xref: /openbmc/linux/mm/rmap.c (revision 7effbd18)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       page->flags PG_locked (lock_page)
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           mapping->i_mmap_rwsem
29  *             anon_vma->rwsem
30  *               mm->page_table_lock or pte_lock
31  *                 swap_lock (in swap_duplicate, swap_info_get)
32  *                   mmlist_lock (in mmput, drain_mmlist and others)
33  *                   mapping->private_lock (in block_dirty_folio)
34  *                     folio_lock_memcg move_lock (in block_dirty_folio)
35  *                       i_pages lock (widely used)
36  *                         lruvec->lru_lock (in folio_lruvec_lock_irq)
37  *                   inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38  *                   bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39  *                     sb_lock (within inode_lock in fs/fs-writeback.c)
40  *                     i_pages lock (widely used, in set_page_dirty,
41  *                               in arch-dependent flush_dcache_mmap_lock,
42  *                               within bdi.wb->list_lock in __sync_single_inode)
43  *
44  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
45  *   ->tasklist_lock
46  *     pte map lock
47  *
48  * hugetlbfs PageHuge() take locks in this order:
49  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50  *     vma_lock (hugetlb specific lock for pmd_sharing)
51  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52  *         page->flags PG_locked (lock_page)
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77 
78 #include <asm/tlbflush.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/tlb.h>
82 #include <trace/events/migrate.h>
83 
84 #include "internal.h"
85 
86 static struct kmem_cache *anon_vma_cachep;
87 static struct kmem_cache *anon_vma_chain_cachep;
88 
89 static inline struct anon_vma *anon_vma_alloc(void)
90 {
91 	struct anon_vma *anon_vma;
92 
93 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 	if (anon_vma) {
95 		atomic_set(&anon_vma->refcount, 1);
96 		anon_vma->num_children = 0;
97 		anon_vma->num_active_vmas = 0;
98 		anon_vma->parent = anon_vma;
99 		/*
100 		 * Initialise the anon_vma root to point to itself. If called
101 		 * from fork, the root will be reset to the parents anon_vma.
102 		 */
103 		anon_vma->root = anon_vma;
104 	}
105 
106 	return anon_vma;
107 }
108 
109 static inline void anon_vma_free(struct anon_vma *anon_vma)
110 {
111 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
112 
113 	/*
114 	 * Synchronize against folio_lock_anon_vma_read() such that
115 	 * we can safely hold the lock without the anon_vma getting
116 	 * freed.
117 	 *
118 	 * Relies on the full mb implied by the atomic_dec_and_test() from
119 	 * put_anon_vma() against the acquire barrier implied by
120 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
121 	 *
122 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
123 	 *   down_read_trylock()		  atomic_dec_and_test()
124 	 *   LOCK				  MB
125 	 *   atomic_read()			  rwsem_is_locked()
126 	 *
127 	 * LOCK should suffice since the actual taking of the lock must
128 	 * happen _before_ what follows.
129 	 */
130 	might_sleep();
131 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
132 		anon_vma_lock_write(anon_vma);
133 		anon_vma_unlock_write(anon_vma);
134 	}
135 
136 	kmem_cache_free(anon_vma_cachep, anon_vma);
137 }
138 
139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
140 {
141 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
142 }
143 
144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
145 {
146 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
147 }
148 
149 static void anon_vma_chain_link(struct vm_area_struct *vma,
150 				struct anon_vma_chain *avc,
151 				struct anon_vma *anon_vma)
152 {
153 	avc->vma = vma;
154 	avc->anon_vma = anon_vma;
155 	list_add(&avc->same_vma, &vma->anon_vma_chain);
156 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
157 }
158 
159 /**
160  * __anon_vma_prepare - attach an anon_vma to a memory region
161  * @vma: the memory region in question
162  *
163  * This makes sure the memory mapping described by 'vma' has
164  * an 'anon_vma' attached to it, so that we can associate the
165  * anonymous pages mapped into it with that anon_vma.
166  *
167  * The common case will be that we already have one, which
168  * is handled inline by anon_vma_prepare(). But if
169  * not we either need to find an adjacent mapping that we
170  * can re-use the anon_vma from (very common when the only
171  * reason for splitting a vma has been mprotect()), or we
172  * allocate a new one.
173  *
174  * Anon-vma allocations are very subtle, because we may have
175  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
176  * and that may actually touch the rwsem even in the newly
177  * allocated vma (it depends on RCU to make sure that the
178  * anon_vma isn't actually destroyed).
179  *
180  * As a result, we need to do proper anon_vma locking even
181  * for the new allocation. At the same time, we do not want
182  * to do any locking for the common case of already having
183  * an anon_vma.
184  *
185  * This must be called with the mmap_lock held for reading.
186  */
187 int __anon_vma_prepare(struct vm_area_struct *vma)
188 {
189 	struct mm_struct *mm = vma->vm_mm;
190 	struct anon_vma *anon_vma, *allocated;
191 	struct anon_vma_chain *avc;
192 
193 	might_sleep();
194 
195 	avc = anon_vma_chain_alloc(GFP_KERNEL);
196 	if (!avc)
197 		goto out_enomem;
198 
199 	anon_vma = find_mergeable_anon_vma(vma);
200 	allocated = NULL;
201 	if (!anon_vma) {
202 		anon_vma = anon_vma_alloc();
203 		if (unlikely(!anon_vma))
204 			goto out_enomem_free_avc;
205 		anon_vma->num_children++; /* self-parent link for new root */
206 		allocated = anon_vma;
207 	}
208 
209 	anon_vma_lock_write(anon_vma);
210 	/* page_table_lock to protect against threads */
211 	spin_lock(&mm->page_table_lock);
212 	if (likely(!vma->anon_vma)) {
213 		vma->anon_vma = anon_vma;
214 		anon_vma_chain_link(vma, avc, anon_vma);
215 		anon_vma->num_active_vmas++;
216 		allocated = NULL;
217 		avc = NULL;
218 	}
219 	spin_unlock(&mm->page_table_lock);
220 	anon_vma_unlock_write(anon_vma);
221 
222 	if (unlikely(allocated))
223 		put_anon_vma(allocated);
224 	if (unlikely(avc))
225 		anon_vma_chain_free(avc);
226 
227 	return 0;
228 
229  out_enomem_free_avc:
230 	anon_vma_chain_free(avc);
231  out_enomem:
232 	return -ENOMEM;
233 }
234 
235 /*
236  * This is a useful helper function for locking the anon_vma root as
237  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238  * have the same vma.
239  *
240  * Such anon_vma's should have the same root, so you'd expect to see
241  * just a single mutex_lock for the whole traversal.
242  */
243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 	struct anon_vma *new_root = anon_vma->root;
246 	if (new_root != root) {
247 		if (WARN_ON_ONCE(root))
248 			up_write(&root->rwsem);
249 		root = new_root;
250 		down_write(&root->rwsem);
251 	}
252 	return root;
253 }
254 
255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 	if (root)
258 		up_write(&root->rwsem);
259 }
260 
261 /*
262  * Attach the anon_vmas from src to dst.
263  * Returns 0 on success, -ENOMEM on failure.
264  *
265  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269  * call, we can identify this case by checking (!dst->anon_vma &&
270  * src->anon_vma).
271  *
272  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274  * This prevents degradation of anon_vma hierarchy to endless linear chain in
275  * case of constantly forking task. On the other hand, an anon_vma with more
276  * than one child isn't reused even if there was no alive vma, thus rmap
277  * walker has a good chance of avoiding scanning the whole hierarchy when it
278  * searches where page is mapped.
279  */
280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
281 {
282 	struct anon_vma_chain *avc, *pavc;
283 	struct anon_vma *root = NULL;
284 
285 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286 		struct anon_vma *anon_vma;
287 
288 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
289 		if (unlikely(!avc)) {
290 			unlock_anon_vma_root(root);
291 			root = NULL;
292 			avc = anon_vma_chain_alloc(GFP_KERNEL);
293 			if (!avc)
294 				goto enomem_failure;
295 		}
296 		anon_vma = pavc->anon_vma;
297 		root = lock_anon_vma_root(root, anon_vma);
298 		anon_vma_chain_link(dst, avc, anon_vma);
299 
300 		/*
301 		 * Reuse existing anon_vma if it has no vma and only one
302 		 * anon_vma child.
303 		 *
304 		 * Root anon_vma is never reused:
305 		 * it has self-parent reference and at least one child.
306 		 */
307 		if (!dst->anon_vma && src->anon_vma &&
308 		    anon_vma->num_children < 2 &&
309 		    anon_vma->num_active_vmas == 0)
310 			dst->anon_vma = anon_vma;
311 	}
312 	if (dst->anon_vma)
313 		dst->anon_vma->num_active_vmas++;
314 	unlock_anon_vma_root(root);
315 	return 0;
316 
317  enomem_failure:
318 	/*
319 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
320 	 * be incorrectly decremented in unlink_anon_vmas().
321 	 * We can safely do this because callers of anon_vma_clone() don't care
322 	 * about dst->anon_vma if anon_vma_clone() failed.
323 	 */
324 	dst->anon_vma = NULL;
325 	unlink_anon_vmas(dst);
326 	return -ENOMEM;
327 }
328 
329 /*
330  * Attach vma to its own anon_vma, as well as to the anon_vmas that
331  * the corresponding VMA in the parent process is attached to.
332  * Returns 0 on success, non-zero on failure.
333  */
334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
335 {
336 	struct anon_vma_chain *avc;
337 	struct anon_vma *anon_vma;
338 	int error;
339 
340 	/* Don't bother if the parent process has no anon_vma here. */
341 	if (!pvma->anon_vma)
342 		return 0;
343 
344 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345 	vma->anon_vma = NULL;
346 
347 	/*
348 	 * First, attach the new VMA to the parent VMA's anon_vmas,
349 	 * so rmap can find non-COWed pages in child processes.
350 	 */
351 	error = anon_vma_clone(vma, pvma);
352 	if (error)
353 		return error;
354 
355 	/* An existing anon_vma has been reused, all done then. */
356 	if (vma->anon_vma)
357 		return 0;
358 
359 	/* Then add our own anon_vma. */
360 	anon_vma = anon_vma_alloc();
361 	if (!anon_vma)
362 		goto out_error;
363 	anon_vma->num_active_vmas++;
364 	avc = anon_vma_chain_alloc(GFP_KERNEL);
365 	if (!avc)
366 		goto out_error_free_anon_vma;
367 
368 	/*
369 	 * The root anon_vma's rwsem is the lock actually used when we
370 	 * lock any of the anon_vmas in this anon_vma tree.
