1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem 25 * 26 * When a page fault occurs in writing from user to file, down_read 27 * of mmap_sem nests within i_mutex; in sys_msync, i_mutex nests within 28 * down_read of mmap_sem; i_mutex and down_write of mmap_sem are never 29 * taken together; in truncation, i_mutex is taken outermost. 30 * 31 * mm->mmap_sem 32 * page->flags PG_locked (lock_page) 33 * mapping->i_mmap_lock 34 * anon_vma->lock 35 * mm->page_table_lock or pte_lock 36 * zone->lru_lock (in mark_page_accessed) 37 * swap_lock (in swap_duplicate, swap_info_get) 38 * mmlist_lock (in mmput, drain_mmlist and others) 39 * mapping->private_lock (in __set_page_dirty_buffers) 40 * inode_lock (in set_page_dirty's __mark_inode_dirty) 41 * sb_lock (within inode_lock in fs/fs-writeback.c) 42 * mapping->tree_lock (widely used, in set_page_dirty, 43 * in arch-dependent flush_dcache_mmap_lock, 44 * within inode_lock in __sync_single_inode) 45 */ 46 47 #include <linux/mm.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/swapops.h> 51 #include <linux/slab.h> 52 #include <linux/init.h> 53 #include <linux/rmap.h> 54 #include <linux/rcupdate.h> 55 56 #include <asm/tlbflush.h> 57 58 //#define RMAP_DEBUG /* can be enabled only for debugging */ 59 60 kmem_cache_t *anon_vma_cachep; 61 62 static inline void validate_anon_vma(struct vm_area_struct *find_vma) 63 { 64 #ifdef RMAP_DEBUG 65 struct anon_vma *anon_vma = find_vma->anon_vma; 66 struct vm_area_struct *vma; 67 unsigned int mapcount = 0; 68 int found = 0; 69 70 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 71 mapcount++; 72 BUG_ON(mapcount > 100000); 73 if (vma == find_vma) 74 found = 1; 75 } 76 BUG_ON(!found); 77 #endif 78 } 79 80 /* This must be called under the mmap_sem. */ 81 int anon_vma_prepare(struct vm_area_struct *vma) 82 { 83 struct anon_vma *anon_vma = vma->anon_vma; 84 85 might_sleep(); 86 if (unlikely(!anon_vma)) { 87 struct mm_struct *mm = vma->vm_mm; 88 struct anon_vma *allocated, *locked; 89 90 anon_vma = find_mergeable_anon_vma(vma); 91 if (anon_vma) { 92 allocated = NULL; 93 locked = anon_vma; 94 spin_lock(&locked->lock); 95 } else { 96 anon_vma = anon_vma_alloc(); 97 if (unlikely(!anon_vma)) 98 return -ENOMEM; 99 allocated = anon_vma; 100 locked = NULL; 101 } 102 103 /* page_table_lock to protect against threads */ 104 spin_lock(&mm->page_table_lock); 105 if (likely(!vma->anon_vma)) { 106 vma->anon_vma = anon_vma; 107 list_add(&vma->anon_vma_node, &anon_vma->head); 108 allocated = NULL; 109 } 110 spin_unlock(&mm->page_table_lock); 111 112 if (locked) 113 spin_unlock(&locked->lock); 114 if (unlikely(allocated)) 115 anon_vma_free(allocated); 116 } 117 return 0; 118 } 119 120 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) 121 { 122 BUG_ON(vma->anon_vma != next->anon_vma); 123 list_del(&next->anon_vma_node); 124 } 125 126 void __anon_vma_link(struct vm_area_struct *vma) 127 { 128 struct anon_vma *anon_vma = vma->anon_vma; 129 130 if (anon_vma) { 131 list_add(&vma->anon_vma_node, &anon_vma->head); 132 validate_anon_vma(vma); 133 } 134 } 135 136 void anon_vma_link(struct vm_area_struct *vma) 137 { 138 struct anon_vma *anon_vma = vma->anon_vma; 139 140 if (anon_vma) { 141 spin_lock(&anon_vma->lock); 142 list_add(&vma->anon_vma_node, &anon_vma->head); 143 validate_anon_vma(vma); 144 spin_unlock(&anon_vma->lock); 145 } 146 } 147 148 void anon_vma_unlink(struct vm_area_struct *vma) 149 { 150 struct anon_vma *anon_vma = vma->anon_vma; 151 int empty; 152 153 if (!anon_vma) 154 return; 155 156 spin_lock(&anon_vma->lock); 157 validate_anon_vma(vma); 158 list_del(&vma->anon_vma_node); 159 160 /* We must garbage collect the anon_vma if it's empty */ 161 empty = list_empty(&anon_vma->head); 162 spin_unlock(&anon_vma->lock); 163 164 if (empty) 165 anon_vma_free(anon_vma); 166 } 167 168 static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags) 169 { 170 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 171 