1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * mapping->i_mmap_mutex 27 * anon_vma->rwsem 28 * mm->page_table_lock or pte_lock 29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 30 * swap_lock (in swap_duplicate, swap_info_get) 31 * mmlist_lock (in mmput, drain_mmlist and others) 32 * mapping->private_lock (in __set_page_dirty_buffers) 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within bdi.wb->list_lock in __sync_single_inode) 39 * 40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 41 * ->tasklist_lock 42 * pte map lock 43 */ 44 45 #include <linux/mm.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/slab.h> 50 #include <linux/init.h> 51 #include <linux/ksm.h> 52 #include <linux/rmap.h> 53 #include <linux/rcupdate.h> 54 #include <linux/export.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/migrate.h> 58 #include <linux/hugetlb.h> 59 #include <linux/backing-dev.h> 60 61 #include <asm/tlbflush.h> 62 63 #include "internal.h" 64 65 static struct kmem_cache *anon_vma_cachep; 66 static struct kmem_cache *anon_vma_chain_cachep; 67 68 static inline struct anon_vma *anon_vma_alloc(void) 69 { 70 struct anon_vma *anon_vma; 71 72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 73 if (anon_vma) { 74 atomic_set(&anon_vma->refcount, 1); 75 /* 76 * Initialise the anon_vma root to point to itself. If called 77 * from fork, the root will be reset to the parents anon_vma. 78 */ 79 anon_vma->root = anon_vma; 80 } 81 82 return anon_vma; 83 } 84 85 static inline void anon_vma_free(struct anon_vma *anon_vma) 86 { 87 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 88 89 /* 90 * Synchronize against page_lock_anon_vma_read() such that 91 * we can safely hold the lock without the anon_vma getting 92 * freed. 93 * 94 * Relies on the full mb implied by the atomic_dec_and_test() from 95 * put_anon_vma() against the acquire barrier implied by 96 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 97 * 98 * page_lock_anon_vma_read() VS put_anon_vma() 99 * down_read_trylock() atomic_dec_and_test() 100 * LOCK MB 101 * atomic_read() rwsem_is_locked() 102 * 103 * LOCK should suffice since the actual taking of the lock must 104 * happen _before_ what follows. 105 */ 106 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 107 anon_vma_lock_write(anon_vma); 108 anon_vma_unlock_write(anon_vma); 109 } 110 111 kmem_cache_free(anon_vma_cachep, anon_vma); 112 } 113 114 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 115 { 116 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 117 } 118 119 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 120 { 121 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 122 } 123 124 static void anon_vma_chain_link(struct vm_area_struct *vma, 125 struct anon_vma_chain *avc, 126 struct anon_vma *anon_vma) 127 { 128 avc->vma = vma; 129 avc->anon_vma = anon_vma; 130 list_add(&avc->same_vma, &vma->anon_vma_chain); 131 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 132 } 133 134 /** 135 * anon_vma_prepare - attach an anon_vma to a memory region 136 * @vma: the memory region in question 137 * 138 * This makes sure the memory mapping described by 'vma' has 139 * an 'anon_vma' attached to it, so that we can associate the 140 * anonymous pages mapped into it with that anon_vma. 141 * 142 * The common case will be that we already have one, but if 143 * not we either need to find an adjacent mapping that we 144 * can re-use the anon_vma from (very common when the only 145 * reason for splitting a vma has been mprotect()), or we 146 * allocate a new one. 147 * 148 * Anon-vma allocations are very subtle, because we may have 149 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 150 * and that may actually touch the spinlock even in the newly 151 * allocated vma (it depends on RCU to make sure that the 152 * anon_vma isn't actually destroyed). 153 * 154 * As a result, we need to do proper anon_vma locking even 155 * for the new allocation. At the same time, we do not want 156 * to do any locking for the common case of already having 157 * an anon_vma. 158 * 159 * This must be called with the mmap_sem held for reading. 160 */ 161 int anon_vma_prepare(struct vm_area_struct *vma) 162 { 163 struct anon_vma *anon_vma = vma->anon_vma; 164 struct anon_vma_chain *avc; 165 166 might_sleep(); 167 if (unlikely(!anon_vma)) { 168 struct mm_struct *mm = vma->vm_mm; 169 struct anon_vma *allocated; 170 171 avc = anon_vma_chain_alloc(GFP_KERNEL); 172 if (!avc) 173 goto out_enomem; 174 175 anon_vma = find_mergeable_anon_vma(vma); 176 allocated = NULL; 177 if (!anon_vma) { 178 anon_vma = anon_vma_alloc(); 179 if (unlikely(!anon_vma)) 180 goto out_enomem_free_avc; 181 allocated = anon_vma; 182 } 183 184 anon_vma_lock_write(anon_vma); 185 /* page_table_lock to protect against threads */ 186 spin_lock(&mm->page_table_lock); 187 if (likely(!vma->anon_vma)) { 188 vma->anon_vma = anon_vma; 189 anon_vma_chain_link(vma, avc, anon_vma); 190 allocated = NULL; 191 avc = NULL; 192 } 193 spin_unlock(&mm->page_table_lock); 194 anon_vma_unlock_write(anon_vma); 195 196 if (unlikely(allocated)) 197 put_anon_vma(allocated); 198 if (unlikely(avc)) 199 anon_vma_chain_free(avc); 200 } 201 return 0; 202 203 out_enomem_free_avc: 204 anon_vma_chain_free(avc); 205 out_enomem: 206 return -ENOMEM; 207 } 208 209 /* 210 * This is a useful helper function for locking the anon_vma root as 211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 212 * have the same vma. 213 * 214 * Such anon_vma's should have the same root, so you'd expect to see 215 * just a single mutex_lock for the whole traversal. 216 */ 217 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 218 { 219 struct anon_vma *new_root = anon_vma->root; 220 if (new_root != root) { 221 if (WARN_ON_ONCE(root)) 222 up_write(&root->rwsem); 223 root = new_root; 224 down_write(&root->rwsem); 225 } 226 return root; 227 } 228 229 static inline void unlock_anon_vma_root(struct anon_vma *root) 230 { 231 if (root) 232 up_write(&root->rwsem); 233 } 234 235 /* 236 * Attach the anon_vmas from src to dst. 237 * Returns 0 on success, -ENOMEM on failure. 238 */ 239 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 240 { 241 struct anon_vma_chain *avc, *pavc; 242 struct anon_vma *root = NULL; 243 244 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 245 struct anon_vma *anon_vma; 246 247 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 248 if (unlikely(!avc)) { 249 unlock_anon_vma_root(root); 250 root = NULL; 251 avc = anon_vma_chain_alloc(GFP_KERNEL); 252 if (!avc) 253 goto enomem_failure; 254 } 255 anon_vma = pavc->anon_vma; 256 root = lock_anon_vma_root(root, anon_vma); 257 anon_vma_chain_link(dst, avc, anon_vma); 258 } 259 unlock_anon_vma_root(root); 260 return 0; 261 262 enomem_failure: 263 unlink_anon_vmas(dst); 264 return -ENOMEM; 265 } 266 267 /* 268 * Attach vma to its own anon_vma, as well as to the anon_vmas that 269 * the corresponding VMA in the parent process is attached to. 270 * Returns 0 on success, non-zero on failure. 