xref: /openbmc/linux/mm/rmap.c (revision 77d84ff8)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_mutex
27  *         anon_vma->rwsem
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within bdi.wb->list_lock in __sync_single_inode)
39  *
40  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
41  *   ->tasklist_lock
42  *     pte map lock
43  */
44 
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	struct anon_vma *anon_vma;
71 
72 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 	if (anon_vma) {
74 		atomic_set(&anon_vma->refcount, 1);
75 		/*
76 		 * Initialise the anon_vma root to point to itself. If called
77 		 * from fork, the root will be reset to the parents anon_vma.
78 		 */
79 		anon_vma->root = anon_vma;
80 	}
81 
82 	return anon_vma;
83 }
84 
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 {
87 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
88 
89 	/*
90 	 * Synchronize against page_lock_anon_vma_read() such that
91 	 * we can safely hold the lock without the anon_vma getting
92 	 * freed.
93 	 *
94 	 * Relies on the full mb implied by the atomic_dec_and_test() from
95 	 * put_anon_vma() against the acquire barrier implied by
96 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
97 	 *
98 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
99 	 *   down_read_trylock()		  atomic_dec_and_test()
100 	 *   LOCK				  MB
101 	 *   atomic_read()			  rwsem_is_locked()
102 	 *
103 	 * LOCK should suffice since the actual taking of the lock must
104 	 * happen _before_ what follows.
105 	 */
106 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
107 		anon_vma_lock_write(anon_vma);
108 		anon_vma_unlock_write(anon_vma);
109 	}
110 
111 	kmem_cache_free(anon_vma_cachep, anon_vma);
112 }
113 
114 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
115 {
116 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
117 }
118 
119 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
120 {
121 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
122 }
123 
124 static void anon_vma_chain_link(struct vm_area_struct *vma,
125 				struct anon_vma_chain *avc,
126 				struct anon_vma *anon_vma)
127 {
128 	avc->vma = vma;
129 	avc->anon_vma = anon_vma;
130 	list_add(&avc->same_vma, &vma->anon_vma_chain);
131 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
132 }
133 
134 /**
135  * anon_vma_prepare - attach an anon_vma to a memory region
136  * @vma: the memory region in question
137  *
138  * This makes sure the memory mapping described by 'vma' has
139  * an 'anon_vma' attached to it, so that we can associate the
140  * anonymous pages mapped into it with that anon_vma.
141  *
142  * The common case will be that we already have one, but if
143  * not we either need to find an adjacent mapping that we
144  * can re-use the anon_vma from (very common when the only
145  * reason for splitting a vma has been mprotect()), or we
146  * allocate a new one.
147  *
148  * Anon-vma allocations are very subtle, because we may have
149  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
150  * and that may actually touch the spinlock even in the newly
151  * allocated vma (it depends on RCU to make sure that the
152  * anon_vma isn't actually destroyed).
153  *
154  * As a result, we need to do proper anon_vma locking even
155  * for the new allocation. At the same time, we do not want
156  * to do any locking for the common case of already having
157  * an anon_vma.
158  *
159  * This must be called with the mmap_sem held for reading.
160  */
161 int anon_vma_prepare(struct vm_area_struct *vma)
162 {
163 	struct anon_vma *anon_vma = vma->anon_vma;
164 	struct anon_vma_chain *avc;
165 
166 	might_sleep();
167 	if (unlikely(!anon_vma)) {
168 		struct mm_struct *mm = vma->vm_mm;
169 		struct anon_vma *allocated;
170 
171 		avc = anon_vma_chain_alloc(GFP_KERNEL);
172 		if (!avc)
173 			goto out_enomem;
174 
175 		anon_vma = find_mergeable_anon_vma(vma);
176 		allocated = NULL;
177 		if (!anon_vma) {
178 			anon_vma = anon_vma_alloc();
179 			if (unlikely(!anon_vma))
180 				goto out_enomem_free_avc;
181 			allocated = anon_vma;
182 		}
183 
184 		anon_vma_lock_write(anon_vma);
185 		/* page_table_lock to protect against threads */
186 		spin_lock(&mm->page_table_lock);
187 		if (likely(!vma->anon_vma)) {
188 			vma->anon_vma = anon_vma;
189 			anon_vma_chain_link(vma, avc, anon_vma);
190 			allocated = NULL;
191 			avc = NULL;
192 		}
193 		spin_unlock(&mm->page_table_lock);
194 		anon_vma_unlock_write(anon_vma);
195 
196 		if (unlikely(allocated))
197 			put_anon_vma(allocated);
198 		if (unlikely(avc))
199 			anon_vma_chain_free(avc);
200 	}
201 	return 0;
202 
203  out_enomem_free_avc:
204 	anon_vma_chain_free(avc);
205  out_enomem:
206 	return -ENOMEM;
207 }
208 
209 /*
210  * This is a useful helper function for locking the anon_vma root as
211  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
212  * have the same vma.
213  *
214  * Such anon_vma's should have the same root, so you'd expect to see
215  * just a single mutex_lock for the whole traversal.
216  */
217 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
218 {
219 	struct anon_vma *new_root = anon_vma->root;
220 	if (new_root != root) {
221 		if (WARN_ON_ONCE(root))
222 			up_write(&root->rwsem);
223 		root = new_root;
224 		down_write(&root->rwsem);
225 	}
226 	return root;
227 }
228 
229 static inline void unlock_anon_vma_root(struct anon_vma *root)
230 {
231 	if (root)
232 		up_write(&root->rwsem);
233 }
234 
235 /*
236  * Attach the anon_vmas from src to dst.
237  * Returns 0 on success, -ENOMEM on failure.
238  */
239 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
240 {
241 	struct anon_vma_chain *avc, *pavc;
242 	struct anon_vma *root = NULL;
243 
244 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
245 		struct anon_vma *anon_vma;
246 
247 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
248 		if (unlikely(!avc)) {
249 			unlock_anon_vma_root(root);
250 			root = NULL;
251 			avc = anon_vma_chain_alloc(GFP_KERNEL);
252 			if (!avc)
253 				goto enomem_failure;
254 		}
255 		anon_vma = pavc->anon_vma;
256 		root = lock_anon_vma_root(root, anon_vma);
257 		anon_vma_chain_link(dst, avc, anon_vma);
258 	}
259 	unlock_anon_vma_root(root);
260 	return 0;
261 
262  enomem_failure:
263 	unlink_anon_vmas(dst);
264 	return -ENOMEM;
265 }
266 
267 /*
268  * Attach vma to its own anon_vma, as well as to the anon_vmas that
269  * the corresponding VMA in the parent process is attached to.
270  * Returns 0 on success, non-zero on failure.
271  */
272 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
273 {
274 	struct anon_vma_chain *avc;
275 	struct anon_vma *anon_vma;
276 
277 	/* Don't bother if the parent process has no anon_vma here. */
278 	if (!pvma->anon_vma)
279 		return 0;
280 
281 	/*
282 	 * First, attach the new VMA to the parent VMA's anon_vmas,
283 	 * so rmap can find non-COWed pages in child processes.