SLAB_CTOR_CONSTRUCTOR) { 172 struct anon_vma *anon_vma = data; 173 174 spin_lock_init(&anon_vma->lock); 175 INIT_LIST_HEAD(&anon_vma->head); 176 } 177 } 178 179 void __init anon_vma_init(void) 180 { 181 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 182 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL); 183 } 184 185 /* 186 * Getting a lock on a stable anon_vma from a page off the LRU is 187 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 188 */ 189 static struct anon_vma *page_lock_anon_vma(struct page *page) 190 { 191 struct anon_vma *anon_vma = NULL; 192 unsigned long anon_mapping; 193 194 rcu_read_lock(); 195 anon_mapping = (unsigned long) page->mapping; 196 if (!(anon_mapping & PAGE_MAPPING_ANON)) 197 goto out; 198 if (!page_mapped(page)) 199 goto out; 200 201 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 202 spin_lock(&anon_vma->lock); 203 out: 204 rcu_read_unlock(); 205 return anon_vma; 206 } 207 208 /* 209 * At what user virtual address is page expected in vma? 210 */ 211 static inline unsigned long 212 vma_address(struct page *page, struct vm_area_struct *vma) 213 { 214 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 215 unsigned long address; 216 217 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 218 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 219 /* page should be within any vma from prio_tree_next */ 220 BUG_ON(!PageAnon(page)); 221 return -EFAULT; 222 } 223 return address; 224 } 225 226 /* 227 * At what user virtual address is page expected in vma? checking that the 228 * page matches the vma: currently only used on anon pages, by unuse_vma; 229 */ 230 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 231 { 232 if (PageAnon(page)) { 233 if ((void *)vma->anon_vma != 234 (void *)page->mapping - PAGE_MAPPING_ANON) 235 return -EFAULT; 236 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 237 if (!vma->vm_file || 238 vma->vm_file->f_mapping != page->mapping) 239 return -EFAULT; 240 } else 241 return -EFAULT; 242 return vma_address(page, vma); 243 } 244 245 /* 246 * Check that @page is mapped at @address into @mm. 247 * 248 * On success returns with pte mapped and locked. 249 */ 250 pte_t *page_check_address(struct page *page, struct mm_struct *mm, 251 unsigned long address, spinlock_t **ptlp) 252 { 253 pgd_t *pgd; 254 pud_t *pud; 255 pmd_t *pmd; 256 pte_t *pte; 257 spinlock_t *ptl; 258 259 pgd = pgd_offset(mm, address); 260 if (!pgd_present(*pgd)) 261 return NULL; 262 263 pud = pud_offset(pgd, address); 264 if (!pud_present(*pud)) 265 return NULL; 266 267 pmd = pmd_offset(pud, address); 268 if (!pmd_present(*pmd)) 269 return NULL; 270 271 pte = pte_offset_map(pmd, address); 272 /* Make a quick check before getting the lock */ 273 if (!pte_present(*pte)) { 274 pte_unmap(pte); 275 return NULL; 276 } 277 278 ptl = pte_lockptr(mm, pmd); 279 spin_lock(ptl); 280 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 281 *ptlp = ptl; 282 return pte; 283 } 284 pte_unmap_unlock(pte, ptl); 285 return NULL; 286 } 287 288 /* 289 * Subfunctions of page_referenced: page_referenced_one called 290 * repeatedly from either page_referenced_anon or page_referenced_file. 291 */ 292 static int page_referenced_one(struct page *page, 293 struct vm_area_struct *vma, unsigned int *mapcount) 294 { 295 struct mm_struct *mm = vma->vm_mm; 296 unsigned long address; 297 pte_t *pte; 298 spinlock_t *ptl; 299 int referenced = 0; 300 301 address = vma_address(page, vma); 302 if (address == -EFAULT) 303 goto out; 304 305 pte = page_check_address(page, mm, address, &ptl); 306 if (!pte) 307 goto out; 308 309 if (ptep_clear_flush_young(vma, address, pte)) 310 referenced++; 311 312 /* Pretend the page is referenced if the task has the 313 swap token and is in the middle of a page fault. */ 314 if (mm != current->mm && has_swap_token(mm) && 315 rwsem_is_locked(&mm->mmap_sem)) 316 referenced++; 317 318 (*mapcount)--; 319 pte_unmap_unlock(pte, ptl); 320 out: 321 return