xref: /openbmc/linux/mm/rmap.c (revision 8b036556)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_rwsem
27  *         anon_vma->rwsem
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within bdi.wb->list_lock in __sync_single_inode)
39  *
40  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
41  *   ->tasklist_lock
42  *     pte map lock
43  */
44 
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	struct anon_vma *anon_vma;
71 
72 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 	if (anon_vma) {
74 		atomic_set(&anon_vma->refcount, 1);
75 		anon_vma->degree = 1;	/* Reference for first vma */
76 		anon_vma->parent = anon_vma;
77 		/*
78 		 * Initialise the anon_vma root to point to itself. If called
79 		 * from fork, the root will be reset to the parents anon_vma.
80 		 */
81 		anon_vma->root = anon_vma;
82 	}
83 
84 	return anon_vma;
85 }
86 
87 static inline void anon_vma_free(struct anon_vma *anon_vma)
88 {
89 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
90 
91 	/*
92 	 * Synchronize against page_lock_anon_vma_read() such that
93 	 * we can safely hold the lock without the anon_vma getting
94 	 * freed.
95 	 *
96 	 * Relies on the full mb implied by the atomic_dec_and_test() from
97 	 * put_anon_vma() against the acquire barrier implied by
98 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
99 	 *
100 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
101 	 *   down_read_trylock()		  atomic_dec_and_test()
102 	 *   LOCK				  MB
103 	 *   atomic_read()			  rwsem_is_locked()
104 	 *
105 	 * LOCK should suffice since the actual taking of the lock must
106 	 * happen _before_ what follows.
107 	 */
108 	might_sleep();
109 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
110 		anon_vma_lock_write(anon_vma);
111 		anon_vma_unlock_write(anon_vma);
112 	}
113 
114 	kmem_cache_free(anon_vma_cachep, anon_vma);
115 }
116 
117 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
118 {
119 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
120 }
121 
122 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
123 {
124 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
125 }
126 
127 static void anon_vma_chain_link(struct vm_area_struct *vma,
128 				struct anon_vma_chain *avc,
129 				struct anon_vma *anon_vma)
130 {
131 	avc->vma = vma;
132 	avc->anon_vma = anon_vma;
133 	list_add(&avc->same_vma, &vma->anon_vma_chain);
134 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
135 }
136 
137 /**
138  * anon_vma_prepare - attach an anon_vma to a memory region
139  * @vma: the memory region in question
140  *
141  * This makes sure the memory mapping described by 'vma' has
142  * an 'anon_vma' attached to it, so that we can associate the
143  * anonymous pages mapped into it with that anon_vma.
144  *
145  * The common case will be that we already have one, but if
146  * not we either need to find an adjacent mapping that we
147  * can re-use the anon_vma from (very common when the only
148  * reason for splitting a vma has been mprotect()), or we
149  * allocate a new one.
150  *
151  * Anon-vma allocations are very subtle, because we may have
152  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
153  * and that may actually touch the spinlock even in the newly
154  * allocated vma (it depends on RCU to make sure that the
155  * anon_vma isn't actually destroyed).
156  *
157  * As a result, we need to do proper anon_vma locking even
158  * for the new allocation. At the same time, we do not want
159  * to do any locking for the common case of already having
160  * an anon_vma.
161  *
162  * This must be called with the mmap_sem held for reading.
163  */
164 int anon_vma_prepare(struct vm_area_struct *vma)
165 {
166 	struct anon_vma *anon_vma = vma->anon_vma;
167 	struct anon_vma_chain *avc;
168 
169 	might_sleep();
170 	if (unlikely(!anon_vma)) {
171 		struct mm_struct *mm = vma->vm_mm;
172 		struct anon_vma *allocated;
173 
174 		avc = anon_vma_chain_alloc(GFP_KERNEL);
175 		if (!avc)
176 			goto out_enomem;
177 
178 		anon_vma = find_mergeable_anon_vma(vma);
179 		allocated = NULL;
180 		if (!anon_vma) {
181 			anon_vma = anon_vma_alloc();
182 			if (unlikely(!anon_vma))
183 				goto out_enomem_free_avc;
184 			allocated = anon_vma;
185 		}
186 
187 		anon_vma_lock_write(anon_vma);
188 		/* page_table_lock to protect against threads */
189 		spin_lock(&mm->page_table_lock);
190 		if (likely(!vma->anon_vma)) {
191 			vma->anon_vma = anon_vma;
192 			anon_vma_chain_link(vma, avc, anon_vma);
193 			/* vma reference or self-parent link for new root */
194 			anon_vma->degree++;
195 			allocated = NULL;
196 			avc = NULL;
197 		}
198 		spin_unlock(&mm->page_table_lock);
199 		anon_vma_unlock_write(anon_vma);
200 
201 		if (unlikely(allocated))
202 			put_anon_vma(allocated);
203 		if (unlikely(avc))
204 			anon_vma_chain_free(avc);
205 	}
206 	return 0;
207 
208  out_enomem_free_avc:
209 	anon_vma_chain_free(avc);
210  out_enomem:
211 	return -ENOMEM;
212 }
213 
214 /*
215  * This is a useful helper function for locking the anon_vma root as
216  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
217  * have the same vma.
218  *
219  * Such anon_vma's should have the same root, so you'd expect to see
220  * just a single mutex_lock for the whole traversal.
221  */
222 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
223 {
224 	struct anon_vma *new_root = anon_vma->root;
225 	if (new_root != root) {
226 		if (WARN_ON_ONCE(root))
227 			up_write(&root->rwsem);
228 		root = new_root;
229 		down_write(&root->rwsem);
230 	}
231 	return root;
232 }
233 
234 static inline void unlock_anon_vma_root(struct anon_vma *root)
235 {
236 	if (root)
237 		up_write(&root->rwsem);
238 }
239 
240 /*
241  * Attach the anon_vmas from src to dst.
242  * Returns 0 on success, -ENOMEM on failure.
243  *
244  * If dst->anon_vma is NULL this function tries to find and reuse existing
245  * anon_vma which has no vmas and only one child anon_vma. This prevents
246  * degradation of anon_vma hierarchy to endless linear chain in case of
247  * constantly forking task. On the other hand, an anon_vma with more than one
248  * child isn't reused even if there was no alive vma, thus rmap walker has a
249  * good chance of avoiding scanning the whole hierarchy when it searches where
250  * page is mapped.
