xref: /openbmc/linux/mm/rmap.c (revision 93d90ad7)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_rwsem
27  *         anon_vma->rwsem
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within bdi.wb->list_lock in __sync_single_inode)
39  *
40  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
41  *   ->tasklist_lock
42  *     pte map lock
43  */
44 
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	struct anon_vma *anon_vma;
71 
72 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 	if (anon_vma) {
74 		atomic_set(&anon_vma->refcount, 1);
75 		anon_vma->degree = 1;	/* Reference for first vma */
76 		anon_vma->parent = anon_vma;
77 		/*
78 		 * Initialise the anon_vma root to point to itself. If called
79 		 * from fork, the root will be reset to the parents anon_vma.
80 		 */
81 		anon_vma->root = anon_vma;
82 	}
83 
84 	return anon_vma;
85 }
86 
87 static inline void anon_vma_free(struct anon_vma *anon_vma)
88 {
89 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
90 
91 	/*
92 	 * Synchronize against page_lock_anon_vma_read() such that
93 	 * we can safely hold the lock without the anon_vma getting
94 	 * freed.
95 	 *
96 	 * Relies on the full mb implied by the atomic_dec_and_test() from
97 	 * put_anon_vma() against the acquire barrier implied by
98 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
99 	 *
100 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
101 	 *   down_read_trylock()		  atomic_dec_and_test()
102 	 *   LOCK				  MB
103 	 *   atomic_read()			  rwsem_is_locked()
104 	 *
105 	 * LOCK should suffice since the actual taking of the lock must
106 	 * happen _before_ what follows.
107 	 */
108 	might_sleep();
109 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
110 		anon_vma_lock_write(anon_vma);
111 		anon_vma_unlock_write(anon_vma);
112 	}
113 
114 	kmem_cache_free(anon_vma_cachep, anon_vma);
115 }
116 
117 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
118 {
119 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
120 }
121 
122 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
123 {
124 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
125 }
126 
127 static void anon_vma_chain_link(struct vm_area_struct *vma,
128 				struct anon_vma_chain *avc,
129 				struct anon_vma *anon_vma)
130 {
131 	avc->vma = vma;
132 	avc->anon_vma = anon_vma;
133 	list_add(&avc->same_vma, &vma->anon_vma_chain);
134 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
135 }
136 
137 /**
138  * anon_vma_prepare - attach an anon_vma to a memory region
139  * @vma: the memory region in question
140  *
141  * This makes sure the memory mapping described by 'vma' has
142  * an 'anon_vma' attached to it, so that we can associate the
143  * anonymous pages mapped into it with that anon_vma.
144  *
145  * The common case will be that we already have one, but if
146  * not we either need to find an adjacent mapping that we
147  * can re-use the anon_vma from (very common when the only
148  * reason for splitting a vma has been mprotect()), or we
149  * allocate a new one.
150  *
151  * Anon-vma allocations are very subtle, because we may have
152  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
153  * and that may actually touch the spinlock even in the newly
154  * allocated vma (it depends on RCU to make sure that the
155  * anon_vma isn't actually destroyed).
156  *
157  * As a result, we need to do proper anon_vma locking even
158  * for the new allocation. At the same time, we do not want
159  * to do any locking for the common case of already having
160  * an anon_vma.
161  *
162  * This must be called with the mmap_sem held for reading.
163  */
164 int anon_vma_prepare(struct vm_area_struct *vma)
165 {
166 	struct anon_vma *anon_vma = vma->anon_vma;
167 	struct anon_vma_chain *avc;
168 
169 	might_sleep();
170 	if (unlikely(!anon_vma)) {
171 		struct mm_struct *mm = vma->vm_mm;
172 		struct anon_vma *allocated;
173 
174 		avc = anon_vma_chain_alloc(GFP_KERNEL);
175 		if (!avc)
176 			goto out_enomem;
177 
178 		anon_vma = find_mergeable_anon_vma(vma);
179 		allocated = NULL;
180 		if (!anon_vma) {
181 			anon_vma = anon_vma_alloc();
182 			if (unlikely(!anon_vma))
183 				goto out_enomem_free_avc;
184 			allocated = anon_vma;
185 		}
186 
187 		anon_vma_lock_write(anon_vma);
188 		/* page_table_lock to protect against threads */
189 		spin_lock(&mm->page_table_lock);
190 		if (likely(!vma->anon_vma)) {
191 			vma->anon_vma = anon_vma;
192 			anon_vma_chain_link(vma, avc, anon_vma);
193 			/* vma reference or self-parent link for new root */
194 			anon_vma->degree++;
195 			allocated = NULL;
196 			avc = NULL;
197 		}
198 		spin_unlock(&mm->page_table_lock);
199 		anon_vma_unlock_write(anon_vma);
200 
201 		if (unlikely(allocated))
202 			put_anon_vma(allocated);
203 		if (unlikely(avc))
204 			anon_vma_chain_free(avc);
205 	}
206 	return 0;
207 
208  out_enomem_free_avc:
209 	anon_vma_chain_free(avc);
210  out_enomem:
211 	return -ENOMEM;
212 }
213 
214 /*
215  * This is a useful helper function for locking the anon_vma root as
216  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
217  * have the same vma.
218  *
219  * Such anon_vma's should have the same root, so you'd expect to see
220  * just a single mutex_lock for the whole traversal.
221  */
222 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
223 {
224 	struct anon_vma *new_root = anon_vma->root;
225 	if (new_root != root) {
226 		if (WARN_ON_ONCE(root))
227 			up_write(&root->rwsem);
228 		root = new_root;
229 		down_write(&root->rwsem);
230 	}
231 	return root;
232 }
233 
234 static inline void unlock_anon_vma_root(struct anon_vma *root)
235 {
236 	if (root)
237 		up_write(&root->rwsem);
238 }
239 
240 /*
241  * Attach the anon_vmas from src to dst.
242  * Returns 0 on success, -ENOMEM on failure.
243  *
244  * If dst->anon_vma is NULL this function tries to find and reuse existing
245  * anon_vma which has no vmas and only one child anon_vma. This prevents
246  * degradation of anon_vma hierarchy to endless linear chain in case of
247  * constantly forking task. On the other hand, an anon_vma with more than one
248  * child isn't reused even if there was no alive vma, thus rmap walker has a
249  * good chance of avoiding scanning the whole hierarchy when it searches where
250  * page is mapped.
251  */
252 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
253 {
254 	struct anon_vma_chain *avc, *pavc;
255 	struct anon_vma *root = NULL;
256 
257 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
258 		struct anon_vma *anon_vma;
259 
260 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
261 		if (unlikely(!avc)) {
262 			unlock_anon_vma_root(root);
263 			root = NULL;
264 			avc = anon_vma_chain_alloc(GFP_KERNEL);
265 			if (!avc)
266 				goto enomem_failure;
267 		}
268 		anon_vma = pavc->anon_vma;
269 		root = lock_anon_vma_root(root, anon_vma);
270 		anon_vma_chain_link(dst, avc, anon_vma);
271 
272 		/*
273 		 * Reuse existing anon_vma if its degree lower than two,
274 		 * that means it has no vma and only one anon_vma child.