271 */ 272 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 273 { 274 struct anon_vma_chain *avc; 275 struct anon_vma *anon_vma; 276 277 /* Don't bother if the parent process has no anon_vma here. */ 278 if (!pvma->anon_vma) 279 return 0; 280 281 /* 282 * First, attach the new VMA to the parent VMA's anon_vmas, 283 * so rmap can find non-COWed pages in child processes. 284 */ 285 if (anon_vma_clone(vma, pvma)) 286 return -ENOMEM; 287 288 /* Then add our own anon_vma. */ 289 anon_vma = anon_vma_alloc(); 290 if (!anon_vma) 291 goto out_error; 292 avc = anon_vma_chain_alloc(GFP_KERNEL); 293 if (!avc) 294 goto out_error_free_anon_vma; 295 296 /* 297 * The root anon_vma's spinlock is the lock actually used when we 298 * lock any of the anon_vmas in this anon_vma tree. 299 */ 300 anon_vma->root = pvma->anon_vma->root; 301 /* 302 * With refcounts, an anon_vma can stay around longer than the 303 * process it belongs to. The root anon_vma needs to be pinned until 304 * this anon_vma is freed, because the lock lives in the root. 305 */ 306 get_anon_vma(anon_vma->root); 307 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 308 vma->anon_vma = anon_vma; 309 anon_vma_lock_write(anon_vma); 310 anon_vma_chain_link(vma, avc, anon_vma); 311 anon_vma_unlock_write(anon_vma); 312 313 return 0; 314 315 out_error_free_anon_vma: 316 put_anon_vma(anon_vma); 317 out_error: 318 unlink_anon_vmas(vma); 319 return -ENOMEM; 320 } 321 322 void unlink_anon_vmas(struct vm_area_struct *vma) 323 { 324 struct anon_vma_chain *avc, *next; 325 struct anon_vma *root = NULL; 326 327 /* 328 * Unlink each anon_vma chained to the VMA. This list is ordered 329 * from newest to oldest, ensuring the root anon_vma gets freed last. 330 */ 331 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 332 struct anon_vma *anon_vma = avc->anon_vma; 333 334 root = lock_anon_vma_root(root, anon_vma); 335 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 336 337 /* 338 * Leave empty anon_vmas on the list - we'll need 339 * to free them outside the lock. 340 */ 341 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) 342 continue; 343 344 list_del(&avc->same_vma); 345 anon_vma_chain_free(avc); 346 } 347 unlock_anon_vma_root(root); 348 349 /* 350 * Iterate the list once more, it now only contains empty and unlinked 351 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 352 * needing to write-acquire the anon_vma->root->rwsem. 353 */ 354 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 355 struct anon_vma *anon_vma = avc->anon_vma; 356 357 put_anon_vma(anon_vma); 358 359 list_del(&avc->same_vma); 360 anon_vma_chain_free(avc); 361 } 362 } 363 364 static void anon_vma_ctor(void *data) 365 { 366 struct anon_vma *anon_vma = data; 367 368 init_rwsem(&anon_vma->rwsem); 369 atomic_set(&anon_vma->refcount, 0); 370 anon_vma->rb_root = RB_ROOT; 371 } 372 373 void __init anon_vma_init(void) 374 { 375 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 376 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 377 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 378 } 379 380 /* 381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 382 * 383 * Since there is no serialization what so ever against page_remove_rmap() 384 * the best this function can do is return a locked anon_vma that might 385 * have been relevant to this page. 386 * 387 * The page might have been remapped to a different anon_vma or the anon_vma 388 * returned may already be freed (and even reused). 389 * 390 * In case it was remapped to a different anon_vma, the new anon_vma will be a 391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 392 * ensure that any anon_vma obtained from the page will still be valid for as 393 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 394 * 395 * All users of this function must be very careful when walking the anon_vma 396 * chain and verify that the page in question is indeed mapped in it 397 * [ something equivalent to page_mapped_in_vma() ]. 398 * 399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 400 * that the anon_vma pointer from page->mapping is valid if there is a 401 * mapcount, we can dereference the anon_vma after observing those. 402 */ 403 struct anon_vma *page_get_anon_vma(struct page *page) 404 { 405 struct anon_vma *anon_vma = NULL; 406 unsigned long anon_mapping; 407 408 rcu_read_lock(); 409 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 410 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 411 goto out; 412 if (!page_mapped(page)) 413 goto out; 414 415 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 416 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 417 anon_vma = NULL; 418 goto out; 419 } 420 421 /* 422 * If this page is still mapped, then its anon_vma cannot have been 423 * freed. But if it has been unmapped, we have no security against the 424 * anon_vma structure being freed and reused (for another anon_vma: 425 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 426 * above cannot corrupt). 427 */ 428 if (!page_mapped(page)) { 429 put_anon_vma(anon_vma); 430 anon_vma = NULL; 431 } 432 out: 433 rcu_read_unlock(); 434 435 return anon_vma; 436 } 437 438 /* 439 * Similar to page_get_anon_vma() except it locks the anon_vma. 440 * 441 * Its a little more complex as it tries to keep the fast path to a single 442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 443 * reference like with page_get_anon_vma() and then block on the mutex. 444 */ 445 struct anon_vma *page_lock_anon_vma_read(struct page *page) 446 { 447 struct anon_vma *anon_vma = NULL; 448 struct anon_vma *root_anon_vma; 449 unsigned long anon_mapping; 450 451 rcu_read_lock(); 452 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 453 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 454 goto out; 455 if (!page_mapped(page)) 456 goto out; 457 458 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 459 root_anon_vma = ACCESS_ONCE(anon_vma->root); 460 if (down_read_trylock(&root_anon_vma->rwsem)) { 461 /* 462 * If the page is still mapped, then this anon_vma is still 463 * its anon_vma, and holding the mutex ensures that it will 464 * not go away, see anon_vma_free(). 465 */ 466 if (!page_mapped(page)) { 467 up_read(&root_anon_vma->rwsem); 468 anon_vma = NULL; 469 } 470 goto out; 471 } 472 473 /* trylock failed, we got to sleep */ 474 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 475 anon_vma = NULL; 476 goto out; 477 } 478 479 if (!page_mapped(page)) { 480 put_anon_vma(anon_vma); 481 anon_vma = NULL; 482 goto out; 483 } 484 485 /* we pinned the anon_vma, its safe to sleep */ 486 rcu_read_unlock(); 487 anon_vma_lock_read(anon_vma); 488 489 if (atomic_dec_and_test(&anon_vma->refcount)) { 490 /* 491 * Oops, we held the last refcount, release the lock 492 * and bail -- can't simply use put_anon_vma() because 493 * we'll deadlock on the anon_vma_lock_write() recursion. 