251  */
252 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
253 {
254 	struct anon_vma_chain *avc, *pavc;
255 	struct anon_vma *root = NULL;
256 
257 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
258 		struct anon_vma *anon_vma;
259 
260 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
261 		if (unlikely(!avc)) {
262 			unlock_anon_vma_root(root);
263 			root = NULL;
264 			avc = anon_vma_chain_alloc(GFP_KERNEL);
265 			if (!avc)
266 				goto enomem_failure;
267 		}
268 		anon_vma = pavc->anon_vma;
269 		root = lock_anon_vma_root(root, anon_vma);
270 		anon_vma_chain_link(dst, avc, anon_vma);
271 
272 		/*
273 		 * Reuse existing anon_vma if its degree lower than two,
274 		 * that means it has no vma and only one anon_vma child.
275 		 *
276 		 * Do not chose parent anon_vma, otherwise first child
277 		 * will always reuse it. Root anon_vma is never reused:
278 		 * it has self-parent reference and at least one child.
279 		 */
280 		if (!dst->anon_vma && anon_vma != src->anon_vma &&
281 				anon_vma->degree < 2)
282 			dst->anon_vma = anon_vma;
283 	}
284 	if (dst->anon_vma)
285 		dst->anon_vma->degree++;
286 	unlock_anon_vma_root(root);
287 	return 0;
288 
289  enomem_failure:
290 	unlink_anon_vmas(dst);
291 	return -ENOMEM;
292 }
293 
294 /*
295  * Attach vma to its own anon_vma, as well as to the anon_vmas that
296  * the corresponding VMA in the parent process is attached to.
297  * Returns 0 on success, non-zero on failure.
298  */
299 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
300 {
301 	struct anon_vma_chain *avc;
302 	struct anon_vma *anon_vma;
303 	int error;
304 
305 	/* Don't bother if the parent process has no anon_vma here. */
306 	if (!pvma->anon_vma)
307 		return 0;
308 
309 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
310 	vma->anon_vma = NULL;
311 
312 	/*
313 	 * First, attach the new VMA to the parent VMA's anon_vmas,
314 	 * so rmap can find non-COWed pages in child processes.
315 	 */
316 	error = anon_vma_clone(vma, pvma);
317 	if (error)
318 		return error;
319 
320 	/* An existing anon_vma has been reused, all done then. */
321 	if (vma->anon_vma)
322 		return 0;
323 
324 	/* Then add our own anon_vma. */
325 	anon_vma = anon_vma_alloc();
326 	if (!anon_vma)
327 		goto out_error;
328 	avc = anon_vma_chain_alloc(GFP_KERNEL);
329 	if (!avc)
330 		goto out_error_free_anon_vma;
331 
332 	/*
333 	 * The root anon_vma's spinlock is the lock actually used when we
334 	 * lock any of the anon_vmas in this anon_vma tree.
335 	 */
336 	anon_vma->root = pvma->anon_vma->root;
337 	anon_vma->parent = pvma->anon_vma;
338 	/*
339 	 * With refcounts, an anon_vma can stay around longer than the
340 	 * process it belongs to. The root anon_vma needs to be pinned until
341 	 * this anon_vma is freed, because the lock lives in the root.
342 	 */
343 	get_anon_vma(anon_vma->root);
344 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
345 	vma->anon_vma = anon_vma;
346 	anon_vma_lock_write(anon_vma);
347 	anon_vma_chain_link(vma, avc, anon_vma);
348 	anon_vma->parent->degree++;
349 	anon_vma_unlock_write(anon_vma);
350 
351 	return 0;
352 
353  out_error_free_anon_vma:
354 	put_anon_vma(anon_vma);
355  out_error:
356 	unlink_anon_vmas(vma);
357 	return -ENOMEM;
358 }
359 
360 void unlink_anon_vmas(struct vm_area_struct *vma)
361 {
362 	struct anon_vma_chain *avc, *next;
363 	struct anon_vma *root = NULL;
364 
365 	/*
366 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
367 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
368 	 */
369 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
370 		struct anon_vma *anon_vma = avc->anon_vma;
371 
372 		root = lock_anon_vma_root(root, anon_vma);
373 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
374 
375 		/*
376 		 * Leave empty anon_vmas on the list - we'll need
377 		 * to free them outside the lock.
378 		 */
379 		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
380 			anon_vma->parent->degree--;
381 			continue;
382 		}
383 
384 		list_del(&avc->same_vma);
385 		anon_vma_chain_free(avc);
386 	}
387 	if (vma->anon_vma)
388 		vma->anon_vma->degree--;
389 	unlock_anon_vma_root(root);
390 
391 	/*
392 	 * Iterate the list once more, it now only contains empty and unlinked
393 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
394 	 * needing to write-acquire the anon_vma->root->rwsem.
395 	 */
396 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
397 		struct anon_vma *anon_vma = avc->anon_vma;
398 
399 		BUG_ON(anon_vma->degree);
400 		put_anon_vma(anon_vma);
401 
402 		list_del(&avc->same_vma);
403 		anon_vma_chain_free(avc);
404 	}
405 }
406 
407 static void anon_vma_ctor(void *data)
408 {
409 	struct anon_vma *anon_vma = data;
410 
411 	init_rwsem(&anon_vma->rwsem);
412 	atomic_set(&anon_vma->refcount, 0);
413 	anon_vma->rb_root = RB_ROOT;
414 }
415 
416 void __init anon_vma_init(void)
417 {
418 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
419 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
420 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
421 }
422 
423 /*
424  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
425  *
426  * Since there is no serialization what so ever against page_remove_rmap()
427  * the best this function can do is return a locked anon_vma that might
428  * have been relevant to this page.
429  *
430  * The page might have been remapped to a different anon_vma or the anon_vma
431  * returned may already be freed (and even reused).
432  *
433  * In case it was remapped to a different anon_vma, the new anon_vma will be a
434  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
435  * ensure that any anon_vma obtained from the page will still be valid for as
436  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
437  *
438  * All users of this function must be very careful when walking the anon_vma
439  * chain and verify that the page in question is indeed mapped in it
440  * [ something equivalent to page_mapped_in_vma() ].
