Find all the mappings of a page using the mapping pointer and the vma chains
889  * contained in the address_space struct it points to.
890  *
891  * This function is only called from try_to_unmap for object-based pages.
892  */
893 static int try_to_unmap_file(struct page *page, int migration)
894 {
895 	struct address_space *mapping = page->mapping;
896 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
897 	struct vm_area_struct *vma;
898 	struct prio_tree_iter iter;
899 	int ret = SWAP_AGAIN;
900 	unsigned long cursor;
901 	unsigned long max_nl_cursor = 0;
902 	unsigned long max_nl_size = 0;
903 	unsigned int mapcount;
904 
905 	spin_lock(&mapping->i_mmap_lock);
906 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
907 		ret = try_to_unmap_one(page, vma, migration);
908 		if (ret == SWAP_FAIL || !page_mapped(page))
909 			goto out;
910 	}
911 
912 	if (list_empty(&mapping->i_mmap_nonlinear))
913 		goto out;
914 
915 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
916 						shared.vm_set.list) {
917 		if ((vma->vm_flags & VM_LOCKED) && !migration)
918 			continue;
919 		cursor = (unsigned long) vma->vm_private_data;
920 		if (cursor > max_nl_cursor)
921 			max_nl_cursor = cursor;
922 		cursor = vma->vm_end - vma->vm_start;
923 		if (cursor > max_nl_size)
924 			max_nl_size = cursor;
925 	}
926 
927 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
928 		ret = SWAP_FAIL;
929 		goto out;
930 	}
931 
932 	/*
933 	 * We don't try to search for this page in the nonlinear vmas,
934 	 * and page_referenced wouldn't have found it anyway.  Instead
935 	 * just walk the nonlinear vmas trying to age and unmap some.
936 	 * The mapcount of the page we came in with is irrelevant,
937 	 * but even so use it as a guide to how hard we should try?
938 	 */
939 	mapcount = page_mapcount(page);
940 	if (!mapcount)
941 		goto out;
942 	cond_resched_lock(&mapping->i_mmap_lock);
943 
944 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
945 	if (max_nl_cursor == 0)
946 		max_nl_cursor = CLUSTER_SIZE;
947 
948 	do {
949 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
950 						shared.vm_set.list) {
951 			if ((vma->vm_flags & VM_LOCKED) && !migration)
952 				continue;
953 			cursor = (unsigned long) vma->vm_private_data;
954 			while ( cursor < max_nl_cursor &&
955 				cursor < vma->vm_end - vma->vm_start) {
956 				try_to_unmap_cluster(cursor, &mapcount, vma);
957 				cursor += CLUSTER_SIZE;
958 				vma->vm_private_data = (void *) cursor;
959 				if ((int)mapcount <= 0)
960 					goto out;
961 			}
962 			vma->vm_private_data = (void *) max_nl_cursor;
963 		}
964 		cond_resched_lock(&mapping->i_mmap_lock);
965 		max_nl_cursor += CLUSTER_SIZE;
966 	} while (max_nl_cursor <= max_nl_size);
967 
968 	/*
969 	 * Don't loop forever (perhaps all the remaining pages are
970 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
971 	 * vmas, now forgetting on which ones it had fallen behind.
972 	 */
973 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
974 		vma->vm_private_data = NULL;
975 out:
976 	spin_unlock(&mapping->i_mmap_lock);
977 	return ret;
978 }
979 
980 /**
981  * try_to_unmap - try to remove all page table mappings to a page
982  * @page: the page to get unmapped
983  * @migration: migration flag
984  *
985  * Tries to remove all the page table entries which are mapping this
986  * page, used in the pageout path.  Caller must hold the page lock.
987  * Return values are:
988  *
989  * SWAP_SUCCESS	- we succeeded in removing all mappings
990  * SWAP_AGAIN	- we missed a mapping, try again later
991  * SWAP_FAIL	- the page is unswappable
992  */
993 int try_to_unmap(struct page *page, int migration)
994 {
995 	int ret;
996 
997 	BUG_ON(!PageLocked(page));
998 
999 	if (PageAnon(page))
1000 		ret = try_to_unmap_anon(page, migration);
1001 	else
1002 		ret = try_to_unmap_file(page, migration);
1003 
1004 	if (!page_mapped(page))
1005 		ret = SWAP_SUCCESS;
1006 	return ret;
1007 }
1008 
1009