275 		 *
276 		 * Do not chose parent anon_vma, otherwise first child
277 		 * will always reuse it. Root anon_vma is never reused:
278 		 * it has self-parent reference and at least one child.
279 		 */
280 		if (!dst->anon_vma && anon_vma != src->anon_vma &&
281 				anon_vma->degree < 2)
282 			dst->anon_vma = anon_vma;
283 	}
284 	if (dst->anon_vma)
285 		dst->anon_vma->degree++;
286 	unlock_anon_vma_root(root);
287 	return 0;
288 
289  enomem_failure:
290 	unlink_anon_vmas(dst);
291 	return -ENOMEM;
292 }
293 
294 /*
295  * Attach vma to its own anon_vma, as well as to the anon_vmas that
296  * the corresponding VMA in the parent process is attached to.
297  * Returns 0 on success, non-zero on failure.
298  */
299 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
300 {
301 	struct anon_vma_chain *avc;
302 	struct anon_vma *anon_vma;
303 	int error;
304 
305 	/* Don't bother if the parent process has no anon_vma here. */
306 	if (!pvma->anon_vma)
307 		return 0;
308 
309 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
310 	vma->anon_vma = NULL;
311 
312 	/*
313 	 * First, attach the new VMA to the parent VMA's anon_vmas,
314 	 * so rmap can find non-COWed pages in child processes.
315 	 */
316 	error = anon_vma_clone(vma, pvma);
317 	if (error)
318 		return error;
319 
320 	/* An existing anon_vma has been reused, all done then. */
321 	if (vma->anon_vma)
322 		return 0;
323 
324 	/* Then add our own anon_vma. */
325 	anon_vma = anon_vma_alloc();
326 	if (!anon_vma)
327 		goto out_error;
328 	avc = anon_vma_chain_alloc(GFP_KERNEL);
329 	if (!avc)
330 		goto out_error_free_anon_vma;
331 
332 	/*
333 	 * The root anon_vma's spinlock is the lock actually used when we
334 	 * lock any of the anon_vmas in this anon_vma tree.
335 	 */
336 	anon_vma->root = pvma->anon_vma->root;
337 	anon_vma->parent = pvma->anon_vma;
338 	/*
339 	 * With refcounts, an anon_vma can stay around longer than the
340 	 * process it belongs to. The root anon_vma needs to be pinned until
341 	 * this anon_vma is freed, because the lock lives in the root.
342 	 */
343 	get_anon_vma(anon_vma->root);
344 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
345 	vma->anon_vma = anon_vma;
346 	anon_vma_lock_write(anon_vma);
347 	anon_vma_chain_link(vma, avc, anon_vma);
348 	anon_vma->parent->degree++;
349 	anon_vma_unlock_write(anon_vma);
350 
351 	return 0;
352 
353  out_error_free_anon_vma:
354 	put_anon_vma(anon_vma);
355  out_error:
356 	unlink_anon_vmas(vma);
357 	return -ENOMEM;
358 }
359 
360 void unlink_anon_vmas(struct vm_area_struct *vma)
361 {
362 	struct anon_vma_chain *avc, *next;
363 	struct anon_vma *root = NULL;
364 
365 	/*
366 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
367 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
368 	 */
369 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
370 		struct anon_vma *anon_vma = avc->anon_vma;
371 
372 		root = lock_anon_vma_root(root, anon_vma);
373 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
374 
375 		/*
376 		 * Leave empty anon_vmas on the list - we'll need
377 		 * to free them outside the lock.
378 		 */
379 		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
380 			anon_vma->parent->degree--;
381 			continue;
382 		}
383 
384 		list_del(&avc->same_vma);
385 		anon_vma_chain_free(avc);
386 	}
387 	if (vma->anon_vma)
388 		vma->anon_vma->degree--;
389 	unlock_anon_vma_root(root);
390 
391 	/*
392 	 * Iterate the list once more, it now only contains empty and unlinked
393 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
394 	 * needing to write-acquire the anon_vma->root->rwsem.
395 	 */
396 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
397 		struct anon_vma *anon_vma = avc->anon_vma;
398 
399 		BUG_ON(anon_vma->degree);
400 		put_anon_vma(anon_vma);
401 
402 		list_del(&avc->same_vma);
403 		anon_vma_chain_free(avc);
404 	}
405 }
406 
407 static void anon_vma_ctor(void *data)
408 {
409 	struct anon_vma *anon_vma = data;
410 
411 	init_rwsem(&anon_vma->rwsem);
412 	atomic_set(&anon_vma->refcount, 0);
413 	anon_vma->rb_root = RB_ROOT;
414 }
415 
416 void __init anon_vma_init(void)
417 {
418 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
419 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
420 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
421 }
422 
423 /*
424  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
425  *
426  * Since there is no serialization what so ever against page_remove_rmap()
427  * the best this function can do is return a locked anon_vma that might
428  * have been relevant to this page.
429  *
430  * The page might have been remapped to a different anon_vma or the anon_vma
431  * returned may already be freed (and even reused).
432  *
433  * In case it was remapped to a different anon_vma, the new anon_vma will be a
434  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
435  * ensure that any anon_vma obtained from the page will still be valid for as
436  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
437  *
438  * All users of this function must be very careful when walking the anon_vma
439  * chain and verify that the page in question is indeed mapped in it
440  * [ something equivalent to page_mapped_in_vma() ].
441  *
442  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
443  * that the anon_vma pointer from page->mapping is valid if there is a
444  * mapcount, we can dereference the anon_vma after observing those.
445  */
446 struct anon_vma *page_get_anon_vma(struct page *page)
447 {
448 	struct anon_vma *anon_vma = NULL;
449 	unsigned long anon_mapping;
450 
451 	rcu_read_lock();
452 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454 		goto out;
455 	if (!page_mapped(page))
456 		goto out;
457 
458 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
459 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
460 		anon_vma = NULL;
461 		goto out;
462 	}
463 
464 	/*
465 	 * If this page is still mapped, then its anon_vma cannot have been
466 	 * freed.  But if it has been unmapped, we have no security against the
467 	 * anon_vma structure being freed and reused (for another anon_vma:
468 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
469 	 * above cannot corrupt).
470 	 */
471 	if (!page_mapped(page)) {
472 		rcu_read_unlock();
473 		put_anon_vma(anon_vma);
474 		return NULL;
475 	}
476 out:
477 	rcu_read_unlock();
478 
479 	return anon_vma;
480 }
481 
482 /*
483  * Similar to page_get_anon_vma() except it locks the anon_vma.
484  *
485  * Its a little more complex as it tries to keep the fast path to a single
486  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
487  * reference like with page_get_anon_vma() and then block on the mutex.
488  */
489 struct anon_vma *page_lock_anon_vma_read(struct page *page)
490 {
491 	struct anon_vma *anon_vma = NULL;
492 	struct anon_vma *root_anon_vma;
493 	unsigned long anon_mapping;
494 
495 	rcu_read_lock();
496 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
497 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
498 		goto out;
499 	if (!page_mapped(page))
500 		goto out;
501 
502 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
503 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
504 	if (down_read_trylock(&root_anon_vma->rwsem)) {
505 		/*
506 		 * If the page is still mapped, then this anon_vma is still
507 		 * its anon_vma, and holding the mutex ensures that it will
508 		 * not go away, see anon_vma_free().
