1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) 27 * mapping->i_mmap_rwsem 28 * anon_vma->rwsem 29 * mm->page_table_lock or pte_lock 30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) 35 * mapping->tree_lock (widely used) 36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 38 * sb_lock (within inode_lock in fs/fs-writeback.c) 39 * mapping->tree_lock (widely used, in set_page_dirty, 40 * in arch-dependent flush_dcache_mmap_lock, 41 * within bdi.wb->list_lock in __sync_single_inode) 42 * 43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 44 * ->tasklist_lock 45 * pte map lock 46 */ 47 48 #include <linux/mm.h> 49 #include <linux/pagemap.h> 50 #include <linux/swap.h> 51 #include <linux/swapops.h> 52 #include <linux/slab.h> 53 #include <linux/init.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/rcupdate.h> 57 #include <linux/export.h> 58 #include <linux/memcontrol.h> 59 #include <linux/mmu_notifier.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/backing-dev.h> 63 #include <linux/page_idle.h> 64 65 #include <asm/tlbflush.h> 66 67 #include <trace/events/tlb.h> 68 69 #include "internal.h" 70 71 static struct kmem_cache *anon_vma_cachep; 72 static struct kmem_cache *anon_vma_chain_cachep; 73 74 static inline struct anon_vma *anon_vma_alloc(void) 75 { 76 struct anon_vma *anon_vma; 77 78 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 79 if (anon_vma) { 80 atomic_set(&anon_vma->refcount, 1); 81 anon_vma->degree = 1; /* Reference for first vma */ 82 anon_vma->parent = anon_vma; 83 /* 84 * Initialise the anon_vma root to point to itself. If called 85 * from fork, the root will be reset to the parents anon_vma. 86 */ 87 anon_vma->root = anon_vma; 88 } 89 90 return anon_vma; 91 } 92 93 static inline void anon_vma_free(struct anon_vma *anon_vma) 94 { 95 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 96 97 /* 98 * Synchronize against page_lock_anon_vma_read() such that 99 * we can safely hold the lock without the anon_vma getting 100 * freed. 101 * 102 * Relies on the full mb implied by the atomic_dec_and_test() from 103 * put_anon_vma() against the acquire barrier implied by 104 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 105 * 106 * page_lock_anon_vma_read() VS put_anon_vma() 107 * down_read_trylock() atomic_dec_and_test() 108 * LOCK MB 109 * atomic_read() rwsem_is_locked() 110 * 111 * LOCK should suffice since the actual taking of the lock must 112 * happen _before_ what follows. 113 */ 114 might_sleep(); 115 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 116 anon_vma_lock_write(anon_vma); 117 anon_vma_unlock_write(anon_vma); 118 } 119 120 kmem_cache_free(anon_vma_cachep, anon_vma); 121 } 122 123 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 124 { 125 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 126 } 127 128 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 129 { 130 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 131 } 132 133 static void anon_vma_chain_link(struct vm_area_struct *vma, 134 struct anon_vma_chain *avc, 135 struct anon_vma *anon_vma) 136 { 137 avc->vma = vma; 138 avc->anon_vma = anon_vma; 139 list_add(&avc->same_vma, &vma->anon_vma_chain); 140 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 141 } 142 143 /** 144 * anon_vma_prepare - attach an anon_vma to a memory region 145 * @vma: the memory region in question 146 * 147 * This makes sure the memory mapping described by 'vma' has 148 * an 'anon_vma' attached to it, so that we can associate the 149 * anonymous pages mapped into it with that anon_vma. 150 * 151 * The common case will be that we already have one, but if 152 * not we either need to find an adjacent mapping that we 153 * can re-use the anon_vma from (very common when the only 154 * reason for splitting a vma has been mprotect()), or we 155 * allocate a new one. 156 * 157 * Anon-vma allocations are very subtle, because we may have 158 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 159 * and that may actually touch the spinlock even in the newly 160 * allocated vma (it depends on RCU to make sure that the 161 * anon_vma isn't actually destroyed). 