referenced; 322 } 323 324 static int page_referenced_anon(struct page *page) 325 { 326 unsigned int mapcount; 327 struct anon_vma *anon_vma; 328 struct vm_area_struct *vma; 329 int referenced = 0; 330 331 anon_vma = page_lock_anon_vma(page); 332 if (!anon_vma) 333 return referenced; 334 335 mapcount = page_mapcount(page); 336 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 337 referenced += page_referenced_one(page, vma, &mapcount); 338 if (!mapcount) 339 break; 340 } 341 spin_unlock(&anon_vma->lock); 342 return referenced; 343 } 344 345 /** 346 * page_referenced_file - referenced check for object-based rmap 347 * @page: the page we're checking references on. 348 * 349 * For an object-based mapped page, find all the places it is mapped and 350 * check/clear the referenced flag. This is done by following the page->mapping 351 * pointer, then walking the chain of vmas it holds. It returns the number 352 * of references it found. 353 * 354 * This function is only called from page_referenced for object-based pages. 355 */ 356 static int page_referenced_file(struct page *page) 357 { 358 unsigned int mapcount; 359 struct address_space *mapping = page->mapping; 360 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 361 struct vm_area_struct *vma; 362 struct prio_tree_iter iter; 363 int referenced = 0; 364 365 /* 366 * The caller's checks on page->mapping and !PageAnon have made 367 * sure that this is a file page: the check for page->mapping 368 * excludes the case just before it gets set on an anon page. 369 */ 370 BUG_ON(PageAnon(page)); 371 372 /* 373 * The page lock not only makes sure that page->mapping cannot 374 * suddenly be NULLified by truncation, it makes sure that the 375 * structure at mapping cannot be freed and reused yet, 376 * so we can safely take mapping->i_mmap_lock. 377 */ 378 BUG_ON(!PageLocked(page)); 379 380 spin_lock(&mapping->i_mmap_lock); 381 382 /* 383 * i_mmap_lock does not stabilize mapcount at all, but mapcount 384 * is more likely to be accurate if we note it after spinning. 385 */ 386 mapcount = page_mapcount(page); 387 388 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 389 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) 390 == (VM_LOCKED|VM_MAYSHARE)) { 391 referenced++; 392 break; 393 } 394 referenced += page_referenced_one(page, vma, &mapcount); 395 if (!mapcount) 396 break; 397 } 398 399 spin_unlock(&mapping->i_mmap_lock); 400 return referenced; 401 } 402 403 /** 404 * page_referenced - test if the page was referenced 405 * @page: the page to test 406 * @is_locked: caller holds lock on the page 407 * 408 * Quick test_and_clear_referenced for all mappings to a page, 409 * returns the number of ptes which referenced the page. 410 */ 411 int page_referenced(struct page *page, int is_locked) 412 { 413 int referenced = 0; 414 415 if (page_test_and_clear_young(page)) 416 referenced++; 417 418 if (TestClearPageReferenced(page)) 419 referenced++; 420 421 if (page_mapped(page) && page->mapping) { 422 if (PageAnon(page)) 423 referenced += page_referenced_anon(page); 424 else if (is_locked) 425 referenced += page_referenced_file(page); 426 else if (TestSetPageLocked(page)) 427 referenced++; 428 else { 429 if (page->mapping) 430 referenced += page_referenced_file(page); 431 unlock_page(page); 432 } 433 } 434 return referenced; 435 } 436 437 /** 438 * page_set_anon_rmap - setup new anonymous rmap 439 * @page: the page to add the mapping to 440 * @vma: the vm area in which the mapping is added 441 * @address: the user virtual address mapped 442 */ 443 static void __page_set_anon_rmap(struct page *page, 444 struct vm_area_struct *vma, unsigned long address) 445 { 446 struct anon_vma *anon_vma = vma->anon_vma; 447 448 BUG_ON(!anon_vma); 449 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 450 page->mapping = (struct address_space *) anon_vma; 451 452 page->index = linear_page_index(vma, address); 453 454 /* 455 * nr_mapped state can be updated without turning off 456 * interrupts because it is not modified via interrupt. 