xref: /openbmc/linux/mm/rmap.c (revision 81d67439)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_mutex
27  *         anon_vma->mutex
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34  *               inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_wb_list_lock in __sync_single_inode)
39  *
40  * anon_vma->mutex,mapping->i_mutex      (memory_failure, collect_procs_anon)
41  *   ->tasklist_lock
42  *     pte map lock
43  */
44 
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/module.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 
60 #include <asm/tlbflush.h>
61 
62 #include "internal.h"
63 
64 static struct kmem_cache *anon_vma_cachep;
65 static struct kmem_cache *anon_vma_chain_cachep;
66 
67 static inline struct anon_vma *anon_vma_alloc(void)
68 {
69 	struct anon_vma *anon_vma;
70 
71 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 	if (anon_vma) {
73 		atomic_set(&anon_vma->refcount, 1);
74 		/*
75 		 * Initialise the anon_vma root to point to itself. If called
76 		 * from fork, the root will be reset to the parents anon_vma.
77 		 */
78 		anon_vma->root = anon_vma;
79 	}
80 
81 	return anon_vma;
82 }
83 
84 static inline void anon_vma_free(struct anon_vma *anon_vma)
85 {
86 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
87 
88 	/*
89 	 * Synchronize against page_lock_anon_vma() such that
90 	 * we can safely hold the lock without the anon_vma getting
91 	 * freed.
92 	 *
93 	 * Relies on the full mb implied by the atomic_dec_and_test() from
94 	 * put_anon_vma() against the acquire barrier implied by
95 	 * mutex_trylock() from page_lock_anon_vma(). This orders:
96 	 *
97 	 * page_lock_anon_vma()		VS	put_anon_vma()
98 	 *   mutex_trylock()			  atomic_dec_and_test()
99 	 *   LOCK				  MB
100 	 *   atomic_read()			  mutex_is_locked()
101 	 *
102 	 * LOCK should suffice since the actual taking of the lock must
103 	 * happen _before_ what follows.
104 	 */
105 	if (mutex_is_locked(&anon_vma->root->mutex)) {
106 		anon_vma_lock(anon_vma);
107 		anon_vma_unlock(anon_vma);
108 	}
109 
110 	kmem_cache_free(anon_vma_cachep, anon_vma);
111 }
112 
113 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
114 {
115 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
116 }
117 
118 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
119 {
120 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
121 }
122 
123 /**
124  * anon_vma_prepare - attach an anon_vma to a memory region
125  * @vma: the memory region in question
126  *
127  * This makes sure the memory mapping described by 'vma' has
128  * an 'anon_vma' attached to it, so that we can associate the
129  * anonymous pages mapped into it with that anon_vma.
130  *
131  * The common case will be that we already have one, but if
132  * not we either need to find an adjacent mapping that we
133  * can re-use the anon_vma from (very common when the only
134  * reason for splitting a vma has been mprotect()), or we
135  * allocate a new one.
136  *
137  * Anon-vma allocations are very subtle, because we may have
138  * optimistically looked up an anon_vma in page_lock_anon_vma()
139  * and that may actually touch the spinlock even in the newly
140  * allocated vma (it depends on RCU to make sure that the
141  * anon_vma isn't actually destroyed).
142  *
143  * As a result, we need to do proper anon_vma locking even
144  * for the new allocation. At the same time, we do not want
145  * to do any locking for the common case of already having
146  * an anon_vma.
147  *
148  * This must be called with the mmap_sem held for reading.
149  */
150 int anon_vma_prepare(struct vm_area_struct *vma)
151 {
152 	struct anon_vma *anon_vma = vma->anon_vma;
153 	struct anon_vma_chain *avc;
154 
155 	might_sleep();
156 	if (unlikely(!anon_vma)) {
157 		struct mm_struct *mm = vma->vm_mm;
158 		struct anon_vma *allocated;
159 
160 		avc = anon_vma_chain_alloc(GFP_KERNEL);
161 		if (!avc)
162 			goto out_enomem;
163 
164 		anon_vma = find_mergeable_anon_vma(vma);
165 		allocated = NULL;
166 		if (!anon_vma) {
167 			anon_vma = anon_vma_alloc();
168 			if (unlikely(!anon_vma))
169 				goto out_enomem_free_avc;
170 			allocated = anon_vma;
171 		}
172 
173 		anon_vma_lock(anon_vma);
174 		/* page_table_lock to protect against threads */
175 		spin_lock(&mm->page_table_lock);
176 		if (likely(!vma->anon_vma)) {
177 			vma->anon_vma = anon_vma;
178 			avc->anon_vma = anon_vma;
179 			avc->vma = vma;
180 			list_add(&avc->same_vma, &vma->anon_vma_chain);
181 			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
182 			allocated = NULL;
183 			avc = NULL;
184 		}
185 		spin_unlock(&mm->page_table_lock);
186 		anon_vma_unlock(anon_vma);
187 
188 		if (unlikely(allocated))
189 			put_anon_vma(allocated);
190 		if (unlikely(avc))
191 			anon_vma_chain_free(avc);
192 	}
193 	return 0;
194 
195  out_enomem_free_avc:
196 	anon_vma_chain_free(avc);
197  out_enomem:
198 	return -ENOMEM;
199 }
200 
201 /*
202  * This is a useful helper function for locking the anon_vma root as
203  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
204  * have the same vma.
205  *
206  * Such anon_vma's should have the same root, so you'd expect to see
207  * just a single mutex_lock for the whole traversal.
208  */
209 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
210 {
211 	struct anon_vma *new_root = anon_vma->root;
212 	if (new_root != root) {
213 		if (WARN_ON_ONCE(root))
214 			mutex_unlock(&root->mutex);
215 		root = new_root;
216 		mutex_lock(&root->mutex);
217 	}
218 	return root;
219 }
220 
221 static inline void unlock_anon_vma_root(struct anon_vma *root)
222 {
223 	if (root)
224 		mutex_unlock(&root->mutex);
225 }
226 
227 static void anon_vma_chain_link(struct vm_area_struct *vma,
228 				struct anon_vma_chain *avc,
229 				struct anon_vma *anon_vma)
230 {
231 	avc->vma = vma;
232 	avc->anon_vma = anon_vma;
233 	list_add(&avc->same_vma, &vma->anon_vma_chain);
234 
235 	/*
236 	 * It's critical to add new vmas to the tail of the anon_vma,
237 	 * see comment in huge_memory.c:__split_huge_page().
238 	 */
239 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
240 }
241 
242 /*
243  * Attach the anon_vmas from src to dst.
244  * Returns 0 on success, -ENOMEM on failure.
245  */
246 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
247 {
248 	struct anon_vma_chain *avc, *pavc;
249 	struct anon_vma *root = NULL;
250 
251 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
252 		struct anon_vma *anon_vma;
253 
254 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
255 		if (unlikely(!avc)) {
256 			unlock_anon_vma_root(root);
257 			root = NULL;
258 			avc = anon_vma_chain_alloc(GFP_KERNEL);
259 			if (!avc)
260 				goto enomem_failure;
261 		}
262 		anon_vma = pavc->anon_vma;
263 		root = lock_anon_vma_root(root, anon_vma);
264 		anon_vma_chain_link(dst, avc, anon_vma);
265 	}
266 	unlock_anon_vma_root(root);
267 	return 0;
268 
269  enomem_failure:
270 	unlink_anon_vmas(dst);
271 	return -ENOMEM;
272 }
273 
274 /*
275  * Attach vma to its own anon_vma, as well as to the anon_vmas that
276  * the corresponding VMA in the parent process is attached to.