509 		 */
510 		if (!page_mapped(page)) {
511 			up_read(&root_anon_vma->rwsem);
512 			anon_vma = NULL;
513 		}
514 		goto out;
515 	}
516 
517 	/* trylock failed, we got to sleep */
518 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
519 		anon_vma = NULL;
520 		goto out;
521 	}
522 
523 	if (!page_mapped(page)) {
524 		rcu_read_unlock();
525 		put_anon_vma(anon_vma);
526 		return NULL;
527 	}
528 
529 	/* we pinned the anon_vma, its safe to sleep */
530 	rcu_read_unlock();
531 	anon_vma_lock_read(anon_vma);
532 
533 	if (atomic_dec_and_test(&anon_vma->refcount)) {
534 		/*
535 		 * Oops, we held the last refcount, release the lock
536 		 * and bail -- can't simply use put_anon_vma() because
537 		 * we'll deadlock on the anon_vma_lock_write() recursion.
538 		 */
539 		anon_vma_unlock_read(anon_vma);
540 		__put_anon_vma(anon_vma);
541 		anon_vma = NULL;
542 	}
543 
544 	return anon_vma;
545 
546 out:
547 	rcu_read_unlock();
548 	return anon_vma;
549 }
550 
551 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
552 {
553 	anon_vma_unlock_read(anon_vma);
554 }
555 
556 /*
557  * At what user virtual address is page expected in @vma?
558  */
559 static inline unsigned long
560 __vma_address(struct page *page, struct vm_area_struct *vma)
561 {
562 	pgoff_t pgoff = page_to_pgoff(page);
563 	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
564 }
565 
566 inline unsigned long
567 vma_address(struct page *page, struct vm_area_struct *vma)
568 {
569 	unsigned long address = __vma_address(page, vma);
570 
571 	/* page should be within @vma mapping range */
572 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
573 
574 	return address;
575 }
576 
577 /*
578  * At what user virtual address is page expected in vma?
579  * Caller should check the page is actually part of the vma.
580  */
581 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
582 {
583 	unsigned long address;
584 	if (PageAnon(page)) {
585 		struct anon_vma *page__anon_vma = page_anon_vma(page);
586 		/*
587 		 * Note: swapoff's unuse_vma() is more efficient with this
588 		 * check, and needs it to match anon_vma when KSM is active.
589 		 */
590 		if (!vma->anon_vma || !page__anon_vma ||
591 		    vma->anon_vma->root != page__anon_vma->root)
592 			return -EFAULT;
593 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
594 		if (!vma->vm_file ||
595 		    vma->vm_file->f_mapping != page->mapping)
596 			return -EFAULT;
597 	} else
598 		return -EFAULT;
599 	address = __vma_address(page, vma);
600 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
601 		return -EFAULT;
602 	return address;
603 }
604 
605 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
606 {
607 	pgd_t *pgd;
608 	pud_t *pud;
609 	pmd_t *pmd = NULL;
610 	pmd_t pmde;
611 
612 	pgd = pgd_offset(mm, address);
613 	if (!pgd_present(*pgd))
614 		goto out;
615 
616 	pud = pud_offset(pgd, address);
617 	if (!pud_present(*pud))
618 		goto out;
619 
620 	pmd = pmd_offset(pud, address);
621 	/*
622 	 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
623 	 * without holding anon_vma lock for write.  So when looking for a
624 	 * genuine pmde (in which to find pte), test present and !THP together.
625 	 */
626 	pmde = *pmd;
627 	barrier();
628 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
629 		pmd = NULL;
630 out:
631 	return pmd;
632 }
633 
634 /*
635  * Check that @page is mapped at @address into @mm.
636  *
637  * If @sync is false, page_check_address may perform a racy check to avoid
638  * the page table lock when the pte is not present (helpful when reclaiming
639  * highly shared pages).
640  *
641  * On success returns with pte mapped and locked.
642  */
643 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
644 			  unsigned long address, spinlock_t **ptlp, int sync)
645 {
646 	pmd_t *pmd;
647 	pte_t *pte;
648 	spinlock_t *ptl;
649 
650 	if (unlikely(PageHuge(page))) {
651 		/* when pud is not present, pte will be NULL */
652 		pte = huge_pte_offset(mm, address);
653 		if (!pte)
654 			return NULL;
655 
656 		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
657 		goto check;
658 	}
659 
660 	pmd = mm_find_pmd(mm, address);
661 	if (!pmd)
662 		return NULL;
663 
664 	pte = pte_offset_map(pmd, address);
665 	/* Make a quick check before getting the lock */
666 	if (!sync && !pte_present(*pte)) {
667 		pte_unmap(pte);
668 		return NULL;
669 	}
670 
671 	ptl = pte_lockptr(mm, pmd);
672 check:
673 	spin_lock(ptl);
674 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
675 		*ptlp = ptl;
676 		return pte;
677 	}
678 	pte_unmap_unlock(pte, ptl);
679 	return NULL;
680 }
681 
682 /**
683  * page_mapped_in_vma - check whether a page is really mapped in a VMA
684  * @page: the page to test
685  * @vma: the VMA to test
686  *
687  * Returns 1 if the page is mapped into the page tables of the VMA, 0
688  * if the page is not mapped into the page tables of this VMA.  Only
689  * valid for normal file or anonymous VMAs.
690  */
691 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
692 {
693 	unsigned long address;
694 	pte_t *pte;
695 	spinlock_t *ptl;
696 
697 	address = __vma_address(page, vma);
698 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
699 		return 0;
700 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
701 	if (!pte)			/* the page is not in this mm */
702 		return 0;
703 	pte_unmap_unlock(pte, ptl);
704 
705 	return 1;
706 }
707 
708 struct page_referenced_arg {
709 	int mapcount;
710 	int referenced;
711 	unsigned long vm_flags;
712 	struct mem_cgroup *memcg;
713 };
714 /*
715  * arg: page_referenced_arg will be passed
716  */
717 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
718 			unsigned long address, void *arg)
719 {
720 	struct mm_struct *mm = vma->vm_mm;
721 	spinlock_t *ptl;
722 	int referenced = 0;
723 	struct page_referenced_arg *pra = arg;
724 
725 	if (unlikely(PageTransHuge(page))) {
726 		pmd_t *pmd;
727 
728 		/*
729 		 * rmap might return false positives; we must filter
730 		 * these out using page_check_address_pmd().
731 		 */
732 		pmd = page_check_address_pmd(page, mm, address,
733 					     PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
734 		if (!pmd)
735 			return SWAP_AGAIN;
736 
737 		if (vma->vm_flags & VM_LOCKED) {
738 			spin_unlock(ptl);
739 			pra->vm_flags |= VM_LOCKED;
740 			return SWAP_FAIL; /* To break the loop */
741 		}
742 
743 		/* go ahead even if the pmd is pmd_trans_splitting() */
744 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
745 			referenced++;
746 		spin_unlock(ptl);
747 	} else {
748 		pte_t *pte;
749 
750 		/*
751 		 * rmap might return false positives; we must filter
752 		 * these out using page_check_address().
