1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * mapping->i_mmap_mutex 27 * anon_vma->mutex 28 * mm->page_table_lock or pte_lock 29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 30 * swap_lock (in swap_duplicate, swap_info_get) 31 * mmlist_lock (in mmput, drain_mmlist and others) 32 * mapping->private_lock (in __set_page_dirty_buffers) 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 34 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within inode_wb_list_lock in __sync_single_inode) 39 * 40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon) 41 * ->tasklist_lock 42 * pte map lock 43 */ 44 45 #include <linux/mm.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/slab.h> 50 #include <linux/init.h> 51 #include <linux/ksm.h> 52 #include <linux/rmap.h> 53 #include <linux/rcupdate.h> 54 #include <linux/module.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/migrate.h> 58 #include <linux/hugetlb.h> 59 60 #include <asm/tlbflush.h> 61 62 #include "internal.h" 63 64 static struct kmem_cache *anon_vma_cachep; 65 static struct kmem_cache *anon_vma_chain_cachep; 66 67 static inline struct anon_vma *anon_vma_alloc(void) 68 { 69 struct anon_vma *anon_vma; 70 71 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 72 if (anon_vma) { 73 atomic_set(&anon_vma->refcount, 1); 74 /* 75 * Initialise the anon_vma root to point to itself. If called 76 * from fork, the root will be reset to the parents anon_vma. 77 */ 78 anon_vma->root = anon_vma; 79 } 80 81 return anon_vma; 82 } 83 84 static inline void anon_vma_free(struct anon_vma *anon_vma) 85 { 86 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 87 88 /* 89 * Synchronize against page_lock_anon_vma() such that 90 * we can safely hold the lock without the anon_vma getting 91 * freed. 92 * 93 * Relies on the full mb implied by the atomic_dec_and_test() from 94 * put_anon_vma() against the acquire barrier implied by 95 * mutex_trylock() from page_lock_anon_vma(). This orders: 96 * 97 * page_lock_anon_vma() VS put_anon_vma() 98 * mutex_trylock() atomic_dec_and_test() 99 * LOCK MB 100 * atomic_read() mutex_is_locked() 101 * 102 * LOCK should suffice since the actual taking of the lock must 103 * happen _before_ what follows. 104 */ 105 if (mutex_is_locked(&anon_vma->root->mutex)) { 106 anon_vma_lock(anon_vma); 107 anon_vma_unlock(anon_vma); 108 } 109 110 kmem_cache_free(anon_vma_cachep, anon_vma); 111 } 112 113 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 114 { 115 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 116 } 117 118 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 119 { 120 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 121 } 122 123 /** 124 * anon_vma_prepare - attach an anon_vma to a memory region 125 * @vma: the memory region in question 126 * 127 * This makes sure the memory mapping described by 'vma' has 128 * an 'anon_vma' attached to it, so that we can associate the 129 * anonymous pages mapped into it with that anon_vma. 130 * 131 * The common case will be that we already have one, but if 132 * not we either need to find an adjacent mapping that we 133 * can re-use the anon_vma from (very common when the only 134 * reason for splitting a vma has been mprotect()), or we 135 * allocate a new one. 136 * 137 * Anon-vma allocations are very subtle, because we may have 138 * optimistically looked up an anon_vma in page_lock_anon_vma() 139 * and that may actually touch the spinlock even in the newly 140 * allocated vma (it depends on RCU to make sure that the 141 * anon_vma isn't actually destroyed). 142 * 143 * As a result, we need to do proper anon_vma locking even 144 * for the new allocation. At the same time, we do not want 145 * to do any locking for the common case of already having 146 * an anon_vma. 147 * 148 * This must be called with the mmap_sem held for reading. 149 */ 150 int anon_vma_prepare(struct vm_area_struct *vma) 151 { 152 struct anon_vma *anon_vma = vma->anon_vma; 153 struct anon_vma_chain *avc; 154 155 might_sleep(); 156 if (unlikely(!anon_vma)) { 157 struct mm_struct *mm = vma->vm_mm; 158 struct anon_vma *allocated; 159 160 avc = anon_vma_chain_alloc(GFP_KERNEL); 161 if (!avc) 162 goto out_enomem; 163 164 anon_vma = find_mergeable_anon_vma(vma); 165 allocated = NULL; 166 if (!anon_vma) { 167 anon_vma = anon_vma_alloc(); 168 if (unlikely(!anon_vma)) 169 goto out_enomem_free_avc; 170 allocated = anon_vma; 171 } 172 173 anon_vma_lock(anon_vma); 174 /* page_table_lock to protect against threads */ 175 spin_lock(&mm->page_table_lock); 176 if (likely(!vma->anon_vma)) { 177 vma->anon_vma = anon_vma; 178 avc->anon_vma = anon_vma; 179 avc->vma = vma; 180 list_add(&avc->same_vma, &vma->anon_vma_chain); 181 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 182 allocated = NULL; 183 avc = NULL; 184 } 185 spin_unlock(&mm->page_table_lock); 186 anon_vma_unlock(anon_vma); 187 188 if (unlikely(allocated)) 189 put_anon_vma(allocated); 190 if (unlikely(avc)) 191 anon_vma_chain_free(avc); 192 } 193 return 0; 194 195 out_enomem_free_avc: 196 anon_vma_chain_free(avc); 197 out_enomem: 198 return -ENOMEM; 199 } 200 201 /* 202 * This is a useful helper function for locking the anon_vma root as 203 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 204 * have the same vma. 205 * 206 * Such anon_vma's should have the same root, so you'd expect to see 207 * just a single mutex_lock for the whole traversal. 208 */ 209 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 210 { 211 struct anon_vma *new_root = anon_vma->root; 212 if (new_root != root) { 213 if (WARN_ON_ONCE(root)) 214 mutex_unlock(&root->mutex); 215 root = new_root; 216 mutex_lock(&root->mutex); 217 } 218 return root; 219 } 220 221 static inline void unlock_anon_vma_root(struct anon_vma *root) 222 { 223 if (root) 224 mutex_unlock(&root->mutex); 225 } 226 227 static void anon_vma_chain_link(struct vm_area_struct *vma, 228 struct anon_vma_chain *avc, 229 struct anon_vma *anon_vma) 230 { 231 avc->vma = vma; 232 avc->anon_vma = anon_vma; 233 list_add(&avc->same_vma, &vma->anon_vma_chain); 234 235 /* 236 * It's critical to add new vmas to the tail of the anon_vma, 237 * see comment in huge_memory.c:__split_huge_page(). 238 */ 239 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 240 } 241 242 /* 243 * Attach the anon_vmas from src to dst. 244 * Returns 0 on success, -ENOMEM on failure. 