441  *
442  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
443  * that the anon_vma pointer from page->mapping is valid if there is a
444  * mapcount, we can dereference the anon_vma after observing those.
445  */
446 struct anon_vma *page_get_anon_vma(struct page *page)
447 {
448 	struct anon_vma *anon_vma = NULL;
449 	unsigned long anon_mapping;
450 
451 	rcu_read_lock();
452 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454 		goto out;
455 	if (!page_mapped(page))
456 		goto out;
457 
458 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
459 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
460 		anon_vma = NULL;
461 		goto out;
462 	}
463 
464 	/*
465 	 * If this page is still mapped, then its anon_vma cannot have been
466 	 * freed.  But if it has been unmapped, we have no security against the
467 	 * anon_vma structure being freed and reused (for another anon_vma:
468 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
469 	 * above cannot corrupt).
470 	 */
471 	if (!page_mapped(page)) {
472 		rcu_read_unlock();
473 		put_anon_vma(anon_vma);
474 		return NULL;
475 	}
476 out:
477 	rcu_read_unlock();
478 
479 	return anon_vma;
480 }
481 
482 /*
483  * Similar to page_get_anon_vma() except it locks the anon_vma.
484  *
485  * Its a little more complex as it tries to keep the fast path to a single
486  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
487  * reference like with page_get_anon_vma() and then block on the mutex.
488  */
489 struct anon_vma *page_lock_anon_vma_read(struct page *page)
490 {
491 	struct anon_vma *anon_vma = NULL;
492 	struct anon_vma *root_anon_vma;
493 	unsigned long anon_mapping;
494 
495 	rcu_read_lock();
496 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
497 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
498 		goto out;
499 	if (!page_mapped(page))
500 		goto out;
501 
502 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
503 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
504 	if (down_read_trylock(&root_anon_vma->rwsem)) {
505 		/*
506 		 * If the page is still mapped, then this anon_vma is still
507 		 * its anon_vma, and holding the mutex ensures that it will
508 		 * not go away, see anon_vma_free().
509 		 */
510 		if (!page_mapped(page)) {
511 			up_read(&root_anon_vma->rwsem);
512 			anon_vma = NULL;
513 		}
514 		goto out;
515 	}
516 
517 	/* trylock failed, we got to sleep */
518 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
519 		anon_vma = NULL;
520 		goto out;
521 	}
522 
523 	if (!page_mapped(page)) {
524 		rcu_read_unlock();
525 		put_anon_vma(anon_vma);
526 		return NULL;
527 	}
528 
529 	/* we pinned the anon_vma, its safe to sleep */
530 	rcu_read_unlock();
531 	anon_vma_lock_read(anon_vma);
532 
533 	if (atomic_dec_and_test(&anon_vma->refcount)) {
534 		/*
535 		 * Oops, we held the last refcount, release the lock
536 		 * and bail -- can't simply use put_anon_vma() because
537 		 * we'll deadlock on the anon_vma_lock_write() recursion.
538 		 */
539 		anon_vma_unlock_read(anon_vma);
540 		__put_anon_vma(anon_vma);
541 		anon_vma = NULL;
542 	}
543 
544 	return anon_vma;
545 
546 out:
547 	rcu_read_unlock();
548 	return anon_vma;
549 }
550 
551 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
552 {
553 	anon_vma_unlock_read(anon_vma);
554 }
555 
556 /*
557  * At what user virtual address is page expected in @vma?
558  */
559 static inline unsigned long
560 __vma_address(struct page *page, struct vm_area_struct *vma)
561 {
562 	pgoff_t pgoff = page_to_pgoff(page);
563 	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
564 }
565 
566 inline unsigned long
567 vma_address(struct page *page, struct vm_area_struct *vma)
568 {
569 	unsigned long address = __vma_address(page, vma);
570 
571 	/* page should be within @vma mapping range */
572 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
573 
574 	return address;
575 }
576 
577 /*
578  * At what user virtual address is page expected in vma?
579  * Caller should check the page is actually part of the vma.
580  */
581 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
582 {
583 	unsigned long address;
584 	if (PageAnon(page)) {
585 		struct anon_vma *page__anon_vma = page_anon_vma(page);
586 		/*
587 		 * Note: swapoff's unuse_vma() is more efficient with this
588 		 * check, and needs it to match anon_vma when KSM is active.
589 		 */
590 		if (!vma->anon_vma || !page__anon_vma ||
591 		    vma->anon_vma->root != page__anon_vma->root)
592 			return -EFAULT;
593 	} else if (page->mapping) {
594 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
595 			return -EFAULT;
596 	} else
597 		return -EFAULT;
598 	address = __vma_address(page, vma);
599 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
600 		return -EFAULT;
601 	return address;
602 }
603 
604 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
605 {
606 	pgd_t *pgd;
607 	pud_t *pud;
608 	pmd_t *pmd = NULL;
609 	pmd_t pmde;
610 
611 	pgd = pgd_offset(mm, address);
612 	if (!pgd_present(*pgd))
613 		goto out;
614 
615 	pud = pud_offset(pgd, address);
616 	if (!pud_present(*pud))
617 		goto out;
618 
619 	pmd = pmd_offset(pud, address);
620 	/*
621 	 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
622 	 * without holding anon_vma lock for write.  So when looking for a
623 	 * genuine pmde (in which to find pte), test present and !THP together.
624 	 */
625 	pmde = *pmd;
626 	barrier();
627 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
628 		pmd = NULL;
629 out:
630 	return pmd;
631 }
632 
633 /*
634  * Check that @page is mapped at @address into @mm.
635  *
636  * If @sync is false, page_check_address may perform a racy check to avoid
637  * the page table lock when the pte is not present (helpful when reclaiming
638  * highly shared pages).
639  *
640  * On success returns with pte mapped and locked.