284 	 */
285 	if (anon_vma_clone(vma, pvma))
286 		return -ENOMEM;
287 
288 	/* Then add our own anon_vma. */
289 	anon_vma = anon_vma_alloc();
290 	if (!anon_vma)
291 		goto out_error;
292 	avc = anon_vma_chain_alloc(GFP_KERNEL);
293 	if (!avc)
294 		goto out_error_free_anon_vma;
295 
296 	/*
297 	 * The root anon_vma's spinlock is the lock actually used when we
298 	 * lock any of the anon_vmas in this anon_vma tree.
299 	 */
300 	anon_vma->root = pvma->anon_vma->root;
301 	/*
302 	 * With refcounts, an anon_vma can stay around longer than the
303 	 * process it belongs to. The root anon_vma needs to be pinned until
304 	 * this anon_vma is freed, because the lock lives in the root.
305 	 */
306 	get_anon_vma(anon_vma->root);
307 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
308 	vma->anon_vma = anon_vma;
309 	anon_vma_lock_write(anon_vma);
310 	anon_vma_chain_link(vma, avc, anon_vma);
311 	anon_vma_unlock_write(anon_vma);
312 
313 	return 0;
314 
315  out_error_free_anon_vma:
316 	put_anon_vma(anon_vma);
317  out_error:
318 	unlink_anon_vmas(vma);
319 	return -ENOMEM;
320 }
321 
322 void unlink_anon_vmas(struct vm_area_struct *vma)
323 {
324 	struct anon_vma_chain *avc, *next;
325 	struct anon_vma *root = NULL;
326 
327 	/*
328 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
329 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
330 	 */
331 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
332 		struct anon_vma *anon_vma = avc->anon_vma;
333 
334 		root = lock_anon_vma_root(root, anon_vma);
335 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
336 
337 		/*
338 		 * Leave empty anon_vmas on the list - we'll need
339 		 * to free them outside the lock.
340 		 */
341 		if (RB_EMPTY_ROOT(&anon_vma->rb_root))
342 			continue;
343 
344 		list_del(&avc->same_vma);
345 		anon_vma_chain_free(avc);
346 	}
347 	unlock_anon_vma_root(root);
348 
349 	/*
350 	 * Iterate the list once more, it now only contains empty and unlinked
351 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
352 	 * needing to write-acquire the anon_vma->root->rwsem.
353 	 */
354 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
355 		struct anon_vma *anon_vma = avc->anon_vma;
356 
357 		put_anon_vma(anon_vma);
358 
359 		list_del(&avc->same_vma);
360 		anon_vma_chain_free(avc);
361 	}
362 }
363 
364 static void anon_vma_ctor(void *data)
365 {
366 	struct anon_vma *anon_vma = data;
367 
368 	init_rwsem(&anon_vma->rwsem);
369 	atomic_set(&anon_vma->refcount, 0);
370 	anon_vma->rb_root = RB_ROOT;
371 }
372 
373 void __init anon_vma_init(void)
374 {
375 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
376 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
377 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
378 }
379 
380 /*
381  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
382  *
383  * Since there is no serialization what so ever against page_remove_rmap()
384  * the best this function can do is return a locked anon_vma that might
385  * have been relevant to this page.
386  *
387  * The page might have been remapped to a different anon_vma or the anon_vma
388  * returned may already be freed (and even reused).
389  *
390  * In case it was remapped to a different anon_vma, the new anon_vma will be a
391  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392  * ensure that any anon_vma obtained from the page will still be valid for as
393  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
394  *
395  * All users of this function must be very careful when walking the anon_vma
396  * chain and verify that the page in question is indeed mapped in it
397  * [ something equivalent to page_mapped_in_vma() ].
398  *
399  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400  * that the anon_vma pointer from page->mapping is valid if there is a
401  * mapcount, we can dereference the anon_vma after observing those.
402  */
403 struct anon_vma *page_get_anon_vma(struct page *page)
404 {
405 	struct anon_vma *anon_vma = NULL;
406 	unsigned long anon_mapping;
407 
408 	rcu_read_lock();
409 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
410 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
411 		goto out;
412 	if (!page_mapped(page))
413 		goto out;
414 
415 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
416 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
417 		anon_vma = NULL;
418 		goto out;
419 	}
420 
421 	/*
422 	 * If this page is still mapped, then its anon_vma cannot have been
423 	 * freed.  But if it has been unmapped, we have no security against the
424 	 * anon_vma structure being freed and reused (for another anon_vma:
425 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426 	 * above cannot corrupt).
427 	 */
428 	if (!page_mapped(page)) {
429 		put_anon_vma(anon_vma);
430 		anon_vma = NULL;
431 	}
432 out:
433 	rcu_read_unlock();
434 
435 	return anon_vma;
436 }
437 
438 /*
439  * Similar to page_get_anon_vma() except it locks the anon_vma.
440  *
441  * Its a little more complex as it tries to keep the fast path to a single
442  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443  * reference like with page_get_anon_vma() and then block on the mutex.
444  */
445 struct anon_vma *page_lock_anon_vma_read(struct page *page)
446 {
447 	struct anon_vma *anon_vma = NULL;
448 	struct anon_vma *root_anon_vma;
449 	unsigned long anon_mapping;
450 
451 	rcu_read_lock();
452 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454 		goto out;
455 	if (!page_mapped(page))
456 		goto out;
457 
458 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
459 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
460 	if (down_read_trylock(&root_anon_vma->rwsem)) {
461 		/*
462 		 * If the page is still mapped, then this anon_vma is still
463 		 * its anon_vma, and holding the mutex ensures that it will
464 		 * not go away, see anon_vma_free().
465 		 */
466 		if (!page_mapped(page)) {
467 			up_read(&root_anon_vma->rwsem);
468 			anon_vma = NULL;
469 		}
470 		goto out;
471 	}
472 
473 	/* trylock failed, we got to sleep */
474 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 		anon_vma = NULL;
476 		goto out;
477 	}
478 
479 	if (!page_mapped(page)) {
480 		put_anon_vma(anon_vma);
481 		anon_vma = NULL;
482 		goto out;
483 	}
484 
485 	/* we pinned the anon_vma, its safe to sleep */
486 	rcu_read_unlock();
487 	anon_vma_lock_read(anon_vma);
488 
489 	if (atomic_dec_and_test(&anon_vma->refcount)) {
490 		/*
491 		 * Oops, we held the last refcount, release the lock
492 		 * and bail -- can't simply use put_anon_vma() because
493 		 * we'll deadlock on the anon_vma_lock_write() recursion.
494 		 */
495 		anon_vma_unlock_read(anon_vma);
496 		__put_anon_vma(anon_vma);
497 		anon_vma = NULL;
498 	}
499 
500 	return anon_vma;
501 
502 out:
503 	rcu_read_unlock();
504 	return anon_vma;
505 }
506 
507 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
508 {
509 	anon_vma_unlock_read(anon_vma);
510 }
511 
512 /*
513  * At what user virtual address is page expected in @vma?