371 	 */
372 	anon_vma->root = pvma->anon_vma->root;
373 	anon_vma->parent = pvma->anon_vma;
374 	/*
375 	 * With refcounts, an anon_vma can stay around longer than the
376 	 * process it belongs to. The root anon_vma needs to be pinned until
377 	 * this anon_vma is freed, because the lock lives in the root.
378 	 */
379 	get_anon_vma(anon_vma->root);
380 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
381 	vma->anon_vma = anon_vma;
382 	anon_vma_lock_write(anon_vma);
383 	anon_vma_chain_link(vma, avc, anon_vma);
384 	anon_vma->parent->num_children++;
385 	anon_vma_unlock_write(anon_vma);
386 
387 	return 0;
388 
389  out_error_free_anon_vma:
390 	put_anon_vma(anon_vma);
391  out_error:
392 	unlink_anon_vmas(vma);
393 	return -ENOMEM;
394 }
395 
396 void unlink_anon_vmas(struct vm_area_struct *vma)
397 {
398 	struct anon_vma_chain *avc, *next;
399 	struct anon_vma *root = NULL;
400 
401 	/*
402 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
403 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
404 	 */
405 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 		struct anon_vma *anon_vma = avc->anon_vma;
407 
408 		root = lock_anon_vma_root(root, anon_vma);
409 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
410 
411 		/*
412 		 * Leave empty anon_vmas on the list - we'll need
413 		 * to free them outside the lock.
414 		 */
415 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 			anon_vma->parent->num_children--;
417 			continue;
418 		}
419 
420 		list_del(&avc->same_vma);
421 		anon_vma_chain_free(avc);
422 	}
423 	if (vma->anon_vma) {
424 		vma->anon_vma->num_active_vmas--;
425 
426 		/*
427 		 * vma would still be needed after unlink, and anon_vma will be prepared
428 		 * when handle fault.
429 		 */
430 		vma->anon_vma = NULL;
431 	}
432 	unlock_anon_vma_root(root);
433 
434 	/*
435 	 * Iterate the list once more, it now only contains empty and unlinked
436 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437 	 * needing to write-acquire the anon_vma->root->rwsem.
438 	 */
439 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440 		struct anon_vma *anon_vma = avc->anon_vma;
441 
442 		VM_WARN_ON(anon_vma->num_children);
443 		VM_WARN_ON(anon_vma->num_active_vmas);
444 		put_anon_vma(anon_vma);
445 
446 		list_del(&avc->same_vma);
447 		anon_vma_chain_free(avc);
448 	}
449 }
450 
451 static void anon_vma_ctor(void *data)
452 {
453 	struct anon_vma *anon_vma = data;
454 
455 	init_rwsem(&anon_vma->rwsem);
456 	atomic_set(&anon_vma->refcount, 0);
457 	anon_vma->rb_root = RB_ROOT_CACHED;
458 }
459 
460 void __init anon_vma_init(void)
461 {
462 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
464 			anon_vma_ctor);
465 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466 			SLAB_PANIC|SLAB_ACCOUNT);
467 }
468 
469 /*
470  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
471  *
472  * Since there is no serialization what so ever against page_remove_rmap()
473  * the best this function can do is return a refcount increased anon_vma
474  * that might have been relevant to this page.
475  *
476  * The page might have been remapped to a different anon_vma or the anon_vma
477  * returned may already be freed (and even reused).
478  *
479  * In case it was remapped to a different anon_vma, the new anon_vma will be a
480  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481  * ensure that any anon_vma obtained from the page will still be valid for as
482  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
483  *
484  * All users of this function must be very careful when walking the anon_vma
485  * chain and verify that the page in question is indeed mapped in it
486  * [ something equivalent to page_mapped_in_vma() ].
487  *
488  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
490  * if there is a mapcount, we can dereference the anon_vma after observing
491  * those.
492  */
493 struct anon_vma *folio_get_anon_vma(struct folio *folio)
494 {
495 	struct anon_vma *anon_vma = NULL;
496 	unsigned long anon_mapping;
497 
498 	rcu_read_lock();
499 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
500 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
501 		goto out;
502 	if (!folio_mapped(folio))
503 		goto out;
504 
505 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
506 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
507 		anon_vma = NULL;
508 		goto out;
509 	}
510 
511 	/*
512 	 * If this folio is still mapped, then its anon_vma cannot have been
513 	 * freed.  But if it has been unmapped, we have no security against the
514 	 * anon_vma structure being freed and reused (for another anon_vma:
515 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
516 	 * above cannot corrupt).
517 	 */
518 	if (!folio_mapped(folio)) {
519 		rcu_read_unlock();
520 		put_anon_vma(anon_vma);
521 		return NULL;
522 	}
523 out:
524 	rcu_read_unlock();
525 
526 	return anon_vma;
527 }
528 
529 /*
530  * Similar to folio_get_anon_vma() except it locks the anon_vma.
531  *
532  * Its a little more complex as it tries to keep the fast path to a single
533  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
534  * reference like with folio_get_anon_vma() and then block on the mutex
535  * on !rwc->try_lock case.
536  */
537 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
538 					  struct rmap_walk_control *rwc)
539 {
540 	struct anon_vma *anon_vma = NULL;
541 	struct anon_vma *root_anon_vma;
542 	unsigned long anon_mapping;
543 
544 	rcu_read_lock();
545 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
546 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
547 		goto out;
548 	if (!folio_mapped(folio))
549 		goto out;
550 
551 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
552 	root_anon_vma = READ_ONCE(anon_vma->root);
553 	if (down_read_trylock(&root_anon_vma->rwsem)) {
554 		/*
555 		 * If the folio is still mapped, then this anon_vma is still
556 		 * its anon_vma, and holding the mutex ensures that it will
557 		 * not go away, see anon_vma_free().
558 		 */
559 		if (!folio_mapped(folio)) {
560 			up_read(&root_anon_vma->rwsem);
561 			anon_vma = NULL;
562 		}
563 		goto out;
564 	}
565 
566 	if (rwc && rwc->try_lock) {
567 		anon_vma = NULL;
568 		rwc->contended = true;
569 		goto out;
570 	}
571 
572 	/* trylock failed, we got to sleep */
573 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
574 		anon_vma = NULL;
575 		goto out;
576 	}
577 
578 	if (!folio_mapped(folio)) {
579 		rcu_read_unlock();
580 		put_anon_vma(anon_vma);
581 		return NULL;
582 	}
583 
584 	/* we pinned the anon_vma, its safe to sleep */
585 	rcu_read_unlock();
586 	anon_vma_lock_read(anon_vma);
587 
588 	if (atomic_dec_and_test(&anon_vma->refcount)) {
589 		/*
590 		 * Oops, we held the last refcount, release the lock
591 		 * and bail -- can't simply use put_anon_vma() because
592 		 * we'll deadlock on the anon_vma_lock_write() recursion.
593 		 */
594 		anon_vma_unlock_read(anon_vma);
595 		__put_anon_vma(anon_vma);
596 		anon_vma = NULL;
597 	}
598 
599 	return anon_vma;
600 
601 out:
602 	rcu_read_unlock();
603 	return anon_vma;
604 }
605 
606 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
607 /*
608  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
609  * important if a PTE was dirty when it was unmapped that it's flushed
610  * before any IO is initiated on the page to prevent lost writes. Similarly,
611  * it must be flushed before freeing to prevent data leakage.
612  */
613 void try_to_unmap_flush(void)
614 {
615 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
616 
617 	if (!tlb_ubc->flush_required)
618 		return;
619 
620 	arch_tlbbatch_flush(&tlb_ubc->arch);
621 	tlb_ubc->flush_required = false;
622 	tlb_ubc->writable = false;
623 }
624 
625 /* Flush iff there are potentially writable TLB entries that can race with IO */
626 void try_to_unmap_flush_dirty(void)
627 {
628 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
629 
630 	if (tlb_ubc->writable)
631 		try_to_unmap_flush();
632 }
633 
634 /*
635  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
636  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
637  */
638 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
639 #define TLB_FLUSH_BATCH_PENDING_MASK			\
640 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
641 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
642 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
643 
644 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
645 {
646 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
647 	int batch, nbatch;
648 
649 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
650 	tlb_ubc->flush_required = true;
651 
652 	/*
653 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
654 	 * before the PTE is cleared.
655 	 */
656 	barrier();
657 	batch = atomic_read(&mm->tlb_flush_batched);
658 retry:
659 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
660 		/*
661 		 * Prevent `pending' from catching up with `flushed' because of
662 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
663 		 * `pending' becomes large.
664 		 */
665 		nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
666 		if (nbatch != batch) {
667 			batch = nbatch;
668 			goto retry;
669 		}
670 	} else {
671 		atomic_inc(&mm->tlb_flush_batched);
672 	}
673 
674 	/*
675 	 * If the PTE was dirty then it's best to assume it's writable. The
676 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
677 	 * before the page is queued for IO.
678 	 */
679 	if (writable)
680 		tlb_ubc->writable = true;
681 }
682 
683 /*
684  * Returns true if the TLB flush should be deferred to the end of a batch of
685  * unmap operations to reduce IPIs.
686  */
687 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
688 {
689 	bool should_defer = false;
690 
691 	if (!(flags & TTU_BATCH_FLUSH))
692 		return false;
693 
694 	/* If remote CPUs need to be flushed then defer batch the flush */
695 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
696 		should_defer = true;
697 	put_cpu();
698 
699 	return should_defer;
700 }
701 
702 /*
703  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
704  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
705  * operation such as mprotect or munmap to race between reclaim unmapping
706  * the page and flushing the page. If this race occurs, it potentially allows
707  * access to data via a stale TLB entry. Tracking all mm's that have TLB
708  * batching in flight would be expensive during reclaim so instead track
709  * whether TLB batching occurred in the past and if so then do a flush here
710  * if required. This will cost one additional flush per reclaim cycle paid
711  * by the first operation at risk such as mprotect and mumap.
712  *
713  * This must be called under the PTL so that an access to tlb_flush_batched
714  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
715  * via the PTL.