457 */ 458 __inc_page_state(nr_mapped); 459 } 460 461 /** 462 * page_add_anon_rmap - add pte mapping to an anonymous page 463 * @page: the page to add the mapping to 464 * @vma: the vm area in which the mapping is added 465 * @address: the user virtual address mapped 466 * 467 * The caller needs to hold the pte lock. 468 */ 469 void page_add_anon_rmap(struct page *page, 470 struct vm_area_struct *vma, unsigned long address) 471 { 472 if (atomic_inc_and_test(&page->_mapcount)) 473 __page_set_anon_rmap(page, vma, address); 474 /* else checking page index and mapping is racy */ 475 } 476 477 /* 478 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 479 * @page: the page to add the mapping to 480 * @vma: the vm area in which the mapping is added 481 * @address: the user virtual address mapped 482 * 483 * Same as page_add_anon_rmap but must only be called on *new* pages. 484 * This means the inc-and-test can be bypassed. 485 */ 486 void page_add_new_anon_rmap(struct page *page, 487 struct vm_area_struct *vma, unsigned long address) 488 { 489 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */ 490 __page_set_anon_rmap(page, vma, address); 491 } 492 493 /** 494 * page_add_file_rmap - add pte mapping to a file page 495 * @page: the page to add the mapping to 496 * 497 * The caller needs to hold the pte lock. 498 */ 499 void page_add_file_rmap(struct page *page) 500 { 501 BUG_ON(PageAnon(page)); 502 BUG_ON(!pfn_valid(page_to_pfn(page))); 503 504 if (atomic_inc_and_test(&page->_mapcount)) 505 __inc_page_state(nr_mapped); 506 } 507 508 /** 509 * page_remove_rmap - take down pte mapping from a page 510 * @page: page to remove mapping from 511 * 512 * The caller needs to hold the pte lock. 513 */ 514 void page_remove_rmap(struct page *page) 515 { 516 if (atomic_add_negative(-1, &page->_mapcount)) { 517 if (page_mapcount(page) < 0) { 518 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page)); 519 printk (KERN_EMERG " page->flags = %lx\n", page->flags); 520 printk (KERN_EMERG " page->count = %x\n", page_count(page)); 521 printk (KERN_EMERG " page->mapping = %p\n", page->mapping); 522 } 523 524 BUG_ON(page_mapcount(page) < 0); 525 /* 526 * It would be tidy to reset the PageAnon mapping here, 527 * but that might overwrite a racing page_add_anon_rmap 528 * which increments mapcount after us but sets mapping 529 * before us: so leave the reset to free_hot_cold_page, 530 * and remember that it's only reliable while mapped. 531 * Leaving it set also helps swapoff to reinstate ptes 532 * faster for those pages still in swapcache. 533 */ 534 if (page_test_and_clear_dirty(page)) 535 set_page_dirty(page); 536 __dec_page_state(nr_mapped); 537 } 538 } 539 540 /* 541 * Subfunctions of try_to_unmap: try_to_unmap_one called 542 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 543 */ 544 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma) 545 { 546 struct mm_struct *mm = vma->vm_mm; 547 unsigned long address; 548 pte_t *pte; 549 pte_t pteval; 550 spinlock_t *ptl; 551 int ret = SWAP_AGAIN; 552 553 address = vma_address(page, vma); 554 if (address == -EFAULT) 555 goto out; 556 557 pte = page_check_address(page, mm, address, &ptl); 558 if (!pte) 559 goto out; 560 561 /* 562 * If the page is mlock()d, we cannot swap it out. 563 * If it's recently referenced (perhaps page_referenced 564 * skipped over this mm) then we should reactivate it. 565 */ 566 if ((vma->vm_flags & VM_LOCKED) || 567 ptep_clear_flush_young(vma, address, pte)) { 568 ret = SWAP_FAIL; 569 goto out_unmap; 570 } 571 572 /* Nuke the page table entry. */ 573 flush_cache_page(vma, address, page_to_pfn(page)); 574 pteval = ptep_clear_flush(vma, address, pte); 575 576 /* Move the dirty bit to the physical page now the pte is gone. */ 577 if (pte_dirty(pteval)) 578 set_page_dirty(page); 579 580 /* Update high watermark before we lower rss */ 581 update_hiwater_rss(mm); 582 583 if (PageAnon(page)) { 584 swp_entry_t entry = { .val = page_private(page) }; 585 /* 586 * Store the swap location in the pte. 587 * See handle_pte_fault() ... 