245 */ 246 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 247 { 248 struct anon_vma_chain *avc, *pavc; 249 struct anon_vma *root = NULL; 250 251 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 252 struct anon_vma *anon_vma; 253 254 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 255 if (unlikely(!avc)) { 256 unlock_anon_vma_root(root); 257 root = NULL; 258 avc = anon_vma_chain_alloc(GFP_KERNEL); 259 if (!avc) 260 goto enomem_failure; 261 } 262 anon_vma = pavc->anon_vma; 263 root = lock_anon_vma_root(root, anon_vma); 264 anon_vma_chain_link(dst, avc, anon_vma); 265 } 266 unlock_anon_vma_root(root); 267 return 0; 268 269 enomem_failure: 270 unlink_anon_vmas(dst); 271 return -ENOMEM; 272 } 273 274 /* 275 * Attach vma to its own anon_vma, as well as to the anon_vmas that 276 * the corresponding VMA in the parent process is attached to. 277 * Returns 0 on success, non-zero on failure. 278 */ 279 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 280 { 281 struct anon_vma_chain *avc; 282 struct anon_vma *anon_vma; 283 284 /* Don't bother if the parent process has no anon_vma here. */ 285 if (!pvma->anon_vma) 286 return 0; 287 288 /* 289 * First, attach the new VMA to the parent VMA's anon_vmas, 290 * so rmap can find non-COWed pages in child processes. 291 */ 292 if (anon_vma_clone(vma, pvma)) 293 return -ENOMEM; 294 295 /* Then add our own anon_vma. */ 296 anon_vma = anon_vma_alloc(); 297 if (!anon_vma) 298 goto out_error; 299 avc = anon_vma_chain_alloc(GFP_KERNEL); 300 if (!avc) 301 goto out_error_free_anon_vma; 302 303 /* 304 * The root anon_vma's spinlock is the lock actually used when we 305 * lock any of the anon_vmas in this anon_vma tree. 306 */ 307 anon_vma->root = pvma->anon_vma->root; 308 /* 309 * With refcounts, an anon_vma can stay around longer than the 310 * process it belongs to. The root anon_vma needs to be pinned until 311 * this anon_vma is freed, because the lock lives in the root. 312 */ 313 get_anon_vma(anon_vma->root); 314 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 315 vma->anon_vma = anon_vma; 316 anon_vma_lock(anon_vma); 317 anon_vma_chain_link(vma, avc, anon_vma); 318 anon_vma_unlock(anon_vma); 319 320 return 0; 321 322 out_error_free_anon_vma: 323 put_anon_vma(anon_vma); 324 out_error: 325 unlink_anon_vmas(vma); 326 return -ENOMEM; 327 } 328 329 void unlink_anon_vmas(struct vm_area_struct *vma) 330 { 331 struct anon_vma_chain *avc, *next; 332 struct anon_vma *root = NULL; 333 334 /* 335 * Unlink each anon_vma chained to the VMA. This list is ordered 336 * from newest to oldest, ensuring the root anon_vma gets freed last. 337 */ 338 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 339 struct anon_vma *anon_vma = avc->anon_vma; 340 341 root = lock_anon_vma_root(root, anon_vma); 342 list_del(&avc->same_anon_vma); 343 344 /* 345 * Leave empty anon_vmas on the list - we'll need 346 * to free them outside the lock. 347 */ 348 if (list_empty(&anon_vma->head)) 349 continue; 350 351 list_del(&avc->same_vma); 352 anon_vma_chain_free(avc); 353 } 354 unlock_anon_vma_root(root); 355 356 /* 357 * Iterate the list once more, it now only contains empty and unlinked 358 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 359 * needing to acquire the anon_vma->root->mutex. 360 */ 361 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 362 struct anon_vma *anon_vma = avc->anon_vma; 363 364 put_anon_vma(anon_vma); 365 366 list_del(&avc->same_vma); 367 anon_vma_chain_free(avc); 368 } 369 } 370 371 static void anon_vma_ctor(void *data) 372 { 373 struct anon_vma *anon_vma = data; 374 375 mutex_init(&anon_vma->mutex); 376 atomic_set(&anon_vma->refcount, 0); 377 INIT_LIST_HEAD(&anon_vma->head); 378 } 379 380 void __init anon_vma_init(void) 381 { 382 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 383 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 384 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 385 } 386 387 /* 388 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 389 * 390 * Since there is no serialization what so ever against page_remove_rmap() 391 * the best this function can do is return a locked anon_vma that might 392 * have been relevant to this page. 393 * 394 * The page might have been remapped to a different anon_vma or the anon_vma 395 * returned may already be freed (and even reused). 396 * 397 * In case it was remapped to a different anon_vma, the new anon_vma will be a 398 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 399 * ensure that any anon_vma obtained from the page will still be valid for as 400 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 401 * 402 * All users of this function must be very careful when walking the anon_vma 403 * chain and verify that the page in question is indeed mapped in it 404 * [ something equivalent to page_mapped_in_vma() ]. 405 * 406 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 407 * that the anon_vma pointer from page->mapping is valid if there is a 408 * mapcount, we can dereference the anon_vma after observing those. 409 */ 410 struct anon_vma *page_get_anon_vma(struct page *page) 411 { 412 struct anon_vma *anon_vma = NULL; 413 unsigned long anon_mapping; 414 415 rcu_read_lock(); 416 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 417 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 418 goto out; 419 if (!page_mapped(page)) 420 goto out; 421 422 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 423 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 424 anon_vma = NULL; 425 goto out; 426 } 427 428 /* 429 * If this page is still mapped, then its anon_vma cannot have been 430 * freed. But if it has been unmapped, we have no security against the 431 * anon_vma structure being freed and reused (for another anon_vma: 432 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 433 * above cannot corrupt). 434 */ 435 if (!page_mapped(page)) { 436 put_anon_vma(anon_vma); 437 anon_vma = NULL; 438 } 439 out: 440 rcu_read_unlock(); 441 442 return anon_vma; 443 } 444 445 /* 446 * Similar to page_get_anon_vma() except it locks the anon_vma. 447 * 448 * Its a little more complex as it tries to keep the fast path to a single 449 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 450 * reference like with page_get_anon_vma() and then block on the mutex. 451 */ 452 struct anon_vma *page_lock_anon_vma(struct page *page) 453 { 454 struct anon_vma *anon_vma = NULL; 455 struct anon_vma *root_anon_vma; 456 unsigned long anon_mapping; 457 458 rcu_read_lock(); 459 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 460 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 461 goto out; 462 if (!page_mapped(page)) 463 goto out; 464 465 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 466 root_anon_vma = ACCESS_ONCE(anon_vma->root); 467 if (mutex_trylock(&root_anon_vma->mutex)) { 468 /* 469 * If the page is still mapped, then this anon_vma is still 470 * its anon_vma, and holding the mutex ensures that it will 471 * not go away, see anon_vma_free(). 