753 		 */
754 		pte = page_check_address(page, mm, address, &ptl, 0);
755 		if (!pte)
756 			return SWAP_AGAIN;
757 
758 		if (vma->vm_flags & VM_LOCKED) {
759 			pte_unmap_unlock(pte, ptl);
760 			pra->vm_flags |= VM_LOCKED;
761 			return SWAP_FAIL; /* To break the loop */
762 		}
763 
764 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
765 			/*
766 			 * Don't treat a reference through a sequentially read
767 			 * mapping as such.  If the page has been used in
768 			 * another mapping, we will catch it; if this other
769 			 * mapping is already gone, the unmap path will have
770 			 * set PG_referenced or activated the page.
771 			 */
772 			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
773 				referenced++;
774 		}
775 		pte_unmap_unlock(pte, ptl);
776 	}
777 
778 	if (referenced) {
779 		pra->referenced++;
780 		pra->vm_flags |= vma->vm_flags;
781 	}
782 
783 	pra->mapcount--;
784 	if (!pra->mapcount)
785 		return SWAP_SUCCESS; /* To break the loop */
786 
787 	return SWAP_AGAIN;
788 }
789 
790 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
791 {
792 	struct page_referenced_arg *pra = arg;
793 	struct mem_cgroup *memcg = pra->memcg;
794 
795 	if (!mm_match_cgroup(vma->vm_mm, memcg))
796 		return true;
797 
798 	return false;
799 }
800 
801 /**
802  * page_referenced - test if the page was referenced
803  * @page: the page to test
804  * @is_locked: caller holds lock on the page
805  * @memcg: target memory cgroup
806  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
807  *
808  * Quick test_and_clear_referenced for all mappings to a page,
809  * returns the number of ptes which referenced the page.
810  */
811 int page_referenced(struct page *page,
812 		    int is_locked,
813 		    struct mem_cgroup *memcg,
814 		    unsigned long *vm_flags)
815 {
816 	int ret;
817 	int we_locked = 0;
818 	struct page_referenced_arg pra = {
819 		.mapcount = page_mapcount(page),
820 		.memcg = memcg,
821 	};
822 	struct rmap_walk_control rwc = {
823 		.rmap_one = page_referenced_one,
824 		.arg = (void *)&pra,
825 		.anon_lock = page_lock_anon_vma_read,
826 	};
827 
828 	*vm_flags = 0;
829 	if (!page_mapped(page))
830 		return 0;
831 
832 	if (!page_rmapping(page))
833 		return 0;
834 
835 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
836 		we_locked = trylock_page(page);
837 		if (!we_locked)
838 			return 1;
839 	}
840 
841 	/*
842 	 * If we are reclaiming on behalf of a cgroup, skip
843 	 * counting on behalf of references from different
844 	 * cgroups
845 	 */
846 	if (memcg) {
847 		rwc.invalid_vma = invalid_page_referenced_vma;
848 	}
849 
850 	ret = rmap_walk(page, &rwc);
851 	*vm_flags = pra.vm_flags;
852 
853 	if (we_locked)
854 		unlock_page(page);
855 
856 	return pra.referenced;
857 }
858 
859 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
860 			    unsigned long address, void *arg)
861 {
862 	struct mm_struct *mm = vma->vm_mm;
863 	pte_t *pte;
864 	spinlock_t *ptl;
865 	int ret = 0;
866 	int *cleaned = arg;
867 
868 	pte = page_check_address(page, mm, address, &ptl, 1);
869 	if (!pte)
870 		goto out;
871 
872 	if (pte_dirty(*pte) || pte_write(*pte)) {
873 		pte_t entry;
874 
875 		flush_cache_page(vma, address, pte_pfn(*pte));
876 		entry = ptep_clear_flush(vma, address, pte);
877 		entry = pte_wrprotect(entry);
878 		entry = pte_mkclean(entry);
879 		set_pte_at(mm, address, pte, entry);
880 		ret = 1;
881 	}
882 
883 	pte_unmap_unlock(pte, ptl);
884 
885 	if (ret) {
886 		mmu_notifier_invalidate_page(mm, address);
887 		(*cleaned)++;
888 	}
889 out:
890 	return SWAP_AGAIN;
891 }
892 
893 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
894 {
895 	if (vma->vm_flags & VM_SHARED)
896 		return false;
897 
898 	return true;
899 }
900 
901 int page_mkclean(struct page *page)
902 {
903 	int cleaned = 0;
904 	struct address_space *mapping;
905 	struct rmap_walk_control rwc = {
906 		.arg = (void *)&cleaned,
907 		.rmap_one = page_mkclean_one,
908 		.invalid_vma = invalid_mkclean_vma,
909 	};
910 
911 	BUG_ON(!PageLocked(page));
912 
913 	if (!page_mapped(page))
914 		return 0;
915 
916 	mapping = page_mapping(page);
917 	if (!mapping)
918 		return 0;
919 
920 	rmap_walk(page, &rwc);
921 
922 	return cleaned;
923 }
924 EXPORT_SYMBOL_GPL(page_mkclean);
925 
926 /**
927  * page_move_anon_rmap - move a page to our anon_vma
928  * @page:	the page to move to our anon_vma
929  * @vma:	the vma the page belongs to
930  * @address:	the user virtual address mapped
931  *
932  * When a page belongs exclusively to one process after a COW event,
933  * that page can be moved into the anon_vma that belongs to just that
934  * process, so the rmap code will not search the parent or sibling
935  * processes.
936  */
937 void page_move_anon_rmap(struct page *page,
938 	struct vm_area_struct *vma, unsigned long address)
939 {
940 	struct anon_vma *anon_vma = vma->anon_vma;
941 
942 	VM_BUG_ON_PAGE(!PageLocked(page), page);
943 	VM_BUG_ON_VMA(!anon_vma, vma);
944 	VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
945 
946 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
947 	page->mapping = (struct address_space *) anon_vma;
948 }
949 
950 /**
951  * __page_set_anon_rmap - set up new anonymous rmap
952  * @page:	Page to add to rmap
953  * @vma:	VM area to add page to.
954  * @address:	User virtual address of the mapping
955  * @exclusive:	the page is exclusively owned by the current process
956  */
957 static void __page_set_anon_rmap(struct page *page,
958 	struct vm_area_struct *vma, unsigned long address, int exclusive)
959 {
960 	struct anon_vma *anon_vma = vma->anon_vma;
961 
962 	BUG_ON(!anon_vma);
963 
964 	if (PageAnon(page))
965 		return;
966 
967 	/*
968 	 * If the page isn't exclusively mapped into this vma,
969 	 * we must use the _oldest_ possible anon_vma for the
970 	 * page mapping!
971 	 */
972 	if (!exclusive)
973 		anon_vma = anon_vma->root;
974 
975 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
976 	page->mapping = (struct address_space *) anon_vma;
977 	page->index = linear_page_index(vma, address);
978 }
979 
980 /**
981  * __page_check_anon_rmap - sanity check anonymous rmap addition
982  * @page:	the page to add the mapping to
983  * @vma:	the vm area in which the mapping is added
984  * @address:	the user virtual address mapped
985  */
986 static void __page_check_anon_rmap(struct page *page,
987 	struct vm_area_struct *vma, unsigned long address)
988 {
989 #ifdef CONFIG_DEBUG_VM
990 	/*
991 	 * The page's anon-rmap details (mapping and index) are guaranteed to
992 	 * be set up correctly at this point.