641  */
642 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
643 			  unsigned long address, spinlock_t **ptlp, int sync)
644 {
645 	pmd_t *pmd;
646 	pte_t *pte;
647 	spinlock_t *ptl;
648 
649 	if (unlikely(PageHuge(page))) {
650 		/* when pud is not present, pte will be NULL */
651 		pte = huge_pte_offset(mm, address);
652 		if (!pte)
653 			return NULL;
654 
655 		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
656 		goto check;
657 	}
658 
659 	pmd = mm_find_pmd(mm, address);
660 	if (!pmd)
661 		return NULL;
662 
663 	pte = pte_offset_map(pmd, address);
664 	/* Make a quick check before getting the lock */
665 	if (!sync && !pte_present(*pte)) {
666 		pte_unmap(pte);
667 		return NULL;
668 	}
669 
670 	ptl = pte_lockptr(mm, pmd);
671 check:
672 	spin_lock(ptl);
673 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
674 		*ptlp = ptl;
675 		return pte;
676 	}
677 	pte_unmap_unlock(pte, ptl);
678 	return NULL;
679 }
680 
681 /**
682  * page_mapped_in_vma - check whether a page is really mapped in a VMA
683  * @page: the page to test
684  * @vma: the VMA to test
685  *
686  * Returns 1 if the page is mapped into the page tables of the VMA, 0
687  * if the page is not mapped into the page tables of this VMA.  Only
688  * valid for normal file or anonymous VMAs.
689  */
690 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
691 {
692 	unsigned long address;
693 	pte_t *pte;
694 	spinlock_t *ptl;
695 
696 	address = __vma_address(page, vma);
697 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
698 		return 0;
699 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
700 	if (!pte)			/* the page is not in this mm */
701 		return 0;
702 	pte_unmap_unlock(pte, ptl);
703 
704 	return 1;
705 }
706 
707 struct page_referenced_arg {
708 	int mapcount;
709 	int referenced;
710 	unsigned long vm_flags;
711 	struct mem_cgroup *memcg;
712 };
713 /*
714  * arg: page_referenced_arg will be passed
715  */
716 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
717 			unsigned long address, void *arg)
718 {
719 	struct mm_struct *mm = vma->vm_mm;
720 	spinlock_t *ptl;
721 	int referenced = 0;
722 	struct page_referenced_arg *pra = arg;
723 
724 	if (unlikely(PageTransHuge(page))) {
725 		pmd_t *pmd;
726 
727 		/*
728 		 * rmap might return false positives; we must filter
729 		 * these out using page_check_address_pmd().
730 		 */
731 		pmd = page_check_address_pmd(page, mm, address,
732 					     PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
733 		if (!pmd)
734 			return SWAP_AGAIN;
735 
736 		if (vma->vm_flags & VM_LOCKED) {
737 			spin_unlock(ptl);
738 			pra->vm_flags |= VM_LOCKED;
739 			return SWAP_FAIL; /* To break the loop */
740 		}
741 
742 		/* go ahead even if the pmd is pmd_trans_splitting() */
743 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
744 			referenced++;
745 		spin_unlock(ptl);
746 	} else {
747 		pte_t *pte;
748 
749 		/*
750 		 * rmap might return false positives; we must filter
751 		 * these out using page_check_address().
752 		 */
753 		pte = page_check_address(page, mm, address, &ptl, 0);
754 		if (!pte)
755 			return SWAP_AGAIN;
756 
757 		if (vma->vm_flags & VM_LOCKED) {
758 			pte_unmap_unlock(pte, ptl);
759 			pra->vm_flags |= VM_LOCKED;
760 			return SWAP_FAIL; /* To break the loop */
761 		}
762 
763 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
764 			/*
765 			 * Don't treat a reference through a sequentially read
766 			 * mapping as such.  If the page has been used in
767 			 * another mapping, we will catch it; if this other
768 			 * mapping is already gone, the unmap path will have
769 			 * set PG_referenced or activated the page.
770 			 */
771 			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
772 				referenced++;
773 		}
774 		pte_unmap_unlock(pte, ptl);
775 	}
776 
777 	if (referenced) {
778 		pra->referenced++;
779 		pra->vm_flags |= vma->vm_flags;
780 	}
781 
782 	pra->mapcount--;
783 	if (!pra->mapcount)
784 		return SWAP_SUCCESS; /* To break the loop */
785 
786 	return SWAP_AGAIN;
787 }
788 
789 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
790 {
791 	struct page_referenced_arg *pra = arg;
792 	struct mem_cgroup *memcg = pra->memcg;
793 
794 	if (!mm_match_cgroup(vma->vm_mm, memcg))
795 		return true;
796 
797 	return false;
798 }
799 
800 /**
801  * page_referenced - test if the page was referenced
802  * @page: the page to test
803  * @is_locked: caller holds lock on the page
804  * @memcg: target memory cgroup
805  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
806  *
807  * Quick test_and_clear_referenced for all mappings to a page,
808  * returns the number of ptes which referenced the page.