514  */
515 static inline unsigned long
516 __vma_address(struct page *page, struct vm_area_struct *vma)
517 {
518 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
519 
520 	if (unlikely(is_vm_hugetlb_page(vma)))
521 		pgoff = page->index << huge_page_order(page_hstate(page));
522 
523 	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524 }
525 
526 inline unsigned long
527 vma_address(struct page *page, struct vm_area_struct *vma)
528 {
529 	unsigned long address = __vma_address(page, vma);
530 
531 	/* page should be within @vma mapping range */
532 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
533 
534 	return address;
535 }
536 
537 /*
538  * At what user virtual address is page expected in vma?
539  * Caller should check the page is actually part of the vma.
540  */
541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542 {
543 	unsigned long address;
544 	if (PageAnon(page)) {
545 		struct anon_vma *page__anon_vma = page_anon_vma(page);
546 		/*
547 		 * Note: swapoff's unuse_vma() is more efficient with this
548 		 * check, and needs it to match anon_vma when KSM is active.
549 		 */
550 		if (!vma->anon_vma || !page__anon_vma ||
551 		    vma->anon_vma->root != page__anon_vma->root)
552 			return -EFAULT;
553 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
554 		if (!vma->vm_file ||
555 		    vma->vm_file->f_mapping != page->mapping)
556 			return -EFAULT;
557 	} else
558 		return -EFAULT;
559 	address = __vma_address(page, vma);
560 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561 		return -EFAULT;
562 	return address;
563 }
564 
565 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
566 {
567 	pgd_t *pgd;
568 	pud_t *pud;
569 	pmd_t *pmd = NULL;
570 
571 	pgd = pgd_offset(mm, address);
572 	if (!pgd_present(*pgd))
573 		goto out;
574 
575 	pud = pud_offset(pgd, address);
576 	if (!pud_present(*pud))
577 		goto out;
578 
579 	pmd = pmd_offset(pud, address);
580 	if (!pmd_present(*pmd))
581 		pmd = NULL;
582 out:
583 	return pmd;
584 }
585 
586 /*
587  * Check that @page is mapped at @address into @mm.
588  *
589  * If @sync is false, page_check_address may perform a racy check to avoid
590  * the page table lock when the pte is not present (helpful when reclaiming
591  * highly shared pages).
592  *
593  * On success returns with pte mapped and locked.
594  */
595 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
596 			  unsigned long address, spinlock_t **ptlp, int sync)
597 {
598 	pmd_t *pmd;
599 	pte_t *pte;
600 	spinlock_t *ptl;
601 
602 	if (unlikely(PageHuge(page))) {
603 		pte = huge_pte_offset(mm, address);
604 		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
605 		goto check;
606 	}
607 
608 	pmd = mm_find_pmd(mm, address);
609 	if (!pmd)
610 		return NULL;
611 
612 	if (pmd_trans_huge(*pmd))
613 		return NULL;
614 
615 	pte = pte_offset_map(pmd, address);
616 	/* Make a quick check before getting the lock */
617 	if (!sync && !pte_present(*pte)) {
618 		pte_unmap(pte);
619 		return NULL;
620 	}
621 
622 	ptl = pte_lockptr(mm, pmd);
623 check:
624 	spin_lock(ptl);
625 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
626 		*ptlp = ptl;
627 		return pte;
628 	}
629 	pte_unmap_unlock(pte, ptl);
630 	return NULL;
631 }
632 
633 /**
634  * page_mapped_in_vma - check whether a page is really mapped in a VMA
635  * @page: the page to test
636  * @vma: the VMA to test
637  *
638  * Returns 1 if the page is mapped into the page tables of the VMA, 0
639  * if the page is not mapped into the page tables of this VMA.  Only
640  * valid for normal file or anonymous VMAs.
641  */
642 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
643 {
644 	unsigned long address;
645 	pte_t *pte;
646 	spinlock_t *ptl;
647 
648 	address = __vma_address(page, vma);
649 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
650 		return 0;
651 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
652 	if (!pte)			/* the page is not in this mm */
653 		return 0;
654 	pte_unmap_unlock(pte, ptl);
655 
656 	return 1;
657 }
658 
659 /*
660  * Subfunctions of page_referenced: page_referenced_one called
661  * repeatedly from either page_referenced_anon or page_referenced_file.
662  */
663 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
664 			unsigned long address, unsigned int *mapcount,
665 			unsigned long *vm_flags)
666 {
667 	struct mm_struct *mm = vma->vm_mm;
668 	spinlock_t *ptl;
669 	int referenced = 0;
670 
671 	if (unlikely(PageTransHuge(page))) {
672 		pmd_t *pmd;
673 
674 		/*
675 		 * rmap might return false positives; we must filter
676 		 * these out using page_check_address_pmd().
677 		 */
678 		pmd = page_check_address_pmd(page, mm, address,
679 					     PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
680 		if (!pmd)
681 			goto out;
682 
683 		if (vma->vm_flags & VM_LOCKED) {
684 			spin_unlock(ptl);
685 			*mapcount = 0;	/* break early from loop */
686 			*vm_flags |= VM_LOCKED;
687 			goto out;
688 		}
689 
690 		/* go ahead even if the pmd is pmd_trans_splitting() */
691 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
692 			referenced++;
693 		spin_unlock(ptl);
694 	} else {
695 		pte_t *pte;
696 
697 		/*
698 		 * rmap might return false positives; we must filter
699 		 * these out using page_check_address().
700 		 */
701 		pte = page_check_address(page, mm, address, &ptl, 0);
702 		if (!pte)
703 			goto out;
704 
705 		if (vma->vm_flags & VM_LOCKED) {
706 			pte_unmap_unlock(pte, ptl);
707 			*mapcount = 0;	/* break early from loop */
708 			*vm_flags |= VM_LOCKED;
709 			goto out;
710 		}
711 
712 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
713 			/*
714 			 * Don't treat a reference through a sequentially read
715 			 * mapping as such.  If the page has been used in
716 			 * another mapping, we will catch it; if this other
717 			 * mapping is already gone, the unmap path will have
718 			 * set PG_referenced or activated the page.
719 			 */
720 			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
721 				referenced++;
722 		}
723 		pte_unmap_unlock(pte, ptl);
724 	}
725 
726 	(*mapcount)--;
727 
728 	if (referenced)
729 		*vm_flags |= vma->vm_flags;
730 out:
731 	return referenced;
732 }
733 
734 static int page_referenced_anon(struct page *page,
735 				struct mem_cgroup *memcg,
736 				unsigned long *vm_flags)
737 {
738 	unsigned int mapcount;
739 	struct anon_vma *anon_vma;
740 	pgoff_t pgoff;
741 	struct anon_vma_chain *avc;
742 	int referenced = 0;
743 
744 	anon_vma = page_lock_anon_vma_read(page);
745 	if (!anon_vma)
746 		return referenced;
747 
748 	mapcount = page_mapcount(page);
749 	pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
750 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
751 		struct vm_area_struct *vma = avc->vma;
752 		unsigned long address = vma_address(page, vma);
753 		/*
754 		 * If we are reclaiming on behalf of a cgroup, skip
755 		 * counting on behalf of references from different
756 		 * cgroups
757 		 */
758 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
759 			continue;
760 		referenced += page_referenced_one(page, vma, address,
761 						  &mapcount, vm_flags);
762 		if (!mapcount)
763 			break;
764 	}
765 
766 	page_unlock_anon_vma_read(anon_vma);
767 	return referenced;
768 }
769 
770 /**
771  * page_referenced_file - referenced check for object-based rmap
772  * @page: the page we're checking references on.