716  */
717 void flush_tlb_batched_pending(struct mm_struct *mm)
718 {
719 	int batch = atomic_read(&mm->tlb_flush_batched);
720 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
721 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
722 
723 	if (pending != flushed) {
724 		flush_tlb_mm(mm);
725 		/*
726 		 * If the new TLB flushing is pending during flushing, leave
727 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
728 		 */
729 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
730 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
731 	}
732 }
733 #else
734 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
735 {
736 }
737 
738 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
739 {
740 	return false;
741 }
742 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
743 
744 /*
745  * At what user virtual address is page expected in vma?
746  * Caller should check the page is actually part of the vma.
747  */
748 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
749 {
750 	struct folio *folio = page_folio(page);
751 	if (folio_test_anon(folio)) {
752 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
753 		/*
754 		 * Note: swapoff's unuse_vma() is more efficient with this
755 		 * check, and needs it to match anon_vma when KSM is active.
756 		 */
757 		if (!vma->anon_vma || !page__anon_vma ||
758 		    vma->anon_vma->root != page__anon_vma->root)
759 			return -EFAULT;
760 	} else if (!vma->vm_file) {
761 		return -EFAULT;
762 	} else if (vma->vm_file->f_mapping != folio->mapping) {
763 		return -EFAULT;
764 	}
765 
766 	return vma_address(page, vma);
767 }
768 
769 /*
770  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
771  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
772  * represents.
773  */
774 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
775 {
776 	pgd_t *pgd;
777 	p4d_t *p4d;
778 	pud_t *pud;
779 	pmd_t *pmd = NULL;
780 
781 	pgd = pgd_offset(mm, address);
782 	if (!pgd_present(*pgd))
783 		goto out;
784 
785 	p4d = p4d_offset(pgd, address);
786 	if (!p4d_present(*p4d))
787 		goto out;
788 
789 	pud = pud_offset(p4d, address);
790 	if (!pud_present(*pud))
791 		goto out;
792 
793 	pmd = pmd_offset(pud, address);
794 out:
795 	return pmd;
796 }
797 
798 struct folio_referenced_arg {
799 	int mapcount;
800 	int referenced;
801 	unsigned long vm_flags;
802 	struct mem_cgroup *memcg;
803 };
804 /*
805  * arg: folio_referenced_arg will be passed
806  */
807 static bool folio_referenced_one(struct folio *folio,
808 		struct vm_area_struct *vma, unsigned long address, void *arg)
809 {
810 	struct folio_referenced_arg *pra = arg;
811 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
812 	int referenced = 0;
813 
814 	while (page_vma_mapped_walk(&pvmw)) {
815 		address = pvmw.address;
816 
817 		if ((vma->vm_flags & VM_LOCKED) &&
818 		    (!folio_test_large(folio) || !pvmw.pte)) {
819 			/* Restore the mlock which got missed */
820 			mlock_vma_folio(folio, vma, !pvmw.pte);
821 			page_vma_mapped_walk_done(&pvmw);
822 			pra->vm_flags |= VM_LOCKED;
823 			return false; /* To break the loop */
824 		}
825 
826 		if (pvmw.pte) {
827 			if (lru_gen_enabled() && pte_young(*pvmw.pte)) {
828 				lru_gen_look_around(&pvmw);
829 				referenced++;
830 			}
831 
832 			if (ptep_clear_flush_young_notify(vma, address,
833 						pvmw.pte))
834 				referenced++;
835 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
836 			if (pmdp_clear_flush_young_notify(vma, address,
837 						pvmw.pmd))
838 				referenced++;
839 		} else {
840 			/* unexpected pmd-mapped folio? */
841 			WARN_ON_ONCE(1);
842 		}
843 
844 		pra->mapcount--;
845 	}
846 
847 	if (referenced)
848 		folio_clear_idle(folio);
849 	if (folio_test_clear_young(folio))
850 		referenced++;
851 
852 	if (referenced) {
853 		pra->referenced++;
854 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
855 	}
856 
857 	if (!pra->mapcount)
858 		return false; /* To break the loop */
859 
860 	return true;
861 }
862 
863 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
864 {
865 	struct folio_referenced_arg *pra = arg;
866 	struct mem_cgroup *memcg = pra->memcg;
867 
868 	/*
869 	 * Ignore references from this mapping if it has no recency. If the
870 	 * folio has been used in another mapping, we will catch it; if this
871 	 * other mapping is already gone, the unmap path will have set the
872 	 * referenced flag or activated the folio in zap_pte_range().
873 	 */
874 	if (!vma_has_recency(vma))
875 		return true;
876 
877 	/*
878 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
879 	 * of references from different cgroups.
880 	 */
881 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
882 		return true;
883 
884 	return false;
885 }
886 
887 /**
888  * folio_referenced() - Test if the folio was referenced.
889  * @folio: The folio to test.
890  * @is_locked: Caller holds lock on the folio.
891  * @memcg: target memory cgroup
892  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
893  *
894  * Quick test_and_clear_referenced for all mappings of a folio,
895  *
896  * Return: The number of mappings which referenced the folio. Return -1 if
897  * the function bailed out due to rmap lock contention.
898  */
899 int folio_referenced(struct folio *folio, int is_locked,
900 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
901 {
902 	int we_locked = 0;
903 	struct folio_referenced_arg pra = {
904 		.mapcount = folio_mapcount(folio),
905 		.memcg = memcg,
906 	};
907 	struct rmap_walk_control rwc = {
908 		.rmap_one = folio_referenced_one,
909 		.arg = (void *)&pra,
910 		.anon_lock = folio_lock_anon_vma_read,
911 		.try_lock = true,
912 		.invalid_vma = invalid_folio_referenced_vma,
913 	};
914 
915 	*vm_flags = 0;
916 	if (!pra.mapcount)
917 		return 0;
918 
919 	if (!folio_raw_mapping(folio))
920 		return 0;
921 
922 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
923 		we_locked = folio_trylock(folio);
924 		if (!we_locked)
925 			return 1;
926 	}
927 
928 	rmap_walk(folio, &rwc);
929 	*vm_flags = pra.vm_flags;
930 
931 	if (we_locked)
932 		folio_unlock(folio);
933 
934 	return rwc.contended ? -1 : pra.referenced;
935 }
936 
937 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
938 {
939 	int cleaned = 0;
940 	struct vm_area_struct *vma = pvmw->vma;
941 	struct mmu_notifier_range range;
942 	unsigned long address = pvmw->address;
943 
944 	/*
945 	 * We have to assume the worse case ie pmd for invalidation. Note that
946 	 * the folio can not be freed from this function.
947 	 */
948 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
949 				vma->vm_mm, address, vma_address_end(pvmw));
950 	mmu_notifier_invalidate_range_start(&range);
951 
952 	while (page_vma_mapped_walk(pvmw)) {
953 		int ret = 0;
954 
955 		address = pvmw->address;
956 		if (pvmw->pte) {
957 			pte_t entry;
958 			pte_t *pte = pvmw->pte;
959 
960 			if (!pte_dirty(*pte) && !pte_write(*pte))
961 				continue;
962 
963 			flush_cache_page(vma, address, pte_pfn(*pte));
964 			entry = ptep_clear_flush(vma, address, pte);
965 			entry = pte_wrprotect(entry);
966 			entry = pte_mkclean(entry);
967 			set_pte_at(vma->vm_mm, address, pte, entry);
968 			ret = 1;
969 		} else {
970 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
971 			pmd_t *pmd = pvmw->pmd;
972 			pmd_t entry;
973 
974 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
975 				continue;
976 
977 			flush_cache_range(vma, address,
978 					  address + HPAGE_PMD_SIZE);
979 			entry = pmdp_invalidate(vma, address, pmd);
980 			entry = pmd_wrprotect(entry);
981 			entry = pmd_mkclean(entry);
982 			set_pmd_at(vma->vm_mm, address, pmd, entry);
983 			ret = 1;
984 #else
985 			/* unexpected pmd-mapped folio? */
986 			WARN_ON_ONCE(1);
987 #endif
988 		}
989 
990 		/*
991 		 * No need to call mmu_notifier_invalidate_range() as we are
992 		 * downgrading page table protection not changing it to point
993 		 * to a new page.
994 		 *
995 		 * See Documentation/mm/mmu_notifier.rst
996 		 */
997 		if (ret)
998 			cleaned++;
999 	}
1000 
1001 	mmu_notifier_invalidate_range_end(&range);
1002 
1003 	return cleaned;
1004 }
1005 
1006 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1007 			     unsigned long address, void *arg)
1008 {
1009 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1010 	int *cleaned = arg;
1011 
1012 	*cleaned += page_vma_mkclean_one(&pvmw);
1013 
1014 	return true;
1015 }
1016 
1017 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1018 {
1019 	if (vma->vm_flags & VM_SHARED)
1020 		return false;
1021 
1022 	return true;
1023 }
1024 
1025 int folio_mkclean(struct folio *folio)
1026 {
1027 	int cleaned = 0;
1028 	struct address_space *mapping;
1029 	struct rmap_walk_control rwc = {
1030 		.arg = (void *)&cleaned,
1031 		.rmap_one = page_mkclean_one,
1032 		.invalid_vma = invalid_mkclean_vma,
1033 	};
1034 
1035 	BUG_ON(!folio_test_locked(folio));
1036 
1037 	if (!folio_mapped(folio))
1038 		return 0;
1039 
1040 	mapping = folio_mapping(folio);
1041 	if (!mapping)
1042 		return 0;
1043 
1044 	rmap_walk(folio, &rwc);
1045 
1046 	return cleaned;
1047 }
1048 EXPORT_SYMBOL_GPL(folio_mkclean);
1049 
1050 /**
1051  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1052  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1053  *                     within the @vma of shared mappings. And since clean PTEs
1054  *                     should also be readonly, write protects them too.
1055  * @pfn: start pfn.
1056  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1057  * @pgoff: page offset that the @pfn mapped with.
1058  * @vma: vma that @pfn mapped within.
1059  *
1060  * Returns the number of cleaned PTEs (including PMDs).