472 */ 473 if (!page_mapped(page)) { 474 mutex_unlock(&root_anon_vma->mutex); 475 anon_vma = NULL; 476 } 477 goto out; 478 } 479 480 /* trylock failed, we got to sleep */ 481 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 482 anon_vma = NULL; 483 goto out; 484 } 485 486 if (!page_mapped(page)) { 487 put_anon_vma(anon_vma); 488 anon_vma = NULL; 489 goto out; 490 } 491 492 /* we pinned the anon_vma, its safe to sleep */ 493 rcu_read_unlock(); 494 anon_vma_lock(anon_vma); 495 496 if (atomic_dec_and_test(&anon_vma->refcount)) { 497 /* 498 * Oops, we held the last refcount, release the lock 499 * and bail -- can't simply use put_anon_vma() because 500 * we'll deadlock on the anon_vma_lock() recursion. 501 */ 502 anon_vma_unlock(anon_vma); 503 __put_anon_vma(anon_vma); 504 anon_vma = NULL; 505 } 506 507 return anon_vma; 508 509 out: 510 rcu_read_unlock(); 511 return anon_vma; 512 } 513 514 void page_unlock_anon_vma(struct anon_vma *anon_vma) 515 { 516 anon_vma_unlock(anon_vma); 517 } 518 519 /* 520 * At what user virtual address is page expected in @vma? 521 * Returns virtual address or -EFAULT if page's index/offset is not 522 * within the range mapped the @vma. 523 */ 524 inline unsigned long 525 vma_address(struct page *page, struct vm_area_struct *vma) 526 { 527 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 528 unsigned long address; 529 530 if (unlikely(is_vm_hugetlb_page(vma))) 531 pgoff = page->index << huge_page_order(page_hstate(page)); 532 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 533 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 534 /* page should be within @vma mapping range */ 535 return -EFAULT; 536 } 537 return address; 538 } 539 540 /* 541 * At what user virtual address is page expected in vma? 542 * Caller should check the page is actually part of the vma. 543 */ 544 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 545 { 546 if (PageAnon(page)) { 547 struct anon_vma *page__anon_vma = page_anon_vma(page); 548 /* 549 * Note: swapoff's unuse_vma() is more efficient with this 550 * check, and needs it to match anon_vma when KSM is active. 551 */ 552 if (!vma->anon_vma || !page__anon_vma || 553 vma->anon_vma->root != page__anon_vma->root) 554 return -EFAULT; 555 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 556 if (!vma->vm_file || 557 vma->vm_file->f_mapping != page->mapping) 558 return -EFAULT; 559 } else 560 return -EFAULT; 561 return vma_address(page, vma); 562 } 563 564 /* 565 * Check that @page is mapped at @address into @mm. 566 * 567 * If @sync is false, page_check_address may perform a racy check to avoid 568 * the page table lock when the pte is not present (helpful when reclaiming 569 * highly shared pages). 570 * 571 * On success returns with pte mapped and locked. 572 */ 573 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 574 unsigned long address, spinlock_t **ptlp, int sync) 575 { 576 pgd_t *pgd; 577 pud_t *pud; 578 pmd_t *pmd; 579 pte_t *pte; 580 spinlock_t *ptl; 581 582 if (unlikely(PageHuge(page))) { 583 pte = huge_pte_offset(mm, address); 584 ptl = &mm->page_table_lock; 585 goto check; 586 } 587 588 pgd = pgd_offset(mm, address); 589 if (!pgd_present(*pgd)) 590 return NULL; 591 592 pud = pud_offset(pgd, address); 593 if (!pud_present(*pud)) 594 return NULL; 595 596 pmd = pmd_offset(pud, address); 597 if (!pmd_present(*pmd)) 598 return NULL; 599 if (pmd_trans_huge(*pmd)) 600 return NULL; 601 602 pte = pte_offset_map(pmd, address); 603 /* Make a quick check before getting the lock */ 604 if (!sync && !pte_present(*pte)) { 605 pte_unmap(pte); 606 return NULL; 607 } 608 609 ptl = pte_lockptr(mm, pmd); 610 check: 611 spin_lock(ptl); 612 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 613 *ptlp = ptl; 614 return pte; 615 } 616 pte_unmap_unlock(pte, ptl); 617 return NULL; 618 } 619 620 /** 621 * page_mapped_in_vma - check whether a page is really mapped in a VMA 622 * @page: the page to test 623 * @vma: the VMA to test 624 * 625 * Returns 1 if the page is mapped into the page tables of the VMA, 0 626 * if the page is not mapped into the page tables of this VMA. Only 627 * valid for normal file or anonymous VMAs. 628 */ 629 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 630 { 631 unsigned long address; 632 pte_t *pte; 633 spinlock_t *ptl; 634 635 address = vma_address(page, vma); 636 if (address == -EFAULT) /* out of vma range */ 637 return 0; 638 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 639 if (!pte) /* the page is not in this mm */ 640 return 0; 641 pte_unmap_unlock(pte, ptl); 642 643 return 1; 644 } 645 646 /* 647 * Subfunctions of page_referenced: page_referenced_one called 648 * repeatedly from either page_referenced_anon or page_referenced_file. 649 */ 650 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 651 unsigned long address, unsigned int *mapcount, 652 unsigned long *vm_flags) 653 { 654 struct mm_struct *mm = vma->vm_mm; 655 int referenced = 0; 656 657 if (unlikely(PageTransHuge(page))) { 658 pmd_t *pmd; 659 660 spin_lock(&mm->page_table_lock); 661 /* 662 * rmap might return false positives; we must filter 663 * these out using page_check_address_pmd(). 664 */ 665 pmd = page_check_address_pmd(page, mm, address, 666 PAGE_CHECK_ADDRESS_PMD_FLAG); 667 if (!pmd) { 668 spin_unlock(&mm->page_table_lock); 669 goto out; 670 } 671 672 if (vma->vm_flags & VM_LOCKED) { 673 spin_unlock(&mm->page_table_lock); 674 *mapcount = 0; /* break early from loop */ 675 *vm_flags |= VM_LOCKED; 676 goto out; 677 } 678 679 /* go ahead even if the pmd is pmd_trans_splitting() */ 680 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 681 referenced++; 682 spin_unlock(&mm->page_table_lock); 683 } else { 684 pte_t *pte; 685 spinlock_t *ptl; 686 687 /* 688 * rmap might return false positives; we must filter 689 * these out using page_check_address(). 