588 */ 589 BUG_ON(!PageSwapCache(page)); 590 swap_duplicate(entry); 591 if (list_empty(&mm->mmlist)) { 592 spin_lock(&mmlist_lock); 593 if (list_empty(&mm->mmlist)) 594 list_add(&mm->mmlist, &init_mm.mmlist); 595 spin_unlock(&mmlist_lock); 596 } 597 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 598 BUG_ON(pte_file(*pte)); 599 dec_mm_counter(mm, anon_rss); 600 } else 601 dec_mm_counter(mm, file_rss); 602 603 page_remove_rmap(page); 604 page_cache_release(page); 605 606 out_unmap: 607 pte_unmap_unlock(pte, ptl); 608 out: 609 return ret; 610 } 611 612 /* 613 * objrmap doesn't work for nonlinear VMAs because the assumption that 614 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 615 * Consequently, given a particular page and its ->index, we cannot locate the 616 * ptes which are mapping that page without an exhaustive linear search. 617 * 618 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 619 * maps the file to which the target page belongs. The ->vm_private_data field 620 * holds the current cursor into that scan. Successive searches will circulate 621 * around the vma's virtual address space. 622 * 623 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 624 * more scanning pressure is placed against them as well. Eventually pages 625 * will become fully unmapped and are eligible for eviction. 626 * 627 * For very sparsely populated VMAs this is a little inefficient - chances are 628 * there there won't be many ptes located within the scan cluster. In this case 629 * maybe we could scan further - to the end of the pte page, perhaps. 630 */ 631 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 632 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 633 634 static void try_to_unmap_cluster(unsigned long cursor, 635 unsigned int *mapcount, struct vm_area_struct *vma) 636 { 637 struct mm_struct *mm = vma->vm_mm; 638 pgd_t *pgd; 639 pud_t *pud; 640 pmd_t *pmd; 641 pte_t *pte; 642 pte_t pteval; 643 spinlock_t *ptl; 644 struct page *page; 645 unsigned long address; 646 unsigned long end; 647 648 address = (vma->vm_start + cursor) & CLUSTER_MASK; 649 end = address + CLUSTER_SIZE; 650 if (address < vma->vm_start) 651 address = vma->vm_start; 652 if (end > vma->vm_end) 653 end = vma->vm_end; 654 655 pgd = pgd_offset(mm, address); 656 if (!pgd_present(*pgd)) 657 return; 658 659 pud = pud_offset(pgd, address); 660 if (!pud_present(*pud)) 661 return; 662 663 pmd = pmd_offset(pud, address); 664 if (!pmd_present(*pmd)) 665 return; 666 667 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 668 669 /* Update high watermark before we lower rss */ 670 update_hiwater_rss(mm); 671 672 for (; address < end; pte++, address += PAGE_SIZE) { 673 if (!pte_present(*pte)) 674 continue; 675 page = vm_normal_page(vma, address, *pte); 676 BUG_ON(!page || PageAnon(page)); 677 678 if (ptep_clear_flush_young(vma, address, pte)) 679 continue; 680 681 /* Nuke the page table entry. */ 682 flush_cache_page(vma, address, pte_pfn(*pte)); 683 pteval = ptep_clear_flush(vma, address, pte); 684 685 /* If nonlinear, store the file page offset in the pte. */ 686 if (page->index != linear_page_index(vma, address)) 687 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 688 689 /* Move the dirty bit to the physical page now the pte is gone. */ 690 if (pte_dirty(pteval)) 691 set_page_dirty(page); 692 693 page_remove_rmap(page); 694 page_cache_release(page); 695 dec_mm_counter(mm, file_rss); 696 (*mapcount)--; 697 } 698 pte_unmap_unlock(pte - 1, ptl); 699 } 700 701 static int try_to_unmap_anon(struct page *page) 702 { 703 struct anon_vma *anon_vma; 704 struct vm_area_struct *vma; 705 int ret = SWAP_AGAIN; 706 707 anon_vma = page_lock_anon_vma(page); 708 if (!anon_vma) 709 return ret; 710 711 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 712 ret = try_to_unmap_one(page, vma); 713 if (ret == SWAP_FAIL || !page_mapped(page)) 714 break; 715 } 716 spin_unlock(&anon_vma->lock); 717 return ret; 718 } 719 720 /** 721 * try_to_unmap_file - unmap file page using the object-based rmap method 722 * @page: the page to unmap 723 * 724 * Find all the mappings of a page using the mapping pointer and the vma chains 725 * contained in the address_space struct it points to. 726 * 727 * This function is only called from try_to_unmap for object-based pages. 