773  * @memcg: target memory control group
774  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
775  *
776  * For an object-based mapped page, find all the places it is mapped and
777  * check/clear the referenced flag.  This is done by following the page->mapping
778  * pointer, then walking the chain of vmas it holds.  It returns the number
779  * of references it found.
780  *
781  * This function is only called from page_referenced for object-based pages.
782  */
783 static int page_referenced_file(struct page *page,
784 				struct mem_cgroup *memcg,
785 				unsigned long *vm_flags)
786 {
787 	unsigned int mapcount;
788 	struct address_space *mapping = page->mapping;
789 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
790 	struct vm_area_struct *vma;
791 	int referenced = 0;
792 
793 	/*
794 	 * The caller's checks on page->mapping and !PageAnon have made
795 	 * sure that this is a file page: the check for page->mapping
796 	 * excludes the case just before it gets set on an anon page.
797 	 */
798 	BUG_ON(PageAnon(page));
799 
800 	/*
801 	 * The page lock not only makes sure that page->mapping cannot
802 	 * suddenly be NULLified by truncation, it makes sure that the
803 	 * structure at mapping cannot be freed and reused yet,
804 	 * so we can safely take mapping->i_mmap_mutex.
805 	 */
806 	BUG_ON(!PageLocked(page));
807 
808 	mutex_lock(&mapping->i_mmap_mutex);
809 
810 	/*
811 	 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
812 	 * is more likely to be accurate if we note it after spinning.
813 	 */
814 	mapcount = page_mapcount(page);
815 
816 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
817 		unsigned long address = vma_address(page, vma);
818 		/*
819 		 * If we are reclaiming on behalf of a cgroup, skip
820 		 * counting on behalf of references from different
821 		 * cgroups
822 		 */
823 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
824 			continue;
825 		referenced += page_referenced_one(page, vma, address,
826 						  &mapcount, vm_flags);
827 		if (!mapcount)
828 			break;
829 	}
830 
831 	mutex_unlock(&mapping->i_mmap_mutex);
832 	return referenced;
833 }
834 
835 /**
836  * page_referenced - test if the page was referenced
837  * @page: the page to test
838  * @is_locked: caller holds lock on the page
839  * @memcg: target memory cgroup
840  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
841  *
842  * Quick test_and_clear_referenced for all mappings to a page,
843  * returns the number of ptes which referenced the page.
844  */
845 int page_referenced(struct page *page,
846 		    int is_locked,
847 		    struct mem_cgroup *memcg,
848 		    unsigned long *vm_flags)
849 {
850 	int referenced = 0;
851 	int we_locked = 0;
852 
853 	*vm_flags = 0;
854 	if (page_mapped(page) && page_rmapping(page)) {
855 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
856 			we_locked = trylock_page(page);
857 			if (!we_locked) {
858 				referenced++;
859 				goto out;
860 			}
861 		}
862 		if (unlikely(PageKsm(page)))
863 			referenced += page_referenced_ksm(page, memcg,
864 								vm_flags);
865 		else if (PageAnon(page))
866 			referenced += page_referenced_anon(page, memcg,
867 								vm_flags);
868 		else if (page->mapping)
869 			referenced += page_referenced_file(page, memcg,
870 								vm_flags);
871 		if (we_locked)
872 			unlock_page(page);
873 	}
874 out:
875 	return referenced;
876 }
877 
878 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
879 			    unsigned long address)
880 {
881 	struct mm_struct *mm = vma->vm_mm;
882 	pte_t *pte;
883 	spinlock_t *ptl;
884 	int ret = 0;
885 
886 	pte = page_check_address(page, mm, address, &ptl, 1);
887 	if (!pte)
888 		goto out;
889 
890 	if (pte_dirty(*pte) || pte_write(*pte)) {
891 		pte_t entry;
892 
893 		flush_cache_page(vma, address, pte_pfn(*pte));
894 		entry = ptep_clear_flush(vma, address, pte);
895 		entry = pte_wrprotect(entry);
896 		entry = pte_mkclean(entry);
897 		set_pte_at(mm, address, pte, entry);
898 		ret = 1;
899 	}
900 
901 	pte_unmap_unlock(pte, ptl);
902 
903 	if (ret)
904 		mmu_notifier_invalidate_page(mm, address);
905 out:
906 	return ret;
907 }
908 
909 static int page_mkclean_file(struct address_space *mapping, struct page *page)
910 {
911 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
912 	struct vm_area_struct *vma;
913 	int ret = 0;
914 
915 	BUG_ON(PageAnon(page));
916 
917 	mutex_lock(&mapping->i_mmap_mutex);
918 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
919 		if (vma->vm_flags & VM_SHARED) {
920 			unsigned long address = vma_address(page, vma);
921 			ret += page_mkclean_one(page, vma, address);
922 		}
923 	}
924 	mutex_unlock(&mapping->i_mmap_mutex);
925 	return ret;
926 }
927 
928 int page_mkclean(struct page *page)
929 {
930 	int ret = 0;
931 
932 	BUG_ON(!PageLocked(page));
933 
934 	if (page_mapped(page)) {
935 		struct address_space *mapping = page_mapping(page);
936 		if (mapping)
937 			ret = page_mkclean_file(mapping, page);
938 	}
939 
940 	return ret;
941 }
942 EXPORT_SYMBOL_GPL(page_mkclean);
943 
944 /**
945  * page_move_anon_rmap - move a page to our anon_vma
946  * @page:	the page to move to our anon_vma
947  * @vma:	the vma the page belongs to
948  * @address:	the user virtual address mapped
949  *
950  * When a page belongs exclusively to one process after a COW event,
951  * that page can be moved into the anon_vma that belongs to just that
952  * process, so the rmap code will not search the parent or sibling
953  * processes.
954  */
955 void page_move_anon_rmap(struct page *page,
956 	struct vm_area_struct *vma, unsigned long address)
957 {
958 	struct anon_vma *anon_vma = vma->anon_vma;
959 
960 	VM_BUG_ON(!PageLocked(page));
961 	VM_BUG_ON(!anon_vma);
962 	VM_BUG_ON(page->index != linear_page_index(vma, address));
963 
964 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
965 	page->mapping = (struct address_space *) anon_vma;
966 }
967 
968 /**
969  * __page_set_anon_rmap - set up new anonymous rmap
970  * @page:	Page to add to rmap
971  * @vma:	VM area to add page to.
972  * @address:	User virtual address of the mapping
973  * @exclusive:	the page is exclusively owned by the current process
974  */
975 static void __page_set_anon_rmap(struct page *page,
976 	struct vm_area_struct *vma, unsigned long address, int exclusive)
977 {
978 	struct anon_vma *anon_vma = vma->anon_vma;
979 
980 	BUG_ON(!anon_vma);
981 
982 	if (PageAnon(page))
983 		return;
984 
985 	/*
986 	 * If the page isn't exclusively mapped into this vma,
987 	 * we must use the _oldest_ possible anon_vma for the
988 	 * page mapping!