690 */ 691 pte = page_check_address(page, mm, address, &ptl, 0); 692 if (!pte) 693 goto out; 694 695 if (vma->vm_flags & VM_LOCKED) { 696 pte_unmap_unlock(pte, ptl); 697 *mapcount = 0; /* break early from loop */ 698 *vm_flags |= VM_LOCKED; 699 goto out; 700 } 701 702 if (ptep_clear_flush_young_notify(vma, address, pte)) { 703 /* 704 * Don't treat a reference through a sequentially read 705 * mapping as such. If the page has been used in 706 * another mapping, we will catch it; if this other 707 * mapping is already gone, the unmap path will have 708 * set PG_referenced or activated the page. 709 */ 710 if (likely(!VM_SequentialReadHint(vma))) 711 referenced++; 712 } 713 pte_unmap_unlock(pte, ptl); 714 } 715 716 /* Pretend the page is referenced if the task has the 717 swap token and is in the middle of a page fault. */ 718 if (mm != current->mm && has_swap_token(mm) && 719 rwsem_is_locked(&mm->mmap_sem)) 720 referenced++; 721 722 (*mapcount)--; 723 724 if (referenced) 725 *vm_flags |= vma->vm_flags; 726 out: 727 return referenced; 728 } 729 730 static int page_referenced_anon(struct page *page, 731 struct mem_cgroup *mem_cont, 732 unsigned long *vm_flags) 733 { 734 unsigned int mapcount; 735 struct anon_vma *anon_vma; 736 struct anon_vma_chain *avc; 737 int referenced = 0; 738 739 anon_vma = page_lock_anon_vma(page); 740 if (!anon_vma) 741 return referenced; 742 743 mapcount = page_mapcount(page); 744 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 745 struct vm_area_struct *vma = avc->vma; 746 unsigned long address = vma_address(page, vma); 747 if (address == -EFAULT) 748 continue; 749 /* 750 * If we are reclaiming on behalf of a cgroup, skip 751 * counting on behalf of references from different 752 * cgroups 753 */ 754 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 755 continue; 756 referenced += page_referenced_one(page, vma, address, 757 &mapcount, vm_flags); 758 if (!mapcount) 759 break; 760 } 761 762 page_unlock_anon_vma(anon_vma); 763 return referenced; 764 } 765 766 /** 767 * page_referenced_file - referenced check for object-based rmap 768 * @page: the page we're checking references on. 769 * @mem_cont: target memory controller 770 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 771 * 772 * For an object-based mapped page, find all the places it is mapped and 773 * check/clear the referenced flag. This is done by following the page->mapping 774 * pointer, then walking the chain of vmas it holds. It returns the number 775 * of references it found. 776 * 777 * This function is only called from page_referenced for object-based pages. 778 */ 779 static int page_referenced_file(struct page *page, 780 struct mem_cgroup *mem_cont, 781 unsigned long *vm_flags) 782 { 783 unsigned int mapcount; 784 struct address_space *mapping = page->mapping; 785 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 786 struct vm_area_struct *vma; 787 struct prio_tree_iter iter; 788 int referenced = 0; 789 790 /* 791 * The caller's checks on page->mapping and !PageAnon have made 792 * sure that this is a file page: the check for page->mapping 793 * excludes the case just before it gets set on an anon page. 794 */ 795 BUG_ON(PageAnon(page)); 796 797 /* 798 * The page lock not only makes sure that page->mapping cannot 799 * suddenly be NULLified by truncation, it makes sure that the 800 * structure at mapping cannot be freed and reused yet, 801 * so we can safely take mapping->i_mmap_mutex. 802 */ 803 BUG_ON(!PageLocked(page)); 804 805 mutex_lock(&mapping->i_mmap_mutex); 806 807 /* 808 * i_mmap_mutex does not stabilize mapcount at all, but mapcount 809 * is more likely to be accurate if we note it after spinning. 810 */ 811 mapcount = page_mapcount(page); 812 813 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 814 unsigned long address = vma_address(page, vma); 815 if (address == -EFAULT) 816 continue; 817 /* 818 * If we are reclaiming on behalf of a cgroup, skip 819 * counting on behalf of references from different 820 * cgroups 821 */ 822 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 823 continue; 824 referenced += page_referenced_one(page, vma, address, 825 &mapcount, vm_flags); 826 if (!mapcount) 827 break; 828 } 829 830 mutex_unlock(&mapping->i_mmap_mutex); 831 return referenced; 832 } 833 834 /** 835 * page_referenced - test if the page was referenced 836 * @page: the page to test 837 * @is_locked: caller holds lock on the page 838 * @mem_cont: target memory controller 839 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 840 * 841 * Quick test_and_clear_referenced for all mappings to a page, 842 * returns the number of ptes which referenced the page. 843 */ 844 int page_referenced(struct page *page, 845 int is_locked, 846 struct mem_cgroup *mem_cont, 847 unsigned long *vm_flags) 848 { 849 int referenced = 0; 850 int we_locked = 0; 851 852 *vm_flags = 0; 853 if (page_mapped(page) && page_rmapping(page)) { 854 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 855 we_locked = trylock_page(page); 856 if (!we_locked) { 857 referenced++; 858 goto out; 859 } 860 } 861 if (unlikely(PageKsm(page))) 862 referenced += page_referenced_ksm(page, mem_cont, 863 vm_flags); 864 else if (PageAnon(page)) 865 referenced += page_referenced_anon(page, mem_cont, 866 vm_flags); 867 else if (page->mapping) 868 referenced += page_referenced_file(page, mem_cont, 869 vm_flags); 870 if (we_locked) 871 unlock_page(page); 872 873 if (page_test_and_clear_young(page_to_pfn(page))) 874 referenced++; 875 } 876 out: 877 return referenced; 878 } 879 880 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 881 unsigned long address) 882 { 883 struct mm_struct *mm = vma->vm_mm; 884 pte_t *pte; 885 spinlock_t *ptl; 886 int ret = 0; 887 888 pte = page_check_address(page, mm, address, &ptl, 1); 889 if (!pte) 890 goto out; 891 892 if (pte_dirty(*pte) || pte_write(*pte)) { 893 pte_t entry; 894 895 flush_cache_page(vma, address, pte_pfn(*pte)); 896 entry = ptep_clear_flush_notify(vma, address, pte); 897 entry = pte_wrprotect(entry); 898 entry = pte_mkclean(entry); 899 set_pte_at(mm, address, pte, entry); 900 ret = 1; 901 } 902 903 pte_unmap_unlock(pte, ptl); 904 out: 905 return ret; 906 } 907 908 static int page_mkclean_file(struct address_space *mapping, struct page *page) 909 { 910 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 911 struct vm_area_struct *vma; 912 struct prio_tree_iter iter; 913 int ret = 0; 914 915 BUG_ON(PageAnon(page)); 916 917 mutex_lock(&mapping->i_mmap_mutex); 918 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 919 if (vma->vm_flags & VM_SHARED) { 920 unsigned long address = vma_address(page, vma); 921 if (address == -EFAULT) 922 continue; 923 ret += page_mkclean_one(page, vma, address); 924 } 925 } 926 mutex_unlock(&mapping->i_mmap_mutex); 927 return ret; 928 } 929 930 int page_mkclean(struct page *page) 931 { 932 int ret = 0; 933 934 BUG_ON(!PageLocked(page)); 935 936 if (page_mapped(page)) { 937 struct address_space *mapping = page_mapping(page); 938 if (mapping) { 939 ret = page_mkclean_file(mapping, page); 940 if (page_test_and_clear_dirty(page_to_pfn(page), 1)) 941 ret = 1; 942 } 943 } 944 945 return ret; 946 } 947 EXPORT_SYMBOL_GPL(page_mkclean); 948 949 /** 950 * page_move_anon_rmap - move a page to our anon_vma 951 * @page: the page to move to our anon_vma 952 * @vma: the vma the page belongs to 953 * @address: the user virtual address mapped 954 * 955 * When a page belongs exclusively to one process after a COW event, 956 * that page can be moved into the anon_vma that belongs to just that 957 * process, so the rmap code will not search the parent or sibling 958 * processes. 