993 	 *
994 	 * We have exclusion against page_add_anon_rmap because the caller
995 	 * always holds the page locked, except if called from page_dup_rmap,
996 	 * in which case the page is already known to be setup.
997 	 *
998 	 * We have exclusion against page_add_new_anon_rmap because those pages
999 	 * are initially only visible via the pagetables, and the pte is locked
1000 	 * over the call to page_add_new_anon_rmap.
1001 	 */
1002 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1003 	BUG_ON(page->index != linear_page_index(vma, address));
1004 #endif
1005 }
1006 
1007 /**
1008  * page_add_anon_rmap - add pte mapping to an anonymous page
1009  * @page:	the page to add the mapping to
1010  * @vma:	the vm area in which the mapping is added
1011  * @address:	the user virtual address mapped
1012  *
1013  * The caller needs to hold the pte lock, and the page must be locked in
1014  * the anon_vma case: to serialize mapping,index checking after setting,
1015  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1016  * (but PageKsm is never downgraded to PageAnon).
1017  */
1018 void page_add_anon_rmap(struct page *page,
1019 	struct vm_area_struct *vma, unsigned long address)
1020 {
1021 	do_page_add_anon_rmap(page, vma, address, 0);
1022 }
1023 
1024 /*
1025  * Special version of the above for do_swap_page, which often runs
1026  * into pages that are exclusively owned by the current process.
1027  * Everybody else should continue to use page_add_anon_rmap above.
1028  */
1029 void do_page_add_anon_rmap(struct page *page,
1030 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1031 {
1032 	int first = atomic_inc_and_test(&page->_mapcount);
1033 	if (first) {
1034 		/*
1035 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1036 		 * these counters are not modified in interrupt context, and
1037 		 * pte lock(a spinlock) is held, which implies preemption
1038 		 * disabled.
1039 		 */
1040 		if (PageTransHuge(page))
1041 			__inc_zone_page_state(page,
1042 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1043 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1044 				hpage_nr_pages(page));
1045 	}
1046 	if (unlikely(PageKsm(page)))
1047 		return;
1048 
1049 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1050 	/* address might be in next vma when migration races vma_adjust */
1051 	if (first)
1052 		__page_set_anon_rmap(page, vma, address, exclusive);
1053 	else
1054 		__page_check_anon_rmap(page, vma, address);
1055 }
1056 
1057 /**
1058  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1059  * @page:	the page to add the mapping to
1060  * @vma:	the vm area in which the mapping is added
1061  * @address:	the user virtual address mapped
1062  *
1063  * Same as page_add_anon_rmap but must only be called on *new* pages.
1064  * This means the inc-and-test can be bypassed.
1065  * Page does not have to be locked.
1066  */
1067 void page_add_new_anon_rmap(struct page *page,
1068 	struct vm_area_struct *vma, unsigned long address)
1069 {
1070 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1071 	SetPageSwapBacked(page);
1072 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1073 	if (PageTransHuge(page))
1074 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1075 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1076 			hpage_nr_pages(page));
1077 	__page_set_anon_rmap(page, vma, address, 1);
1078 }
1079 
1080 /**
1081  * page_add_file_rmap - add pte mapping to a file page
1082  * @page: the page to add the mapping to
1083  *
1084  * The caller needs to hold the pte lock.
1085  */
1086 void page_add_file_rmap(struct page *page)
1087 {
1088 	struct mem_cgroup *memcg;
1089 	unsigned long flags;
1090 	bool locked;
1091 
1092 	memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1093 	if (atomic_inc_and_test(&page->_mapcount)) {
1094 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1095 		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1096 	}
1097 	mem_cgroup_end_page_stat(memcg, &locked, &flags);
1098 }
1099 
1100 static void page_remove_file_rmap(struct page *page)
1101 {
1102 	struct mem_cgroup *memcg;
1103 	unsigned long flags;
1104 	bool locked;
1105 
1106 	memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1107 
1108 	/* page still mapped by someone else? */
1109 	if (!atomic_add_negative(-1, &page->_mapcount))
1110 		goto out;
1111 
1112 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1113 	if (unlikely(PageHuge(page)))
1114 		goto out;
1115 
1116 	/*
1117 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1118 	 * these counters are not modified in interrupt context, and
1119 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1120 	 */
1121 	__dec_zone_page_state(page, NR_FILE_MAPPED);
1122 	mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1123 
1124 	if (unlikely(PageMlocked(page)))
1125 		clear_page_mlock(page);
1126 out:
1127 	mem_cgroup_end_page_stat(memcg, &locked, &flags);
1128 }
1129 
1130 /**
1131  * page_remove_rmap - take down pte mapping from a page
1132  * @page: page to remove mapping from
1133  *
1134  * The caller needs to hold the pte lock.
1135  */
1136 void page_remove_rmap(struct page *page)
1137 {
1138 	if (!PageAnon(page)) {
1139 		page_remove_file_rmap(page);
1140 		return;
1141 	}
1142 
1143 	/* page still mapped by someone else? */
1144 	if (!atomic_add_negative(-1, &page->_mapcount))
1145 		return;
1146 
1147 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1148 	if (unlikely(PageHuge(page)))
1149 		return;
1150 
1151 	/*
1152 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1153 	 * these counters are not modified in interrupt context, and
1154 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1155 	 */
1156 	if (PageTransHuge(page))
1157 		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1158 
1159 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1160 			      -hpage_nr_pages(page));
1161 
1162 	if (unlikely(PageMlocked(page)))
1163 		clear_page_mlock(page);
1164 
1165 	/*
1166 	 * It would be tidy to reset the PageAnon mapping here,
1167 	 * but that might overwrite a racing page_add_anon_rmap
1168 	 * which increments mapcount after us but sets mapping
1169 	 * before us: so leave the reset to free_hot_cold_page,
1170 	 * and remember that it's only reliable while mapped.
1171 	 * Leaving it set also helps swapoff to reinstate ptes
1172 	 * faster for those pages still in swapcache.
1173 	 */
1174 }
1175 
1176 /*
1177  * @arg: enum ttu_flags will be passed to this argument
1178  */
1179 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1180 		     unsigned long address, void *arg)
1181 {
1182 	struct mm_struct *mm = vma->vm_mm;
1183 	pte_t *pte;
1184 	pte_t pteval;
1185 	spinlock_t *ptl;
1186 	int ret = SWAP_AGAIN;
1187 	enum ttu_flags flags = (enum ttu_flags)arg;
1188 
1189 	pte = page_check_address(page, mm, address, &ptl, 0);
1190 	if (!pte)
1191 		goto out;
1192 
1193 	/*
1194 	 * If the page is mlock()d, we cannot swap it out.
1195 	 * If it's recently referenced (perhaps page_referenced
1196 	 * skipped over this mm) then we should reactivate it.