989 	 */
990 	if (!exclusive)
991 		anon_vma = anon_vma->root;
992 
993 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
994 	page->mapping = (struct address_space *) anon_vma;
995 	page->index = linear_page_index(vma, address);
996 }
997 
998 /**
999  * __page_check_anon_rmap - sanity check anonymous rmap addition
1000  * @page:	the page to add the mapping to
1001  * @vma:	the vm area in which the mapping is added
1002  * @address:	the user virtual address mapped
1003  */
1004 static void __page_check_anon_rmap(struct page *page,
1005 	struct vm_area_struct *vma, unsigned long address)
1006 {
1007 #ifdef CONFIG_DEBUG_VM
1008 	/*
1009 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1010 	 * be set up correctly at this point.
1011 	 *
1012 	 * We have exclusion against page_add_anon_rmap because the caller
1013 	 * always holds the page locked, except if called from page_dup_rmap,
1014 	 * in which case the page is already known to be setup.
1015 	 *
1016 	 * We have exclusion against page_add_new_anon_rmap because those pages
1017 	 * are initially only visible via the pagetables, and the pte is locked
1018 	 * over the call to page_add_new_anon_rmap.
1019 	 */
1020 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1021 	BUG_ON(page->index != linear_page_index(vma, address));
1022 #endif
1023 }
1024 
1025 /**
1026  * page_add_anon_rmap - add pte mapping to an anonymous page
1027  * @page:	the page to add the mapping to
1028  * @vma:	the vm area in which the mapping is added
1029  * @address:	the user virtual address mapped
1030  *
1031  * The caller needs to hold the pte lock, and the page must be locked in
1032  * the anon_vma case: to serialize mapping,index checking after setting,
1033  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1034  * (but PageKsm is never downgraded to PageAnon).
1035  */
1036 void page_add_anon_rmap(struct page *page,
1037 	struct vm_area_struct *vma, unsigned long address)
1038 {
1039 	do_page_add_anon_rmap(page, vma, address, 0);
1040 }
1041 
1042 /*
1043  * Special version of the above for do_swap_page, which often runs
1044  * into pages that are exclusively owned by the current process.
1045  * Everybody else should continue to use page_add_anon_rmap above.
1046  */
1047 void do_page_add_anon_rmap(struct page *page,
1048 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1049 {
1050 	int first = atomic_inc_and_test(&page->_mapcount);
1051 	if (first) {
1052 		if (PageTransHuge(page))
1053 			__inc_zone_page_state(page,
1054 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1055 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1056 				hpage_nr_pages(page));
1057 	}
1058 	if (unlikely(PageKsm(page)))
1059 		return;
1060 
1061 	VM_BUG_ON(!PageLocked(page));
1062 	/* address might be in next vma when migration races vma_adjust */
1063 	if (first)
1064 		__page_set_anon_rmap(page, vma, address, exclusive);
1065 	else
1066 		__page_check_anon_rmap(page, vma, address);
1067 }
1068 
1069 /**
1070  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1071  * @page:	the page to add the mapping to
1072  * @vma:	the vm area in which the mapping is added
1073  * @address:	the user virtual address mapped
1074  *
1075  * Same as page_add_anon_rmap but must only be called on *new* pages.
1076  * This means the inc-and-test can be bypassed.
1077  * Page does not have to be locked.
1078  */
1079 void page_add_new_anon_rmap(struct page *page,
1080 	struct vm_area_struct *vma, unsigned long address)
1081 {
1082 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1083 	SetPageSwapBacked(page);
1084 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1085 	if (PageTransHuge(page))
1086 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1087 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1088 			hpage_nr_pages(page));
1089 	__page_set_anon_rmap(page, vma, address, 1);
1090 	if (!mlocked_vma_newpage(vma, page)) {
1091 		SetPageActive(page);
1092 		lru_cache_add(page);
1093 	} else
1094 		add_page_to_unevictable_list(page);
1095 }
1096 
1097 /**
1098  * page_add_file_rmap - add pte mapping to a file page
1099  * @page: the page to add the mapping to
1100  *
1101  * The caller needs to hold the pte lock.
1102  */
1103 void page_add_file_rmap(struct page *page)
1104 {
1105 	bool locked;
1106 	unsigned long flags;
1107 
1108 	mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1109 	if (atomic_inc_and_test(&page->_mapcount)) {
1110 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1111 		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1112 	}
1113 	mem_cgroup_end_update_page_stat(page, &locked, &flags);
1114 }
1115 
1116 /**
1117  * page_remove_rmap - take down pte mapping from a page
1118  * @page: page to remove mapping from
1119  *
1120  * The caller needs to hold the pte lock.
1121  */
1122 void page_remove_rmap(struct page *page)
1123 {
1124 	bool anon = PageAnon(page);
1125 	bool locked;
1126 	unsigned long flags;
1127 
1128 	/*
1129 	 * The anon case has no mem_cgroup page_stat to update; but may
1130 	 * uncharge_page() below, where the lock ordering can deadlock if
1131 	 * we hold the lock against page_stat move: so avoid it on anon.
1132 	 */
1133 	if (!anon)
1134 		mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1135 
1136 	/* page still mapped by someone else? */
1137 	if (!atomic_add_negative(-1, &page->_mapcount))
1138 		goto out;
1139 
1140 	/*
1141 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1142 	 * and not charged by memcg for now.
1143 	 */
1144 	if (unlikely(PageHuge(page)))
1145 		goto out;
1146 	if (anon) {
1147 		mem_cgroup_uncharge_page(page);
1148 		if (PageTransHuge(page))
1149 			__dec_zone_page_state(page,
1150 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1151 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1152 				-hpage_nr_pages(page));
1153 	} else {
1154 		__dec_zone_page_state(page, NR_FILE_MAPPED);
1155 		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1156 		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1157 	}
1158 	if (unlikely(PageMlocked(page)))
1159 		clear_page_mlock(page);
1160 	/*
1161 	 * It would be tidy to reset the PageAnon mapping here,
1162 	 * but that might overwrite a racing page_add_anon_rmap
1163 	 * which increments mapcount after us but sets mapping
1164 	 * before us: so leave the reset to free_hot_cold_page,
1165 	 * and remember that it's only reliable while mapped.
1166 	 * Leaving it set also helps swapoff to reinstate ptes
1167 	 * faster for those pages still in swapcache.
1168 	 */
1169 	return;
1170 out:
1171 	if (!anon)
1172 		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1173 }
1174 
1175 /*
1176  * Subfunctions of try_to_unmap: try_to_unmap_one called
1177  * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1178  */
1179 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1180 		     unsigned long address, enum ttu_flags flags)
1181 {
1182 	struct mm_struct *mm = vma->vm_mm;
1183 	pte_t *pte;
1184 	pte_t pteval;
1185 	spinlock_t *ptl;
1186 	int ret = SWAP_AGAIN;
1187 
1188 	pte = page_check_address(page, mm, address, &ptl, 0);
1189 	if (!pte)
1190 		goto out;
1191 
1192 	/*
1193 	 * If the page is mlock()d, we cannot swap it out.