959 */ 960 void page_move_anon_rmap(struct page *page, 961 struct vm_area_struct *vma, unsigned long address) 962 { 963 struct anon_vma *anon_vma = vma->anon_vma; 964 965 VM_BUG_ON(!PageLocked(page)); 966 VM_BUG_ON(!anon_vma); 967 VM_BUG_ON(page->index != linear_page_index(vma, address)); 968 969 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 970 page->mapping = (struct address_space *) anon_vma; 971 } 972 973 /** 974 * __page_set_anon_rmap - set up new anonymous rmap 975 * @page: Page to add to rmap 976 * @vma: VM area to add page to. 977 * @address: User virtual address of the mapping 978 * @exclusive: the page is exclusively owned by the current process 979 */ 980 static void __page_set_anon_rmap(struct page *page, 981 struct vm_area_struct *vma, unsigned long address, int exclusive) 982 { 983 struct anon_vma *anon_vma = vma->anon_vma; 984 985 BUG_ON(!anon_vma); 986 987 if (PageAnon(page)) 988 return; 989 990 /* 991 * If the page isn't exclusively mapped into this vma, 992 * we must use the _oldest_ possible anon_vma for the 993 * page mapping! 994 */ 995 if (!exclusive) 996 anon_vma = anon_vma->root; 997 998 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 999 page->mapping = (struct address_space *) anon_vma; 1000 page->index = linear_page_index(vma, address); 1001 } 1002 1003 /** 1004 * __page_check_anon_rmap - sanity check anonymous rmap addition 1005 * @page: the page to add the mapping to 1006 * @vma: the vm area in which the mapping is added 1007 * @address: the user virtual address mapped 1008 */ 1009 static void __page_check_anon_rmap(struct page *page, 1010 struct vm_area_struct *vma, unsigned long address) 1011 { 1012 #ifdef CONFIG_DEBUG_VM 1013 /* 1014 * The page's anon-rmap details (mapping and index) are guaranteed to 1015 * be set up correctly at this point. 1016 * 1017 * We have exclusion against page_add_anon_rmap because the caller 1018 * always holds the page locked, except if called from page_dup_rmap, 1019 * in which case the page is already known to be setup. 1020 * 1021 * We have exclusion against page_add_new_anon_rmap because those pages 1022 * are initially only visible via the pagetables, and the pte is locked 1023 * over the call to page_add_new_anon_rmap. 1024 */ 1025 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1026 BUG_ON(page->index != linear_page_index(vma, address)); 1027 #endif 1028 } 1029 1030 /** 1031 * page_add_anon_rmap - add pte mapping to an anonymous page 1032 * @page: the page to add the mapping to 1033 * @vma: the vm area in which the mapping is added 1034 * @address: the user virtual address mapped 1035 * 1036 * The caller needs to hold the pte lock, and the page must be locked in 1037 * the anon_vma case: to serialize mapping,index checking after setting, 1038 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1039 * (but PageKsm is never downgraded to PageAnon). 1040 */ 1041 void page_add_anon_rmap(struct page *page, 1042 struct vm_area_struct *vma, unsigned long address) 1043 { 1044 do_page_add_anon_rmap(page, vma, address, 0); 1045 } 1046 1047 /* 1048 * Special version of the above for do_swap_page, which often runs 1049 * into pages that are exclusively owned by the current process. 1050 * Everybody else should continue to use page_add_anon_rmap above. 1051 */ 1052 void do_page_add_anon_rmap(struct page *page, 1053 struct vm_area_struct *vma, unsigned long address, int exclusive) 1054 { 1055 int first = atomic_inc_and_test(&page->_mapcount); 1056 if (first) { 1057 if (!PageTransHuge(page)) 1058 __inc_zone_page_state(page, NR_ANON_PAGES); 1059 else 1060 __inc_zone_page_state(page, 1061 NR_ANON_TRANSPARENT_HUGEPAGES); 1062 } 1063 if (unlikely(PageKsm(page))) 1064 return; 1065 1066 VM_BUG_ON(!PageLocked(page)); 1067 /* address might be in next vma when migration races vma_adjust */ 1068 if (first) 1069 __page_set_anon_rmap(page, vma, address, exclusive); 1070 else 1071 __page_check_anon_rmap(page, vma, address); 1072 } 1073 1074 /** 1075 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1076 * @page: the page to add the mapping to 1077 * @vma: the vm area in which the mapping is added 1078 * @address: the user virtual address mapped 1079 * 1080 * Same as page_add_anon_rmap but must only be called on *new* pages. 1081 * This means the inc-and-test can be bypassed. 1082 * Page does not have to be locked. 1083 */ 1084 void page_add_new_anon_rmap(struct page *page, 1085 struct vm_area_struct *vma, unsigned long address) 1086 { 1087 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1088 SetPageSwapBacked(page); 1089 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1090 if (!PageTransHuge(page)) 1091 __inc_zone_page_state(page, NR_ANON_PAGES); 1092 else 1093 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1094 __page_set_anon_rmap(page, vma, address, 1); 1095 if (page_evictable(page, vma)) 1096 lru_cache_add_lru(page, LRU_ACTIVE_ANON); 1097 else 1098 add_page_to_unevictable_list(page); 1099 } 1100 1101 /** 1102 * page_add_file_rmap - add pte mapping to a file page 1103 * @page: the page to add the mapping to 1104 * 1105 * The caller needs to hold the pte lock. 1106 */ 1107 void page_add_file_rmap(struct page *page) 1108 { 1109 if (atomic_inc_and_test(&page->_mapcount)) { 1110 __inc_zone_page_state(page, NR_FILE_MAPPED); 1111 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED); 1112 } 1113 } 1114 1115 /** 1116 * page_remove_rmap - take down pte mapping from a page 1117 * @page: page to remove mapping from 1118 * 1119 * The caller needs to hold the pte lock. 1120 */ 1121 void page_remove_rmap(struct page *page) 1122 { 1123 /* page still mapped by someone else? */ 1124 if (!atomic_add_negative(-1, &page->_mapcount)) 1125 return; 1126 1127 /* 1128 * Now that the last pte has gone, s390 must transfer dirty 1129 * flag from storage key to struct page. We can usually skip 1130 * this if the page is anon, so about to be freed; but perhaps 1131 * not if it's in swapcache - there might be another pte slot 1132 * containing the swap entry, but page not yet written to swap. 1133 */ 1134 if ((!PageAnon(page) || PageSwapCache(page)) && 1135 page_test_and_clear_dirty(page_to_pfn(page), 1)) 1136 set_page_dirty(page); 1137 /* 1138 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 1139 * and not charged by memcg for now. 1140 */ 1141 if (unlikely(PageHuge(page))) 1142 return; 1143 if (PageAnon(page)) { 1144 mem_cgroup_uncharge_page(page); 1145 if (!PageTransHuge(page)) 1146 __dec_zone_page_state(page, NR_ANON_PAGES); 1147 else 1148 __dec_zone_page_state(page, 1149 NR_ANON_TRANSPARENT_HUGEPAGES); 1150 } else { 1151 __dec_zone_page_state(page, NR_FILE_MAPPED); 1152 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED); 1153 } 1154 /* 1155 * It would be tidy to reset the PageAnon mapping here, 1156 * but that might overwrite a racing page_add_anon_rmap 1157 * which increments mapcount after us but sets mapping 1158 * before us: so leave the reset to free_hot_cold_page, 1159 * and remember that it's only reliable while mapped. 