494 */ 495 anon_vma_unlock_read(anon_vma); 496 __put_anon_vma(anon_vma); 497 anon_vma = NULL; 498 } 499 500 return anon_vma; 501 502 out: 503 rcu_read_unlock(); 504 return anon_vma; 505 } 506 507 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 508 { 509 anon_vma_unlock_read(anon_vma); 510 } 511 512 /* 513 * At what user virtual address is page expected in @vma? 514 */ 515 static inline unsigned long 516 __vma_address(struct page *page, struct vm_area_struct *vma) 517 { 518 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 519 520 if (unlikely(is_vm_hugetlb_page(vma))) 521 pgoff = page->index << huge_page_order(page_hstate(page)); 522 523 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 524 } 525 526 inline unsigned long 527 vma_address(struct page *page, struct vm_area_struct *vma) 528 { 529 unsigned long address = __vma_address(page, vma); 530 531 /* page should be within @vma mapping range */ 532 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 533 534 return address; 535 } 536 537 /* 538 * At what user virtual address is page expected in vma? 539 * Caller should check the page is actually part of the vma. 540 */ 541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 542 { 543 unsigned long address; 544 if (PageAnon(page)) { 545 struct anon_vma *page__anon_vma = page_anon_vma(page); 546 /* 547 * Note: swapoff's unuse_vma() is more efficient with this 548 * check, and needs it to match anon_vma when KSM is active. 549 */ 550 if (!vma->anon_vma || !page__anon_vma || 551 vma->anon_vma->root != page__anon_vma->root) 552 return -EFAULT; 553 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 554 if (!vma->vm_file || 555 vma->vm_file->f_mapping != page->mapping) 556 return -EFAULT; 557 } else 558 return -EFAULT; 559 address = __vma_address(page, vma); 560 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 561 return -EFAULT; 562 return address; 563 } 564 565 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 566 { 567 pgd_t *pgd; 568 pud_t *pud; 569 pmd_t *pmd = NULL; 570 571 pgd = pgd_offset(mm, address); 572 if (!pgd_present(*pgd)) 573 goto out; 574 575 pud = pud_offset(pgd, address); 576 if (!pud_present(*pud)) 577 goto out; 578 579 pmd = pmd_offset(pud, address); 580 if (!pmd_present(*pmd)) 581 pmd = NULL; 582 out: 583 return pmd; 584 } 585 586 /* 587 * Check that @page is mapped at @address into @mm. 588 * 589 * If @sync is false, page_check_address may perform a racy check to avoid 590 * the page table lock when the pte is not present (helpful when reclaiming 591 * highly shared pages). 592 * 593 * On success returns with pte mapped and locked. 594 */ 595 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 596 unsigned long address, spinlock_t **ptlp, int sync) 597 { 598 pmd_t *pmd; 599 pte_t *pte; 600 spinlock_t *ptl; 601 602 if (unlikely(PageHuge(page))) { 603 pte = huge_pte_offset(mm, address); 604 ptl = huge_pte_lockptr(page_hstate(page), mm, pte); 605 goto check; 606 } 607 608 pmd = mm_find_pmd(mm, address); 609 if (!pmd) 610 return NULL; 611 612 if (pmd_trans_huge(*pmd)) 613 return NULL; 614 615 pte = pte_offset_map(pmd, address); 616 /* Make a quick check before getting the lock */ 617 if (!sync && !pte_present(*pte)) { 618 pte_unmap(pte); 619 return NULL; 620 } 621 622 ptl = pte_lockptr(mm, pmd); 623 check: 624 spin_lock(ptl); 625 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 626 *ptlp = ptl; 627 return pte; 628 } 629 pte_unmap_unlock(pte, ptl); 630 return NULL; 631 } 632 633 /** 634 * page_mapped_in_vma - check whether a page is really mapped in a VMA 635 * @page: the page to test 636 * @vma: the VMA to test 637 * 638 * Returns 1 if the page is mapped into the page tables of the VMA, 0 639 * if the page is not mapped into the page tables of this VMA. Only 640 * valid for normal file or anonymous VMAs. 641 */ 642 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 643 { 644 unsigned long address; 645 pte_t *pte; 646 spinlock_t *ptl; 647 648 address = __vma_address(page, vma); 649 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 650 return 0; 651 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 652 if (!pte) /* the page is not in this mm */ 653 return 0; 654 pte_unmap_unlock(pte, ptl); 655 656 return 1; 657 } 658 659 /* 660 * Subfunctions of page_referenced: page_referenced_one called 661 * repeatedly from either page_referenced_anon or page_referenced_file. 662 */ 663 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 664 unsigned long address, unsigned int *mapcount, 665 unsigned long *vm_flags) 666 { 667 struct mm_struct *mm = vma->vm_mm; 668 spinlock_t *ptl; 669 int referenced = 0; 670 671 if (unlikely(PageTransHuge(page))) { 672 pmd_t *pmd; 673 674 /* 675 * rmap might return false positives; we must filter 676 * these out using page_check_address_pmd(). 677 */ 678 pmd = page_check_address_pmd(page, mm, address, 679 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl); 680 if (!pmd) 681 goto out; 682 683 if (vma->vm_flags & VM_LOCKED) { 684 spin_unlock(ptl); 685 *mapcount = 0; /* break early from loop */ 686 *vm_flags |= VM_LOCKED; 687 goto out; 688 } 689 690 /* go ahead even if the pmd is pmd_trans_splitting() */ 691 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 692 referenced++; 693 spin_unlock(ptl); 694 } else { 695 pte_t *pte; 696 697 /* 698 * rmap might return false positives; we must filter 699 * these out using page_check_address(). 700 */ 701 pte = page_check_address(page, mm, address, &ptl, 0); 702 if (!pte) 703 goto out; 704 705 if (vma->vm_flags & VM_LOCKED) { 706 pte_unmap_unlock(pte, ptl); 707 *mapcount = 0; /* break early from loop */ 708 *vm_flags |= VM_LOCKED; 709 goto out; 710 } 711 712 if (ptep_clear_flush_young_notify(vma, address, pte)) { 713 /* 714 * Don't treat a reference through a sequentially read 715 * mapping as such. If the page has been used in 716 * another mapping, we will catch it; if this other 717 * mapping is already gone, the unmap path will have 718 * set PG_referenced or activated the page. 719 */ 720 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 721 referenced++; 722 } 723 pte_unmap_unlock(pte, ptl); 724 } 725 726 (*mapcount)--; 727 728 if (referenced) 729 *vm_flags |= vma->vm_flags; 730 out: 731 return referenced; 732 } 733 734 static int page_referenced_anon(struct page *page, 735 struct mem_cgroup *memcg, 736 unsigned long *vm_flags) 737 { 738 unsigned int mapcount; 739 struct anon_vma *anon_vma; 740 pgoff_t pgoff; 741 