809  */
810 int page_referenced(struct page *page,
811 		    int is_locked,
812 		    struct mem_cgroup *memcg,
813 		    unsigned long *vm_flags)
814 {
815 	int ret;
816 	int we_locked = 0;
817 	struct page_referenced_arg pra = {
818 		.mapcount = page_mapcount(page),
819 		.memcg = memcg,
820 	};
821 	struct rmap_walk_control rwc = {
822 		.rmap_one = page_referenced_one,
823 		.arg = (void *)&pra,
824 		.anon_lock = page_lock_anon_vma_read,
825 	};
826 
827 	*vm_flags = 0;
828 	if (!page_mapped(page))
829 		return 0;
830 
831 	if (!page_rmapping(page))
832 		return 0;
833 
834 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
835 		we_locked = trylock_page(page);
836 		if (!we_locked)
837 			return 1;
838 	}
839 
840 	/*
841 	 * If we are reclaiming on behalf of a cgroup, skip
842 	 * counting on behalf of references from different
843 	 * cgroups
844 	 */
845 	if (memcg) {
846 		rwc.invalid_vma = invalid_page_referenced_vma;
847 	}
848 
849 	ret = rmap_walk(page, &rwc);
850 	*vm_flags = pra.vm_flags;
851 
852 	if (we_locked)
853 		unlock_page(page);
854 
855 	return pra.referenced;
856 }
857 
858 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
859 			    unsigned long address, void *arg)
860 {
861 	struct mm_struct *mm = vma->vm_mm;
862 	pte_t *pte;
863 	spinlock_t *ptl;
864 	int ret = 0;
865 	int *cleaned = arg;
866 
867 	pte = page_check_address(page, mm, address, &ptl, 1);
868 	if (!pte)
869 		goto out;
870 
871 	if (pte_dirty(*pte) || pte_write(*pte)) {
872 		pte_t entry;
873 
874 		flush_cache_page(vma, address, pte_pfn(*pte));
875 		entry = ptep_clear_flush(vma, address, pte);
876 		entry = pte_wrprotect(entry);
877 		entry = pte_mkclean(entry);
878 		set_pte_at(mm, address, pte, entry);
879 		ret = 1;
880 	}
881 
882 	pte_unmap_unlock(pte, ptl);
883 
884 	if (ret) {
885 		mmu_notifier_invalidate_page(mm, address);
886 		(*cleaned)++;
887 	}
888 out:
889 	return SWAP_AGAIN;
890 }
891 
892 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
893 {
894 	if (vma->vm_flags & VM_SHARED)
895 		return false;
896 
897 	return true;
898 }
899 
900 int page_mkclean(struct page *page)
901 {
902 	int cleaned = 0;
903 	struct address_space *mapping;
904 	struct rmap_walk_control rwc = {
905 		.arg = (void *)&cleaned,
906 		.rmap_one = page_mkclean_one,
907 		.invalid_vma = invalid_mkclean_vma,
908 	};
909 
910 	BUG_ON(!PageLocked(page));
911 
912 	if (!page_mapped(page))
913 		return 0;
914 
915 	mapping = page_mapping(page);
916 	if (!mapping)
917 		return 0;
918 
919 	rmap_walk(page, &rwc);
920 
921 	return cleaned;
922 }
923 EXPORT_SYMBOL_GPL(page_mkclean);
924 
925 /**
926  * page_move_anon_rmap - move a page to our anon_vma
927  * @page:	the page to move to our anon_vma
928  * @vma:	the vma the page belongs to
929  * @address:	the user virtual address mapped
930  *
931  * When a page belongs exclusively to one process after a COW event,
932  * that page can be moved into the anon_vma that belongs to just that
933  * process, so the rmap code will not search the parent or sibling
934  * processes.
935  */
936 void page_move_anon_rmap(struct page *page,
937 	struct vm_area_struct *vma, unsigned long address)
938 {
939 	struct anon_vma *anon_vma = vma->anon_vma;
940 
941 	VM_BUG_ON_PAGE(!PageLocked(page), page);
942 	VM_BUG_ON_VMA(!anon_vma, vma);
943 	VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
944 
945 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
946 	page->mapping = (struct address_space *) anon_vma;
947 }
948 
949 /**
950  * __page_set_anon_rmap - set up new anonymous rmap
951  * @page:	Page to add to rmap
952  * @vma:	VM area to add page to.
953  * @address:	User virtual address of the mapping
954  * @exclusive:	the page is exclusively owned by the current process
955  */
956 static void __page_set_anon_rmap(struct page *page,
957 	struct vm_area_struct *vma, unsigned long address, int exclusive)
958 {
959 	struct anon_vma *anon_vma = vma->anon_vma;
960 
961 	BUG_ON(!anon_vma);
962 
963 	if (PageAnon(page))
964 		return;
965 
966 	/*
967 	 * If the page isn't exclusively mapped into this vma,
968 	 * we must use the _oldest_ possible anon_vma for the
969 	 * page mapping!
970 	 */
971 	if (!exclusive)
972 		anon_vma = anon_vma->root;
973 
974 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
975 	page->mapping = (struct address_space *) anon_vma;
976 	page->index = linear_page_index(vma, address);
977 }
978 
979 /**
980  * __page_check_anon_rmap - sanity check anonymous rmap addition
981  * @page:	the page to add the mapping to
982  * @vma:	the vm area in which the mapping is added
983  * @address:	the user virtual address mapped
984  */
985 static void __page_check_anon_rmap(struct page *page,
986 	struct vm_area_struct *vma, unsigned long address)
987 {
988 #ifdef CONFIG_DEBUG_VM
989 	/*
990 	 * The page's anon-rmap details (mapping and index) are guaranteed to
991 	 * be set up correctly at this point.
992 	 *
993 	 * We have exclusion against page_add_anon_rmap because the caller
994 	 * always holds the page locked, except if called from page_dup_rmap,
995 	 * in which case the page is already known to be setup.
996 	 *
997 	 * We have exclusion against page_add_new_anon_rmap because those pages
998 	 * are initially only visible via the pagetables, and the pte is locked
999 	 * over the call to page_add_new_anon_rmap.
1000 	 */
1001 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1002 	BUG_ON(page->index != linear_page_index(vma, address));
1003 #endif
1004 }
1005 
1006 /**
1007  * page_add_anon_rmap - add pte mapping to an anonymous page
1008  * @page:	the page to add the mapping to
1009  * @vma:	the vm area in which the mapping is added
1010  * @address:	the user virtual address mapped
1011  *
1012  * The caller needs to hold the pte lock, and the page must be locked in
1013  * the anon_vma case: to serialize mapping,index checking after setting,
1014  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1015  * (but PageKsm is never downgraded to PageAnon).
1016  */
1017 void page_add_anon_rmap(struct page *page,
1018 	struct vm_area_struct *vma, unsigned long address)
1019 {
1020 	do_page_add_anon_rmap(page, vma, address, 0);
1021 }
1022 
1023 /*
1024  * Special version of the above for do_swap_page, which often runs
1025  * into pages that are exclusively owned by the current process.
1026  * Everybody else should continue to use page_add_anon_rmap above.
1027  */
1028 void do_page_add_anon_rmap(struct page *page,
1029 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1030 {
1031 	int first = atomic_inc_and_test(&page->_mapcount);
1032 	if (first) {
1033 		/*
1034 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1035 		 * these counters are not modified in interrupt context, and
1036 		 * pte lock(a spinlock) is held, which implies preemption
1037 		 * disabled.