1061  */
1062 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1063 		      struct vm_area_struct *vma)
1064 {
1065 	struct page_vma_mapped_walk pvmw = {
1066 		.pfn		= pfn,
1067 		.nr_pages	= nr_pages,
1068 		.pgoff		= pgoff,
1069 		.vma		= vma,
1070 		.flags		= PVMW_SYNC,
1071 	};
1072 
1073 	if (invalid_mkclean_vma(vma, NULL))
1074 		return 0;
1075 
1076 	pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1077 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1078 
1079 	return page_vma_mkclean_one(&pvmw);
1080 }
1081 
1082 int folio_total_mapcount(struct folio *folio)
1083 {
1084 	int mapcount = folio_entire_mapcount(folio);
1085 	int nr_pages;
1086 	int i;
1087 
1088 	/* In the common case, avoid the loop when no pages mapped by PTE */
1089 	if (folio_nr_pages_mapped(folio) == 0)
1090 		return mapcount;
1091 	/*
1092 	 * Add all the PTE mappings of those pages mapped by PTE.
1093 	 * Limit the loop to folio_nr_pages_mapped()?
1094 	 * Perhaps: given all the raciness, that may be a good or a bad idea.
1095 	 */
1096 	nr_pages = folio_nr_pages(folio);
1097 	for (i = 0; i < nr_pages; i++)
1098 		mapcount += atomic_read(&folio_page(folio, i)->_mapcount);
1099 
1100 	/* But each of those _mapcounts was based on -1 */
1101 	mapcount += nr_pages;
1102 	return mapcount;
1103 }
1104 
1105 /**
1106  * page_move_anon_rmap - move a page to our anon_vma
1107  * @page:	the page to move to our anon_vma
1108  * @vma:	the vma the page belongs to
1109  *
1110  * When a page belongs exclusively to one process after a COW event,
1111  * that page can be moved into the anon_vma that belongs to just that
1112  * process, so the rmap code will not search the parent or sibling
1113  * processes.
1114  */
1115 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1116 {
1117 	void *anon_vma = vma->anon_vma;
1118 	struct folio *folio = page_folio(page);
1119 
1120 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1121 	VM_BUG_ON_VMA(!anon_vma, vma);
1122 
1123 	anon_vma += PAGE_MAPPING_ANON;
1124 	/*
1125 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1126 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1127 	 * folio_test_anon()) will not see one without the other.
1128 	 */
1129 	WRITE_ONCE(folio->mapping, anon_vma);
1130 	SetPageAnonExclusive(page);
1131 }
1132 
1133 /**
1134  * __page_set_anon_rmap - set up new anonymous rmap
1135  * @folio:	Folio which contains page.
1136  * @page:	Page to add to rmap.
1137  * @vma:	VM area to add page to.
1138  * @address:	User virtual address of the mapping
1139  * @exclusive:	the page is exclusively owned by the current process
1140  */
1141 static void __page_set_anon_rmap(struct folio *folio, struct page *page,
1142 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1143 {
1144 	struct anon_vma *anon_vma = vma->anon_vma;
1145 
1146 	BUG_ON(!anon_vma);
1147 
1148 	if (folio_test_anon(folio))
1149 		goto out;
1150 
1151 	/*
1152 	 * If the page isn't exclusively mapped into this vma,
1153 	 * we must use the _oldest_ possible anon_vma for the
1154 	 * page mapping!
1155 	 */
1156 	if (!exclusive)
1157 		anon_vma = anon_vma->root;
1158 
1159 	/*
1160 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1161 	 * Make sure the compiler doesn't split the stores of anon_vma and
1162 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1163 	 * could mistake the mapping for a struct address_space and crash.
1164 	 */
1165 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1166 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1167 	folio->index = linear_page_index(vma, address);
1168 out:
1169 	if (exclusive)
1170 		SetPageAnonExclusive(page);
1171 }
1172 
1173 /**
1174  * __page_check_anon_rmap - sanity check anonymous rmap addition
1175  * @page:	the page to add the mapping to
1176  * @vma:	the vm area in which the mapping is added
1177  * @address:	the user virtual address mapped
1178  */
1179 static void __page_check_anon_rmap(struct page *page,
1180 	struct vm_area_struct *vma, unsigned long address)
1181 {
1182 	struct folio *folio = page_folio(page);
1183 	/*
1184 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1185 	 * be set up correctly at this point.
1186 	 *
1187 	 * We have exclusion against page_add_anon_rmap because the caller
1188 	 * always holds the page locked.
1189 	 *
1190 	 * We have exclusion against page_add_new_anon_rmap because those pages
1191 	 * are initially only visible via the pagetables, and the pte is locked
1192 	 * over the call to page_add_new_anon_rmap.
1193 	 */
1194 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1195 			folio);
1196 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1197 		       page);
1198 }
1199 
1200 /**
1201  * page_add_anon_rmap - add pte mapping to an anonymous page
1202  * @page:	the page to add the mapping to
1203  * @vma:	the vm area in which the mapping is added
1204  * @address:	the user virtual address mapped
1205  * @flags:	the rmap flags
1206  *
1207  * The caller needs to hold the pte lock, and the page must be locked in
1208  * the anon_vma case: to serialize mapping,index checking after setting,
1209  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1210  * (but PageKsm is never downgraded to PageAnon).
1211  */
1212 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
1213 		unsigned long address, rmap_t flags)
1214 {
1215 	struct folio *folio = page_folio(page);
1216 	atomic_t *mapped = &folio->_nr_pages_mapped;
1217 	int nr = 0, nr_pmdmapped = 0;
1218 	bool compound = flags & RMAP_COMPOUND;
1219 	bool first = true;
1220 
1221 	/* Is page being mapped by PTE? Is this its first map to be added? */
1222 	if (likely(!compound)) {
1223 		first = atomic_inc_and_test(&page->_mapcount);
1224 		nr = first;
1225 		if (first && folio_test_large(folio)) {
1226 			nr = atomic_inc_return_relaxed(mapped);
1227 			nr = (nr < COMPOUND_MAPPED);
1228 		}
1229 	} else if (folio_test_pmd_mappable(folio)) {
1230 		/* That test is redundant: it's for safety or to optimize out */
1231 
1232 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1233 		if (first) {
1234 			nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1235 			if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1236 				nr_pmdmapped = folio_nr_pages(folio);
1237 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1238 				/* Raced ahead of a remove and another add? */
1239 				if (unlikely(nr < 0))
1240 					nr = 0;
1241 			} else {
1242 				/* Raced ahead of a remove of COMPOUND_MAPPED */
1243 				nr = 0;
1244 			}
1245 		}
1246 	}
1247 
1248 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1249 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1250 
1251 	if (nr_pmdmapped)
1252 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
1253 	if (nr)
1254 		__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1255 
1256 	if (likely(!folio_test_ksm(folio))) {
1257 		/* address might be in next vma when migration races vma_merge */
1258 		if (first)
1259 			__page_set_anon_rmap(folio, page, vma, address,
1260 					     !!(flags & RMAP_EXCLUSIVE));
1261 		else
1262 			__page_check_anon_rmap(page, vma, address);
1263 	}
1264 
1265 	mlock_vma_folio(folio, vma, compound);
1266 }
1267 
1268 /**
1269  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1270  * @folio:	The folio to add the mapping to.
1271  * @vma:	the vm area in which the mapping is added
1272  * @address:	the user virtual address mapped
1273  *
1274  * Like page_add_anon_rmap() but must only be called on *new* folios.
1275  * This means the inc-and-test can be bypassed.
1276  * The folio does not have to be locked.
1277  *
1278  * If the folio is large, it is accounted as a THP.  As the folio
1279  * is new, it's assumed to be mapped exclusively by a single process.
1280  */
1281 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1282 		unsigned long address)
1283 {
1284 	int nr;
1285 
1286 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1287 	__folio_set_swapbacked(folio);
1288 
1289 	if (likely(!folio_test_pmd_mappable(folio))) {
1290 		/* increment count (starts at -1) */
1291 		atomic_set(&folio->_mapcount, 0);
1292 		nr = 1;
1293 	} else {
1294 		/* increment count (starts at -1) */
1295 		atomic_set(&folio->_entire_mapcount, 0);
1296 		atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED);
1297 		nr = folio_nr_pages(folio);
1298 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
1299 	}
1300 
1301 	__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1302 	__page_set_anon_rmap(folio, &folio->page, vma, address, 1);
1303 }
1304 
1305 /**
1306  * page_add_file_rmap - add pte mapping to a file page
1307  * @page:	the page to add the mapping to
1308  * @vma:	the vm area in which the mapping is added
1309  * @compound:	charge the page as compound or small page
1310  *
1311  * The caller needs to hold the pte lock.
1312  */
1313 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma,
1314 		bool compound)
1315 {
1316 	struct folio *folio = page_folio(page);
1317 	atomic_t *mapped = &folio->_nr_pages_mapped;
1318 	int nr = 0, nr_pmdmapped = 0;
1319 	bool first;
1320 
1321 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1322 
1323 	/* Is page being mapped by PTE? Is this its first map to be added? */
1324 	if (likely(!compound)) {
1325 		first = atomic_inc_and_test(&page->_mapcount);
1326 		nr = first;
1327 		if (first && folio_test_large(folio)) {
1328 			nr = atomic_inc_return_relaxed(mapped);
1329 			nr = (nr < COMPOUND_MAPPED);
1330 		}
1331 	} else if (folio_test_pmd_mappable(folio)) {
1332 		/* That test is redundant: it's for safety or to optimize out */
1333 
1334 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1335 		if (first) {
1336 			nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1337 			if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1338 				nr_pmdmapped = folio_nr_pages(folio);
1339 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1340 				/* Raced ahead of a remove and another add? */
1341 				if (unlikely(nr < 0))
1342 					nr = 0;
1343 			} else {
1344 				/* Raced ahead of a remove of COMPOUND_MAPPED */
1345 				nr = 0;
1346 			}
1347 		}
1348 	}
1349 
1350 	if (nr_pmdmapped)
1351 		__lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ?
1352 			NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1353 	if (nr)
1354 		__lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
1355 
1356 	mlock_vma_folio(folio, vma, compound);
1357 }
1358 
1359 /**
1360  * page_remove_rmap - take down pte mapping from a page
1361  * @page:	page to remove mapping from
1362  * @vma:	the vm area from which the mapping is removed
1363  * @compound:	uncharge the page as compound or small page
1364  *
1365  * The caller needs to hold the pte lock.