struct anon_vma_chain *avc; 742 int referenced = 0; 743 744 anon_vma = page_lock_anon_vma_read(page); 745 if (!anon_vma) 746 return referenced; 747 748 mapcount = page_mapcount(page); 749 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 750 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 751 struct vm_area_struct *vma = avc->vma; 752 unsigned long address = vma_address(page, vma); 753 /* 754 * If we are reclaiming on behalf of a cgroup, skip 755 * counting on behalf of references from different 756 * cgroups 757 */ 758 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 759 continue; 760 referenced += page_referenced_one(page, vma, address, 761 &mapcount, vm_flags); 762 if (!mapcount) 763 break; 764 } 765 766 page_unlock_anon_vma_read(anon_vma); 767 return referenced; 768 } 769 770 /** 771 * page_referenced_file - referenced check for object-based rmap 772 * @page: the page we're checking references on. 773 * @memcg: target memory control group 774 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 775 * 776 * For an object-based mapped page, find all the places it is mapped and 777 * check/clear the referenced flag. This is done by following the page->mapping 778 * pointer, then walking the chain of vmas it holds. It returns the number 779 * of references it found. 780 * 781 * This function is only called from page_referenced for object-based pages. 782 */ 783 static int page_referenced_file(struct page *page, 784 struct mem_cgroup *memcg, 785 unsigned long *vm_flags) 786 { 787 unsigned int mapcount; 788 struct address_space *mapping = page->mapping; 789 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 790 struct vm_area_struct *vma; 791 int referenced = 0; 792 793 /* 794 * The caller's checks on page->mapping and !PageAnon have made 795 * sure that this is a file page: the check for page->mapping 796 * excludes the case just before it gets set on an anon page. 797 */ 798 BUG_ON(PageAnon(page)); 799 800 /* 801 * The page lock not only makes sure that page->mapping cannot 802 * suddenly be NULLified by truncation, it makes sure that the 803 * structure at mapping cannot be freed and reused yet, 804 * so we can safely take mapping->i_mmap_mutex. 805 */ 806 BUG_ON(!PageLocked(page)); 807 808 mutex_lock(&mapping->i_mmap_mutex); 809 810 /* 811 * i_mmap_mutex does not stabilize mapcount at all, but mapcount 812 * is more likely to be accurate if we note it after spinning. 813 */ 814 mapcount = page_mapcount(page); 815 816 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 817 unsigned long address = vma_address(page, vma); 818 /* 819 * If we are reclaiming on behalf of a cgroup, skip 820 * counting on behalf of references from different 821 * cgroups 822 */ 823 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 824 continue; 825 referenced += page_referenced_one(page, vma, address, 826 &mapcount, vm_flags); 827 if (!mapcount) 828 break; 829 } 830 831 mutex_unlock(&mapping->i_mmap_mutex); 832 return referenced; 833 } 834 835 /** 836 * page_referenced - test if the page was referenced 837 * @page: the page to test 838 * @is_locked: caller holds lock on the page 839 * @memcg: target memory cgroup 840 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 841 * 842 * Quick test_and_clear_referenced for all mappings to a page, 843 * returns the number of ptes which referenced the page. 844 */ 845 int page_referenced(struct page *page, 846 int is_locked, 847 struct mem_cgroup *memcg, 848 unsigned long *vm_flags) 849 { 850 int referenced = 0; 851 int we_locked = 0; 852 853 *vm_flags = 0; 854 if (page_mapped(page) && page_rmapping(page)) { 855 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 856 we_locked = trylock_page(page); 857 if (!we_locked) { 858 referenced++; 859 goto out; 860 } 861 } 862 if (unlikely(PageKsm(page))) 863 referenced += page_referenced_ksm(page, memcg, 864 vm_flags); 865 else if (PageAnon(page)) 866 referenced += page_referenced_anon(page, memcg, 867 vm_flags); 868 else if (page->mapping) 869 referenced += page_referenced_file(page, memcg, 870 vm_flags); 871 if (we_locked) 872 unlock_page(page); 873 } 874 out: 875 return referenced; 876 } 877 878 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 879 unsigned long address) 880 { 881 struct mm_struct *mm = vma->vm_mm; 882 pte_t *pte; 883 spinlock_t *ptl; 884 int ret = 0; 885 886 pte = page_check_address(page, mm, address, &ptl, 1); 887 if (!pte) 888 goto out; 889 890 if (pte_dirty(*pte) || pte_write(*pte)) { 891 pte_t entry; 892 893 flush_cache_page(vma, address, pte_pfn(*pte)); 894 entry = ptep_clear_flush(vma, address, pte); 895 entry = pte_wrprotect(entry); 896 entry = pte_mkclean(entry); 897 set_pte_at(mm, address, pte, entry); 898 ret = 1; 899 } 900 901 pte_unmap_unlock(pte, ptl); 902 903 if (ret) 904 mmu_notifier_invalidate_page(mm, address); 905 out: 906 return ret; 907 } 908 909 static int page_mkclean_file(struct address_space *mapping, struct page *page) 910 { 911 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 912 struct vm_area_struct *vma; 913 int ret = 0; 914 915 BUG_ON(PageAnon(page)); 916 917 mutex_lock(&mapping->i_mmap_mutex); 918 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 919 if (vma->vm_flags & VM_SHARED) { 920 unsigned long address = vma_address(page, vma); 921 ret += page_mkclean_one(page, vma, address); 922 } 923 } 924 mutex_unlock(&mapping->i_mmap_mutex); 925 return ret; 926 } 927 928 int page_mkclean(struct page *page) 929 { 930 int ret = 0; 931 932 BUG_ON(!PageLocked(page)); 933 934 if (page_mapped(page)) { 935 struct address_space *mapping = page_mapping(page); 936 if (mapping) 937 ret = page_mkclean_file(mapping, page); 938 } 939 940 return ret; 941 } 942 EXPORT_SYMBOL_GPL(page_mkclean); 943 944 /** 945 * page_move_anon_rmap - move a page to our anon_vma 946 * @page: the page to move to our anon_vma 947 * @vma: the vma the page belongs to 948 * @address: the user virtual address mapped 949 * 950 * When a page belongs exclusively to one process after a COW event, 951 * that page can be moved into the anon_vma that belongs to just that 952 * process, so the rmap code will not search the parent or sibling 953 * processes. 954 */ 955 void page_move_anon_rmap(struct page *page, 956 struct vm_area_struct *vma, unsigned long address) 957 { 958 struct anon_vma *anon_vma = vma->anon_vma; 959 960 VM_BUG_ON(!PageLocked(page)); 961 VM_BUG_ON(!anon_vma); 962 VM_BUG_ON(page->index != linear_page_index(vma, address)); 963 964 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 965 page->mapping = (struct address_space *) anon_vma; 966 } 967 968 /** 969 * __page_set_anon_rmap - set up new anonymous rmap 970 * @page: Page to add to rmap 971 * @vma: VM area to add page to. 972 * @address: User virtual address of the mapping 973 * @exclusive: the page is exclusively owned by the current process 974 */ 975 static void __page_set_anon_rmap(struct page *page, 976 struct vm_area_struct *vma, unsigned long address, int exclusive) 977 { 978 struct anon_vma *anon_vma = vma->anon_vma; 979 980 BUG_ON(!anon_vma); 981 982 if (PageAnon(page)) 983 return; 984 985 /* 986 * If the page isn't exclusively mapped into this vma, 987 * we must use the _oldest_ possible anon_vma for the 988 * page mapping! 