277  * Returns 0 on success, non-zero on failure.
278  */
279 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
280 {
281 	struct anon_vma_chain *avc;
282 	struct anon_vma *anon_vma;
283 
284 	/* Don't bother if the parent process has no anon_vma here. */
285 	if (!pvma->anon_vma)
286 		return 0;
287 
288 	/*
289 	 * First, attach the new VMA to the parent VMA's anon_vmas,
290 	 * so rmap can find non-COWed pages in child processes.
291 	 */
292 	if (anon_vma_clone(vma, pvma))
293 		return -ENOMEM;
294 
295 	/* Then add our own anon_vma. */
296 	anon_vma = anon_vma_alloc();
297 	if (!anon_vma)
298 		goto out_error;
299 	avc = anon_vma_chain_alloc(GFP_KERNEL);
300 	if (!avc)
301 		goto out_error_free_anon_vma;
302 
303 	/*
304 	 * The root anon_vma's spinlock is the lock actually used when we
305 	 * lock any of the anon_vmas in this anon_vma tree.
306 	 */
307 	anon_vma->root = pvma->anon_vma->root;
308 	/*
309 	 * With refcounts, an anon_vma can stay around longer than the
310 	 * process it belongs to. The root anon_vma needs to be pinned until
311 	 * this anon_vma is freed, because the lock lives in the root.
312 	 */
313 	get_anon_vma(anon_vma->root);
314 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
315 	vma->anon_vma = anon_vma;
316 	anon_vma_lock(anon_vma);
317 	anon_vma_chain_link(vma, avc, anon_vma);
318 	anon_vma_unlock(anon_vma);
319 
320 	return 0;
321 
322  out_error_free_anon_vma:
323 	put_anon_vma(anon_vma);
324  out_error:
325 	unlink_anon_vmas(vma);
326 	return -ENOMEM;
327 }
328 
329 void unlink_anon_vmas(struct vm_area_struct *vma)
330 {
331 	struct anon_vma_chain *avc, *next;
332 	struct anon_vma *root = NULL;
333 
334 	/*
335 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
336 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
337 	 */
338 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
339 		struct anon_vma *anon_vma = avc->anon_vma;
340 
341 		root = lock_anon_vma_root(root, anon_vma);
342 		list_del(&avc->same_anon_vma);
343 
344 		/*
345 		 * Leave empty anon_vmas on the list - we'll need
346 		 * to free them outside the lock.
347 		 */
348 		if (list_empty(&anon_vma->head))
349 			continue;
350 
351 		list_del(&avc->same_vma);
352 		anon_vma_chain_free(avc);
353 	}
354 	unlock_anon_vma_root(root);
355 
356 	/*
357 	 * Iterate the list once more, it now only contains empty and unlinked
358 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
359 	 * needing to acquire the anon_vma->root->mutex.
360 	 */
361 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
362 		struct anon_vma *anon_vma = avc->anon_vma;
363 
364 		put_anon_vma(anon_vma);
365 
366 		list_del(&avc->same_vma);
367 		anon_vma_chain_free(avc);
368 	}
369 }
370 
371 static void anon_vma_ctor(void *data)
372 {
373 	struct anon_vma *anon_vma = data;
374 
375 	mutex_init(&anon_vma->mutex);
376 	atomic_set(&anon_vma->refcount, 0);
377 	INIT_LIST_HEAD(&anon_vma->head);
378 }
379 
380 void __init anon_vma_init(void)
381 {
382 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
383 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
384 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
385 }
386 
387 /*
388  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
389  *
390  * Since there is no serialization what so ever against page_remove_rmap()
391  * the best this function can do is return a locked anon_vma that might
392  * have been relevant to this page.
393  *
394  * The page might have been remapped to a different anon_vma or the anon_vma
395  * returned may already be freed (and even reused).
396  *
397  * In case it was remapped to a different anon_vma, the new anon_vma will be a
398  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
399  * ensure that any anon_vma obtained from the page will still be valid for as
400  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
401  *
402  * All users of this function must be very careful when walking the anon_vma
403  * chain and verify that the page in question is indeed mapped in it
404  * [ something equivalent to page_mapped_in_vma() ].
405  *
406  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
407  * that the anon_vma pointer from page->mapping is valid if there is a
408  * mapcount, we can dereference the anon_vma after observing those.
409  */
410 struct anon_vma *page_get_anon_vma(struct page *page)
411 {
412 	struct anon_vma *anon_vma = NULL;
413 	unsigned long anon_mapping;
414 
415 	rcu_read_lock();
416 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
417 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
418 		goto out;
419 	if (!page_mapped(page))
420 		goto out;
421 
422 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
423 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
424 		anon_vma = NULL;
425 		goto out;
426 	}
427 
428 	/*
429 	 * If this page is still mapped, then its anon_vma cannot have been
430 	 * freed.  But if it has been unmapped, we have no security against the
431 	 * anon_vma structure being freed and reused (for another anon_vma:
432 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
433 	 * above cannot corrupt).
434 	 */
435 	if (!page_mapped(page)) {
436 		put_anon_vma(anon_vma);
437 		anon_vma = NULL;
438 	}
439 out:
440 	rcu_read_unlock();
441 
442 	return anon_vma;
443 }
444 
445 /*
446  * Similar to page_get_anon_vma() except it locks the anon_vma.
447  *
448  * Its a little more complex as it tries to keep the fast path to a single
449  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
450  * reference like with page_get_anon_vma() and then block on the mutex.
451  */
452 struct anon_vma *page_lock_anon_vma(struct page *page)
453 {
454 	struct anon_vma *anon_vma = NULL;
455 	struct anon_vma *root_anon_vma;
456 	unsigned long anon_mapping;
457 
458 	rcu_read_lock();
459 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
460 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
461 		goto out;
462 	if (!page_mapped(page))
463 		goto out;
464 
465 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
466 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
467 	if (mutex_trylock(&root_anon_vma->mutex)) {
468 		/*
469 		 * If the page is still mapped, then this anon_vma is still
470 		 * its anon_vma, and holding the mutex ensures that it will
471 		 * not go away, see anon_vma_free().
472 		 */
473 		if (!page_mapped(page)) {
474 			mutex_unlock(&root_anon_vma->mutex);
475 			anon_vma = NULL;
476 		}
477 		goto out;
478 	}
479 
480 	/* trylock failed, we got to sleep */
481 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
482 		anon_vma = NULL;
483 		goto out;
484 	}
485 
486 	if (!page_mapped(page)) {
487 		put_anon_vma(anon_vma);
488 		anon_vma = NULL;
489 		goto out;
490 	}
491 
492 	/* we pinned the anon_vma, its safe to sleep */
493 	rcu_read_unlock();
494 	anon_vma_lock(anon_vma);
495 
496 	if (atomic_dec_and_test(&anon_vma->refcount)) {
497 		/*
498 		 * Oops, we held the last refcount, release the lock
499 		 * and bail -- can't simply use put_anon_vma() because
500 		 * we'll deadlock on the anon_vma_lock() recursion.