1160 * Leaving it set also helps swapoff to reinstate ptes 1161 * faster for those pages still in swapcache. 1162 */ 1163 } 1164 1165 /* 1166 * Subfunctions of try_to_unmap: try_to_unmap_one called 1167 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 1168 */ 1169 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1170 unsigned long address, enum ttu_flags flags) 1171 { 1172 struct mm_struct *mm = vma->vm_mm; 1173 pte_t *pte; 1174 pte_t pteval; 1175 spinlock_t *ptl; 1176 int ret = SWAP_AGAIN; 1177 1178 pte = page_check_address(page, mm, address, &ptl, 0); 1179 if (!pte) 1180 goto out; 1181 1182 /* 1183 * If the page is mlock()d, we cannot swap it out. 1184 * If it's recently referenced (perhaps page_referenced 1185 * skipped over this mm) then we should reactivate it. 1186 */ 1187 if (!(flags & TTU_IGNORE_MLOCK)) { 1188 if (vma->vm_flags & VM_LOCKED) 1189 goto out_mlock; 1190 1191 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1192 goto out_unmap; 1193 } 1194 if (!(flags & TTU_IGNORE_ACCESS)) { 1195 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1196 ret = SWAP_FAIL; 1197 goto out_unmap; 1198 } 1199 } 1200 1201 /* Nuke the page table entry. */ 1202 flush_cache_page(vma, address, page_to_pfn(page)); 1203 pteval = ptep_clear_flush_notify(vma, address, pte); 1204 1205 /* Move the dirty bit to the physical page now the pte is gone. */ 1206 if (pte_dirty(pteval)) 1207 set_page_dirty(page); 1208 1209 /* Update high watermark before we lower rss */ 1210 update_hiwater_rss(mm); 1211 1212 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1213 if (PageAnon(page)) 1214 dec_mm_counter(mm, MM_ANONPAGES); 1215 else 1216 dec_mm_counter(mm, MM_FILEPAGES); 1217 set_pte_at(mm, address, pte, 1218 swp_entry_to_pte(make_hwpoison_entry(page))); 1219 } else if (PageAnon(page)) { 1220 swp_entry_t entry = { .val = page_private(page) }; 1221 1222 if (PageSwapCache(page)) { 1223 /* 1224 * Store the swap location in the pte. 1225 * See handle_pte_fault() ... 1226 */ 1227 if (swap_duplicate(entry) < 0) { 1228 set_pte_at(mm, address, pte, pteval); 1229 ret = SWAP_FAIL; 1230 goto out_unmap; 1231 } 1232 if (list_empty(&mm->mmlist)) { 1233 spin_lock(&mmlist_lock); 1234 if (list_empty(&mm->mmlist)) 1235 list_add(&mm->mmlist, &init_mm.mmlist); 1236 spin_unlock(&mmlist_lock); 1237 } 1238 dec_mm_counter(mm, MM_ANONPAGES); 1239 inc_mm_counter(mm, MM_SWAPENTS); 1240 } else if (PAGE_MIGRATION) { 1241 /* 1242 * Store the pfn of the page in a special migration 1243 * pte. do_swap_page() will wait until the migration 1244 * pte is removed and then restart fault handling. 1245 */ 1246 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1247 entry = make_migration_entry(page, pte_write(pteval)); 1248 } 1249 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1250 BUG_ON(pte_file(*pte)); 1251 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { 1252 /* Establish migration entry for a file page */ 1253 swp_entry_t entry; 1254 entry = make_migration_entry(page, pte_write(pteval)); 1255 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1256 } else 1257 dec_mm_counter(mm, MM_FILEPAGES); 1258 1259 page_remove_rmap(page); 1260 page_cache_release(page); 1261 1262 out_unmap: 1263 pte_unmap_unlock(pte, ptl); 1264 out: 1265 return ret; 1266 1267 out_mlock: 1268 pte_unmap_unlock(pte, ptl); 1269 1270 1271 /* 1272 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1273 * unstable result and race. Plus, We can't wait here because 1274 * we now hold anon_vma->mutex or mapping->i_mmap_mutex. 1275 * if trylock failed, the page remain in evictable lru and later 1276 * vmscan could retry to move the page to unevictable lru if the 1277 * page is actually mlocked. 1278 */ 1279 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1280 if (vma->vm_flags & VM_LOCKED) { 1281 mlock_vma_page(page); 1282 ret = SWAP_MLOCK; 1283 } 1284 up_read(&vma->vm_mm->mmap_sem); 1285 } 1286 return ret; 1287 } 1288 1289 /* 1290 * objrmap doesn't work for nonlinear VMAs because the assumption that 1291 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1292 * Consequently, given a particular page and its ->index, we cannot locate the 1293 * ptes which are mapping that page without an exhaustive linear search. 1294 * 1295 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1296 * maps the file to which the target page belongs. The ->vm_private_data field 1297 * holds the current cursor into that scan. Successive searches will circulate 1298 * around the vma's virtual address space. 1299 * 1300 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1301 * more scanning pressure is placed against them as well. Eventually pages 1302 * will become fully unmapped and are eligible for eviction. 1303 * 1304 * For very sparsely populated VMAs this is a little inefficient - chances are 1305 * there there won't be many ptes located within the scan cluster. In this case 1306 * maybe we could scan further - to the end of the pte page, perhaps. 1307 * 1308 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1309 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1310 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1311 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1312 */ 1313 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1314 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1315 1316 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1317 struct vm_area_struct *vma, struct page *check_page) 1318 { 1319 struct mm_struct *mm = vma->vm_mm; 1320 pgd_t *pgd; 1321 pud_t *pud; 1322 pmd_t *pmd; 1323 pte_t *pte; 1324 pte_t pteval; 1325 spinlock_t *ptl; 1326 struct page *page; 1327 unsigned long address; 1328 unsigned long end; 1329 int ret = SWAP_AGAIN; 1330 int locked_vma = 0; 1331 1332 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1333 end = address + CLUSTER_SIZE; 1334 if (address < vma->vm_start) 1335 address = vma->vm_start; 1336 if (end > vma->vm_end) 1337 end = vma->vm_end; 1338 1339 pgd = pgd_offset(mm, address); 1340 if (!pgd_present(*pgd)) 1341 return ret; 1342 1343 pud = pud_offset(pgd, address); 1344 if (!pud_present(*pud)) 1345 return ret; 1346 1347 pmd = pmd_offset(pud, address); 1348 if (!pmd_present(*pmd)) 1349 return ret; 1350 1351 /* 1352 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1353 * keep the sem while scanning the cluster for mlocking pages. 