1366  */
1367 void page_remove_rmap(struct page *page, struct vm_area_struct *vma,
1368 		bool compound)
1369 {
1370 	struct folio *folio = page_folio(page);
1371 	atomic_t *mapped = &folio->_nr_pages_mapped;
1372 	int nr = 0, nr_pmdmapped = 0;
1373 	bool last;
1374 	enum node_stat_item idx;
1375 
1376 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1377 
1378 	/* Hugetlb pages are not counted in NR_*MAPPED */
1379 	if (unlikely(folio_test_hugetlb(folio))) {
1380 		/* hugetlb pages are always mapped with pmds */
1381 		atomic_dec(&folio->_entire_mapcount);
1382 		return;
1383 	}
1384 
1385 	/* Is page being unmapped by PTE? Is this its last map to be removed? */
1386 	if (likely(!compound)) {
1387 		last = atomic_add_negative(-1, &page->_mapcount);
1388 		nr = last;
1389 		if (last && folio_test_large(folio)) {
1390 			nr = atomic_dec_return_relaxed(mapped);
1391 			nr = (nr < COMPOUND_MAPPED);
1392 		}
1393 	} else if (folio_test_pmd_mappable(folio)) {
1394 		/* That test is redundant: it's for safety or to optimize out */
1395 
1396 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1397 		if (last) {
1398 			nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped);
1399 			if (likely(nr < COMPOUND_MAPPED)) {
1400 				nr_pmdmapped = folio_nr_pages(folio);
1401 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1402 				/* Raced ahead of another remove and an add? */
1403 				if (unlikely(nr < 0))
1404 					nr = 0;
1405 			} else {
1406 				/* An add of COMPOUND_MAPPED raced ahead */
1407 				nr = 0;
1408 			}
1409 		}
1410 	}
1411 
1412 	if (nr_pmdmapped) {
1413 		if (folio_test_anon(folio))
1414 			idx = NR_ANON_THPS;
1415 		else if (folio_test_swapbacked(folio))
1416 			idx = NR_SHMEM_PMDMAPPED;
1417 		else
1418 			idx = NR_FILE_PMDMAPPED;
1419 		__lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped);
1420 	}
1421 	if (nr) {
1422 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1423 		__lruvec_stat_mod_folio(folio, idx, -nr);
1424 
1425 		/*
1426 		 * Queue anon THP for deferred split if at least one
1427 		 * page of the folio is unmapped and at least one page
1428 		 * is still mapped.
1429 		 */
1430 		if (folio_test_pmd_mappable(folio) && folio_test_anon(folio))
1431 			if (!compound || nr < nr_pmdmapped)
1432 				deferred_split_folio(folio);
1433 	}
1434 
1435 	/*
1436 	 * It would be tidy to reset folio_test_anon mapping when fully
1437 	 * unmapped, but that might overwrite a racing page_add_anon_rmap
1438 	 * which increments mapcount after us but sets mapping before us:
1439 	 * so leave the reset to free_pages_prepare, and remember that
1440 	 * it's only reliable while mapped.
1441 	 */
1442 
1443 	munlock_vma_folio(folio, vma, compound);
1444 }
1445 
1446 /*
1447  * @arg: enum ttu_flags will be passed to this argument
1448  */
1449 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1450 		     unsigned long address, void *arg)
1451 {
1452 	struct mm_struct *mm = vma->vm_mm;
1453 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1454 	pte_t pteval;
1455 	struct page *subpage;
1456 	bool anon_exclusive, ret = true;
1457 	struct mmu_notifier_range range;
1458 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1459 
1460 	/*
1461 	 * When racing against e.g. zap_pte_range() on another cpu,
1462 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1463 	 * try_to_unmap() may return before page_mapped() has become false,
1464 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1465 	 */
1466 	if (flags & TTU_SYNC)
1467 		pvmw.flags = PVMW_SYNC;
1468 
1469 	if (flags & TTU_SPLIT_HUGE_PMD)
1470 		split_huge_pmd_address(vma, address, false, folio);
1471 
1472 	/*
1473 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1474 	 * For hugetlb, it could be much worse if we need to do pud
1475 	 * invalidation in the case of pmd sharing.
1476 	 *
1477 	 * Note that the folio can not be freed in this function as call of
1478 	 * try_to_unmap() must hold a reference on the folio.
1479 	 */
1480 	range.end = vma_address_end(&pvmw);
1481 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1482 				address, range.end);
1483 	if (folio_test_hugetlb(folio)) {
1484 		/*
1485 		 * If sharing is possible, start and end will be adjusted
1486 		 * accordingly.
1487 		 */
1488 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1489 						     &range.end);
1490 	}
1491 	mmu_notifier_invalidate_range_start(&range);
1492 
1493 	while (page_vma_mapped_walk(&pvmw)) {
1494 		/* Unexpected PMD-mapped THP? */
1495 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1496 
1497 		/*
1498 		 * If the folio is in an mlock()d vma, we must not swap it out.
1499 		 */
1500 		if (!(flags & TTU_IGNORE_MLOCK) &&
1501 		    (vma->vm_flags & VM_LOCKED)) {
1502 			/* Restore the mlock which got missed */
1503 			mlock_vma_folio(folio, vma, false);
1504 			page_vma_mapped_walk_done(&pvmw);
1505 			ret = false;
1506 			break;
1507 		}
1508 
1509 		subpage = folio_page(folio,
1510 					pte_pfn(*pvmw.pte) - folio_pfn(folio));
1511 		address = pvmw.address;
1512 		anon_exclusive = folio_test_anon(folio) &&
1513 				 PageAnonExclusive(subpage);
1514 
1515 		if (folio_test_hugetlb(folio)) {
1516 			bool anon = folio_test_anon(folio);
1517 
1518 			/*
1519 			 * The try_to_unmap() is only passed a hugetlb page
1520 			 * in the case where the hugetlb page is poisoned.
1521 			 */
1522 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1523 			/*
1524 			 * huge_pmd_unshare may unmap an entire PMD page.
1525 			 * There is no way of knowing exactly which PMDs may
1526 			 * be cached for this mm, so we must flush them all.
1527 			 * start/end were already adjusted above to cover this
1528 			 * range.
1529 			 */
1530 			flush_cache_range(vma, range.start, range.end);
1531 
1532 			/*
1533 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1534 			 * held in write mode.  Caller needs to explicitly
1535 			 * do this outside rmap routines.
1536 			 *
1537 			 * We also must hold hugetlb vma_lock in write mode.
1538 			 * Lock order dictates acquiring vma_lock BEFORE
1539 			 * i_mmap_rwsem.  We can only try lock here and fail
1540 			 * if unsuccessful.
1541 			 */
1542 			if (!anon) {
1543 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1544 				if (!hugetlb_vma_trylock_write(vma)) {
1545 					page_vma_mapped_walk_done(&pvmw);
1546 					ret = false;
1547 					break;
1548 				}
1549 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1550 					hugetlb_vma_unlock_write(vma);
1551 					flush_tlb_range(vma,
1552 						range.start, range.end);
1553 					mmu_notifier_invalidate_range(mm,
1554 						range.start, range.end);
1555 					/*
1556 					 * The ref count of the PMD page was
1557 					 * dropped which is part of the way map
1558 					 * counting is done for shared PMDs.
1559 					 * Return 'true' here.  When there is
1560 					 * no other sharing, huge_pmd_unshare
1561 					 * returns false and we will unmap the
1562 					 * actual page and drop map count
1563 					 * to zero.
1564 					 */
1565 					page_vma_mapped_walk_done(&pvmw);
1566 					break;
1567 				}
1568 				hugetlb_vma_unlock_write(vma);
1569 			}
1570 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1571 		} else {
1572 			flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1573 			/* Nuke the page table entry. */
1574 			if (should_defer_flush(mm, flags)) {
1575 				/*
1576 				 * We clear the PTE but do not flush so potentially
1577 				 * a remote CPU could still be writing to the folio.
1578 				 * If the entry was previously clean then the
1579 				 * architecture must guarantee that a clear->dirty
1580 				 * transition on a cached TLB entry is written through
1581 				 * and traps if the PTE is unmapped.
1582 				 */
1583 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1584 
1585 				set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1586 			} else {
1587 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1588 			}
1589 		}
1590 
1591 		/*
1592 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1593 		 * we may want to replace a none pte with a marker pte if
1594 		 * it's file-backed, so we don't lose the tracking info.
1595 		 */
1596 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1597 
1598 		/* Set the dirty flag on the folio now the pte is gone. */
1599 		if (pte_dirty(pteval))
1600 			folio_mark_dirty(folio);
1601 
1602 		/* Update high watermark before we lower rss */
1603 		update_hiwater_rss(mm);
1604 
1605 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1606 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1607 			if (folio_test_hugetlb(folio)) {
1608 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1609 				set_huge_pte_at(mm, address, pvmw.pte, pteval);
1610 			} else {
1611 				dec_mm_counter(mm, mm_counter(&folio->page));
1612 				set_pte_at(mm, address, pvmw.pte, pteval);
1613 			}
1614 
1615 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1616 			/*
1617 			 * The guest indicated that the page content is of no
1618 			 * interest anymore. Simply discard the pte, vmscan
1619 			 * will take care of the rest.
1620 			 * A future reference will then fault in a new zero
1621 			 * page. When userfaultfd is active, we must not drop
1622 			 * this page though, as its main user (postcopy
1623 			 * migration) will not expect userfaults on already
1624 			 * copied pages.
1625 			 */
1626 			dec_mm_counter(mm, mm_counter(&folio->page));
1627 			/* We have to invalidate as we cleared the pte */
1628 			mmu_notifier_invalidate_range(mm, address,
1629 						      address + PAGE_SIZE);
1630 		} else if (folio_test_anon(folio)) {
1631 			swp_entry_t entry = { .val = page_private(subpage) };
1632 			pte_t swp_pte;
1633 			/*
1634 			 * Store the swap location in the pte.
1635 			 * See handle_pte_fault() ...
1636 			 */
1637 			if (unlikely(folio_test_swapbacked(folio) !=
1638 					folio_test_swapcache(folio))) {
1639 				WARN_ON_ONCE(1);
1640 				ret = false;
1641 				/* We have to invalidate as we cleared the pte */
1642 				mmu_notifier_invalidate_range(mm, address,
1643 							address + PAGE_SIZE);
1644 				page_vma_mapped_walk_done(&pvmw);
1645 				break;
1646 			}
1647 
1648 			/* MADV_FREE page check */
1649 			if (!folio_test_swapbacked(folio)) {
1650 				int ref_count, map_count;
1651 
1652 				/*
1653 				 * Synchronize with gup_pte_range():
1654 				 * - clear PTE; barrier; read refcount
1655 				 * - inc refcount; barrier; read PTE
1656 				 */
1657 				smp_mb();
1658 
1659 				ref_count = folio_ref_count(folio);
1660 				map_count = folio_mapcount(folio);
1661 
1662 				/*
1663 				 * Order reads for page refcount and dirty flag
1664 				 * (see comments in __remove_mapping()).