501 		 */
502 		anon_vma_unlock(anon_vma);
503 		__put_anon_vma(anon_vma);
504 		anon_vma = NULL;
505 	}
506 
507 	return anon_vma;
508 
509 out:
510 	rcu_read_unlock();
511 	return anon_vma;
512 }
513 
514 void page_unlock_anon_vma(struct anon_vma *anon_vma)
515 {
516 	anon_vma_unlock(anon_vma);
517 }
518 
519 /*
520  * At what user virtual address is page expected in @vma?
521  * Returns virtual address or -EFAULT if page's index/offset is not
522  * within the range mapped the @vma.
523  */
524 inline unsigned long
525 vma_address(struct page *page, struct vm_area_struct *vma)
526 {
527 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
528 	unsigned long address;
529 
530 	if (unlikely(is_vm_hugetlb_page(vma)))
531 		pgoff = page->index << huge_page_order(page_hstate(page));
532 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
533 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
534 		/* page should be within @vma mapping range */
535 		return -EFAULT;
536 	}
537 	return address;
538 }
539 
540 /*
541  * At what user virtual address is page expected in vma?
542  * Caller should check the page is actually part of the vma.
543  */
544 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
545 {
546 	if (PageAnon(page)) {
547 		struct anon_vma *page__anon_vma = page_anon_vma(page);
548 		/*
549 		 * Note: swapoff's unuse_vma() is more efficient with this
550 		 * check, and needs it to match anon_vma when KSM is active.
551 		 */
552 		if (!vma->anon_vma || !page__anon_vma ||
553 		    vma->anon_vma->root != page__anon_vma->root)
554 			return -EFAULT;
555 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
556 		if (!vma->vm_file ||
557 		    vma->vm_file->f_mapping != page->mapping)
558 			return -EFAULT;
559 	} else
560 		return -EFAULT;
561 	return vma_address(page, vma);
562 }
563 
564 /*
565  * Check that @page is mapped at @address into @mm.
566  *
567  * If @sync is false, page_check_address may perform a racy check to avoid
568  * the page table lock when the pte is not present (helpful when reclaiming
569  * highly shared pages).
570  *
571  * On success returns with pte mapped and locked.
572  */
573 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
574 			  unsigned long address, spinlock_t **ptlp, int sync)
575 {
576 	pgd_t *pgd;
577 	pud_t *pud;
578 	pmd_t *pmd;
579 	pte_t *pte;
580 	spinlock_t *ptl;
581 
582 	if (unlikely(PageHuge(page))) {
583 		pte = huge_pte_offset(mm, address);
584 		ptl = &mm->page_table_lock;
585 		goto check;
586 	}
587 
588 	pgd = pgd_offset(mm, address);
589 	if (!pgd_present(*pgd))
590 		return NULL;
591 
592 	pud = pud_offset(pgd, address);
593 	if (!pud_present(*pud))
594 		return NULL;
595 
596 	pmd = pmd_offset(pud, address);
597 	if (!pmd_present(*pmd))
598 		return NULL;
599 	if (pmd_trans_huge(*pmd))
600 		return NULL;
601 
602 	pte = pte_offset_map(pmd, address);
603 	/* Make a quick check before getting the lock */
604 	if (!sync && !pte_present(*pte)) {
605 		pte_unmap(pte);
606 		return NULL;
607 	}
608 
609 	ptl = pte_lockptr(mm, pmd);
610 check:
611 	spin_lock(ptl);
612 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
613 		*ptlp = ptl;
614 		return pte;
615 	}
616 	pte_unmap_unlock(pte, ptl);
617 	return NULL;
618 }
619 
620 /**
621  * page_mapped_in_vma - check whether a page is really mapped in a VMA
622  * @page: the page to test
623  * @vma: the VMA to test
624  *
625  * Returns 1 if the page is mapped into the page tables of the VMA, 0
626  * if the page is not mapped into the page tables of this VMA.  Only
627  * valid for normal file or anonymous VMAs.
628  */
629 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
630 {
631 	unsigned long address;
632 	pte_t *pte;
633 	spinlock_t *ptl;
634 
635 	address = vma_address(page, vma);
636 	if (address == -EFAULT)		/* out of vma range */
637 		return 0;
638 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
639 	if (!pte)			/* the page is not in this mm */
640 		return 0;
641 	pte_unmap_unlock(pte, ptl);
642 
643 	return 1;
644 }
645 
646 /*
647  * Subfunctions of page_referenced: page_referenced_one called
648  * repeatedly from either page_referenced_anon or page_referenced_file.
649  */
650 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
651 			unsigned long address, unsigned int *mapcount,
652 			unsigned long *vm_flags)
653 {
654 	struct mm_struct *mm = vma->vm_mm;
655 	int referenced = 0;
656 
657 	if (unlikely(PageTransHuge(page))) {
658 		pmd_t *pmd;
659 
660 		spin_lock(&mm->page_table_lock);
661 		/*
662 		 * rmap might return false positives; we must filter
663 		 * these out using page_check_address_pmd().
664 		 */
665 		pmd = page_check_address_pmd(page, mm, address,
666 					     PAGE_CHECK_ADDRESS_PMD_FLAG);
667 		if (!pmd) {
668 			spin_unlock(&mm->page_table_lock);
669 			goto out;
670 		}
671 
672 		if (vma->vm_flags & VM_LOCKED) {
673 			spin_unlock(&mm->page_table_lock);
674 			*mapcount = 0;	/* break early from loop */
675 			*vm_flags |= VM_LOCKED;
676 			goto out;
677 		}
678 
679 		/* go ahead even if the pmd is pmd_trans_splitting() */
680 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
681 			referenced++;
682 		spin_unlock(&mm->page_table_lock);
683 	} else {
684 		pte_t *pte;
685 		spinlock_t *ptl;
686 
687 		/*
688 		 * rmap might return false positives; we must filter
689 		 * these out using page_check_address().
690 		 */
691 		pte = page_check_address(page, mm, address, &ptl, 0);
692 		if (!pte)
693 			goto out;
694 
695 		if (vma->vm_flags & VM_LOCKED) {
696 			pte_unmap_unlock(pte, ptl);
697 			*mapcount = 0;	/* break early from loop */
698 			*vm_flags |= VM_LOCKED;
699 			goto out;
700 		}
701 
702 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
703 			/*
704 			 * Don't treat a reference through a sequentially read
705 			 * mapping as such.  If the page has been used in
706 			 * another mapping, we will catch it; if this other
707 			 * mapping is already gone, the unmap path will have
708 			 * set PG_referenced or activated the page.