1038 		 */
1039 		if (PageTransHuge(page))
1040 			__inc_zone_page_state(page,
1041 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1042 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1043 				hpage_nr_pages(page));
1044 	}
1045 	if (unlikely(PageKsm(page)))
1046 		return;
1047 
1048 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1049 	/* address might be in next vma when migration races vma_adjust */
1050 	if (first)
1051 		__page_set_anon_rmap(page, vma, address, exclusive);
1052 	else
1053 		__page_check_anon_rmap(page, vma, address);
1054 }
1055 
1056 /**
1057  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1058  * @page:	the page to add the mapping to
1059  * @vma:	the vm area in which the mapping is added
1060  * @address:	the user virtual address mapped
1061  *
1062  * Same as page_add_anon_rmap but must only be called on *new* pages.
1063  * This means the inc-and-test can be bypassed.
1064  * Page does not have to be locked.
1065  */
1066 void page_add_new_anon_rmap(struct page *page,
1067 	struct vm_area_struct *vma, unsigned long address)
1068 {
1069 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1070 	SetPageSwapBacked(page);
1071 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1072 	if (PageTransHuge(page))
1073 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1074 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1075 			hpage_nr_pages(page));
1076 	__page_set_anon_rmap(page, vma, address, 1);
1077 }
1078 
1079 /**
1080  * page_add_file_rmap - add pte mapping to a file page
1081  * @page: the page to add the mapping to
1082  *
1083  * The caller needs to hold the pte lock.
1084  */
1085 void page_add_file_rmap(struct page *page)
1086 {
1087 	struct mem_cgroup *memcg;
1088 
1089 	memcg = mem_cgroup_begin_page_stat(page);
1090 	if (atomic_inc_and_test(&page->_mapcount)) {
1091 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1092 		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1093 	}
1094 	mem_cgroup_end_page_stat(memcg);
1095 }
1096 
1097 static void page_remove_file_rmap(struct page *page)
1098 {
1099 	struct mem_cgroup *memcg;
1100 
1101 	memcg = mem_cgroup_begin_page_stat(page);
1102 
1103 	/* page still mapped by someone else? */
1104 	if (!atomic_add_negative(-1, &page->_mapcount))
1105 		goto out;
1106 
1107 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1108 	if (unlikely(PageHuge(page)))
1109 		goto out;
1110 
1111 	/*
1112 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1113 	 * these counters are not modified in interrupt context, and
1114 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1115 	 */
1116 	__dec_zone_page_state(page, NR_FILE_MAPPED);
1117 	mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1118 
1119 	if (unlikely(PageMlocked(page)))
1120 		clear_page_mlock(page);
1121 out:
1122 	mem_cgroup_end_page_stat(memcg);
1123 }
1124 
1125 /**
1126  * page_remove_rmap - take down pte mapping from a page
1127  * @page: page to remove mapping from
1128  *
1129  * The caller needs to hold the pte lock.
1130  */
1131 void page_remove_rmap(struct page *page)
1132 {
1133 	if (!PageAnon(page)) {
1134 		page_remove_file_rmap(page);
1135 		return;
1136 	}
1137 
1138 	/* page still mapped by someone else? */
1139 	if (!atomic_add_negative(-1, &page->_mapcount))
1140 		return;
1141 
1142 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1143 	if (unlikely(PageHuge(page)))
1144 		return;
1145 
1146 	/*
1147 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1148 	 * these counters are not modified in interrupt context, and
1149 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1150 	 */
1151 	if (PageTransHuge(page))
1152 		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1153 
1154 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1155 			      -hpage_nr_pages(page));
1156 
1157 	if (unlikely(PageMlocked(page)))
1158 		clear_page_mlock(page);
1159 
1160 	/*
1161 	 * It would be tidy to reset the PageAnon mapping here,
1162 	 * but that might overwrite a racing page_add_anon_rmap
1163 	 * which increments mapcount after us but sets mapping
1164 	 * before us: so leave the reset to free_hot_cold_page,
1165 	 * and remember that it's only reliable while mapped.
1166 	 * Leaving it set also helps swapoff to reinstate ptes
1167 	 * faster for those pages still in swapcache.
1168 	 */
1169 }
1170 
1171 /*
1172  * @arg: enum ttu_flags will be passed to this argument
1173  */
1174 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1175 		     unsigned long address, void *arg)
1176 {
1177 	struct mm_struct *mm = vma->vm_mm;
1178 	pte_t *pte;
1179 	pte_t pteval;
1180 	spinlock_t *ptl;
1181 	int ret = SWAP_AGAIN;
1182 	enum ttu_flags flags = (enum ttu_flags)arg;
1183 
1184 	pte = page_check_address(page, mm, address, &ptl, 0);
1185 	if (!pte)
1186 		goto out;
1187 
1188 	/*
1189 	 * If the page is mlock()d, we cannot swap it out.
1190 	 * If it's recently referenced (perhaps page_referenced
1191 	 * skipped over this mm) then we should reactivate it.
1192 	 */
1193 	if (!(flags & TTU_IGNORE_MLOCK)) {
1194 		if (vma->vm_flags & VM_LOCKED)
1195 			goto out_mlock;
1196 
1197 		if (flags & TTU_MUNLOCK)
1198 			goto out_unmap;
1199 	}
1200 	if (!(flags & TTU_IGNORE_ACCESS)) {
1201 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1202 			ret = SWAP_FAIL;
1203 			goto out_unmap;
1204 		}
1205   	}
1206 
1207 	/* Nuke the page table entry. */
1208 	flush_cache_page(vma, address, page_to_pfn(page));
1209 	pteval = ptep_clear_flush(vma, address, pte);
1210 
1211 	/* Move the dirty bit to the physical page now the pte is gone. */
1212 	if (pte_dirty(pteval))
1213 		set_page_dirty(page);
1214 
1215 	/* Update high watermark before we lower rss */
1216 	update_hiwater_rss(mm);
1217 
1218 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1219 		if (!PageHuge(page)) {
1220 			if (PageAnon(page))
1221 				dec_mm_counter(mm, MM_ANONPAGES);
1222 			else
1223 				dec_mm_counter(mm, MM_FILEPAGES);
1224 		}
1225 		set_pte_at(mm, address, pte,
1226 			   swp_entry_to_pte(make_hwpoison_entry(page)));
1227 	} else if (pte_unused(pteval)) {
1228 		/*
1229 		 * The guest indicated that the page content is of no
1230 		 * interest anymore. Simply discard the pte, vmscan
1231 		 * will take care of the rest.