989 */ 990 if (!exclusive) 991 anon_vma = anon_vma->root; 992 993 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 994 page->mapping = (struct address_space *) anon_vma; 995 page->index = linear_page_index(vma, address); 996 } 997 998 /** 999 * __page_check_anon_rmap - sanity check anonymous rmap addition 1000 * @page: the page to add the mapping to 1001 * @vma: the vm area in which the mapping is added 1002 * @address: the user virtual address mapped 1003 */ 1004 static void __page_check_anon_rmap(struct page *page, 1005 struct vm_area_struct *vma, unsigned long address) 1006 { 1007 #ifdef CONFIG_DEBUG_VM 1008 /* 1009 * The page's anon-rmap details (mapping and index) are guaranteed to 1010 * be set up correctly at this point. 1011 * 1012 * We have exclusion against page_add_anon_rmap because the caller 1013 * always holds the page locked, except if called from page_dup_rmap, 1014 * in which case the page is already known to be setup. 1015 * 1016 * We have exclusion against page_add_new_anon_rmap because those pages 1017 * are initially only visible via the pagetables, and the pte is locked 1018 * over the call to page_add_new_anon_rmap. 1019 */ 1020 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1021 BUG_ON(page->index != linear_page_index(vma, address)); 1022 #endif 1023 } 1024 1025 /** 1026 * page_add_anon_rmap - add pte mapping to an anonymous page 1027 * @page: the page to add the mapping to 1028 * @vma: the vm area in which the mapping is added 1029 * @address: the user virtual address mapped 1030 * 1031 * The caller needs to hold the pte lock, and the page must be locked in 1032 * the anon_vma case: to serialize mapping,index checking after setting, 1033 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1034 * (but PageKsm is never downgraded to PageAnon). 1035 */ 1036 void page_add_anon_rmap(struct page *page, 1037 struct vm_area_struct *vma, unsigned long address) 1038 { 1039 do_page_add_anon_rmap(page, vma, address, 0); 1040 } 1041 1042 /* 1043 * Special version of the above for do_swap_page, which often runs 1044 * into pages that are exclusively owned by the current process. 1045 * Everybody else should continue to use page_add_anon_rmap above. 1046 */ 1047 void do_page_add_anon_rmap(struct page *page, 1048 struct vm_area_struct *vma, unsigned long address, int exclusive) 1049 { 1050 int first = atomic_inc_and_test(&page->_mapcount); 1051 if (first) { 1052 if (PageTransHuge(page)) 1053 __inc_zone_page_state(page, 1054 NR_ANON_TRANSPARENT_HUGEPAGES); 1055 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1056 hpage_nr_pages(page)); 1057 } 1058 if (unlikely(PageKsm(page))) 1059 return; 1060 1061 VM_BUG_ON(!PageLocked(page)); 1062 /* address might be in next vma when migration races vma_adjust */ 1063 if (first) 1064 __page_set_anon_rmap(page, vma, address, exclusive); 1065 else 1066 __page_check_anon_rmap(page, vma, address); 1067 } 1068 1069 /** 1070 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1071 * @page: the page to add the mapping to 1072 * @vma: the vm area in which the mapping is added 1073 * @address: the user virtual address mapped 1074 * 1075 * Same as page_add_anon_rmap but must only be called on *new* pages. 1076 * This means the inc-and-test can be bypassed. 1077 * Page does not have to be locked. 1078 */ 1079 void page_add_new_anon_rmap(struct page *page, 1080 struct vm_area_struct *vma, unsigned long address) 1081 { 1082 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1083 SetPageSwapBacked(page); 1084 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1085 if (PageTransHuge(page)) 1086 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1087 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1088 hpage_nr_pages(page)); 1089 __page_set_anon_rmap(page, vma, address, 1); 1090 if (!mlocked_vma_newpage(vma, page)) { 1091 SetPageActive(page); 1092 lru_cache_add(page); 1093 } else 1094 add_page_to_unevictable_list(page); 1095 } 1096 1097 /** 1098 * page_add_file_rmap - add pte mapping to a file page 1099 * @page: the page to add the mapping to 1100 * 1101 * The caller needs to hold the pte lock. 1102 */ 1103 void page_add_file_rmap(struct page *page) 1104 { 1105 bool locked; 1106 unsigned long flags; 1107 1108 mem_cgroup_begin_update_page_stat(page, &locked, &flags); 1109 if (atomic_inc_and_test(&page->_mapcount)) { 1110 __inc_zone_page_state(page, NR_FILE_MAPPED); 1111 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); 1112 } 1113 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1114 } 1115 1116 /** 1117 * page_remove_rmap - take down pte mapping from a page 1118 * @page: page to remove mapping from 1119 * 1120 * The caller needs to hold the pte lock. 1121 */ 1122 void page_remove_rmap(struct page *page) 1123 { 1124 bool anon = PageAnon(page); 1125 bool locked; 1126 unsigned long flags; 1127 1128 /* 1129 * The anon case has no mem_cgroup page_stat to update; but may 1130 * uncharge_page() below, where the lock ordering can deadlock if 1131 * we hold the lock against page_stat move: so avoid it on anon. 1132 */ 1133 if (!anon) 1134 mem_cgroup_begin_update_page_stat(page, &locked, &flags); 1135 1136 /* page still mapped by someone else? */ 1137 if (!atomic_add_negative(-1, &page->_mapcount)) 1138 goto out; 1139 1140 /* 1141 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 1142 * and not charged by memcg for now. 1143 */ 1144 if (unlikely(PageHuge(page))) 1145 goto out; 1146 if (anon) { 1147 mem_cgroup_uncharge_page(page); 1148 if (PageTransHuge(page)) 1149 __dec_zone_page_state(page, 1150 NR_ANON_TRANSPARENT_HUGEPAGES); 1151 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1152 -hpage_nr_pages(page)); 1153 } else { 1154 __dec_zone_page_state(page, NR_FILE_MAPPED); 1155 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); 1156 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1157 } 1158 if (unlikely(PageMlocked(page))) 1159 clear_page_mlock(page); 1160 /* 1161 * It would be tidy to reset the PageAnon mapping here, 1162 * but that might overwrite a racing page_add_anon_rmap 1163 * which increments mapcount after us but sets mapping 1164 * before us: so leave the reset to free_hot_cold_page, 1165 * and remember that it's only reliable while mapped. 1166 * Leaving it set also helps swapoff to reinstate ptes 1167 * faster for those pages still in swapcache. 