709 			 */
710 			if (likely(!VM_SequentialReadHint(vma)))
711 				referenced++;
712 		}
713 		pte_unmap_unlock(pte, ptl);
714 	}
715 
716 	/* Pretend the page is referenced if the task has the
717 	   swap token and is in the middle of a page fault. */
718 	if (mm != current->mm && has_swap_token(mm) &&
719 			rwsem_is_locked(&mm->mmap_sem))
720 		referenced++;
721 
722 	(*mapcount)--;
723 
724 	if (referenced)
725 		*vm_flags |= vma->vm_flags;
726 out:
727 	return referenced;
728 }
729 
730 static int page_referenced_anon(struct page *page,
731 				struct mem_cgroup *mem_cont,
732 				unsigned long *vm_flags)
733 {
734 	unsigned int mapcount;
735 	struct anon_vma *anon_vma;
736 	struct anon_vma_chain *avc;
737 	int referenced = 0;
738 
739 	anon_vma = page_lock_anon_vma(page);
740 	if (!anon_vma)
741 		return referenced;
742 
743 	mapcount = page_mapcount(page);
744 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
745 		struct vm_area_struct *vma = avc->vma;
746 		unsigned long address = vma_address(page, vma);
747 		if (address == -EFAULT)
748 			continue;
749 		/*
750 		 * If we are reclaiming on behalf of a cgroup, skip
751 		 * counting on behalf of references from different
752 		 * cgroups
753 		 */
754 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
755 			continue;
756 		referenced += page_referenced_one(page, vma, address,
757 						  &mapcount, vm_flags);
758 		if (!mapcount)
759 			break;
760 	}
761 
762 	page_unlock_anon_vma(anon_vma);
763 	return referenced;
764 }
765 
766 /**
767  * page_referenced_file - referenced check for object-based rmap
768  * @page: the page we're checking references on.
769  * @mem_cont: target memory controller
770  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
771  *
772  * For an object-based mapped page, find all the places it is mapped and
773  * check/clear the referenced flag.  This is done by following the page->mapping
774  * pointer, then walking the chain of vmas it holds.  It returns the number
775  * of references it found.
776  *
777  * This function is only called from page_referenced for object-based pages.
778  */
779 static int page_referenced_file(struct page *page,
780 				struct mem_cgroup *mem_cont,
781 				unsigned long *vm_flags)
782 {
783 	unsigned int mapcount;
784 	struct address_space *mapping = page->mapping;
785 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
786 	struct vm_area_struct *vma;
787 	struct prio_tree_iter iter;
788 	int referenced = 0;
789 
790 	/*
791 	 * The caller's checks on page->mapping and !PageAnon have made
792 	 * sure that this is a file page: the check for page->mapping
793 	 * excludes the case just before it gets set on an anon page.
794 	 */
795 	BUG_ON(PageAnon(page));
796 
797 	/*
798 	 * The page lock not only makes sure that page->mapping cannot
799 	 * suddenly be NULLified by truncation, it makes sure that the
800 	 * structure at mapping cannot be freed and reused yet,
801 	 * so we can safely take mapping->i_mmap_mutex.
802 	 */
803 	BUG_ON(!PageLocked(page));
804 
805 	mutex_lock(&mapping->i_mmap_mutex);
806 
807 	/*
808 	 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
809 	 * is more likely to be accurate if we note it after spinning.
810 	 */
811 	mapcount = page_mapcount(page);
812 
813 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
814 		unsigned long address = vma_address(page, vma);
815 		if (address == -EFAULT)
816 			continue;
817 		/*
818 		 * If we are reclaiming on behalf of a cgroup, skip
819 		 * counting on behalf of references from different
820 		 * cgroups
821 		 */
822 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
823 			continue;
824 		referenced += page_referenced_one(page, vma, address,
825 						  &mapcount, vm_flags);
826 		if (!mapcount)
827 			break;
828 	}
829 
830 	mutex_unlock(&mapping->i_mmap_mutex);
831 	return referenced;
832 }
833 
834 /**
835  * page_referenced - test if the page was referenced
836  * @page: the page to test
837  * @is_locked: caller holds lock on the page
838  * @mem_cont: target memory controller
839  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
840  *
841  * Quick test_and_clear_referenced for all mappings to a page,
842  * returns the number of ptes which referenced the page.
843  */
844 int page_referenced(struct page *page,
845 		    int is_locked,
846 		    struct mem_cgroup *mem_cont,
847 		    unsigned long *vm_flags)
848 {
849 	int referenced = 0;
850 	int we_locked = 0;
851 
852 	*vm_flags = 0;
853 	if (page_mapped(page) && page_rmapping(page)) {
854 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
855 			we_locked = trylock_page(page);
856 			if (!we_locked) {
857 				referenced++;
858 				goto out;
859 			}
860 		}
861 		if (unlikely(PageKsm(page)))
862 			referenced += page_referenced_ksm(page, mem_cont,
863 								vm_flags);
864 		else if (PageAnon(page))
865 			referenced += page_referenced_anon(page, mem_cont,
866 								vm_flags);
867 		else if (page->mapping)
868 			referenced += page_referenced_file(page, mem_cont,
869 								vm_flags);
870 		if (we_locked)
871 			unlock_page(page);
872 
873 		if (page_test_and_clear_young(page_to_pfn(page)))
874 			referenced++;
875 	}
876 out:
877 	return referenced;
878 }
879 
880 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
881 			    unsigned long address)
882 {
883 	struct mm_struct *mm = vma->vm_mm;
884 	pte_t *pte;
885 	spinlock_t *ptl;
886 	int ret = 0;
887 
888 	pte = page_check_address(page, mm, address, &ptl, 1);
889 	if (!pte)
890 		goto out;
891 
892 	if (pte_dirty(*pte) || pte_write(*pte)) {
893 		pte_t entry;
894 
895 		flush_cache_page(vma, address, pte_pfn(*pte));
896 		entry = ptep_clear_flush_notify(vma, address, pte);
897 		entry = pte_wrprotect(entry);
898 		entry = pte_mkclean(entry);
899 		set_pte_at(mm, address, pte, entry);
900 		ret = 1;
901 	}
902 
903 	pte_unmap_unlock(pte, ptl);
904 out:
905 	return ret;
906 }
907 
908 static int page_mkclean_file(struct address_space *mapping, struct page *page)
909 {
910 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
911 	struct vm_area_struct *vma;
912 	struct prio_tree_iter iter;
913 	int ret = 0;
914 
915 	BUG_ON(PageAnon(page));
916 
917 	mutex_lock(&mapping->i_mmap_mutex);
918 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
919 		if (vma->vm_flags & VM_SHARED) {
920 			unsigned long address = vma_address(page, vma);
921 			if (address == -EFAULT)
922 				continue;
923 			ret += page_mkclean_one(page, vma, address);
924 		}
925 	}
926 	mutex_unlock(&mapping->i_mmap_mutex);
927 	return ret;
928 }
929 
930 int page_mkclean(struct page *page)
931 {
932 	int ret = 0;
933 
934 	BUG_ON(!PageLocked(page));
935 
936 	if (page_mapped(page)) {
937 		struct address_space *mapping = page_mapping(page);
938 		if (mapping) {
939 			ret = page_mkclean_file(mapping, page);
940 			if (page_test_and_clear_dirty(page_to_pfn(page), 1))
941 				ret = 1;
942 		}
943 	}
944 
945 	return ret;
946 }
947 EXPORT_SYMBOL_GPL(page_mkclean);
948 
949 /**
950  * page_move_anon_rmap - move a page to our anon_vma
951  * @page:	the page to move to our anon_vma
952  * @vma:	the vma the page belongs to
953  * @address:	the user virtual address mapped
954  *
955  * When a page belongs exclusively to one process after a COW event,
956  * that page can be moved into the anon_vma that belongs to just that
957  * process, so the rmap code will not search the parent or sibling
958  * processes.