1232 		 */
1233 		if (PageAnon(page))
1234 			dec_mm_counter(mm, MM_ANONPAGES);
1235 		else
1236 			dec_mm_counter(mm, MM_FILEPAGES);
1237 	} else if (PageAnon(page)) {
1238 		swp_entry_t entry = { .val = page_private(page) };
1239 		pte_t swp_pte;
1240 
1241 		if (PageSwapCache(page)) {
1242 			/*
1243 			 * Store the swap location in the pte.
1244 			 * See handle_pte_fault() ...
1245 			 */
1246 			if (swap_duplicate(entry) < 0) {
1247 				set_pte_at(mm, address, pte, pteval);
1248 				ret = SWAP_FAIL;
1249 				goto out_unmap;
1250 			}
1251 			if (list_empty(&mm->mmlist)) {
1252 				spin_lock(&mmlist_lock);
1253 				if (list_empty(&mm->mmlist))
1254 					list_add(&mm->mmlist, &init_mm.mmlist);
1255 				spin_unlock(&mmlist_lock);
1256 			}
1257 			dec_mm_counter(mm, MM_ANONPAGES);
1258 			inc_mm_counter(mm, MM_SWAPENTS);
1259 		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1260 			/*
1261 			 * Store the pfn of the page in a special migration
1262 			 * pte. do_swap_page() will wait until the migration
1263 			 * pte is removed and then restart fault handling.
1264 			 */
1265 			BUG_ON(!(flags & TTU_MIGRATION));
1266 			entry = make_migration_entry(page, pte_write(pteval));
1267 		}
1268 		swp_pte = swp_entry_to_pte(entry);
1269 		if (pte_soft_dirty(pteval))
1270 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1271 		set_pte_at(mm, address, pte, swp_pte);
1272 	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1273 		   (flags & TTU_MIGRATION)) {
1274 		/* Establish migration entry for a file page */
1275 		swp_entry_t entry;
1276 		entry = make_migration_entry(page, pte_write(pteval));
1277 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1278 	} else
1279 		dec_mm_counter(mm, MM_FILEPAGES);
1280 
1281 	page_remove_rmap(page);
1282 	page_cache_release(page);
1283 
1284 out_unmap:
1285 	pte_unmap_unlock(pte, ptl);
1286 	if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1287 		mmu_notifier_invalidate_page(mm, address);
1288 out:
1289 	return ret;
1290 
1291 out_mlock:
1292 	pte_unmap_unlock(pte, ptl);
1293 
1294 
1295 	/*
1296 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1297 	 * unstable result and race. Plus, We can't wait here because
1298 	 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
1299 	 * if trylock failed, the page remain in evictable lru and later
1300 	 * vmscan could retry to move the page to unevictable lru if the
1301 	 * page is actually mlocked.
1302 	 */
1303 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1304 		if (vma->vm_flags & VM_LOCKED) {
1305 			mlock_vma_page(page);
1306 			ret = SWAP_MLOCK;
1307 		}
1308 		up_read(&vma->vm_mm->mmap_sem);
1309 	}
1310 	return ret;
1311 }
1312 
1313 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1314 {
1315 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1316 
1317 	if (!maybe_stack)
1318 		return false;
1319 
1320 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1321 						VM_STACK_INCOMPLETE_SETUP)
1322 		return true;
1323 
1324 	return false;
1325 }
1326 
1327 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1328 {
1329 	return is_vma_temporary_stack(vma);
1330 }
1331 
1332 static int page_not_mapped(struct page *page)
1333 {
1334 	return !page_mapped(page);
1335 };
1336 
1337 /**
1338  * try_to_unmap - try to remove all page table mappings to a page
1339  * @page: the page to get unmapped
1340  * @flags: action and flags
1341  *
1342  * Tries to remove all the page table entries which are mapping this
1343  * page, used in the pageout path.  Caller must hold the page lock.
1344  * Return values are:
1345  *
1346  * SWAP_SUCCESS	- we succeeded in removing all mappings
1347  * SWAP_AGAIN	- we missed a mapping, try again later
1348  * SWAP_FAIL	- the page is unswappable
1349  * SWAP_MLOCK	- page is mlocked.
1350  */
1351 int try_to_unmap(struct page *page, enum ttu_flags flags)
1352 {
1353 	int ret;
1354 	struct rmap_walk_control rwc = {
1355 		.rmap_one = try_to_unmap_one,
1356 		.arg = (void *)flags,
1357 		.done = page_not_mapped,
1358 		.anon_lock = page_lock_anon_vma_read,
1359 	};
1360 
1361 	VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1362 
1363 	/*
1364 	 * During exec, a temporary VMA is setup and later moved.
1365 	 * The VMA is moved under the anon_vma lock but not the
1366 	 * page tables leading to a race where migration cannot
1367 	 * find the migration ptes. Rather than increasing the
1368 	 * locking requirements of exec(), migration skips
1369 	 * temporary VMAs until after exec() completes.
1370 	 */
1371 	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1372 		rwc.invalid_vma = invalid_migration_vma;
1373 
1374 	ret = rmap_walk(page, &rwc);
1375 
1376 	if (ret != SWAP_MLOCK && !page_mapped(page))
1377 		ret = SWAP_SUCCESS;
1378 	return ret;
1379 }
1380 
1381 /**
1382  * try_to_munlock - try to munlock a page
1383  * @page: the page to be munlocked
1384  *
1385  * Called from munlock code.  Checks all of the VMAs mapping the page
1386  * to make sure nobody else has this page mlocked. The page will be
1387  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1388  *
1389  * Return values are:
1390  *
1391  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1392  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1393  * SWAP_FAIL	- page cannot be located at present
1394  * SWAP_MLOCK	- page is now mlocked.