1168 */ 1169 return; 1170 out: 1171 if (!anon) 1172 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1173 } 1174 1175 /* 1176 * Subfunctions of try_to_unmap: try_to_unmap_one called 1177 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file. 1178 */ 1179 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1180 unsigned long address, enum ttu_flags flags) 1181 { 1182 struct mm_struct *mm = vma->vm_mm; 1183 pte_t *pte; 1184 pte_t pteval; 1185 spinlock_t *ptl; 1186 int ret = SWAP_AGAIN; 1187 1188 pte = page_check_address(page, mm, address, &ptl, 0); 1189 if (!pte) 1190 goto out; 1191 1192 /* 1193 * If the page is mlock()d, we cannot swap it out. 1194 * If it's recently referenced (perhaps page_referenced 1195 * skipped over this mm) then we should reactivate it. 1196 */ 1197 if (!(flags & TTU_IGNORE_MLOCK)) { 1198 if (vma->vm_flags & VM_LOCKED) 1199 goto out_mlock; 1200 1201 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1202 goto out_unmap; 1203 } 1204 if (!(flags & TTU_IGNORE_ACCESS)) { 1205 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1206 ret = SWAP_FAIL; 1207 goto out_unmap; 1208 } 1209 } 1210 1211 /* Nuke the page table entry. */ 1212 flush_cache_page(vma, address, page_to_pfn(page)); 1213 pteval = ptep_clear_flush(vma, address, pte); 1214 1215 /* Move the dirty bit to the physical page now the pte is gone. */ 1216 if (pte_dirty(pteval)) 1217 set_page_dirty(page); 1218 1219 /* Update high watermark before we lower rss */ 1220 update_hiwater_rss(mm); 1221 1222 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1223 if (!PageHuge(page)) { 1224 if (PageAnon(page)) 1225 dec_mm_counter(mm, MM_ANONPAGES); 1226 else 1227 dec_mm_counter(mm, MM_FILEPAGES); 1228 } 1229 set_pte_at(mm, address, pte, 1230 swp_entry_to_pte(make_hwpoison_entry(page))); 1231 } else if (PageAnon(page)) { 1232 swp_entry_t entry = { .val = page_private(page) }; 1233 pte_t swp_pte; 1234 1235 if (PageSwapCache(page)) { 1236 /* 1237 * Store the swap location in the pte. 1238 * See handle_pte_fault() ... 1239 */ 1240 if (swap_duplicate(entry) < 0) { 1241 set_pte_at(mm, address, pte, pteval); 1242 ret = SWAP_FAIL; 1243 goto out_unmap; 1244 } 1245 if (list_empty(&mm->mmlist)) { 1246 spin_lock(&mmlist_lock); 1247 if (list_empty(&mm->mmlist)) 1248 list_add(&mm->mmlist, &init_mm.mmlist); 1249 spin_unlock(&mmlist_lock); 1250 } 1251 dec_mm_counter(mm, MM_ANONPAGES); 1252 inc_mm_counter(mm, MM_SWAPENTS); 1253 } else if (IS_ENABLED(CONFIG_MIGRATION)) { 1254 /* 1255 * Store the pfn of the page in a special migration 1256 * pte. do_swap_page() will wait until the migration 1257 * pte is removed and then restart fault handling. 1258 */ 1259 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1260 entry = make_migration_entry(page, pte_write(pteval)); 1261 } 1262 swp_pte = swp_entry_to_pte(entry); 1263 if (pte_soft_dirty(pteval)) 1264 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1265 set_pte_at(mm, address, pte, swp_pte); 1266 BUG_ON(pte_file(*pte)); 1267 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1268 (TTU_ACTION(flags) == TTU_MIGRATION)) { 1269 /* Establish migration entry for a file page */ 1270 swp_entry_t entry; 1271 entry = make_migration_entry(page, pte_write(pteval)); 1272 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1273 } else 1274 dec_mm_counter(mm, MM_FILEPAGES); 1275 1276 page_remove_rmap(page); 1277 page_cache_release(page); 1278 1279 out_unmap: 1280 pte_unmap_unlock(pte, ptl); 1281 if (ret != SWAP_FAIL) 1282 mmu_notifier_invalidate_page(mm, address); 1283 out: 1284 return ret; 1285 1286 out_mlock: 1287 pte_unmap_unlock(pte, ptl); 1288 1289 1290 /* 1291 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1292 * unstable result and race. Plus, We can't wait here because 1293 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex. 1294 * if trylock failed, the page remain in evictable lru and later 1295 * vmscan could retry to move the page to unevictable lru if the 1296 * page is actually mlocked. 1297 */ 1298 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1299 if (vma->vm_flags & VM_LOCKED) { 1300 mlock_vma_page(page); 1301 ret = SWAP_MLOCK; 1302 } 1303 up_read(&vma->vm_mm->mmap_sem); 1304 } 1305 return ret; 1306 } 1307 1308 /* 1309 * objrmap doesn't work for nonlinear VMAs because the assumption that 1310 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1311 * Consequently, given a particular page and its ->index, we cannot locate the 1312 * ptes which are mapping that page without an exhaustive linear search. 1313 * 1314 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1315 * maps the file to which the target page belongs. The ->vm_private_data field 1316 * holds the current cursor into that scan. Successive searches will circulate 1317 * around the vma's virtual address space. 1318 * 1319 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1320 * more scanning pressure is placed against them as well. Eventually pages 1321 * will become fully unmapped and are eligible for eviction. 1322 * 1323 * For very sparsely populated VMAs this is a little inefficient - chances are 1324 * there there won't be many ptes located within the scan cluster. In this case 1325 * maybe we could scan further - to the end of the pte page, perhaps. 1326 * 1327 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1328 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1329 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1330 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1331 */ 1332 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1333 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1334 1335 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1336 struct vm_area_struct *vma, struct page *check_page) 1337 { 1338 struct mm_struct *mm = vma->vm_mm; 1339 pmd_t *pmd; 1340 pte_t *pte; 1341 pte_t pteval; 1342 spinlock_t *ptl; 1343 struct page *page; 1344 unsigned long address; 1345 unsigned long mmun_start; /* For mmu_notifiers */ 1346 unsigned long mmun_end; /* For mmu_notifiers */ 1347 unsigned long end; 1348 int ret = SWAP_AGAIN; 1349 int locked_vma = 0; 1350 1351 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1352 end = address + CLUSTER_SIZE; 1353 if (address < vma->vm_start) 1354 address = vma->vm_start; 1355 if (end > vma->vm_end) 1356 end = vma->vm_end; 1357 1358 pmd = mm_find_pmd(mm, address); 1359 if (!pmd) 1360 return ret; 1361 1362 mmun_start = address; 1363 mmun_end = end; 1364 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1365 1366 /* 1367 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1368 * keep the sem while scanning the cluster for mlocking pages. 