1665 				 */
1666 				smp_rmb();
1667 
1668 				/*
1669 				 * The only page refs must be one from isolation
1670 				 * plus the rmap(s) (dropped by discard:).
1671 				 */
1672 				if (ref_count == 1 + map_count &&
1673 				    !folio_test_dirty(folio)) {
1674 					/* Invalidate as we cleared the pte */
1675 					mmu_notifier_invalidate_range(mm,
1676 						address, address + PAGE_SIZE);
1677 					dec_mm_counter(mm, MM_ANONPAGES);
1678 					goto discard;
1679 				}
1680 
1681 				/*
1682 				 * If the folio was redirtied, it cannot be
1683 				 * discarded. Remap the page to page table.
1684 				 */
1685 				set_pte_at(mm, address, pvmw.pte, pteval);
1686 				folio_set_swapbacked(folio);
1687 				ret = false;
1688 				page_vma_mapped_walk_done(&pvmw);
1689 				break;
1690 			}
1691 
1692 			if (swap_duplicate(entry) < 0) {
1693 				set_pte_at(mm, address, pvmw.pte, pteval);
1694 				ret = false;
1695 				page_vma_mapped_walk_done(&pvmw);
1696 				break;
1697 			}
1698 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1699 				swap_free(entry);
1700 				set_pte_at(mm, address, pvmw.pte, pteval);
1701 				ret = false;
1702 				page_vma_mapped_walk_done(&pvmw);
1703 				break;
1704 			}
1705 
1706 			/* See page_try_share_anon_rmap(): clear PTE first. */
1707 			if (anon_exclusive &&
1708 			    page_try_share_anon_rmap(subpage)) {
1709 				swap_free(entry);
1710 				set_pte_at(mm, address, pvmw.pte, pteval);
1711 				ret = false;
1712 				page_vma_mapped_walk_done(&pvmw);
1713 				break;
1714 			}
1715 			if (list_empty(&mm->mmlist)) {
1716 				spin_lock(&mmlist_lock);
1717 				if (list_empty(&mm->mmlist))
1718 					list_add(&mm->mmlist, &init_mm.mmlist);
1719 				spin_unlock(&mmlist_lock);
1720 			}
1721 			dec_mm_counter(mm, MM_ANONPAGES);
1722 			inc_mm_counter(mm, MM_SWAPENTS);
1723 			swp_pte = swp_entry_to_pte(entry);
1724 			if (anon_exclusive)
1725 				swp_pte = pte_swp_mkexclusive(swp_pte);
1726 			if (pte_soft_dirty(pteval))
1727 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1728 			if (pte_uffd_wp(pteval))
1729 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1730 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1731 			/* Invalidate as we cleared the pte */
1732 			mmu_notifier_invalidate_range(mm, address,
1733 						      address + PAGE_SIZE);
1734 		} else {
1735 			/*
1736 			 * This is a locked file-backed folio,
1737 			 * so it cannot be removed from the page
1738 			 * cache and replaced by a new folio before
1739 			 * mmu_notifier_invalidate_range_end, so no
1740 			 * concurrent thread might update its page table
1741 			 * to point at a new folio while a device is
1742 			 * still using this folio.
1743 			 *
1744 			 * See Documentation/mm/mmu_notifier.rst
1745 			 */
1746 			dec_mm_counter(mm, mm_counter_file(&folio->page));
1747 		}
1748 discard:
1749 		/*
1750 		 * No need to call mmu_notifier_invalidate_range() it has be
1751 		 * done above for all cases requiring it to happen under page
1752 		 * table lock before mmu_notifier_invalidate_range_end()
1753 		 *
1754 		 * See Documentation/mm/mmu_notifier.rst
1755 		 */
1756 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1757 		if (vma->vm_flags & VM_LOCKED)
1758 			mlock_drain_local();
1759 		folio_put(folio);
1760 	}
1761 
1762 	mmu_notifier_invalidate_range_end(&range);
1763 
1764 	return ret;
1765 }
1766 
1767 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1768 {
1769 	return vma_is_temporary_stack(vma);
1770 }
1771 
1772 static int folio_not_mapped(struct folio *folio)
1773 {
1774 	return !folio_mapped(folio);
1775 }
1776 
1777 /**
1778  * try_to_unmap - Try to remove all page table mappings to a folio.
1779  * @folio: The folio to unmap.
1780  * @flags: action and flags
1781  *
1782  * Tries to remove all the page table entries which are mapping this
1783  * folio.  It is the caller's responsibility to check if the folio is
1784  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1785  *
1786  * Context: Caller must hold the folio lock.
1787  */
1788 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1789 {
1790 	struct rmap_walk_control rwc = {
1791 		.rmap_one = try_to_unmap_one,
1792 		.arg = (void *)flags,
1793 		.done = folio_not_mapped,
1794 		.anon_lock = folio_lock_anon_vma_read,
1795 	};
1796 
1797 	if (flags & TTU_RMAP_LOCKED)
1798 		rmap_walk_locked(folio, &rwc);
1799 	else
1800 		rmap_walk(folio, &rwc);
1801 }
1802 
1803 /*
1804  * @arg: enum ttu_flags will be passed to this argument.
1805  *
1806  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1807  * containing migration entries.
1808  */
1809 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1810 		     unsigned long address, void *arg)
1811 {
1812 	struct mm_struct *mm = vma->vm_mm;
1813 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1814 	pte_t pteval;
1815 	struct page *subpage;
1816 	bool anon_exclusive, ret = true;
1817 	struct mmu_notifier_range range;
1818 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1819 
1820 	/*
1821 	 * When racing against e.g. zap_pte_range() on another cpu,
1822 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1823 	 * try_to_migrate() may return before page_mapped() has become false,
1824 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1825 	 */
1826 	if (flags & TTU_SYNC)
1827 		pvmw.flags = PVMW_SYNC;
1828 
1829 	/*
1830 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1831 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1832 	 */
1833 	if (flags & TTU_SPLIT_HUGE_PMD)
1834 		split_huge_pmd_address(vma, address, true, folio);
1835 
1836 	/*
1837 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1838 	 * For hugetlb, it could be much worse if we need to do pud
1839 	 * invalidation in the case of pmd sharing.
1840 	 *
1841 	 * Note that the page can not be free in this function as call of
1842 	 * try_to_unmap() must hold a reference on the page.
1843 	 */
1844 	range.end = vma_address_end(&pvmw);
1845 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1846 				address, range.end);
1847 	if (folio_test_hugetlb(folio)) {
1848 		/*
1849 		 * If sharing is possible, start and end will be adjusted
1850 		 * accordingly.
1851 		 */
1852 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1853 						     &range.end);
1854 	}
1855 	mmu_notifier_invalidate_range_start(&range);
1856 
1857 	while (page_vma_mapped_walk(&pvmw)) {
1858 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1859 		/* PMD-mapped THP migration entry */
1860 		if (!pvmw.pte) {
1861 			subpage = folio_page(folio,
1862 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1863 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1864 					!folio_test_pmd_mappable(folio), folio);
1865 
1866 			if (set_pmd_migration_entry(&pvmw, subpage)) {
1867 				ret = false;
1868 				page_vma_mapped_walk_done(&pvmw);
1869 				break;
1870 			}
1871 			continue;
1872 		}
1873 #endif
1874 
1875 		/* Unexpected PMD-mapped THP? */
1876 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1877 
1878 		if (folio_is_zone_device(folio)) {
1879 			/*
1880 			 * Our PTE is a non-present device exclusive entry and
1881 			 * calculating the subpage as for the common case would
1882 			 * result in an invalid pointer.
1883 			 *
1884 			 * Since only PAGE_SIZE pages can currently be
1885 			 * migrated, just set it to page. This will need to be
1886 			 * changed when hugepage migrations to device private
1887 			 * memory are supported.
1888 			 */
1889 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1890 			subpage = &folio->page;
1891 		} else {
1892 			subpage = folio_page(folio,
1893 					pte_pfn(*pvmw.pte) - folio_pfn(folio));
1894 		}
1895 		address = pvmw.address;
1896 		anon_exclusive = folio_test_anon(folio) &&
1897 				 PageAnonExclusive(subpage);
1898 
1899 		if (folio_test_hugetlb(folio)) {
1900 			bool anon = folio_test_anon(folio);
1901 
1902 			/*
1903 			 * huge_pmd_unshare may unmap an entire PMD page.
1904 			 * There is no way of knowing exactly which PMDs may
1905 			 * be cached for this mm, so we must flush them all.
1906 			 * start/end were already adjusted above to cover this
1907 			 * range.
1908 			 */
1909 			flush_cache_range(vma, range.start, range.end);
1910 
1911 			/*
1912 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1913 			 * held in write mode.  Caller needs to explicitly
1914 			 * do this outside rmap routines.
1915 			 *
1916 			 * We also must hold hugetlb vma_lock in write mode.
1917 			 * Lock order dictates acquiring vma_lock BEFORE
1918 			 * i_mmap_rwsem.  We can only try lock here and
1919 			 * fail if unsuccessful.
1920 			 */
1921 			if (!anon) {
1922 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1923 				if (!hugetlb_vma_trylock_write(vma)) {
1924 					page_vma_mapped_walk_done(&pvmw);
1925 					ret = false;
1926 					break;
1927 				}
1928 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1929 					hugetlb_vma_unlock_write(vma);
1930 					flush_tlb_range(vma,
1931 						range.start, range.end);
1932 					mmu_notifier_invalidate_range(mm,
1933 						range.start, range.end);
1934 
1935 					/*
1936 					 * The ref count of the PMD page was
1937 					 * dropped which is part of the way map
1938 					 * counting is done for shared PMDs.
1939 					 * Return 'true' here.  When there is
1940 					 * no other sharing, huge_pmd_unshare
1941 					 * returns false and we will unmap the
1942 					 * actual page and drop map count
1943 					 * to zero.