1354 */ 1355 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1356 locked_vma = (vma->vm_flags & VM_LOCKED); 1357 if (!locked_vma) 1358 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1359 } 1360 1361 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1362 1363 /* Update high watermark before we lower rss */ 1364 update_hiwater_rss(mm); 1365 1366 for (; address < end; pte++, address += PAGE_SIZE) { 1367 if (!pte_present(*pte)) 1368 continue; 1369 page = vm_normal_page(vma, address, *pte); 1370 BUG_ON(!page || PageAnon(page)); 1371 1372 if (locked_vma) { 1373 mlock_vma_page(page); /* no-op if already mlocked */ 1374 if (page == check_page) 1375 ret = SWAP_MLOCK; 1376 continue; /* don't unmap */ 1377 } 1378 1379 if (ptep_clear_flush_young_notify(vma, address, pte)) 1380 continue; 1381 1382 /* Nuke the page table entry. */ 1383 flush_cache_page(vma, address, pte_pfn(*pte)); 1384 pteval = ptep_clear_flush_notify(vma, address, pte); 1385 1386 /* If nonlinear, store the file page offset in the pte. */ 1387 if (page->index != linear_page_index(vma, address)) 1388 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 1389 1390 /* Move the dirty bit to the physical page now the pte is gone. */ 1391 if (pte_dirty(pteval)) 1392 set_page_dirty(page); 1393 1394 page_remove_rmap(page); 1395 page_cache_release(page); 1396 dec_mm_counter(mm, MM_FILEPAGES); 1397 (*mapcount)--; 1398 } 1399 pte_unmap_unlock(pte - 1, ptl); 1400 if (locked_vma) 1401 up_read(&vma->vm_mm->mmap_sem); 1402 return ret; 1403 } 1404 1405 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1406 { 1407 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1408 1409 if (!maybe_stack) 1410 return false; 1411 1412 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1413 VM_STACK_INCOMPLETE_SETUP) 1414 return true; 1415 1416 return false; 1417 } 1418 1419 /** 1420 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1421 * rmap method 1422 * @page: the page to unmap/unlock 1423 * @flags: action and flags 1424 * 1425 * Find all the mappings of a page using the mapping pointer and the vma chains 1426 * contained in the anon_vma struct it points to. 1427 * 1428 * This function is only called from try_to_unmap/try_to_munlock for 1429 * anonymous pages. 1430 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1431 * where the page was found will be held for write. So, we won't recheck 1432 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1433 * 'LOCKED. 1434 */ 1435 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) 1436 { 1437 struct anon_vma *anon_vma; 1438 struct anon_vma_chain *avc; 1439 int ret = SWAP_AGAIN; 1440 1441 anon_vma = page_lock_anon_vma(page); 1442 if (!anon_vma) 1443 return ret; 1444 1445 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1446 struct vm_area_struct *vma = avc->vma; 1447 unsigned long address; 1448 1449 /* 1450 * During exec, a temporary VMA is setup and later moved. 1451 * The VMA is moved under the anon_vma lock but not the 1452 * page tables leading to a race where migration cannot 1453 * find the migration ptes. Rather than increasing the 1454 * locking requirements of exec(), migration skips 1455 * temporary VMAs until after exec() completes. 1456 */ 1457 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) && 1458 is_vma_temporary_stack(vma)) 1459 continue; 1460 1461 address = vma_address(page, vma); 1462 if (address == -EFAULT) 1463 continue; 1464 ret = try_to_unmap_one(page, vma, address, flags); 1465 if (ret != SWAP_AGAIN || !page_mapped(page)) 1466 break; 1467 } 1468 1469 page_unlock_anon_vma(anon_vma); 1470 return ret; 1471 } 1472 1473 /** 1474 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1475 * @page: the page to unmap/unlock 1476 * @flags: action and flags 1477 * 1478 * Find all the mappings of a page using the mapping pointer and the vma chains 1479 * contained in the address_space struct it points to. 1480 * 1481 * This function is only called from try_to_unmap/try_to_munlock for 1482 * object-based pages. 1483 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1484 * where the page was found will be held for write. So, we won't recheck 1485 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1486 * 'LOCKED. 1487 */ 1488 static int try_to_unmap_file(struct page *page, enum ttu_flags flags) 1489 { 1490 struct address_space *mapping = page->mapping; 1491 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1492 struct vm_area_struct *vma; 1493 struct prio_tree_iter iter; 1494 int ret = SWAP_AGAIN; 1495 unsigned long cursor; 1496 unsigned long max_nl_cursor = 0; 1497 unsigned long max_nl_size = 0; 1498 unsigned int mapcount; 1499 1500 mutex_lock(&mapping->i_mmap_mutex); 1501 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1502 unsigned long address = vma_address(page, vma); 1503 if (address == -EFAULT) 1504 continue; 1505 ret = try_to_unmap_one(page, vma, address, flags); 1506 if (ret != SWAP_AGAIN || !page_mapped(page)) 1507 goto out; 1508 } 1509 1510 if (list_empty(&mapping->i_mmap_nonlinear)) 1511 goto out; 1512 1513 /* 1514 * We don't bother to try to find the munlocked page in nonlinears. 1515 * It's costly. Instead, later, page reclaim logic may call 1516 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. 1517 */ 1518 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1519 goto out; 1520 1521 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1522 shared.vm_set.list) { 1523 cursor = (unsigned long) vma->vm_private_data; 1524 if (cursor > max_nl_cursor) 1525 max_nl_cursor = cursor; 1526 cursor = vma->vm_end - vma->vm_start; 1527 if (cursor > max_nl_size) 1528 max_nl_size = cursor; 1529 } 1530 1531 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1532 ret = SWAP_FAIL; 1533 goto out; 1534 } 1535 1536 /* 1537 * We don't try to search for this page in the nonlinear vmas, 1538 * and page_referenced wouldn't have found it anyway. Instead 1539 * just walk the nonlinear vmas trying to age and unmap some. 1540 * The mapcount of the page we came in with is irrelevant, 1541 * but even so use it as a guide to how hard we should try? 1542 */ 1543 mapcount = page_mapcount(page); 1544 if (!mapcount) 1545 goto out; 1546 cond_resched(); 1547 1548 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1549 if (max_nl_cursor == 0) 1550 max_nl_cursor = CLUSTER_SIZE; 1551 1552 do { 1553 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1554 shared.vm_set.list) { 1555 cursor = (unsigned long) vma->vm_private_data; 1556 while ( cursor < max_nl_cursor && 1557 cursor < vma->vm_end - vma->vm_start) { 1558 if (try_to_unmap_cluster(cursor, &mapcount, 1559 vma, page) == SWAP_MLOCK) 1560 ret = SWAP_MLOCK; 1561 cursor += CLUSTER_SIZE; 1562 vma->vm_private_data = (void *) cursor; 1563 if ((int)mapcount <= 0) 1564 goto out; 1565 } 1566 vma->vm_private_data = (void *) max_nl_cursor; 1567 } 1568 cond_resched(); 1569 max_nl_cursor += CLUSTER_SIZE; 1570 } while (max_nl_cursor <= max_nl_size); 1571 1572 /* 1573 * Don't loop forever (perhaps all the remaining pages are 1574 * in locked vmas). Reset cursor on all unreserved nonlinear 1575 * vmas, now forgetting on which ones it had fallen behind. 