1194 	 * If it's recently referenced (perhaps page_referenced
1195 	 * skipped over this mm) then we should reactivate it.
1196 	 */
1197 	if (!(flags & TTU_IGNORE_MLOCK)) {
1198 		if (vma->vm_flags & VM_LOCKED)
1199 			goto out_mlock;
1200 
1201 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1202 			goto out_unmap;
1203 	}
1204 	if (!(flags & TTU_IGNORE_ACCESS)) {
1205 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1206 			ret = SWAP_FAIL;
1207 			goto out_unmap;
1208 		}
1209   	}
1210 
1211 	/* Nuke the page table entry. */
1212 	flush_cache_page(vma, address, page_to_pfn(page));
1213 	pteval = ptep_clear_flush(vma, address, pte);
1214 
1215 	/* Move the dirty bit to the physical page now the pte is gone. */
1216 	if (pte_dirty(pteval))
1217 		set_page_dirty(page);
1218 
1219 	/* Update high watermark before we lower rss */
1220 	update_hiwater_rss(mm);
1221 
1222 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1223 		if (!PageHuge(page)) {
1224 			if (PageAnon(page))
1225 				dec_mm_counter(mm, MM_ANONPAGES);
1226 			else
1227 				dec_mm_counter(mm, MM_FILEPAGES);
1228 		}
1229 		set_pte_at(mm, address, pte,
1230 			   swp_entry_to_pte(make_hwpoison_entry(page)));
1231 	} else if (PageAnon(page)) {
1232 		swp_entry_t entry = { .val = page_private(page) };
1233 		pte_t swp_pte;
1234 
1235 		if (PageSwapCache(page)) {
1236 			/*
1237 			 * Store the swap location in the pte.
1238 			 * See handle_pte_fault() ...
1239 			 */
1240 			if (swap_duplicate(entry) < 0) {
1241 				set_pte_at(mm, address, pte, pteval);
1242 				ret = SWAP_FAIL;
1243 				goto out_unmap;
1244 			}
1245 			if (list_empty(&mm->mmlist)) {
1246 				spin_lock(&mmlist_lock);
1247 				if (list_empty(&mm->mmlist))
1248 					list_add(&mm->mmlist, &init_mm.mmlist);
1249 				spin_unlock(&mmlist_lock);
1250 			}
1251 			dec_mm_counter(mm, MM_ANONPAGES);
1252 			inc_mm_counter(mm, MM_SWAPENTS);
1253 		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1254 			/*
1255 			 * Store the pfn of the page in a special migration
1256 			 * pte. do_swap_page() will wait until the migration
1257 			 * pte is removed and then restart fault handling.
1258 			 */
1259 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1260 			entry = make_migration_entry(page, pte_write(pteval));
1261 		}
1262 		swp_pte = swp_entry_to_pte(entry);
1263 		if (pte_soft_dirty(pteval))
1264 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1265 		set_pte_at(mm, address, pte, swp_pte);
1266 		BUG_ON(pte_file(*pte));
1267 	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1268 		   (TTU_ACTION(flags) == TTU_MIGRATION)) {
1269 		/* Establish migration entry for a file page */
1270 		swp_entry_t entry;
1271 		entry = make_migration_entry(page, pte_write(pteval));
1272 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1273 	} else
1274 		dec_mm_counter(mm, MM_FILEPAGES);
1275 
1276 	page_remove_rmap(page);
1277 	page_cache_release(page);
1278 
1279 out_unmap:
1280 	pte_unmap_unlock(pte, ptl);
1281 	if (ret != SWAP_FAIL)
1282 		mmu_notifier_invalidate_page(mm, address);
1283 out:
1284 	return ret;
1285 
1286 out_mlock:
1287 	pte_unmap_unlock(pte, ptl);
1288 
1289 
1290 	/*
1291 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1292 	 * unstable result and race. Plus, We can't wait here because
1293 	 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1294 	 * if trylock failed, the page remain in evictable lru and later
1295 	 * vmscan could retry to move the page to unevictable lru if the
1296 	 * page is actually mlocked.
1297 	 */
1298 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1299 		if (vma->vm_flags & VM_LOCKED) {
1300 			mlock_vma_page(page);
1301 			ret = SWAP_MLOCK;
1302 		}
1303 		up_read(&vma->vm_mm->mmap_sem);
1304 	}
1305 	return ret;
1306 }
1307 
1308 /*
1309  * objrmap doesn't work for nonlinear VMAs because the assumption that
1310  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1311  * Consequently, given a particular page and its ->index, we cannot locate the
1312  * ptes which are mapping that page without an exhaustive linear search.
1313  *
1314  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1315  * maps the file to which the target page belongs.  The ->vm_private_data field
1316  * holds the current cursor into that scan.  Successive searches will circulate
1317  * around the vma's virtual address space.
1318  *
1319  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1320  * more scanning pressure is placed against them as well.   Eventually pages
1321  * will become fully unmapped and are eligible for eviction.
1322  *
1323  * For very sparsely populated VMAs this is a little inefficient - chances are
1324  * there there won't be many ptes located within the scan cluster.  In this case
1325  * maybe we could scan further - to the end of the pte page, perhaps.
1326  *
1327  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1328  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1329  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1330  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1331  */
1332 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1333 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1334 
1335 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1336 		struct vm_area_struct *vma, struct page *check_page)
1337 {
1338 	struct mm_struct *mm = vma->vm_mm;
1339 	pmd_t *pmd;
1340 	pte_t *pte;
1341 	pte_t pteval;
1342 	spinlock_t *ptl;
1343 	struct page *page;
1344 	unsigned long address;
1345 	unsigned long mmun_start;	/* For mmu_notifiers */
1346 	unsigned long mmun_end;		/* For mmu_notifiers */
1347 	unsigned long end;
1348 	int ret = SWAP_AGAIN;
1349 	int locked_vma = 0;
1350 
1351 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1352 	end = address + CLUSTER_SIZE;
1353 	if (address < vma->vm_start)
1354 		address = vma->vm_start;
1355 	if (end > vma->vm_end)
1356 		end = vma->vm_end;
1357 
1358 	pmd = mm_find_pmd(mm, address);
1359 	if (!pmd)
1360 		return ret;
1361 
1362 	mmun_start = address;
1363 	mmun_end   = end;
1364 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1365 
1366 	/*
1367 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1368 	 * keep the sem while scanning the cluster for mlocking pages.