1944 					 */
1945 					page_vma_mapped_walk_done(&pvmw);
1946 					break;
1947 				}
1948 				hugetlb_vma_unlock_write(vma);
1949 			}
1950 			/* Nuke the hugetlb page table entry */
1951 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1952 		} else {
1953 			flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1954 			/* Nuke the page table entry. */
1955 			if (should_defer_flush(mm, flags)) {
1956 				/*
1957 				 * We clear the PTE but do not flush so potentially
1958 				 * a remote CPU could still be writing to the folio.
1959 				 * If the entry was previously clean then the
1960 				 * architecture must guarantee that a clear->dirty
1961 				 * transition on a cached TLB entry is written through
1962 				 * and traps if the PTE is unmapped.
1963 				 */
1964 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1965 
1966 				set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1967 			} else {
1968 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1969 			}
1970 		}
1971 
1972 		/* Set the dirty flag on the folio now the pte is gone. */
1973 		if (pte_dirty(pteval))
1974 			folio_mark_dirty(folio);
1975 
1976 		/* Update high watermark before we lower rss */
1977 		update_hiwater_rss(mm);
1978 
1979 		if (folio_is_device_private(folio)) {
1980 			unsigned long pfn = folio_pfn(folio);
1981 			swp_entry_t entry;
1982 			pte_t swp_pte;
1983 
1984 			if (anon_exclusive)
1985 				BUG_ON(page_try_share_anon_rmap(subpage));
1986 
1987 			/*
1988 			 * Store the pfn of the page in a special migration
1989 			 * pte. do_swap_page() will wait until the migration
1990 			 * pte is removed and then restart fault handling.
1991 			 */
1992 			entry = pte_to_swp_entry(pteval);
1993 			if (is_writable_device_private_entry(entry))
1994 				entry = make_writable_migration_entry(pfn);
1995 			else if (anon_exclusive)
1996 				entry = make_readable_exclusive_migration_entry(pfn);
1997 			else
1998 				entry = make_readable_migration_entry(pfn);
1999 			swp_pte = swp_entry_to_pte(entry);
2000 
2001 			/*
2002 			 * pteval maps a zone device page and is therefore
2003 			 * a swap pte.
2004 			 */
2005 			if (pte_swp_soft_dirty(pteval))
2006 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2007 			if (pte_swp_uffd_wp(pteval))
2008 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2009 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2010 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2011 						compound_order(&folio->page));
2012 			/*
2013 			 * No need to invalidate here it will synchronize on
2014 			 * against the special swap migration pte.
2015 			 */
2016 		} else if (PageHWPoison(subpage)) {
2017 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2018 			if (folio_test_hugetlb(folio)) {
2019 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2020 				set_huge_pte_at(mm, address, pvmw.pte, pteval);
2021 			} else {
2022 				dec_mm_counter(mm, mm_counter(&folio->page));
2023 				set_pte_at(mm, address, pvmw.pte, pteval);
2024 			}
2025 
2026 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2027 			/*
2028 			 * The guest indicated that the page content is of no
2029 			 * interest anymore. Simply discard the pte, vmscan
2030 			 * will take care of the rest.
2031 			 * A future reference will then fault in a new zero
2032 			 * page. When userfaultfd is active, we must not drop
2033 			 * this page though, as its main user (postcopy
2034 			 * migration) will not expect userfaults on already
2035 			 * copied pages.
2036 			 */
2037 			dec_mm_counter(mm, mm_counter(&folio->page));
2038 			/* We have to invalidate as we cleared the pte */
2039 			mmu_notifier_invalidate_range(mm, address,
2040 						      address + PAGE_SIZE);
2041 		} else {
2042 			swp_entry_t entry;
2043 			pte_t swp_pte;
2044 
2045 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2046 				if (folio_test_hugetlb(folio))
2047 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
2048 				else
2049 					set_pte_at(mm, address, pvmw.pte, pteval);
2050 				ret = false;
2051 				page_vma_mapped_walk_done(&pvmw);
2052 				break;
2053 			}
2054 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2055 				       !anon_exclusive, subpage);
2056 
2057 			/* See page_try_share_anon_rmap(): clear PTE first. */
2058 			if (anon_exclusive &&
2059 			    page_try_share_anon_rmap(subpage)) {
2060 				if (folio_test_hugetlb(folio))
2061 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
2062 				else
2063 					set_pte_at(mm, address, pvmw.pte, pteval);
2064 				ret = false;
2065 				page_vma_mapped_walk_done(&pvmw);
2066 				break;
2067 			}
2068 
2069 			/*
2070 			 * Store the pfn of the page in a special migration
2071 			 * pte. do_swap_page() will wait until the migration
2072 			 * pte is removed and then restart fault handling.
2073 			 */
2074 			if (pte_write(pteval))
2075 				entry = make_writable_migration_entry(
2076 							page_to_pfn(subpage));
2077 			else if (anon_exclusive)
2078 				entry = make_readable_exclusive_migration_entry(
2079 							page_to_pfn(subpage));
2080 			else
2081 				entry = make_readable_migration_entry(
2082 							page_to_pfn(subpage));
2083 			if (pte_young(pteval))
2084 				entry = make_migration_entry_young(entry);
2085 			if (pte_dirty(pteval))
2086 				entry = make_migration_entry_dirty(entry);
2087 			swp_pte = swp_entry_to_pte(entry);
2088 			if (pte_soft_dirty(pteval))
2089 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2090 			if (pte_uffd_wp(pteval))
2091 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2092 			if (folio_test_hugetlb(folio))
2093 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
2094 			else
2095 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2096 			trace_set_migration_pte(address, pte_val(swp_pte),
2097 						compound_order(&folio->page));
2098 			/*
2099 			 * No need to invalidate here it will synchronize on
2100 			 * against the special swap migration pte.
2101 			 */
2102 		}
2103 
2104 		/*
2105 		 * No need to call mmu_notifier_invalidate_range() it has be
2106 		 * done above for all cases requiring it to happen under page
2107 		 * table lock before mmu_notifier_invalidate_range_end()
2108 		 *
2109 		 * See Documentation/mm/mmu_notifier.rst
2110 		 */
2111 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2112 		if (vma->vm_flags & VM_LOCKED)
2113 			mlock_drain_local();
2114 		folio_put(folio);
2115 	}
2116 
2117 	mmu_notifier_invalidate_range_end(&range);
2118 
2119 	return ret;
2120 }
2121 
2122 /**
2123  * try_to_migrate - try to replace all page table mappings with swap entries
2124  * @folio: the folio to replace page table entries for
2125  * @flags: action and flags
2126  *
2127  * Tries to remove all the page table entries which are mapping this folio and
2128  * replace them with special swap entries. Caller must hold the folio lock.
2129  */
2130 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2131 {
2132 	struct rmap_walk_control rwc = {
2133 		.rmap_one = try_to_migrate_one,
2134 		.arg = (void *)flags,
2135 		.done = folio_not_mapped,
2136 		.anon_lock = folio_lock_anon_vma_read,
2137 	};
2138 
2139 	/*
2140 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2141 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2142 	 */
2143 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2144 					TTU_SYNC | TTU_BATCH_FLUSH)))
2145 		return;
2146 
2147 	if (folio_is_zone_device(folio) &&
2148 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2149 		return;
2150 
2151 	/*
2152 	 * During exec, a temporary VMA is setup and later moved.
2153 	 * The VMA is moved under the anon_vma lock but not the
2154 	 * page tables leading to a race where migration cannot
2155 	 * find the migration ptes. Rather than increasing the
2156 	 * locking requirements of exec(), migration skips
2157 	 * temporary VMAs until after exec() completes.
2158 	 */
2159 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2160 		rwc.invalid_vma = invalid_migration_vma;
2161 
2162 	if (flags & TTU_RMAP_LOCKED)
2163 		rmap_walk_locked(folio, &rwc);
2164 	else
2165 		rmap_walk(folio, &rwc);
2166 }
2167 
2168 #ifdef CONFIG_DEVICE_PRIVATE
2169 struct make_exclusive_args {
2170 	struct mm_struct *mm;
2171 	unsigned long address;
2172 	void *owner;
2173 	bool valid;
2174 };
2175 
2176 static bool page_make_device_exclusive_one(struct folio *folio,
2177 		struct vm_area_struct *vma, unsigned long address, void *priv)
2178 {
2179 	struct mm_struct *mm = vma->vm_mm;
2180 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2181 	struct make_exclusive_args *args = priv;
2182 	pte_t pteval;
2183 	struct page *subpage;
2184 	bool ret = true;
2185 	struct mmu_notifier_range range;
2186 	swp_entry_t entry;
2187 	pte_t swp_pte;
2188 
2189 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2190 				      vma->vm_mm, address, min(vma->vm_end,
2191 				      address + folio_size(folio)),
2192 				      args->owner);
2193 	mmu_notifier_invalidate_range_start(&range);
2194 
2195 	while (page_vma_mapped_walk(&pvmw)) {
2196 		/* Unexpected PMD-mapped THP? */
2197 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2198 
2199 		if (!pte_present(*pvmw.pte)) {
2200 			ret = false;
2201 			page_vma_mapped_walk_done(&pvmw);
2202 			break;
2203 		}
2204 
2205 		subpage = folio_page(folio,
2206 				pte_pfn(*pvmw.pte) - folio_pfn(folio));
2207 		address = pvmw.address;
2208 
2209 		/* Nuke the page table entry. */
2210 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2211 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2212 
2213 		/* Set the dirty flag on the folio now the pte is gone. */
2214 		if (pte_dirty(pteval))
2215 			folio_mark_dirty(folio);
2216 
2217 		/*
2218 		 * Check that our target page is still mapped at the expected
2219 		 * address.
2220 		 */
2221 		if (args->mm == mm && args->address == address &&
2222 		    pte_write(pteval))
2223 			args->valid = true;
2224 
2225 		/*
2226 		 * Store the pfn of the page in a special migration
2227 		 * pte. do_swap_page() will wait until the migration
2228 		 * pte is removed and then restart fault handling.
2229 		 */
2230 		if (pte_write(pteval))
2231 			entry = make_writable_device_exclusive_entry(
2232 							page_to_pfn(subpage));
2233 		else
2234 			entry = make_readable_device_exclusive_entry(
2235 							page_to_pfn(subpage));
2236 		swp_pte = swp_entry_to_pte(entry);
2237 		if (pte_soft_dirty(pteval))
2238 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2239 		if (pte_uffd_wp(pteval))
2240 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2241 
2242 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2243 
2244 		/*
2245 		 * There is a reference on the page for the swap entry which has
2246 		 * been removed, so shouldn't take another.