959  */
960 void page_move_anon_rmap(struct page *page,
961 	struct vm_area_struct *vma, unsigned long address)
962 {
963 	struct anon_vma *anon_vma = vma->anon_vma;
964 
965 	VM_BUG_ON(!PageLocked(page));
966 	VM_BUG_ON(!anon_vma);
967 	VM_BUG_ON(page->index != linear_page_index(vma, address));
968 
969 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
970 	page->mapping = (struct address_space *) anon_vma;
971 }
972 
973 /**
974  * __page_set_anon_rmap - set up new anonymous rmap
975  * @page:	Page to add to rmap
976  * @vma:	VM area to add page to.
977  * @address:	User virtual address of the mapping
978  * @exclusive:	the page is exclusively owned by the current process
979  */
980 static void __page_set_anon_rmap(struct page *page,
981 	struct vm_area_struct *vma, unsigned long address, int exclusive)
982 {
983 	struct anon_vma *anon_vma = vma->anon_vma;
984 
985 	BUG_ON(!anon_vma);
986 
987 	if (PageAnon(page))
988 		return;
989 
990 	/*
991 	 * If the page isn't exclusively mapped into this vma,
992 	 * we must use the _oldest_ possible anon_vma for the
993 	 * page mapping!
994 	 */
995 	if (!exclusive)
996 		anon_vma = anon_vma->root;
997 
998 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
999 	page->mapping = (struct address_space *) anon_vma;
1000 	page->index = linear_page_index(vma, address);
1001 }
1002 
1003 /**
1004  * __page_check_anon_rmap - sanity check anonymous rmap addition
1005  * @page:	the page to add the mapping to
1006  * @vma:	the vm area in which the mapping is added
1007  * @address:	the user virtual address mapped
1008  */
1009 static void __page_check_anon_rmap(struct page *page,
1010 	struct vm_area_struct *vma, unsigned long address)
1011 {
1012 #ifdef CONFIG_DEBUG_VM
1013 	/*
1014 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1015 	 * be set up correctly at this point.
1016 	 *
1017 	 * We have exclusion against page_add_anon_rmap because the caller
1018 	 * always holds the page locked, except if called from page_dup_rmap,
1019 	 * in which case the page is already known to be setup.
1020 	 *
1021 	 * We have exclusion against page_add_new_anon_rmap because those pages
1022 	 * are initially only visible via the pagetables, and the pte is locked
1023 	 * over the call to page_add_new_anon_rmap.
1024 	 */
1025 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1026 	BUG_ON(page->index != linear_page_index(vma, address));
1027 #endif
1028 }
1029 
1030 /**
1031  * page_add_anon_rmap - add pte mapping to an anonymous page
1032  * @page:	the page to add the mapping to
1033  * @vma:	the vm area in which the mapping is added
1034  * @address:	the user virtual address mapped
1035  *
1036  * The caller needs to hold the pte lock, and the page must be locked in
1037  * the anon_vma case: to serialize mapping,index checking after setting,
1038  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1039  * (but PageKsm is never downgraded to PageAnon).
1040  */
1041 void page_add_anon_rmap(struct page *page,
1042 	struct vm_area_struct *vma, unsigned long address)
1043 {
1044 	do_page_add_anon_rmap(page, vma, address, 0);
1045 }
1046 
1047 /*
1048  * Special version of the above for do_swap_page, which often runs
1049  * into pages that are exclusively owned by the current process.
1050  * Everybody else should continue to use page_add_anon_rmap above.
1051  */
1052 void do_page_add_anon_rmap(struct page *page,
1053 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1054 {
1055 	int first = atomic_inc_and_test(&page->_mapcount);
1056 	if (first) {
1057 		if (!PageTransHuge(page))
1058 			__inc_zone_page_state(page, NR_ANON_PAGES);
1059 		else
1060 			__inc_zone_page_state(page,
1061 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1062 	}
1063 	if (unlikely(PageKsm(page)))
1064 		return;
1065 
1066 	VM_BUG_ON(!PageLocked(page));
1067 	/* address might be in next vma when migration races vma_adjust */
1068 	if (first)
1069 		__page_set_anon_rmap(page, vma, address, exclusive);
1070 	else
1071 		__page_check_anon_rmap(page, vma, address);
1072 }
1073 
1074 /**
1075  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1076  * @page:	the page to add the mapping to
1077  * @vma:	the vm area in which the mapping is added
1078  * @address:	the user virtual address mapped
1079  *
1080  * Same as page_add_anon_rmap but must only be called on *new* pages.
1081  * This means the inc-and-test can be bypassed.
1082  * Page does not have to be locked.
1083  */
1084 void page_add_new_anon_rmap(struct page *page,
1085 	struct vm_area_struct *vma, unsigned long address)
1086 {
1087 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1088 	SetPageSwapBacked(page);
1089 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1090 	if (!PageTransHuge(page))
1091 		__inc_zone_page_state(page, NR_ANON_PAGES);
1092 	else
1093 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1094 	__page_set_anon_rmap(page, vma, address, 1);
1095 	if (page_evictable(page, vma))
1096 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1097 	else
1098 		add_page_to_unevictable_list(page);
1099 }
1100 
1101 /**
1102  * page_add_file_rmap - add pte mapping to a file page
1103  * @page: the page to add the mapping to
1104  *
1105  * The caller needs to hold the pte lock.
1106  */
1107 void page_add_file_rmap(struct page *page)
1108 {
1109 	if (atomic_inc_and_test(&page->_mapcount)) {
1110 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1111 		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1112 	}
1113 }
1114 
1115 /**
1116  * page_remove_rmap - take down pte mapping from a page
1117  * @page: page to remove mapping from
1118  *
1119  * The caller needs to hold the pte lock.
1120  */
1121 void page_remove_rmap(struct page *page)
1122 {
1123 	/* page still mapped by someone else? */
1124 	if (!atomic_add_negative(-1, &page->_mapcount))
1125 		return;
1126 
1127 	/*
1128 	 * Now that the last pte has gone, s390 must transfer dirty
1129 	 * flag from storage key to struct page.  We can usually skip
1130 	 * this if the page is anon, so about to be freed; but perhaps
1131 	 * not if it's in swapcache - there might be another pte slot
1132 	 * containing the swap entry, but page not yet written to swap.
1133 	 */
1134 	if ((!PageAnon(page) || PageSwapCache(page)) &&
1135 	    page_test_and_clear_dirty(page_to_pfn(page), 1))
1136 		set_page_dirty(page);
1137 	/*
1138 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1139 	 * and not charged by memcg for now.
1140 	 */
1141 	if (unlikely(PageHuge(page)))
1142 		return;
1143 	if (PageAnon(page)) {
1144 		mem_cgroup_uncharge_page(page);
1145 		if (!PageTransHuge(page))
1146 			__dec_zone_page_state(page, NR_ANON_PAGES);
1147 		else
1148 			__dec_zone_page_state(page,
1149 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1150 	} else {
1151 		__dec_zone_page_state(page, NR_FILE_MAPPED);
1152 		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1153 	}
1154 	/*
1155 	 * It would be tidy to reset the PageAnon mapping here,
1156 	 * but that might overwrite a racing page_add_anon_rmap
1157 	 * which increments mapcount after us but sets mapping
1158 	 * before us: so leave the reset to free_hot_cold_page,
1159 	 * and remember that it's only reliable while mapped.