1369 	 */
1370 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1371 		locked_vma = (vma->vm_flags & VM_LOCKED);
1372 		if (!locked_vma)
1373 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1374 	}
1375 
1376 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1377 
1378 	/* Update high watermark before we lower rss */
1379 	update_hiwater_rss(mm);
1380 
1381 	for (; address < end; pte++, address += PAGE_SIZE) {
1382 		if (!pte_present(*pte))
1383 			continue;
1384 		page = vm_normal_page(vma, address, *pte);
1385 		BUG_ON(!page || PageAnon(page));
1386 
1387 		if (locked_vma) {
1388 			mlock_vma_page(page);   /* no-op if already mlocked */
1389 			if (page == check_page)
1390 				ret = SWAP_MLOCK;
1391 			continue;	/* don't unmap */
1392 		}
1393 
1394 		if (ptep_clear_flush_young_notify(vma, address, pte))
1395 			continue;
1396 
1397 		/* Nuke the page table entry. */
1398 		flush_cache_page(vma, address, pte_pfn(*pte));
1399 		pteval = ptep_clear_flush(vma, address, pte);
1400 
1401 		/* If nonlinear, store the file page offset in the pte. */
1402 		if (page->index != linear_page_index(vma, address)) {
1403 			pte_t ptfile = pgoff_to_pte(page->index);
1404 			if (pte_soft_dirty(pteval))
1405 				pte_file_mksoft_dirty(ptfile);
1406 			set_pte_at(mm, address, pte, ptfile);
1407 		}
1408 
1409 		/* Move the dirty bit to the physical page now the pte is gone. */
1410 		if (pte_dirty(pteval))
1411 			set_page_dirty(page);
1412 
1413 		page_remove_rmap(page);
1414 		page_cache_release(page);
1415 		dec_mm_counter(mm, MM_FILEPAGES);
1416 		(*mapcount)--;
1417 	}
1418 	pte_unmap_unlock(pte - 1, ptl);
1419 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1420 	if (locked_vma)
1421 		up_read(&vma->vm_mm->mmap_sem);
1422 	return ret;
1423 }
1424 
1425 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1426 {
1427 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1428 
1429 	if (!maybe_stack)
1430 		return false;
1431 
1432 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1433 						VM_STACK_INCOMPLETE_SETUP)
1434 		return true;
1435 
1436 	return false;
1437 }
1438 
1439 /**
1440  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1441  * rmap method
1442  * @page: the page to unmap/unlock
1443  * @flags: action and flags
1444  *
1445  * Find all the mappings of a page using the mapping pointer and the vma chains
1446  * contained in the anon_vma struct it points to.
1447  *
1448  * This function is only called from try_to_unmap/try_to_munlock for
1449  * anonymous pages.
1450  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1451  * where the page was found will be held for write.  So, we won't recheck
1452  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1453  * 'LOCKED.
1454  */
1455 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1456 {
1457 	struct anon_vma *anon_vma;
1458 	pgoff_t pgoff;
1459 	struct anon_vma_chain *avc;
1460 	int ret = SWAP_AGAIN;
1461 
1462 	anon_vma = page_lock_anon_vma_read(page);
1463 	if (!anon_vma)
1464 		return ret;
1465 
1466 	pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1467 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1468 		struct vm_area_struct *vma = avc->vma;
1469 		unsigned long address;
1470 
1471 		/*
1472 		 * During exec, a temporary VMA is setup and later moved.
1473 		 * The VMA is moved under the anon_vma lock but not the
1474 		 * page tables leading to a race where migration cannot
1475 		 * find the migration ptes. Rather than increasing the
1476 		 * locking requirements of exec(), migration skips
1477 		 * temporary VMAs until after exec() completes.
1478 		 */
1479 		if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1480 				is_vma_temporary_stack(vma))
1481 			continue;
1482 
1483 		address = vma_address(page, vma);
1484 		ret = try_to_unmap_one(page, vma, address, flags);
1485 		if (ret != SWAP_AGAIN || !page_mapped(page))
1486 			break;
1487 	}
1488 
1489 	page_unlock_anon_vma_read(anon_vma);
1490 	return ret;
1491 }
1492 
1493 /**
1494  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1495  * @page: the page to unmap/unlock
1496  * @flags: action and flags
1497  *
1498  * Find all the mappings of a page using the mapping pointer and the vma chains
1499  * contained in the address_space struct it points to.
1500  *
1501  * This function is only called from try_to_unmap/try_to_munlock for
1502  * object-based pages.
1503  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1504  * where the page was found will be held for write.  So, we won't recheck
1505  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1506  * 'LOCKED.
1507  */
1508 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1509 {
1510 	struct address_space *mapping = page->mapping;
1511 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1512 	struct vm_area_struct *vma;
1513 	int ret = SWAP_AGAIN;
1514 	unsigned long cursor;
1515 	unsigned long max_nl_cursor = 0;
1516 	unsigned long max_nl_size = 0;
1517 	unsigned int mapcount;
1518 
1519 	if (PageHuge(page))
1520 		pgoff = page->index << compound_order(page);
1521 
1522 	mutex_lock(&mapping->i_mmap_mutex);
1523 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1524 		unsigned long address = vma_address(page, vma);
1525 		ret = try_to_unmap_one(page, vma, address, flags);
1526 		if (ret != SWAP_AGAIN || !page_mapped(page))
1527 			goto out;
1528 	}
1529 
1530 	if (list_empty(&mapping->i_mmap_nonlinear))
1531 		goto out;
1532 
1533 	/*
1534 	 * We don't bother to try to find the munlocked page in nonlinears.
1535 	 * It's costly. Instead, later, page reclaim logic may call
1536 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1537 	 */
1538 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1539 		goto out;
1540 
1541 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1542 							shared.nonlinear) {
1543 		cursor = (unsigned long) vma->vm_private_data;
1544 		if (cursor > max_nl_cursor)
1545 			max_nl_cursor = cursor;
1546 		cursor = vma->vm_end - vma->vm_start;
1547 		if (cursor > max_nl_size)
1548 			max_nl_size = cursor;
1549 	}
1550 
1551 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1552 		ret = SWAP_FAIL;
1553 		goto out;
1554 	}
1555 
1556 	/*
1557 	 * We don't try to search for this page in the nonlinear vmas,
1558 	 * and page_referenced wouldn't have found it anyway.  Instead
1559 	 * just walk the nonlinear vmas trying to age and unmap some.
1560 	 * The mapcount of the page we came in with is irrelevant,
1561 	 * but even so use it as a guide to how hard we should try?
1562 	 */
1563 	mapcount = page_mapcount(page);
1564 	if (!mapcount)
1565 		goto out;
1566 	cond_resched();
1567 
1568 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1569 	if (max_nl_cursor == 0)
1570 		max_nl_cursor = CLUSTER_SIZE;
1571 
1572 	do {
1573 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1574 							shared.nonlinear) {
1575 			cursor = (unsigned long) vma->vm_private_data;
1576 			while ( cursor < max_nl_cursor &&
1577 				cursor < vma->vm_end - vma->vm_start) {
1578 				if (try_to_unmap_cluster(cursor, &mapcount,
1579 						vma, page) == SWAP_MLOCK)
1580 					ret = SWAP_MLOCK;
1581 				cursor += CLUSTER_SIZE;
1582 				vma->vm_private_data = (void *) cursor;
1583 				if ((int)mapcount <= 0)
1584 					goto out;
1585 			}
1586 			vma->vm_private_data = (void *) max_nl_cursor;
1587 		}
1588 		cond_resched();
1589 		max_nl_cursor += CLUSTER_SIZE;
1590 	} while (max_nl_cursor <= max_nl_size);
1591 
1592 	/*
1593 	 * Don't loop forever (perhaps all the remaining pages are
1594 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1595 	 * vmas, now forgetting on which ones it had fallen behind.