1197 	 */
1198 	if (!(flags & TTU_IGNORE_MLOCK)) {
1199 		if (vma->vm_flags & VM_LOCKED)
1200 			goto out_mlock;
1201 
1202 		if (flags & TTU_MUNLOCK)
1203 			goto out_unmap;
1204 	}
1205 	if (!(flags & TTU_IGNORE_ACCESS)) {
1206 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1207 			ret = SWAP_FAIL;
1208 			goto out_unmap;
1209 		}
1210   	}
1211 
1212 	/* Nuke the page table entry. */
1213 	flush_cache_page(vma, address, page_to_pfn(page));
1214 	pteval = ptep_clear_flush(vma, address, pte);
1215 
1216 	/* Move the dirty bit to the physical page now the pte is gone. */
1217 	if (pte_dirty(pteval))
1218 		set_page_dirty(page);
1219 
1220 	/* Update high watermark before we lower rss */
1221 	update_hiwater_rss(mm);
1222 
1223 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1224 		if (!PageHuge(page)) {
1225 			if (PageAnon(page))
1226 				dec_mm_counter(mm, MM_ANONPAGES);
1227 			else
1228 				dec_mm_counter(mm, MM_FILEPAGES);
1229 		}
1230 		set_pte_at(mm, address, pte,
1231 			   swp_entry_to_pte(make_hwpoison_entry(page)));
1232 	} else if (pte_unused(pteval)) {
1233 		/*
1234 		 * The guest indicated that the page content is of no
1235 		 * interest anymore. Simply discard the pte, vmscan
1236 		 * will take care of the rest.
1237 		 */
1238 		if (PageAnon(page))
1239 			dec_mm_counter(mm, MM_ANONPAGES);
1240 		else
1241 			dec_mm_counter(mm, MM_FILEPAGES);
1242 	} else if (PageAnon(page)) {
1243 		swp_entry_t entry = { .val = page_private(page) };
1244 		pte_t swp_pte;
1245 
1246 		if (PageSwapCache(page)) {
1247 			/*
1248 			 * Store the swap location in the pte.
1249 			 * See handle_pte_fault() ...
1250 			 */
1251 			if (swap_duplicate(entry) < 0) {
1252 				set_pte_at(mm, address, pte, pteval);
1253 				ret = SWAP_FAIL;
1254 				goto out_unmap;
1255 			}
1256 			if (list_empty(&mm->mmlist)) {
1257 				spin_lock(&mmlist_lock);
1258 				if (list_empty(&mm->mmlist))
1259 					list_add(&mm->mmlist, &init_mm.mmlist);
1260 				spin_unlock(&mmlist_lock);
1261 			}
1262 			dec_mm_counter(mm, MM_ANONPAGES);
1263 			inc_mm_counter(mm, MM_SWAPENTS);
1264 		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1265 			/*
1266 			 * Store the pfn of the page in a special migration
1267 			 * pte. do_swap_page() will wait until the migration
1268 			 * pte is removed and then restart fault handling.
1269 			 */
1270 			BUG_ON(!(flags & TTU_MIGRATION));
1271 			entry = make_migration_entry(page, pte_write(pteval));
1272 		}
1273 		swp_pte = swp_entry_to_pte(entry);
1274 		if (pte_soft_dirty(pteval))
1275 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1276 		set_pte_at(mm, address, pte, swp_pte);
1277 		BUG_ON(pte_file(*pte));
1278 	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1279 		   (flags & TTU_MIGRATION)) {
1280 		/* Establish migration entry for a file page */
1281 		swp_entry_t entry;
1282 		entry = make_migration_entry(page, pte_write(pteval));
1283 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1284 	} else
1285 		dec_mm_counter(mm, MM_FILEPAGES);
1286 
1287 	page_remove_rmap(page);
1288 	page_cache_release(page);
1289 
1290 out_unmap:
1291 	pte_unmap_unlock(pte, ptl);
1292 	if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1293 		mmu_notifier_invalidate_page(mm, address);
1294 out:
1295 	return ret;
1296 
1297 out_mlock:
1298 	pte_unmap_unlock(pte, ptl);
1299 
1300 
1301 	/*
1302 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1303 	 * unstable result and race. Plus, We can't wait here because
1304 	 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
1305 	 * if trylock failed, the page remain in evictable lru and later
1306 	 * vmscan could retry to move the page to unevictable lru if the
1307 	 * page is actually mlocked.
1308 	 */
1309 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1310 		if (vma->vm_flags & VM_LOCKED) {
1311 			mlock_vma_page(page);
1312 			ret = SWAP_MLOCK;
1313 		}
1314 		up_read(&vma->vm_mm->mmap_sem);
1315 	}
1316 	return ret;
1317 }
1318 
1319 /*
1320  * objrmap doesn't work for nonlinear VMAs because the assumption that
1321  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1322  * Consequently, given a particular page and its ->index, we cannot locate the
1323  * ptes which are mapping that page without an exhaustive linear search.
1324  *
1325  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1326  * maps the file to which the target page belongs.  The ->vm_private_data field
1327  * holds the current cursor into that scan.  Successive searches will circulate
1328  * around the vma's virtual address space.
1329  *
1330  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1331  * more scanning pressure is placed against them as well.   Eventually pages
1332  * will become fully unmapped and are eligible for eviction.
1333  *
1334  * For very sparsely populated VMAs this is a little inefficient - chances are
1335  * there there won't be many ptes located within the scan cluster.  In this case
1336  * maybe we could scan further - to the end of the pte page, perhaps.
1337  *
1338  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1339  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1340  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1341  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1342  */
1343 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1344 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1345 
1346 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1347 		struct vm_area_struct *vma, struct page *check_page)
1348 {
1349 	struct mm_struct *mm = vma->vm_mm;
1350 	pmd_t *pmd;
1351 	pte_t *pte;
1352 	pte_t pteval;
1353 	spinlock_t *ptl;
1354 	struct page *page;
1355 	unsigned long address;
1356 	unsigned long mmun_start;	/* For mmu_notifiers */
1357 	unsigned long mmun_end;		/* For mmu_notifiers */
1358 	unsigned long end;
1359 	int ret = SWAP_AGAIN;
1360 	int locked_vma = 0;
1361 
1362 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1363 	end = address + CLUSTER_SIZE;
1364 	if (address < vma->vm_start)
1365 		address = vma->vm_start;
1366 	if (end > vma->vm_end)
1367 		end = vma->vm_end;
1368 
1369 	pmd = mm_find_pmd(mm, address);
1370 	if (!pmd)
1371 		return ret;
1372 
1373 	mmun_start = address;
1374 	mmun_end   = end;
1375 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1376 
1377 	/*
1378 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1379 	 * keep the sem while scanning the cluster for mlocking pages.
1380 	 */
1381 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1382 		locked_vma = (vma->vm_flags & VM_LOCKED);
1383 		if (!locked_vma)
1384 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1385 	}
1386 
1387 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1388 
1389 	/* Update high watermark before we lower rss */
1390 	update_hiwater_rss(mm);
1391 
1392 	for (; address < end; pte++, address += PAGE_SIZE) {
1393 		if (!pte_present(*pte))
1394 			continue;
1395 		page = vm_normal_page(vma, address, *pte);
1396 		BUG_ON(!page || PageAnon(page));
1397 
1398 		if (locked_vma) {
1399 			if (page == check_page) {
1400 				/* we know we have check_page locked */
1401 				mlock_vma_page(page);
1402 				ret = SWAP_MLOCK;
1403 			} else if (trylock_page(page)) {
1404 				/*
1405 				 * If we can lock the page, perform mlock.