1160 	 * Leaving it set also helps swapoff to reinstate ptes
1161 	 * faster for those pages still in swapcache.
1162 	 */
1163 }
1164 
1165 /*
1166  * Subfunctions of try_to_unmap: try_to_unmap_one called
1167  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1168  */
1169 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1170 		     unsigned long address, enum ttu_flags flags)
1171 {
1172 	struct mm_struct *mm = vma->vm_mm;
1173 	pte_t *pte;
1174 	pte_t pteval;
1175 	spinlock_t *ptl;
1176 	int ret = SWAP_AGAIN;
1177 
1178 	pte = page_check_address(page, mm, address, &ptl, 0);
1179 	if (!pte)
1180 		goto out;
1181 
1182 	/*
1183 	 * If the page is mlock()d, we cannot swap it out.
1184 	 * If it's recently referenced (perhaps page_referenced
1185 	 * skipped over this mm) then we should reactivate it.
1186 	 */
1187 	if (!(flags & TTU_IGNORE_MLOCK)) {
1188 		if (vma->vm_flags & VM_LOCKED)
1189 			goto out_mlock;
1190 
1191 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1192 			goto out_unmap;
1193 	}
1194 	if (!(flags & TTU_IGNORE_ACCESS)) {
1195 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1196 			ret = SWAP_FAIL;
1197 			goto out_unmap;
1198 		}
1199   	}
1200 
1201 	/* Nuke the page table entry. */
1202 	flush_cache_page(vma, address, page_to_pfn(page));
1203 	pteval = ptep_clear_flush_notify(vma, address, pte);
1204 
1205 	/* Move the dirty bit to the physical page now the pte is gone. */
1206 	if (pte_dirty(pteval))
1207 		set_page_dirty(page);
1208 
1209 	/* Update high watermark before we lower rss */
1210 	update_hiwater_rss(mm);
1211 
1212 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1213 		if (PageAnon(page))
1214 			dec_mm_counter(mm, MM_ANONPAGES);
1215 		else
1216 			dec_mm_counter(mm, MM_FILEPAGES);
1217 		set_pte_at(mm, address, pte,
1218 				swp_entry_to_pte(make_hwpoison_entry(page)));
1219 	} else if (PageAnon(page)) {
1220 		swp_entry_t entry = { .val = page_private(page) };
1221 
1222 		if (PageSwapCache(page)) {
1223 			/*
1224 			 * Store the swap location in the pte.
1225 			 * See handle_pte_fault() ...
1226 			 */
1227 			if (swap_duplicate(entry) < 0) {
1228 				set_pte_at(mm, address, pte, pteval);
1229 				ret = SWAP_FAIL;
1230 				goto out_unmap;
1231 			}
1232 			if (list_empty(&mm->mmlist)) {
1233 				spin_lock(&mmlist_lock);
1234 				if (list_empty(&mm->mmlist))
1235 					list_add(&mm->mmlist, &init_mm.mmlist);
1236 				spin_unlock(&mmlist_lock);
1237 			}
1238 			dec_mm_counter(mm, MM_ANONPAGES);
1239 			inc_mm_counter(mm, MM_SWAPENTS);
1240 		} else if (PAGE_MIGRATION) {
1241 			/*
1242 			 * Store the pfn of the page in a special migration
1243 			 * pte. do_swap_page() will wait until the migration
1244 			 * pte is removed and then restart fault handling.
1245 			 */
1246 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1247 			entry = make_migration_entry(page, pte_write(pteval));
1248 		}
1249 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1250 		BUG_ON(pte_file(*pte));
1251 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1252 		/* Establish migration entry for a file page */
1253 		swp_entry_t entry;
1254 		entry = make_migration_entry(page, pte_write(pteval));
1255 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1256 	} else
1257 		dec_mm_counter(mm, MM_FILEPAGES);
1258 
1259 	page_remove_rmap(page);
1260 	page_cache_release(page);
1261 
1262 out_unmap:
1263 	pte_unmap_unlock(pte, ptl);
1264 out:
1265 	return ret;
1266 
1267 out_mlock:
1268 	pte_unmap_unlock(pte, ptl);
1269 
1270 
1271 	/*
1272 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1273 	 * unstable result and race. Plus, We can't wait here because
1274 	 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1275 	 * if trylock failed, the page remain in evictable lru and later
1276 	 * vmscan could retry to move the page to unevictable lru if the
1277 	 * page is actually mlocked.
1278 	 */
1279 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1280 		if (vma->vm_flags & VM_LOCKED) {
1281 			mlock_vma_page(page);
1282 			ret = SWAP_MLOCK;
1283 		}
1284 		up_read(&vma->vm_mm->mmap_sem);
1285 	}
1286 	return ret;
1287 }
1288 
1289 /*
1290  * objrmap doesn't work for nonlinear VMAs because the assumption that
1291  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1292  * Consequently, given a particular page and its ->index, we cannot locate the
1293  * ptes which are mapping that page without an exhaustive linear search.
1294  *
1295  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1296  * maps the file to which the target page belongs.  The ->vm_private_data field
1297  * holds the current cursor into that scan.  Successive searches will circulate
1298  * around the vma's virtual address space.
1299  *
1300  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1301  * more scanning pressure is placed against them as well.   Eventually pages
1302  * will become fully unmapped and are eligible for eviction.
1303  *
1304  * For very sparsely populated VMAs this is a little inefficient - chances are
1305  * there there won't be many ptes located within the scan cluster.  In this case
1306  * maybe we could scan further - to the end of the pte page, perhaps.
1307  *
1308  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1309  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1310  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1311  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1312  */
1313 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1314 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1315 
1316 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1317 		struct vm_area_struct *vma, struct page *check_page)
1318 {
1319 	struct mm_struct *mm = vma->vm_mm;
1320 	pgd_t *pgd;
1321 	pud_t *pud;
1322 	pmd_t *pmd;
1323 	pte_t *pte;
1324 	pte_t pteval;
1325 	spinlock_t *ptl;
1326 	struct page *page;
1327 	unsigned long address;
1328 	unsigned long end;
1329 	int ret = SWAP_AGAIN;
1330 	int locked_vma = 0;
1331 
1332 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1333 	end = address + CLUSTER_SIZE;
1334 	if (address < vma->vm_start)
1335 		address = vma->vm_start;
1336 	if (end > vma->vm_end)
1337 		end = vma->vm_end;
1338 
1339 	pgd = pgd_offset(mm, address);
1340 	if (!pgd_present(*pgd))
1341 		return ret;
1342 
1343 	pud = pud_offset(pgd, address);
1344 	if (!pud_present(*pud))
1345 		return ret;
1346 
1347 	pmd = pmd_offset(pud, address);
1348 	if (!pmd_present(*pmd))
1349 		return ret;
1350 
1351 	/*
1352 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1353 	 * keep the sem while scanning the cluster for mlocking pages.