1596 	 */
1597 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1598 		vma->vm_private_data = NULL;
1599 out:
1600 	mutex_unlock(&mapping->i_mmap_mutex);
1601 	return ret;
1602 }
1603 
1604 /**
1605  * try_to_unmap - try to remove all page table mappings to a page
1606  * @page: the page to get unmapped
1607  * @flags: action and flags
1608  *
1609  * Tries to remove all the page table entries which are mapping this
1610  * page, used in the pageout path.  Caller must hold the page lock.
1611  * Return values are:
1612  *
1613  * SWAP_SUCCESS	- we succeeded in removing all mappings
1614  * SWAP_AGAIN	- we missed a mapping, try again later
1615  * SWAP_FAIL	- the page is unswappable
1616  * SWAP_MLOCK	- page is mlocked.
1617  */
1618 int try_to_unmap(struct page *page, enum ttu_flags flags)
1619 {
1620 	int ret;
1621 
1622 	BUG_ON(!PageLocked(page));
1623 	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1624 
1625 	if (unlikely(PageKsm(page)))
1626 		ret = try_to_unmap_ksm(page, flags);
1627 	else if (PageAnon(page))
1628 		ret = try_to_unmap_anon(page, flags);
1629 	else
1630 		ret = try_to_unmap_file(page, flags);
1631 	if (ret != SWAP_MLOCK && !page_mapped(page))
1632 		ret = SWAP_SUCCESS;
1633 	return ret;
1634 }
1635 
1636 /**
1637  * try_to_munlock - try to munlock a page
1638  * @page: the page to be munlocked
1639  *
1640  * Called from munlock code.  Checks all of the VMAs mapping the page
1641  * to make sure nobody else has this page mlocked. The page will be
1642  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1643  *
1644  * Return values are:
1645  *
1646  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1647  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1648  * SWAP_FAIL	- page cannot be located at present
1649  * SWAP_MLOCK	- page is now mlocked.
1650  */
1651 int try_to_munlock(struct page *page)
1652 {
1653 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1654 
1655 	if (unlikely(PageKsm(page)))
1656 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1657 	else if (PageAnon(page))
1658 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1659 	else
1660 		return try_to_unmap_file(page, TTU_MUNLOCK);
1661 }
1662 
1663 void __put_anon_vma(struct anon_vma *anon_vma)
1664 {
1665 	struct anon_vma *root = anon_vma->root;
1666 
1667 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1668 		anon_vma_free(root);
1669 
1670 	anon_vma_free(anon_vma);
1671 }
1672 
1673 #ifdef CONFIG_MIGRATION
1674 /*
1675  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1676  * Called by migrate.c to remove migration ptes, but might be used more later.
1677  */
1678 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1679 		struct vm_area_struct *, unsigned long, void *), void *arg)
1680 {
1681 	struct anon_vma *anon_vma;
1682 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1683 	struct anon_vma_chain *avc;
1684 	int ret = SWAP_AGAIN;
1685 
1686 	/*
1687 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1688 	 * because that depends on page_mapped(); but not all its usages
1689 	 * are holding mmap_sem. Users without mmap_sem are required to
1690 	 * take a reference count to prevent the anon_vma disappearing
1691 	 */
1692 	anon_vma = page_anon_vma(page);
1693 	if (!anon_vma)
1694 		return ret;
1695 	anon_vma_lock_read(anon_vma);
1696 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1697 		struct vm_area_struct *vma = avc->vma;
1698 		unsigned long address = vma_address(page, vma);
1699 		ret = rmap_one(page, vma, address, arg);
1700 		if (ret != SWAP_AGAIN)
1701 			break;
1702 	}
1703 	anon_vma_unlock_read(anon_vma);
1704 	return ret;
1705 }
1706 
1707 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1708 		struct vm_area_struct *, unsigned long, void *), void *arg)
1709 {
1710 	struct address_space *mapping = page->mapping;
1711 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1712 	struct vm_area_struct *vma;
1713 	int ret = SWAP_AGAIN;
1714 
1715 	if (!mapping)
1716 		return ret;
1717 	mutex_lock(&mapping->i_mmap_mutex);
1718 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1719 		unsigned long address = vma_address(page, vma);
1720 		ret = rmap_one(page, vma, address, arg);
1721 		if (ret != SWAP_AGAIN)
1722 			break;
1723 	}
1724 	/*
1725 	 * No nonlinear handling: being always shared, nonlinear vmas
1726 	 * never contain migration ptes.  Decide what to do about this
1727 	 * limitation to linear when we need rmap_walk() on nonlinear.
1728 	 */
1729 	mutex_unlock(&mapping->i_mmap_mutex);
1730 	return ret;
1731 }
1732 
1733 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1734 		struct vm_area_struct *, unsigned long, void *), void *arg)
1735 {
1736 	VM_BUG_ON(!PageLocked(page));
1737 
1738 	if (unlikely(PageKsm(page)))
1739 		return rmap_walk_ksm(page, rmap_one, arg);
1740 	else if (PageAnon(page))
1741 		return rmap_walk_anon(page, rmap_one, arg);
1742 	else
1743 		return rmap_walk_file(page, rmap_one, arg);
1744 }
1745 #endif /* CONFIG_MIGRATION */
1746 
1747 #ifdef CONFIG_HUGETLB_PAGE
1748 /*
1749  * The following three functions are for anonymous (private mapped) hugepages.
1750  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1751  * and no lru code, because we handle hugepages differently from common pages.
1752  */
1753 static void __hugepage_set_anon_rmap(struct page *page,
1754 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1755 {
1756 	struct anon_vma *anon_vma = vma->anon_vma;
1757 
1758 	BUG_ON(!anon_vma);
1759 
1760 	if (PageAnon(page))
1761 		return;
1762 	if (!exclusive)
1763 		anon_vma = anon_vma->root;
1764 
1765 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1766 	page->mapping = (struct address_space *) anon_vma;
1767 	page->index = linear_page_index(vma, address);
1768 }
1769 
1770 void hugepage_add_anon_rmap(struct page *page,
1771 			    struct vm_area_struct *vma, unsigned long address)
1772 {
1773 	struct anon_vma *anon_vma = vma->anon_vma;
1774 	int first;
1775 
1776 	BUG_ON(!PageLocked(page));
1777 	BUG_ON(!anon_vma);
1778 	/* address might be in next vma when migration races vma_adjust */
1779 	first = atomic_inc_and_test(&page->_mapcount);
1780 	if (first)
1781 		__hugepage_set_anon_rmap(page, vma, address, 0);
1782 }
1783 
1784 void hugepage_add_new_anon_rmap(struct page *page,
1785 			struct vm_area_struct *vma, unsigned long address)
1786 {
1787 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1788 	atomic_set(&page->_mapcount, 0);
1789 	__hugepage_set_anon_rmap(page, vma, address, 1);
1790 }
1791 #endif /* CONFIG_HUGETLB_PAGE */
1792