1369 */ 1370 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1371 locked_vma = (vma->vm_flags & VM_LOCKED); 1372 if (!locked_vma) 1373 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1374 } 1375 1376 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1377 1378 /* Update high watermark before we lower rss */ 1379 update_hiwater_rss(mm); 1380 1381 for (; address < end; pte++, address += PAGE_SIZE) { 1382 if (!pte_present(*pte)) 1383 continue; 1384 page = vm_normal_page(vma, address, *pte); 1385 BUG_ON(!page || PageAnon(page)); 1386 1387 if (locked_vma) { 1388 mlock_vma_page(page); /* no-op if already mlocked */ 1389 if (page == check_page) 1390 ret = SWAP_MLOCK; 1391 continue; /* don't unmap */ 1392 } 1393 1394 if (ptep_clear_flush_young_notify(vma, address, pte)) 1395 continue; 1396 1397 /* Nuke the page table entry. */ 1398 flush_cache_page(vma, address, pte_pfn(*pte)); 1399 pteval = ptep_clear_flush(vma, address, pte); 1400 1401 /* If nonlinear, store the file page offset in the pte. */ 1402 if (page->index != linear_page_index(vma, address)) { 1403 pte_t ptfile = pgoff_to_pte(page->index); 1404 if (pte_soft_dirty(pteval)) 1405 pte_file_mksoft_dirty(ptfile); 1406 set_pte_at(mm, address, pte, ptfile); 1407 } 1408 1409 /* Move the dirty bit to the physical page now the pte is gone. */ 1410 if (pte_dirty(pteval)) 1411 set_page_dirty(page); 1412 1413 page_remove_rmap(page); 1414 page_cache_release(page); 1415 dec_mm_counter(mm, MM_FILEPAGES); 1416 (*mapcount)--; 1417 } 1418 pte_unmap_unlock(pte - 1, ptl); 1419 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1420 if (locked_vma) 1421 up_read(&vma->vm_mm->mmap_sem); 1422 return ret; 1423 } 1424 1425 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1426 { 1427 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1428 1429 if (!maybe_stack) 1430 return false; 1431 1432 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1433 VM_STACK_INCOMPLETE_SETUP) 1434 return true; 1435 1436 return false; 1437 } 1438 1439 /** 1440 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1441 * rmap method 1442 * @page: the page to unmap/unlock 1443 * @flags: action and flags 1444 * 1445 * Find all the mappings of a page using the mapping pointer and the vma chains 1446 * contained in the anon_vma struct it points to. 1447 * 1448 * This function is only called from try_to_unmap/try_to_munlock for 1449 * anonymous pages. 1450 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1451 * where the page was found will be held for write. So, we won't recheck 1452 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1453 * 'LOCKED. 1454 */ 1455 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) 1456 { 1457 struct anon_vma *anon_vma; 1458 pgoff_t pgoff; 1459 struct anon_vma_chain *avc; 1460 int ret = SWAP_AGAIN; 1461 1462 anon_vma = page_lock_anon_vma_read(page); 1463 if (!anon_vma) 1464 return ret; 1465 1466 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1467 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1468 struct vm_area_struct *vma = avc->vma; 1469 unsigned long address; 1470 1471 /* 1472 * During exec, a temporary VMA is setup and later moved. 1473 * The VMA is moved under the anon_vma lock but not the 1474 * page tables leading to a race where migration cannot 1475 * find the migration ptes. Rather than increasing the 1476 * locking requirements of exec(), migration skips 1477 * temporary VMAs until after exec() completes. 1478 */ 1479 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && 1480 is_vma_temporary_stack(vma)) 1481 continue; 1482 1483 address = vma_address(page, vma); 1484 ret = try_to_unmap_one(page, vma, address, flags); 1485 if (ret != SWAP_AGAIN || !page_mapped(page)) 1486 break; 1487 } 1488 1489 page_unlock_anon_vma_read(anon_vma); 1490 return ret; 1491 } 1492 1493 /** 1494 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1495 * @page: the page to unmap/unlock 1496 * @flags: action and flags 1497 * 1498 * Find all the mappings of a page using the mapping pointer and the vma chains 1499 * contained in the address_space struct it points to. 1500 * 1501 * This function is only called from try_to_unmap/try_to_munlock for 1502 * object-based pages. 1503 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1504 * where the page was found will be held for write. So, we won't recheck 1505 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1506 * 'LOCKED. 1507 */ 1508 static int try_to_unmap_file(struct page *page, enum ttu_flags flags) 1509 { 1510 struct address_space *mapping = page->mapping; 1511 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1512 struct vm_area_struct *vma; 1513 int ret = SWAP_AGAIN; 1514 unsigned long cursor; 1515 unsigned long max_nl_cursor = 0; 1516 unsigned long max_nl_size = 0; 1517 unsigned int mapcount; 1518 1519 if (PageHuge(page)) 1520 pgoff = page->index << compound_order(page); 1521 1522 mutex_lock(&mapping->i_mmap_mutex); 1523 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1524 unsigned long address = vma_address(page, vma); 1525 ret = try_to_unmap_one(page, vma, address, flags); 1526 if (ret != SWAP_AGAIN || !page_mapped(page)) 1527 goto out; 1528 } 1529 1530 if (list_empty(&mapping->i_mmap_nonlinear)) 1531 goto out; 1532 1533 /* 1534 * We don't bother to try to find the munlocked page in nonlinears. 1535 * It's costly. Instead, later, page reclaim logic may call 1536 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. 1537 */ 1538 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1539 goto out; 1540 1541 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1542 shared.nonlinear) { 1543 cursor = (unsigned long) vma->vm_private_data; 1544 if (cursor > max_nl_cursor) 1545 max_nl_cursor = cursor; 1546 cursor = vma->vm_end - vma->vm_start; 1547 if (cursor > max_nl_size) 1548 max_nl_size = cursor; 1549 } 1550 1551 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1552 ret = SWAP_FAIL; 1553 goto out; 1554 } 1555 1556 /* 1557 * We don't try to search for this page in the nonlinear vmas, 1558 * and page_referenced wouldn't have found it anyway. Instead 1559 * just walk the nonlinear vmas trying to age and unmap some. 1560 * The mapcount of the page we came in with is irrelevant, 1561 * but even so use it as a guide to how hard we should try? 1562 */ 1563 mapcount = page_mapcount(page); 1564 if (!mapcount) 1565 goto out; 1566 cond_resched(); 1567 1568 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1569 if (max_nl_cursor == 0) 1570 max_nl_cursor = CLUSTER_SIZE; 1571 1572 do { 1573 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1574 shared.nonlinear) { 1575 cursor = (unsigned long) vma->vm_private_data; 1576 while ( cursor < max_nl_cursor && 1577 cursor < vma->vm_end - vma->vm_start) { 1578 if (try_to_unmap_cluster(cursor, &mapcount, 1579 vma, page) == SWAP_MLOCK) 1580 ret = SWAP_MLOCK; 1581 cursor += CLUSTER_SIZE; 1582 vma->vm_private_data = (void *) cursor; 1583 if ((int)mapcount <= 0) 1584 goto out; 1585 } 1586 vma->vm_private_data = (void *) max_nl_cursor; 1587 } 1588 cond_resched(); 1589 max_nl_cursor += CLUSTER_SIZE; 1590 } while (max_nl_cursor <= max_nl_size); 1591 1592 /* 1593 * Don't loop forever (perhaps all the remaining pages are 1594 * in locked vmas). Reset cursor on all unreserved nonlinear 1595 * vmas, now forgetting on which ones it had fallen behind. 