1354 	 */
1355 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1356 		locked_vma = (vma->vm_flags & VM_LOCKED);
1357 		if (!locked_vma)
1358 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1359 	}
1360 
1361 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1362 
1363 	/* Update high watermark before we lower rss */
1364 	update_hiwater_rss(mm);
1365 
1366 	for (; address < end; pte++, address += PAGE_SIZE) {
1367 		if (!pte_present(*pte))
1368 			continue;
1369 		page = vm_normal_page(vma, address, *pte);
1370 		BUG_ON(!page || PageAnon(page));
1371 
1372 		if (locked_vma) {
1373 			mlock_vma_page(page);   /* no-op if already mlocked */
1374 			if (page == check_page)
1375 				ret = SWAP_MLOCK;
1376 			continue;	/* don't unmap */
1377 		}
1378 
1379 		if (ptep_clear_flush_young_notify(vma, address, pte))
1380 			continue;
1381 
1382 		/* Nuke the page table entry. */
1383 		flush_cache_page(vma, address, pte_pfn(*pte));
1384 		pteval = ptep_clear_flush_notify(vma, address, pte);
1385 
1386 		/* If nonlinear, store the file page offset in the pte. */
1387 		if (page->index != linear_page_index(vma, address))
1388 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1389 
1390 		/* Move the dirty bit to the physical page now the pte is gone. */
1391 		if (pte_dirty(pteval))
1392 			set_page_dirty(page);
1393 
1394 		page_remove_rmap(page);
1395 		page_cache_release(page);
1396 		dec_mm_counter(mm, MM_FILEPAGES);
1397 		(*mapcount)--;
1398 	}
1399 	pte_unmap_unlock(pte - 1, ptl);
1400 	if (locked_vma)
1401 		up_read(&vma->vm_mm->mmap_sem);
1402 	return ret;
1403 }
1404 
1405 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1406 {
1407 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1408 
1409 	if (!maybe_stack)
1410 		return false;
1411 
1412 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1413 						VM_STACK_INCOMPLETE_SETUP)
1414 		return true;
1415 
1416 	return false;
1417 }
1418 
1419 /**
1420  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1421  * rmap method
1422  * @page: the page to unmap/unlock
1423  * @flags: action and flags
1424  *
1425  * Find all the mappings of a page using the mapping pointer and the vma chains
1426  * contained in the anon_vma struct it points to.
1427  *
1428  * This function is only called from try_to_unmap/try_to_munlock for
1429  * anonymous pages.
1430  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1431  * where the page was found will be held for write.  So, we won't recheck
1432  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1433  * 'LOCKED.
1434  */
1435 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1436 {
1437 	struct anon_vma *anon_vma;
1438 	struct anon_vma_chain *avc;
1439 	int ret = SWAP_AGAIN;
1440 
1441 	anon_vma = page_lock_anon_vma(page);
1442 	if (!anon_vma)
1443 		return ret;
1444 
1445 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1446 		struct vm_area_struct *vma = avc->vma;
1447 		unsigned long address;
1448 
1449 		/*
1450 		 * During exec, a temporary VMA is setup and later moved.
1451 		 * The VMA is moved under the anon_vma lock but not the
1452 		 * page tables leading to a race where migration cannot
1453 		 * find the migration ptes. Rather than increasing the
1454 		 * locking requirements of exec(), migration skips
1455 		 * temporary VMAs until after exec() completes.
1456 		 */
1457 		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1458 				is_vma_temporary_stack(vma))
1459 			continue;
1460 
1461 		address = vma_address(page, vma);
1462 		if (address == -EFAULT)
1463 			continue;
1464 		ret = try_to_unmap_one(page, vma, address, flags);
1465 		if (ret != SWAP_AGAIN || !page_mapped(page))
1466 			break;
1467 	}
1468 
1469 	page_unlock_anon_vma(anon_vma);
1470 	return ret;
1471 }
1472 
1473 /**
1474  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1475  * @page: the page to unmap/unlock
1476  * @flags: action and flags
1477  *
1478  * Find all the mappings of a page using the mapping pointer and the vma chains
1479  * contained in the address_space struct it points to.
1480  *
1481  * This function is only called from try_to_unmap/try_to_munlock for
1482  * object-based pages.
1483  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1484  * where the page was found will be held for write.  So, we won't recheck
1485  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1486  * 'LOCKED.
1487  */
1488 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1489 {
1490 	struct address_space *mapping = page->mapping;
1491 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1492 	struct vm_area_struct *vma;
1493 	struct prio_tree_iter iter;
1494 	int ret = SWAP_AGAIN;
1495 	unsigned long cursor;
1496 	unsigned long max_nl_cursor = 0;
1497 	unsigned long max_nl_size = 0;
1498 	unsigned int mapcount;
1499 
1500 	mutex_lock(&mapping->i_mmap_mutex);
1501 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1502 		unsigned long address = vma_address(page, vma);
1503 		if (address == -EFAULT)
1504 			continue;
1505 		ret = try_to_unmap_one(page, vma, address, flags);
1506 		if (ret != SWAP_AGAIN || !page_mapped(page))
1507 			goto out;
1508 	}
1509 
1510 	if (list_empty(&mapping->i_mmap_nonlinear))
1511 		goto out;
1512 
1513 	/*
1514 	 * We don't bother to try to find the munlocked page in nonlinears.
1515 	 * It's costly. Instead, later, page reclaim logic may call
1516 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1517 	 */
1518 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1519 		goto out;
1520 
1521 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1522 						shared.vm_set.list) {
1523 		cursor = (unsigned long) vma->vm_private_data;
1524 		if (cursor > max_nl_cursor)
1525 			max_nl_cursor = cursor;
1526 		cursor = vma->vm_end - vma->vm_start;
1527 		if (cursor > max_nl_size)
1528 			max_nl_size = cursor;
1529 	}
1530 
1531 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1532 		ret = SWAP_FAIL;
1533 		goto out;
1534 	}
1535 
1536 	/*
1537 	 * We don't try to search for this page in the nonlinear vmas,
1538 	 * and page_referenced wouldn't have found it anyway.  Instead
1539 	 * just walk the nonlinear vmas trying to age and unmap some.
1540 	 * The mapcount of the page we came in with is irrelevant,
1541 	 * but even so use it as a guide to how hard we should try?
1542 	 */
1543 	mapcount = page_mapcount(page);
1544 	if (!mapcount)
1545 		goto out;
1546 	cond_resched();
1547 
1548 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1549 	if (max_nl_cursor == 0)
1550 		max_nl_cursor = CLUSTER_SIZE;
1551 
1552 	do {
1553 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1554 						shared.vm_set.list) {
1555 			cursor = (unsigned long) vma->vm_private_data;
1556 			while ( cursor < max_nl_cursor &&
1557 				cursor < vma->vm_end - vma->vm_start) {
1558 				if (try_to_unmap_cluster(cursor, &mapcount,
1559 						vma, page) == SWAP_MLOCK)
1560 					ret = SWAP_MLOCK;
1561 				cursor += CLUSTER_SIZE;
1562 				vma->vm_private_data = (void *) cursor;
1563 				if ((int)mapcount <= 0)
1564 					goto out;
1565 			}
1566 			vma->vm_private_data = (void *) max_nl_cursor;
1567 		}
1568 		cond_resched();
1569 		max_nl_cursor += CLUSTER_SIZE;
1570 	} while (max_nl_cursor <= max_nl_size);
1571 
1572 	/*
1573 	 * Don't loop forever (perhaps all the remaining pages are
1574 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1575 	 * vmas, now forgetting on which ones it had fallen behind.