1576 */ 1577 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1578 vma->vm_private_data = NULL; 1579 out: 1580 mutex_unlock(&mapping->i_mmap_mutex); 1581 return ret; 1582 } 1583 1584 /** 1585 * try_to_unmap - try to remove all page table mappings to a page 1586 * @page: the page to get unmapped 1587 * @flags: action and flags 1588 * 1589 * Tries to remove all the page table entries which are mapping this 1590 * page, used in the pageout path. Caller must hold the page lock. 1591 * Return values are: 1592 * 1593 * SWAP_SUCCESS - we succeeded in removing all mappings 1594 * SWAP_AGAIN - we missed a mapping, try again later 1595 * SWAP_FAIL - the page is unswappable 1596 * SWAP_MLOCK - page is mlocked. 1597 */ 1598 int try_to_unmap(struct page *page, enum ttu_flags flags) 1599 { 1600 int ret; 1601 1602 BUG_ON(!PageLocked(page)); 1603 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page)); 1604 1605 if (unlikely(PageKsm(page))) 1606 ret = try_to_unmap_ksm(page, flags); 1607 else if (PageAnon(page)) 1608 ret = try_to_unmap_anon(page, flags); 1609 else 1610 ret = try_to_unmap_file(page, flags); 1611 if (ret != SWAP_MLOCK && !page_mapped(page)) 1612 ret = SWAP_SUCCESS; 1613 return ret; 1614 } 1615 1616 /** 1617 * try_to_munlock - try to munlock a page 1618 * @page: the page to be munlocked 1619 * 1620 * Called from munlock code. Checks all of the VMAs mapping the page 1621 * to make sure nobody else has this page mlocked. The page will be 1622 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1623 * 1624 * Return values are: 1625 * 1626 * SWAP_AGAIN - no vma is holding page mlocked, or, 1627 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1628 * SWAP_FAIL - page cannot be located at present 1629 * SWAP_MLOCK - page is now mlocked. 1630 */ 1631 int try_to_munlock(struct page *page) 1632 { 1633 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1634 1635 if (unlikely(PageKsm(page))) 1636 return try_to_unmap_ksm(page, TTU_MUNLOCK); 1637 else if (PageAnon(page)) 1638 return try_to_unmap_anon(page, TTU_MUNLOCK); 1639 else 1640 return try_to_unmap_file(page, TTU_MUNLOCK); 1641 } 1642 1643 void __put_anon_vma(struct anon_vma *anon_vma) 1644 { 1645 struct anon_vma *root = anon_vma->root; 1646 1647 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1648 anon_vma_free(root); 1649 1650 anon_vma_free(anon_vma); 1651 } 1652 1653 #ifdef CONFIG_MIGRATION 1654 /* 1655 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): 1656 * Called by migrate.c to remove migration ptes, but might be used more later. 1657 */ 1658 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, 1659 struct vm_area_struct *, unsigned long, void *), void *arg) 1660 { 1661 struct anon_vma *anon_vma; 1662 struct anon_vma_chain *avc; 1663 int ret = SWAP_AGAIN; 1664 1665 /* 1666 * Note: remove_migration_ptes() cannot use page_lock_anon_vma() 1667 * because that depends on page_mapped(); but not all its usages 1668 * are holding mmap_sem. Users without mmap_sem are required to 1669 * take a reference count to prevent the anon_vma disappearing 1670 */ 1671 anon_vma = page_anon_vma(page); 1672 if (!anon_vma) 1673 return ret; 1674 anon_vma_lock(anon_vma); 1675 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1676 struct vm_area_struct *vma = avc->vma; 1677 unsigned long address = vma_address(page, vma); 1678 if (address == -EFAULT) 1679 continue; 1680 ret = rmap_one(page, vma, address, arg); 1681 if (ret != SWAP_AGAIN) 1682 break; 1683 } 1684 anon_vma_unlock(anon_vma); 1685 return ret; 1686 } 1687 1688 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, 1689 struct vm_area_struct *, unsigned long, void *), void *arg) 1690 { 1691 struct address_space *mapping = page->mapping; 1692 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1693 struct vm_area_struct *vma; 1694 struct prio_tree_iter iter; 1695 int ret = SWAP_AGAIN; 1696 1697 if (!mapping) 1698 return ret; 1699 mutex_lock(&mapping->i_mmap_mutex); 1700 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1701 unsigned long address = vma_address(page, vma); 1702 if (address == -EFAULT) 1703 continue; 1704 ret = rmap_one(page, vma, address, arg); 1705 if (ret != SWAP_AGAIN) 1706 break; 1707 } 1708 /* 1709 * No nonlinear handling: being always shared, nonlinear vmas 1710 * never contain migration ptes. Decide what to do about this 1711 * limitation to linear when we need rmap_walk() on nonlinear. 1712 */ 1713 mutex_unlock(&mapping->i_mmap_mutex); 1714 return ret; 1715 } 1716 1717 int rmap_walk(struct page *page, int (*rmap_one)(struct page *, 1718 struct vm_area_struct *, unsigned long, void *), void *arg) 1719 { 1720 VM_BUG_ON(!PageLocked(page)); 1721 1722 if (unlikely(PageKsm(page))) 1723 return rmap_walk_ksm(page, rmap_one, arg); 1724 else if (PageAnon(page)) 1725 return rmap_walk_anon(page, rmap_one, arg); 1726 else 1727 return rmap_walk_file(page, rmap_one, arg); 1728 } 1729 #endif /* CONFIG_MIGRATION */ 1730 1731 #ifdef CONFIG_HUGETLB_PAGE 1732 /* 1733 * The following three functions are for anonymous (private mapped) hugepages. 1734 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1735 * and no lru code, because we handle hugepages differently from common pages. 1736 */ 1737 static void __hugepage_set_anon_rmap(struct page *page, 1738 struct vm_area_struct *vma, unsigned long address, int exclusive) 1739 { 1740 struct anon_vma *anon_vma = vma->anon_vma; 1741 1742 BUG_ON(!anon_vma); 1743 1744 if (PageAnon(page)) 1745 return; 1746 if (!exclusive) 1747 anon_vma = anon_vma->root; 1748 1749 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1750 page->mapping = (struct address_space *) anon_vma; 1751 page->index = linear_page_index(vma, address); 1752 } 1753 1754 void hugepage_add_anon_rmap(struct page *page, 1755 struct vm_area_struct *vma, unsigned long address) 1756 { 1757 struct anon_vma *anon_vma = vma->anon_vma; 1758 int first; 1759 1760 BUG_ON(!PageLocked(page)); 1761 BUG_ON(!anon_vma); 1762 /* address might be in next vma when migration races vma_adjust */ 1763 first = atomic_inc_and_test(&page->_mapcount); 1764 if (first) 1765 __hugepage_set_anon_rmap(page, vma, address, 0); 1766 } 1767 1768 void hugepage_add_new_anon_rmap(struct page *page, 1769 struct vm_area_struct *vma, unsigned long address) 1770 { 1771 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1772 atomic_set(&page->_mapcount, 0); 1773 __hugepage_set_anon_rmap(page, vma, address, 1); 1774 } 1775 #endif /* CONFIG_HUGETLB_PAGE */ 1776