1596 */ 1597 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear) 1598 vma->vm_private_data = NULL; 1599 out: 1600 mutex_unlock(&mapping->i_mmap_mutex); 1601 return ret; 1602 } 1603 1604 /** 1605 * try_to_unmap - try to remove all page table mappings to a page 1606 * @page: the page to get unmapped 1607 * @flags: action and flags 1608 * 1609 * Tries to remove all the page table entries which are mapping this 1610 * page, used in the pageout path. Caller must hold the page lock. 1611 * Return values are: 1612 * 1613 * SWAP_SUCCESS - we succeeded in removing all mappings 1614 * SWAP_AGAIN - we missed a mapping, try again later 1615 * SWAP_FAIL - the page is unswappable 1616 * SWAP_MLOCK - page is mlocked. 1617 */ 1618 int try_to_unmap(struct page *page, enum ttu_flags flags) 1619 { 1620 int ret; 1621 1622 BUG_ON(!PageLocked(page)); 1623 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page)); 1624 1625 if (unlikely(PageKsm(page))) 1626 ret = try_to_unmap_ksm(page, flags); 1627 else if (PageAnon(page)) 1628 ret = try_to_unmap_anon(page, flags); 1629 else 1630 ret = try_to_unmap_file(page, flags); 1631 if (ret != SWAP_MLOCK && !page_mapped(page)) 1632 ret = SWAP_SUCCESS; 1633 return ret; 1634 } 1635 1636 /** 1637 * try_to_munlock - try to munlock a page 1638 * @page: the page to be munlocked 1639 * 1640 * Called from munlock code. Checks all of the VMAs mapping the page 1641 * to make sure nobody else has this page mlocked. The page will be 1642 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1643 * 1644 * Return values are: 1645 * 1646 * SWAP_AGAIN - no vma is holding page mlocked, or, 1647 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1648 * SWAP_FAIL - page cannot be located at present 1649 * SWAP_MLOCK - page is now mlocked. 1650 */ 1651 int try_to_munlock(struct page *page) 1652 { 1653 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1654 1655 if (unlikely(PageKsm(page))) 1656 return try_to_unmap_ksm(page, TTU_MUNLOCK); 1657 else if (PageAnon(page)) 1658 return try_to_unmap_anon(page, TTU_MUNLOCK); 1659 else 1660 return try_to_unmap_file(page, TTU_MUNLOCK); 1661 } 1662 1663 void __put_anon_vma(struct anon_vma *anon_vma) 1664 { 1665 struct anon_vma *root = anon_vma->root; 1666 1667 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1668 anon_vma_free(root); 1669 1670 anon_vma_free(anon_vma); 1671 } 1672 1673 #ifdef CONFIG_MIGRATION 1674 /* 1675 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): 1676 * Called by migrate.c to remove migration ptes, but might be used more later. 1677 */ 1678 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, 1679 struct vm_area_struct *, unsigned long, void *), void *arg) 1680 { 1681 struct anon_vma *anon_vma; 1682 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1683 struct anon_vma_chain *avc; 1684 int ret = SWAP_AGAIN; 1685 1686 /* 1687 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1688 * because that depends on page_mapped(); but not all its usages 1689 * are holding mmap_sem. Users without mmap_sem are required to 1690 * take a reference count to prevent the anon_vma disappearing 1691 */ 1692 anon_vma = page_anon_vma(page); 1693 if (!anon_vma) 1694 return ret; 1695 anon_vma_lock_read(anon_vma); 1696 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1697 struct vm_area_struct *vma = avc->vma; 1698 unsigned long address = vma_address(page, vma); 1699 ret = rmap_one(page, vma, address, arg); 1700 if (ret != SWAP_AGAIN) 1701 break; 1702 } 1703 anon_vma_unlock_read(anon_vma); 1704 return ret; 1705 } 1706 1707 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, 1708 struct vm_area_struct *, unsigned long, void *), void *arg) 1709 { 1710 struct address_space *mapping = page->mapping; 1711 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1712 struct vm_area_struct *vma; 1713 int ret = SWAP_AGAIN; 1714 1715 if (!mapping) 1716 return ret; 1717 mutex_lock(&mapping->i_mmap_mutex); 1718 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1719 unsigned long address = vma_address(page, vma); 1720 ret = rmap_one(page, vma, address, arg); 1721 if (ret != SWAP_AGAIN) 1722 break; 1723 } 1724 /* 1725 * No nonlinear handling: being always shared, nonlinear vmas 1726 * never contain migration ptes. Decide what to do about this 1727 * limitation to linear when we need rmap_walk() on nonlinear. 1728 */ 1729 mutex_unlock(&mapping->i_mmap_mutex); 1730 return ret; 1731 } 1732 1733 int rmap_walk(struct page *page, int (*rmap_one)(struct page *, 1734 struct vm_area_struct *, unsigned long, void *), void *arg) 1735 { 1736 VM_BUG_ON(!PageLocked(page)); 1737 1738 if (unlikely(PageKsm(page))) 1739 return rmap_walk_ksm(page, rmap_one, arg); 1740 else if (PageAnon(page)) 1741 return rmap_walk_anon(page, rmap_one, arg); 1742 else 1743 return rmap_walk_file(page, rmap_one, arg); 1744 } 1745 #endif /* CONFIG_MIGRATION */ 1746 1747 #ifdef CONFIG_HUGETLB_PAGE 1748 /* 1749 * The following three functions are for anonymous (private mapped) hugepages. 1750 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1751 * and no lru code, because we handle hugepages differently from common pages. 1752 */ 1753 static void __hugepage_set_anon_rmap(struct page *page, 1754 struct vm_area_struct *vma, unsigned long address, int exclusive) 1755 { 1756 struct anon_vma *anon_vma = vma->anon_vma; 1757 1758 BUG_ON(!anon_vma); 1759 1760 if (PageAnon(page)) 1761 return; 1762 if (!exclusive) 1763 anon_vma = anon_vma->root; 1764 1765 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1766 page->mapping = (struct address_space *) anon_vma; 1767 page->index = linear_page_index(vma, address); 1768 } 1769 1770 void hugepage_add_anon_rmap(struct page *page, 1771 struct vm_area_struct *vma, unsigned long address) 1772 { 1773 struct anon_vma *anon_vma = vma->anon_vma; 1774 int first; 1775 1776 BUG_ON(!PageLocked(page)); 1777 BUG_ON(!anon_vma); 1778 /* address might be in next vma when migration races vma_adjust */ 1779 first = atomic_inc_and_test(&page->_mapcount); 1780 if (first) 1781 __hugepage_set_anon_rmap(page, vma, address, 0); 1782 } 1783 1784 void hugepage_add_new_anon_rmap(struct page *page, 1785 struct vm_area_struct *vma, unsigned long address) 1786 { 1787 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1788 atomic_set(&page->_mapcount, 0); 1789 __hugepage_set_anon_rmap(page, vma, address, 1); 1790 } 1791 #endif /* CONFIG_HUGETLB_PAGE */ 1792