1395  */
1396 int try_to_munlock(struct page *page)
1397 {
1398 	int ret;
1399 	struct rmap_walk_control rwc = {
1400 		.rmap_one = try_to_unmap_one,
1401 		.arg = (void *)TTU_MUNLOCK,
1402 		.done = page_not_mapped,
1403 		.anon_lock = page_lock_anon_vma_read,
1404 
1405 	};
1406 
1407 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1408 
1409 	ret = rmap_walk(page, &rwc);
1410 	return ret;
1411 }
1412 
1413 void __put_anon_vma(struct anon_vma *anon_vma)
1414 {
1415 	struct anon_vma *root = anon_vma->root;
1416 
1417 	anon_vma_free(anon_vma);
1418 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1419 		anon_vma_free(root);
1420 }
1421 
1422 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1423 					struct rmap_walk_control *rwc)
1424 {
1425 	struct anon_vma *anon_vma;
1426 
1427 	if (rwc->anon_lock)
1428 		return rwc->anon_lock(page);
1429 
1430 	/*
1431 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1432 	 * because that depends on page_mapped(); but not all its usages
1433 	 * are holding mmap_sem. Users without mmap_sem are required to
1434 	 * take a reference count to prevent the anon_vma disappearing
1435 	 */
1436 	anon_vma = page_anon_vma(page);
1437 	if (!anon_vma)
1438 		return NULL;
1439 
1440 	anon_vma_lock_read(anon_vma);
1441 	return anon_vma;
1442 }
1443 
1444 /*
1445  * rmap_walk_anon - do something to anonymous page using the object-based
1446  * rmap method
1447  * @page: the page to be handled
1448  * @rwc: control variable according to each walk type
1449  *
1450  * Find all the mappings of a page using the mapping pointer and the vma chains
1451  * contained in the anon_vma struct it points to.
1452  *
1453  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1454  * where the page was found will be held for write.  So, we won't recheck
1455  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1456  * LOCKED.
1457  */
1458 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1459 {
1460 	struct anon_vma *anon_vma;
1461 	pgoff_t pgoff;
1462 	struct anon_vma_chain *avc;
1463 	int ret = SWAP_AGAIN;
1464 
1465 	anon_vma = rmap_walk_anon_lock(page, rwc);
1466 	if (!anon_vma)
1467 		return ret;
1468 
1469 	pgoff = page_to_pgoff(page);
1470 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1471 		struct vm_area_struct *vma = avc->vma;
1472 		unsigned long address = vma_address(page, vma);
1473 
1474 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1475 			continue;
1476 
1477 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1478 		if (ret != SWAP_AGAIN)
1479 			break;
1480 		if (rwc->done && rwc->done(page))
1481 			break;
1482 	}
1483 	anon_vma_unlock_read(anon_vma);
1484 	return ret;
1485 }
1486 
1487 /*
1488  * rmap_walk_file - do something to file page using the object-based rmap method
1489  * @page: the page to be handled
1490  * @rwc: control variable according to each walk type
1491  *
1492  * Find all the mappings of a page using the mapping pointer and the vma chains
1493  * contained in the address_space struct it points to.
1494  *
1495  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1496  * where the page was found will be held for write.  So, we won't recheck
1497  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1498  * LOCKED.
1499  */
1500 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1501 {
1502 	struct address_space *mapping = page->mapping;
1503 	pgoff_t pgoff;
1504 	struct vm_area_struct *vma;
1505 	int ret = SWAP_AGAIN;
1506 
1507 	/*
1508 	 * The page lock not only makes sure that page->mapping cannot
1509 	 * suddenly be NULLified by truncation, it makes sure that the
1510 	 * structure at mapping cannot be freed and reused yet,
1511 	 * so we can safely take mapping->i_mmap_rwsem.
1512 	 */
1513 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1514 
1515 	if (!mapping)
1516 		return ret;
1517 
1518 	pgoff = page_to_pgoff(page);
1519 	i_mmap_lock_read(mapping);
1520 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1521 		unsigned long address = vma_address(page, vma);
1522 
1523 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1524 			continue;
1525 
1526 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1527 		if (ret != SWAP_AGAIN)
1528 			goto done;
1529 		if (rwc->done && rwc->done(page))
1530 			goto done;
1531 	}
1532 
1533 done:
1534 	i_mmap_unlock_read(mapping);
1535 	return ret;
1536 }
1537 
1538 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1539 {
1540 	if (unlikely(PageKsm(page)))
1541 		return rmap_walk_ksm(page, rwc);
1542 	else if (PageAnon(page))
1543 		return rmap_walk_anon(page, rwc);
1544 	else
1545 		return rmap_walk_file(page, rwc);
1546 }
1547 
1548 #ifdef CONFIG_HUGETLB_PAGE
1549 /*
1550  * The following three functions are for anonymous (private mapped) hugepages.
1551  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1552  * and no lru code, because we handle hugepages differently from common pages.
1553  */
1554 static void __hugepage_set_anon_rmap(struct page *page,
1555 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1556 {
1557 	struct anon_vma *anon_vma = vma->anon_vma;
1558 
1559 	BUG_ON(!anon_vma);
1560 
1561 	if (PageAnon(page))
1562 		return;
1563 	if (!exclusive)
1564 		anon_vma = anon_vma->root;
1565 
1566 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1567 	page->mapping = (struct address_space *) anon_vma;
1568 	page->index = linear_page_index(vma, address);
1569 }
1570 
1571 void hugepage_add_anon_rmap(struct page *page,
1572 			    struct vm_area_struct *vma, unsigned long address)
1573 {
1574 	struct anon_vma *anon_vma = vma->anon_vma;
1575 	int first;
1576 
1577 	BUG_ON(!PageLocked(page));
1578 	BUG_ON(!anon_vma);
1579 	/* address might be in next vma when migration races vma_adjust */
1580 	first = atomic_inc_and_test(&page->_mapcount);
1581 	if (first)
1582 		__hugepage_set_anon_rmap(page, vma, address, 0);
1583 }
1584 
1585 void hugepage_add_new_anon_rmap(struct page *page,
1586 			struct vm_area_struct *vma, unsigned long address)
1587 {
1588 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1589 	atomic_set(&page->_mapcount, 0);
1590 	__hugepage_set_anon_rmap(page, vma, address, 1);
1591 }
1592 #endif /* CONFIG_HUGETLB_PAGE */
1593