2247 		 */
2248 		page_remove_rmap(subpage, vma, false);
2249 	}
2250 
2251 	mmu_notifier_invalidate_range_end(&range);
2252 
2253 	return ret;
2254 }
2255 
2256 /**
2257  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2258  * @folio: The folio to replace page table entries for.
2259  * @mm: The mm_struct where the folio is expected to be mapped.
2260  * @address: Address where the folio is expected to be mapped.
2261  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2262  *
2263  * Tries to remove all the page table entries which are mapping this
2264  * folio and replace them with special device exclusive swap entries to
2265  * grant a device exclusive access to the folio.
2266  *
2267  * Context: Caller must hold the folio lock.
2268  * Return: false if the page is still mapped, or if it could not be unmapped
2269  * from the expected address. Otherwise returns true (success).
2270  */
2271 static bool folio_make_device_exclusive(struct folio *folio,
2272 		struct mm_struct *mm, unsigned long address, void *owner)
2273 {
2274 	struct make_exclusive_args args = {
2275 		.mm = mm,
2276 		.address = address,
2277 		.owner = owner,
2278 		.valid = false,
2279 	};
2280 	struct rmap_walk_control rwc = {
2281 		.rmap_one = page_make_device_exclusive_one,
2282 		.done = folio_not_mapped,
2283 		.anon_lock = folio_lock_anon_vma_read,
2284 		.arg = &args,
2285 	};
2286 
2287 	/*
2288 	 * Restrict to anonymous folios for now to avoid potential writeback
2289 	 * issues.
2290 	 */
2291 	if (!folio_test_anon(folio))
2292 		return false;
2293 
2294 	rmap_walk(folio, &rwc);
2295 
2296 	return args.valid && !folio_mapcount(folio);
2297 }
2298 
2299 /**
2300  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2301  * @mm: mm_struct of associated target process
2302  * @start: start of the region to mark for exclusive device access
2303  * @end: end address of region
2304  * @pages: returns the pages which were successfully marked for exclusive access
2305  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2306  *
2307  * Returns: number of pages found in the range by GUP. A page is marked for
2308  * exclusive access only if the page pointer is non-NULL.
2309  *
2310  * This function finds ptes mapping page(s) to the given address range, locks
2311  * them and replaces mappings with special swap entries preventing userspace CPU
2312  * access. On fault these entries are replaced with the original mapping after
2313  * calling MMU notifiers.
2314  *
2315  * A driver using this to program access from a device must use a mmu notifier
2316  * critical section to hold a device specific lock during programming. Once
2317  * programming is complete it should drop the page lock and reference after
2318  * which point CPU access to the page will revoke the exclusive access.
2319  */
2320 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2321 				unsigned long end, struct page **pages,
2322 				void *owner)
2323 {
2324 	long npages = (end - start) >> PAGE_SHIFT;
2325 	long i;
2326 
2327 	npages = get_user_pages_remote(mm, start, npages,
2328 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2329 				       pages, NULL, NULL);
2330 	if (npages < 0)
2331 		return npages;
2332 
2333 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2334 		struct folio *folio = page_folio(pages[i]);
2335 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2336 			folio_put(folio);
2337 			pages[i] = NULL;
2338 			continue;
2339 		}
2340 
2341 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2342 			folio_unlock(folio);
2343 			folio_put(folio);
2344 			pages[i] = NULL;
2345 		}
2346 	}
2347 
2348 	return npages;
2349 }
2350 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2351 #endif
2352 
2353 void __put_anon_vma(struct anon_vma *anon_vma)
2354 {
2355 	struct anon_vma *root = anon_vma->root;
2356 
2357 	anon_vma_free(anon_vma);
2358 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2359 		anon_vma_free(root);
2360 }
2361 
2362 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2363 					    struct rmap_walk_control *rwc)
2364 {
2365 	struct anon_vma *anon_vma;
2366 
2367 	if (rwc->anon_lock)
2368 		return rwc->anon_lock(folio, rwc);
2369 
2370 	/*
2371 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2372 	 * because that depends on page_mapped(); but not all its usages
2373 	 * are holding mmap_lock. Users without mmap_lock are required to
2374 	 * take a reference count to prevent the anon_vma disappearing
2375 	 */
2376 	anon_vma = folio_anon_vma(folio);
2377 	if (!anon_vma)
2378 		return NULL;
2379 
2380 	if (anon_vma_trylock_read(anon_vma))
2381 		goto out;
2382 
2383 	if (rwc->try_lock) {
2384 		anon_vma = NULL;
2385 		rwc->contended = true;
2386 		goto out;
2387 	}
2388 
2389 	anon_vma_lock_read(anon_vma);
2390 out:
2391 	return anon_vma;
2392 }
2393 
2394 /*
2395  * rmap_walk_anon - do something to anonymous page using the object-based
2396  * rmap method
2397  * @page: the page to be handled
2398  * @rwc: control variable according to each walk type
2399  *
2400  * Find all the mappings of a page using the mapping pointer and the vma chains
2401  * contained in the anon_vma struct it points to.
2402  */
2403 static void rmap_walk_anon(struct folio *folio,
2404 		struct rmap_walk_control *rwc, bool locked)
2405 {
2406 	struct anon_vma *anon_vma;
2407 	pgoff_t pgoff_start, pgoff_end;
2408 	struct anon_vma_chain *avc;
2409 
2410 	if (locked) {
2411 		anon_vma = folio_anon_vma(folio);
2412 		/* anon_vma disappear under us? */
2413 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2414 	} else {
2415 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2416 	}
2417 	if (!anon_vma)
2418 		return;
2419 
2420 	pgoff_start = folio_pgoff(folio);
2421 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2422 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2423 			pgoff_start, pgoff_end) {
2424 		struct vm_area_struct *vma = avc->vma;
2425 		unsigned long address = vma_address(&folio->page, vma);
2426 
2427 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2428 		cond_resched();
2429 
2430 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2431 			continue;
2432 
2433 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2434 			break;
2435 		if (rwc->done && rwc->done(folio))
2436 			break;
2437 	}
2438 
2439 	if (!locked)
2440 		anon_vma_unlock_read(anon_vma);
2441 }
2442 
2443 /*
2444  * rmap_walk_file - do something to file page using the object-based rmap method
2445  * @page: the page to be handled
2446  * @rwc: control variable according to each walk type
2447  *
2448  * Find all the mappings of a page using the mapping pointer and the vma chains
2449  * contained in the address_space struct it points to.
2450  */
2451 static void rmap_walk_file(struct folio *folio,
2452 		struct rmap_walk_control *rwc, bool locked)
2453 {
2454 	struct address_space *mapping = folio_mapping(folio);
2455 	pgoff_t pgoff_start, pgoff_end;
2456 	struct vm_area_struct *vma;
2457 
2458 	/*
2459 	 * The page lock not only makes sure that page->mapping cannot
2460 	 * suddenly be NULLified by truncation, it makes sure that the
2461 	 * structure at mapping cannot be freed and reused yet,
2462 	 * so we can safely take mapping->i_mmap_rwsem.
2463 	 */
2464 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2465 
2466 	if (!mapping)
2467 		return;
2468 
2469 	pgoff_start = folio_pgoff(folio);
2470 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2471 	if (!locked) {
2472 		if (i_mmap_trylock_read(mapping))
2473 			goto lookup;
2474 
2475 		if (rwc->try_lock) {
2476 			rwc->contended = true;
2477 			return;
2478 		}
2479 
2480 		i_mmap_lock_read(mapping);
2481 	}
2482 lookup:
2483 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2484 			pgoff_start, pgoff_end) {
2485 		unsigned long address = vma_address(&folio->page, vma);
2486 
2487 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2488 		cond_resched();
2489 
2490 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2491 			continue;
2492 
2493 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2494 			goto done;
2495 		if (rwc->done && rwc->done(folio))
2496 			goto done;
2497 	}
2498 
2499 done:
2500 	if (!locked)
2501 		i_mmap_unlock_read(mapping);
2502 }
2503 
2504 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2505 {
2506 	if (unlikely(folio_test_ksm(folio)))
2507 		rmap_walk_ksm(folio, rwc);
2508 	else if (folio_test_anon(folio))
2509 		rmap_walk_anon(folio, rwc, false);
2510 	else
2511 		rmap_walk_file(folio, rwc, false);
2512 }
2513 
2514 /* Like rmap_walk, but caller holds relevant rmap lock */
2515 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2516 {
2517 	/* no ksm support for now */
2518 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2519 	if (folio_test_anon(folio))
2520 		rmap_walk_anon(folio, rwc, true);
2521 	else
2522 		rmap_walk_file(folio, rwc, true);
2523 }
2524 
2525 #ifdef CONFIG_HUGETLB_PAGE
2526 /*
2527  * The following two functions are for anonymous (private mapped) hugepages.
2528  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2529  * and no lru code, because we handle hugepages differently from common pages.
2530  *
2531  * RMAP_COMPOUND is ignored.
2532  */
2533 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2534 			    unsigned long address, rmap_t flags)
2535 {
2536 	struct folio *folio = page_folio(page);
2537 	struct anon_vma *anon_vma = vma->anon_vma;
2538 	int first;
2539 
2540 	BUG_ON(!folio_test_locked(folio));
2541 	BUG_ON(!anon_vma);
2542 	/* address might be in next vma when migration races vma_merge */
2543 	first = atomic_inc_and_test(&folio->_entire_mapcount);
2544 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2545 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2546 	if (first)
2547 		__page_set_anon_rmap(folio, page, vma, address,
2548 				     !!(flags & RMAP_EXCLUSIVE));
2549 }
2550 
2551 void hugepage_add_new_anon_rmap(struct folio *folio,
2552 			struct vm_area_struct *vma, unsigned long address)
2553 {
2554 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2555 	/* increment count (starts at -1) */
2556 	atomic_set(&folio->_entire_mapcount, 0);
2557 	folio_clear_hugetlb_restore_reserve(folio);
2558 	__page_set_anon_rmap(folio, &folio->page, vma, address, 1);
2559 }
2560 #endif /* CONFIG_HUGETLB_PAGE */
2561