1576 	 */
1577 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1578 		vma->vm_private_data = NULL;
1579 out:
1580 	mutex_unlock(&mapping->i_mmap_mutex);
1581 	return ret;
1582 }
1583 
1584 /**
1585  * try_to_unmap - try to remove all page table mappings to a page
1586  * @page: the page to get unmapped
1587  * @flags: action and flags
1588  *
1589  * Tries to remove all the page table entries which are mapping this
1590  * page, used in the pageout path.  Caller must hold the page lock.
1591  * Return values are:
1592  *
1593  * SWAP_SUCCESS	- we succeeded in removing all mappings
1594  * SWAP_AGAIN	- we missed a mapping, try again later
1595  * SWAP_FAIL	- the page is unswappable
1596  * SWAP_MLOCK	- page is mlocked.
1597  */
1598 int try_to_unmap(struct page *page, enum ttu_flags flags)
1599 {
1600 	int ret;
1601 
1602 	BUG_ON(!PageLocked(page));
1603 	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1604 
1605 	if (unlikely(PageKsm(page)))
1606 		ret = try_to_unmap_ksm(page, flags);
1607 	else if (PageAnon(page))
1608 		ret = try_to_unmap_anon(page, flags);
1609 	else
1610 		ret = try_to_unmap_file(page, flags);
1611 	if (ret != SWAP_MLOCK && !page_mapped(page))
1612 		ret = SWAP_SUCCESS;
1613 	return ret;
1614 }
1615 
1616 /**
1617  * try_to_munlock - try to munlock a page
1618  * @page: the page to be munlocked
1619  *
1620  * Called from munlock code.  Checks all of the VMAs mapping the page
1621  * to make sure nobody else has this page mlocked. The page will be
1622  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1623  *
1624  * Return values are:
1625  *
1626  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1627  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1628  * SWAP_FAIL	- page cannot be located at present
1629  * SWAP_MLOCK	- page is now mlocked.
1630  */
1631 int try_to_munlock(struct page *page)
1632 {
1633 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1634 
1635 	if (unlikely(PageKsm(page)))
1636 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1637 	else if (PageAnon(page))
1638 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1639 	else
1640 		return try_to_unmap_file(page, TTU_MUNLOCK);
1641 }
1642 
1643 void __put_anon_vma(struct anon_vma *anon_vma)
1644 {
1645 	struct anon_vma *root = anon_vma->root;
1646 
1647 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1648 		anon_vma_free(root);
1649 
1650 	anon_vma_free(anon_vma);
1651 }
1652 
1653 #ifdef CONFIG_MIGRATION
1654 /*
1655  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1656  * Called by migrate.c to remove migration ptes, but might be used more later.
1657  */
1658 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1659 		struct vm_area_struct *, unsigned long, void *), void *arg)
1660 {
1661 	struct anon_vma *anon_vma;
1662 	struct anon_vma_chain *avc;
1663 	int ret = SWAP_AGAIN;
1664 
1665 	/*
1666 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1667 	 * because that depends on page_mapped(); but not all its usages
1668 	 * are holding mmap_sem. Users without mmap_sem are required to
1669 	 * take a reference count to prevent the anon_vma disappearing
1670 	 */
1671 	anon_vma = page_anon_vma(page);
1672 	if (!anon_vma)
1673 		return ret;
1674 	anon_vma_lock(anon_vma);
1675 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1676 		struct vm_area_struct *vma = avc->vma;
1677 		unsigned long address = vma_address(page, vma);
1678 		if (address == -EFAULT)
1679 			continue;
1680 		ret = rmap_one(page, vma, address, arg);
1681 		if (ret != SWAP_AGAIN)
1682 			break;
1683 	}
1684 	anon_vma_unlock(anon_vma);
1685 	return ret;
1686 }
1687 
1688 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1689 		struct vm_area_struct *, unsigned long, void *), void *arg)
1690 {
1691 	struct address_space *mapping = page->mapping;
1692 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1693 	struct vm_area_struct *vma;
1694 	struct prio_tree_iter iter;
1695 	int ret = SWAP_AGAIN;
1696 
1697 	if (!mapping)
1698 		return ret;
1699 	mutex_lock(&mapping->i_mmap_mutex);
1700 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1701 		unsigned long address = vma_address(page, vma);
1702 		if (address == -EFAULT)
1703 			continue;
1704 		ret = rmap_one(page, vma, address, arg);
1705 		if (ret != SWAP_AGAIN)
1706 			break;
1707 	}
1708 	/*
1709 	 * No nonlinear handling: being always shared, nonlinear vmas
1710 	 * never contain migration ptes.  Decide what to do about this
1711 	 * limitation to linear when we need rmap_walk() on nonlinear.
1712 	 */
1713 	mutex_unlock(&mapping->i_mmap_mutex);
1714 	return ret;
1715 }
1716 
1717 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1718 		struct vm_area_struct *, unsigned long, void *), void *arg)
1719 {
1720 	VM_BUG_ON(!PageLocked(page));
1721 
1722 	if (unlikely(PageKsm(page)))
1723 		return rmap_walk_ksm(page, rmap_one, arg);
1724 	else if (PageAnon(page))
1725 		return rmap_walk_anon(page, rmap_one, arg);
1726 	else
1727 		return rmap_walk_file(page, rmap_one, arg);
1728 }
1729 #endif /* CONFIG_MIGRATION */
1730 
1731 #ifdef CONFIG_HUGETLB_PAGE
1732 /*
1733  * The following three functions are for anonymous (private mapped) hugepages.
1734  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1735  * and no lru code, because we handle hugepages differently from common pages.
1736  */
1737 static void __hugepage_set_anon_rmap(struct page *page,
1738 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1739 {
1740 	struct anon_vma *anon_vma = vma->anon_vma;
1741 
1742 	BUG_ON(!anon_vma);
1743 
1744 	if (PageAnon(page))
1745 		return;
1746 	if (!exclusive)
1747 		anon_vma = anon_vma->root;
1748 
1749 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1750 	page->mapping = (struct address_space *) anon_vma;
1751 	page->index = linear_page_index(vma, address);
1752 }
1753 
1754 void hugepage_add_anon_rmap(struct page *page,
1755 			    struct vm_area_struct *vma, unsigned long address)
1756 {
1757 	struct anon_vma *anon_vma = vma->anon_vma;
1758 	int first;
1759 
1760 	BUG_ON(!PageLocked(page));
1761 	BUG_ON(!anon_vma);
1762 	/* address might be in next vma when migration races vma_adjust */
1763 	first = atomic_inc_and_test(&page->_mapcount);
1764 	if (first)
1765 		__hugepage_set_anon_rmap(page, vma, address, 0);
1766 }
1767 
1768 void hugepage_add_new_anon_rmap(struct page *page,
1769 			struct vm_area_struct *vma, unsigned long address)
1770 {
1771 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1772 	atomic_set(&page->_mapcount, 0);
1773 	__hugepage_set_anon_rmap(page, vma, address, 1);
1774 }
1775 #endif /* CONFIG_HUGETLB_PAGE */
1776