1406 				 * Otherwise leave the page alone, it will be
1407 				 * eventually encountered again later.
1408 				 */
1409 				mlock_vma_page(page);
1410 				unlock_page(page);
1411 			}
1412 			continue;	/* don't unmap */
1413 		}
1414 
1415 		/*
1416 		 * No need for _notify because we're within an
1417 		 * mmu_notifier_invalidate_range_ {start|end} scope.
1418 		 */
1419 		if (ptep_clear_flush_young(vma, address, pte))
1420 			continue;
1421 
1422 		/* Nuke the page table entry. */
1423 		flush_cache_page(vma, address, pte_pfn(*pte));
1424 		pteval = ptep_clear_flush_notify(vma, address, pte);
1425 
1426 		/* If nonlinear, store the file page offset in the pte. */
1427 		if (page->index != linear_page_index(vma, address)) {
1428 			pte_t ptfile = pgoff_to_pte(page->index);
1429 			if (pte_soft_dirty(pteval))
1430 				ptfile = pte_file_mksoft_dirty(ptfile);
1431 			set_pte_at(mm, address, pte, ptfile);
1432 		}
1433 
1434 		/* Move the dirty bit to the physical page now the pte is gone. */
1435 		if (pte_dirty(pteval))
1436 			set_page_dirty(page);
1437 
1438 		page_remove_rmap(page);
1439 		page_cache_release(page);
1440 		dec_mm_counter(mm, MM_FILEPAGES);
1441 		(*mapcount)--;
1442 	}
1443 	pte_unmap_unlock(pte - 1, ptl);
1444 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1445 	if (locked_vma)
1446 		up_read(&vma->vm_mm->mmap_sem);
1447 	return ret;
1448 }
1449 
1450 static int try_to_unmap_nonlinear(struct page *page,
1451 		struct address_space *mapping, void *arg)
1452 {
1453 	struct vm_area_struct *vma;
1454 	int ret = SWAP_AGAIN;
1455 	unsigned long cursor;
1456 	unsigned long max_nl_cursor = 0;
1457 	unsigned long max_nl_size = 0;
1458 	unsigned int mapcount;
1459 
1460 	list_for_each_entry(vma,
1461 		&mapping->i_mmap_nonlinear, shared.nonlinear) {
1462 
1463 		cursor = (unsigned long) vma->vm_private_data;
1464 		if (cursor > max_nl_cursor)
1465 			max_nl_cursor = cursor;
1466 		cursor = vma->vm_end - vma->vm_start;
1467 		if (cursor > max_nl_size)
1468 			max_nl_size = cursor;
1469 	}
1470 
1471 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1472 		return SWAP_FAIL;
1473 	}
1474 
1475 	/*
1476 	 * We don't try to search for this page in the nonlinear vmas,
1477 	 * and page_referenced wouldn't have found it anyway.  Instead
1478 	 * just walk the nonlinear vmas trying to age and unmap some.
1479 	 * The mapcount of the page we came in with is irrelevant,
1480 	 * but even so use it as a guide to how hard we should try?
1481 	 */
1482 	mapcount = page_mapcount(page);
1483 	if (!mapcount)
1484 		return ret;
1485 
1486 	cond_resched();
1487 
1488 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1489 	if (max_nl_cursor == 0)
1490 		max_nl_cursor = CLUSTER_SIZE;
1491 
1492 	do {
1493 		list_for_each_entry(vma,
1494 			&mapping->i_mmap_nonlinear, shared.nonlinear) {
1495 
1496 			cursor = (unsigned long) vma->vm_private_data;
1497 			while (cursor < max_nl_cursor &&
1498 				cursor < vma->vm_end - vma->vm_start) {
1499 				if (try_to_unmap_cluster(cursor, &mapcount,
1500 						vma, page) == SWAP_MLOCK)
1501 					ret = SWAP_MLOCK;
1502 				cursor += CLUSTER_SIZE;
1503 				vma->vm_private_data = (void *) cursor;
1504 				if ((int)mapcount <= 0)
1505 					return ret;
1506 			}
1507 			vma->vm_private_data = (void *) max_nl_cursor;
1508 		}
1509 		cond_resched();
1510 		max_nl_cursor += CLUSTER_SIZE;
1511 	} while (max_nl_cursor <= max_nl_size);
1512 
1513 	/*
1514 	 * Don't loop forever (perhaps all the remaining pages are
1515 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1516 	 * vmas, now forgetting on which ones it had fallen behind.
1517 	 */
1518 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1519 		vma->vm_private_data = NULL;
1520 
1521 	return ret;
1522 }
1523 
1524 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1525 {
1526 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1527 
1528 	if (!maybe_stack)
1529 		return false;
1530 
1531 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1532 						VM_STACK_INCOMPLETE_SETUP)
1533 		return true;
1534 
1535 	return false;
1536 }
1537 
1538 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1539 {
1540 	return is_vma_temporary_stack(vma);
1541 }
1542 
1543 static int page_not_mapped(struct page *page)
1544 {
1545 	return !page_mapped(page);
1546 };
1547 
1548 /**
1549  * try_to_unmap - try to remove all page table mappings to a page
1550  * @page: the page to get unmapped
1551  * @flags: action and flags
1552  *
1553  * Tries to remove all the page table entries which are mapping this
1554  * page, used in the pageout path.  Caller must hold the page lock.
1555  * Return values are:
1556  *
1557  * SWAP_SUCCESS	- we succeeded in removing all mappings
1558  * SWAP_AGAIN	- we missed a mapping, try again later
1559  * SWAP_FAIL	- the page is unswappable
1560  * SWAP_MLOCK	- page is mlocked.
1561  */
1562 int try_to_unmap(struct page *page, enum ttu_flags flags)
1563 {
1564 	int ret;
1565 	struct rmap_walk_control rwc = {
1566 		.rmap_one = try_to_unmap_one,
1567 		.arg = (void *)flags,
1568 		.done = page_not_mapped,
1569 		.file_nonlinear = try_to_unmap_nonlinear,
1570 		.anon_lock = page_lock_anon_vma_read,
1571 	};
1572 
1573 	VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1574 
1575 	/*
1576 	 * During exec, a temporary VMA is setup and later moved.
1577 	 * The VMA is moved under the anon_vma lock but not the
1578 	 * page tables leading to a race where migration cannot
1579 	 * find the migration ptes. Rather than increasing the
1580 	 * locking requirements of exec(), migration skips
1581 	 * temporary VMAs until after exec() completes.
1582 	 */
1583 	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1584 		rwc.invalid_vma = invalid_migration_vma;
1585 
1586 	ret = rmap_walk(page, &rwc);
1587 
1588 	if (ret != SWAP_MLOCK && !page_mapped(page))
1589 		ret = SWAP_SUCCESS;
1590 	return ret;
1591 }
1592 
1593 /**
1594  * try_to_munlock - try to munlock a page
1595  * @page: the page to be munlocked
1596  *
1597  * Called from munlock code.  Checks all of the VMAs mapping the page
1598  * to make sure nobody else has this page mlocked. The page will be
1599  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1600  *
1601  * Return values are:
1602  *
1603  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1604  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1605  * SWAP_FAIL	- page cannot be located at present
1606  * SWAP_MLOCK	- page is now mlocked.