728 */ 729 static int try_to_unmap_file(struct page *page) 730 { 731 struct address_space *mapping = page->mapping; 732 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 733 struct vm_area_struct *vma; 734 struct prio_tree_iter iter; 735 int ret = SWAP_AGAIN; 736 unsigned long cursor; 737 unsigned long max_nl_cursor = 0; 738 unsigned long max_nl_size = 0; 739 unsigned int mapcount; 740 741 spin_lock(&mapping->i_mmap_lock); 742 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 743 ret = try_to_unmap_one(page, vma); 744 if (ret == SWAP_FAIL || !page_mapped(page)) 745 goto out; 746 } 747 748 if (list_empty(&mapping->i_mmap_nonlinear)) 749 goto out; 750 751 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 752 shared.vm_set.list) { 753 if (vma->vm_flags & VM_LOCKED) 754 continue; 755 cursor = (unsigned long) vma->vm_private_data; 756 if (cursor > max_nl_cursor) 757 max_nl_cursor = cursor; 758 cursor = vma->vm_end - vma->vm_start; 759 if (cursor > max_nl_size) 760 max_nl_size = cursor; 761 } 762 763 if (max_nl_size == 0) { /* any nonlinears locked or reserved */ 764 ret = SWAP_FAIL; 765 goto out; 766 } 767 768 /* 769 * We don't try to search for this page in the nonlinear vmas, 770 * and page_referenced wouldn't have found it anyway. Instead 771 * just walk the nonlinear vmas trying to age and unmap some. 772 * The mapcount of the page we came in with is irrelevant, 773 * but even so use it as a guide to how hard we should try? 774 */ 775 mapcount = page_mapcount(page); 776 if (!mapcount) 777 goto out; 778 cond_resched_lock(&mapping->i_mmap_lock); 779 780 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 781 if (max_nl_cursor == 0) 782 max_nl_cursor = CLUSTER_SIZE; 783 784 do { 785 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 786 shared.vm_set.list) { 787 if (vma->vm_flags & VM_LOCKED) 788 continue; 789 cursor = (unsigned long) vma->vm_private_data; 790 while ( cursor < max_nl_cursor && 791 cursor < vma->vm_end - vma->vm_start) { 792 try_to_unmap_cluster(cursor, &mapcount, vma); 793 cursor += CLUSTER_SIZE; 794 vma->vm_private_data = (void *) cursor; 795 if ((int)mapcount <= 0) 796 goto out; 797 } 798 vma->vm_private_data = (void *) max_nl_cursor; 799 } 800 cond_resched_lock(&mapping->i_mmap_lock); 801 max_nl_cursor += CLUSTER_SIZE; 802 } while (max_nl_cursor <= max_nl_size); 803 804 /* 805 * Don't loop forever (perhaps all the remaining pages are 806 * in locked vmas). Reset cursor on all unreserved nonlinear 807 * vmas, now forgetting on which ones it had fallen behind. 808 */ 809 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 810 vma->vm_private_data = NULL; 811 out: 812 spin_unlock(&mapping->i_mmap_lock); 813 return ret; 814 } 815 816 /** 817 * try_to_unmap - try to remove all page table mappings to a page 818 * @page: the page to get unmapped 819 * 820 * Tries to remove all the page table entries which are mapping this 821 * page, used in the pageout path. Caller must hold the page lock. 822 * Return values are: 823 * 824 * SWAP_SUCCESS - we succeeded in removing all mappings 825 * SWAP_AGAIN - we missed a mapping, try again later 826 * SWAP_FAIL - the page is unswappable 827 */ 828 int try_to_unmap(struct page *page) 829 { 830 int ret; 831 832 BUG_ON(!PageLocked(page)); 833 834 if (PageAnon(page)) 835 ret = try_to_unmap_anon(page); 836 else 837 ret = try_to_unmap_file(page); 838 839 if (!page_mapped(page)) 840 ret = SWAP_SUCCESS; 841 return ret; 842 } 843 844