1607  */
1608 int try_to_munlock(struct page *page)
1609 {
1610 	int ret;
1611 	struct rmap_walk_control rwc = {
1612 		.rmap_one = try_to_unmap_one,
1613 		.arg = (void *)TTU_MUNLOCK,
1614 		.done = page_not_mapped,
1615 		/*
1616 		 * We don't bother to try to find the munlocked page in
1617 		 * nonlinears. It's costly. Instead, later, page reclaim logic
1618 		 * may call try_to_unmap() and recover PG_mlocked lazily.
1619 		 */
1620 		.file_nonlinear = NULL,
1621 		.anon_lock = page_lock_anon_vma_read,
1622 
1623 	};
1624 
1625 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1626 
1627 	ret = rmap_walk(page, &rwc);
1628 	return ret;
1629 }
1630 
1631 void __put_anon_vma(struct anon_vma *anon_vma)
1632 {
1633 	struct anon_vma *root = anon_vma->root;
1634 
1635 	anon_vma_free(anon_vma);
1636 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1637 		anon_vma_free(root);
1638 }
1639 
1640 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1641 					struct rmap_walk_control *rwc)
1642 {
1643 	struct anon_vma *anon_vma;
1644 
1645 	if (rwc->anon_lock)
1646 		return rwc->anon_lock(page);
1647 
1648 	/*
1649 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1650 	 * because that depends on page_mapped(); but not all its usages
1651 	 * are holding mmap_sem. Users without mmap_sem are required to
1652 	 * take a reference count to prevent the anon_vma disappearing
1653 	 */
1654 	anon_vma = page_anon_vma(page);
1655 	if (!anon_vma)
1656 		return NULL;
1657 
1658 	anon_vma_lock_read(anon_vma);
1659 	return anon_vma;
1660 }
1661 
1662 /*
1663  * rmap_walk_anon - do something to anonymous page using the object-based
1664  * rmap method
1665  * @page: the page to be handled
1666  * @rwc: control variable according to each walk type
1667  *
1668  * Find all the mappings of a page using the mapping pointer and the vma chains
1669  * contained in the anon_vma struct it points to.
1670  *
1671  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1672  * where the page was found will be held for write.  So, we won't recheck
1673  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1674  * LOCKED.
1675  */
1676 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1677 {
1678 	struct anon_vma *anon_vma;
1679 	pgoff_t pgoff;
1680 	struct anon_vma_chain *avc;
1681 	int ret = SWAP_AGAIN;
1682 
1683 	anon_vma = rmap_walk_anon_lock(page, rwc);
1684 	if (!anon_vma)
1685 		return ret;
1686 
1687 	pgoff = page_to_pgoff(page);
1688 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1689 		struct vm_area_struct *vma = avc->vma;
1690 		unsigned long address = vma_address(page, vma);
1691 
1692 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1693 			continue;
1694 
1695 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1696 		if (ret != SWAP_AGAIN)
1697 			break;
1698 		if (rwc->done && rwc->done(page))
1699 			break;
1700 	}
1701 	anon_vma_unlock_read(anon_vma);
1702 	return ret;
1703 }
1704 
1705 /*
1706  * rmap_walk_file - do something to file page using the object-based rmap method
1707  * @page: the page to be handled
1708  * @rwc: control variable according to each walk type
1709  *
1710  * Find all the mappings of a page using the mapping pointer and the vma chains
1711  * contained in the address_space struct it points to.
1712  *
1713  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1714  * where the page was found will be held for write.  So, we won't recheck
1715  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1716  * LOCKED.
1717  */
1718 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1719 {
1720 	struct address_space *mapping = page->mapping;
1721 	pgoff_t pgoff;
1722 	struct vm_area_struct *vma;
1723 	int ret = SWAP_AGAIN;
1724 
1725 	/*
1726 	 * The page lock not only makes sure that page->mapping cannot
1727 	 * suddenly be NULLified by truncation, it makes sure that the
1728 	 * structure at mapping cannot be freed and reused yet,
1729 	 * so we can safely take mapping->i_mmap_rwsem.
1730 	 */
1731 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1732 
1733 	if (!mapping)
1734 		return ret;
1735 
1736 	pgoff = page_to_pgoff(page);
1737 	i_mmap_lock_read(mapping);
1738 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1739 		unsigned long address = vma_address(page, vma);
1740 
1741 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1742 			continue;
1743 
1744 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1745 		if (ret != SWAP_AGAIN)
1746 			goto done;
1747 		if (rwc->done && rwc->done(page))
1748 			goto done;
1749 	}
1750 
1751 	if (!rwc->file_nonlinear)
1752 		goto done;
1753 
1754 	if (list_empty(&mapping->i_mmap_nonlinear))
1755 		goto done;
1756 
1757 	ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1758 done:
1759 	i_mmap_unlock_read(mapping);
1760 	return ret;
1761 }
1762 
1763 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1764 {
1765 	if (unlikely(PageKsm(page)))
1766 		return rmap_walk_ksm(page, rwc);
1767 	else if (PageAnon(page))
1768 		return rmap_walk_anon(page, rwc);
1769 	else
1770 		return rmap_walk_file(page, rwc);
1771 }
1772 
1773 #ifdef CONFIG_HUGETLB_PAGE
1774 /*
1775  * The following three functions are for anonymous (private mapped) hugepages.
1776  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1777  * and no lru code, because we handle hugepages differently from common pages.
1778  */
1779 static void __hugepage_set_anon_rmap(struct page *page,
1780 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1781 {
1782 	struct anon_vma *anon_vma = vma->anon_vma;
1783 
1784 	BUG_ON(!anon_vma);
1785 
1786 	if (PageAnon(page))
1787 		return;
1788 	if (!exclusive)
1789 		anon_vma = anon_vma->root;
1790 
1791 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1792 	page->mapping = (struct address_space *) anon_vma;
1793 	page->index = linear_page_index(vma, address);
1794 }
1795 
1796 void hugepage_add_anon_rmap(struct page *page,
1797 			    struct vm_area_struct *vma, unsigned long address)
1798 {
1799 	struct anon_vma *anon_vma = vma->anon_vma;
1800 	int first;
1801 
1802 	BUG_ON(!PageLocked(page));
1803 	BUG_ON(!anon_vma);
1804 	/* address might be in next vma when migration races vma_adjust */
1805 	first = atomic_inc_and_test(&page->_mapcount);
1806 	if (first)
1807 		__hugepage_set_anon_rmap(page, vma, address, 0);
1808 }
1809 
1810 void hugepage_add_new_anon_rmap(struct page *page,
1811 			struct vm_area_struct *vma, unsigned long address)
1812 {
1813 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1814 	atomic_set(&page->_mapcount, 0);
1815 	__hugepage_set_anon_rmap(page, vma, address, 1);
1816 }
1817 #endif /* CONFIG_HUGETLB_PAGE */
1818