162 * 163 * As a result, we need to do proper anon_vma locking even 164 * for the new allocation. At the same time, we do not want 165 * to do any locking for the common case of already having 166 * an anon_vma. 167 * 168 * This must be called with the mmap_sem held for reading. 169 */ 170 int anon_vma_prepare(struct vm_area_struct *vma) 171 { 172 struct anon_vma *anon_vma = vma->anon_vma; 173 struct anon_vma_chain *avc; 174 175 might_sleep(); 176 if (unlikely(!anon_vma)) { 177 struct mm_struct *mm = vma->vm_mm; 178 struct anon_vma *allocated; 179 180 avc = anon_vma_chain_alloc(GFP_KERNEL); 181 if (!avc) 182 goto out_enomem; 183 184 anon_vma = find_mergeable_anon_vma(vma); 185 allocated = NULL; 186 if (!anon_vma) { 187 anon_vma = anon_vma_alloc(); 188 if (unlikely(!anon_vma)) 189 goto out_enomem_free_avc; 190 allocated = anon_vma; 191 } 192 193 anon_vma_lock_write(anon_vma); 194 /* page_table_lock to protect against threads */ 195 spin_lock(&mm->page_table_lock); 196 if (likely(!vma->anon_vma)) { 197 vma->anon_vma = anon_vma; 198 anon_vma_chain_link(vma, avc, anon_vma); 199 /* vma reference or self-parent link for new root */ 200 anon_vma->degree++; 201 allocated = NULL; 202 avc = NULL; 203 } 204 spin_unlock(&mm->page_table_lock); 205 anon_vma_unlock_write(anon_vma); 206 207 if (unlikely(allocated)) 208 put_anon_vma(allocated); 209 if (unlikely(avc)) 210 anon_vma_chain_free(avc); 211 } 212 return 0; 213 214 out_enomem_free_avc: 215 anon_vma_chain_free(avc); 216 out_enomem: 217 return -ENOMEM; 218 } 219 220 /* 221 * This is a useful helper function for locking the anon_vma root as 222 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 223 * have the same vma. 224 * 225 * Such anon_vma's should have the same root, so you'd expect to see 226 * just a single mutex_lock for the whole traversal. 227 */ 228 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 229 { 230 struct anon_vma *new_root = anon_vma->root; 231 if (new_root != root) { 232 if (WARN_ON_ONCE(root)) 233 up_write(&root->rwsem); 234 root = new_root; 235 down_write(&root->rwsem); 236 } 237 return root; 238 } 239 240 static inline void unlock_anon_vma_root(struct anon_vma *root) 241 { 242 if (root) 243 up_write(&root->rwsem); 244 } 245 246 /* 247 * Attach the anon_vmas from src to dst. 248 * Returns 0 on success, -ENOMEM on failure. 249 * 250 * If dst->anon_vma is NULL this function tries to find and reuse existing 251 * anon_vma which has no vmas and only one child anon_vma. This prevents 252 * degradation of anon_vma hierarchy to endless linear chain in case of 253 * constantly forking task. On the other hand, an anon_vma with more than one 254 * child isn't reused even if there was no alive vma, thus rmap walker has a 255 * good chance of avoiding scanning the whole hierarchy when it searches where 256 * page is mapped. 257 */ 258 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 259 { 260 struct anon_vma_chain *avc, *pavc; 261 struct anon_vma *root = NULL; 262 263 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 264 struct anon_vma *anon_vma; 265 266 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 267 if (unlikely(!avc)) { 268 unlock_anon_vma_root(root); 269 root = NULL; 270 avc = anon_vma_chain_alloc(GFP_KERNEL); 271 if (!avc) 272 goto enomem_failure; 273 } 274 anon_vma = pavc->anon_vma; 275 root = lock_anon_vma_root(root, anon_vma); 276 anon_vma_chain_link(dst, avc, anon_vma); 277 278 /* 279 * Reuse existing anon_vma if its degree lower than two, 280 * that means it has no vma and only one anon_vma child. 281 * 282 * Do not chose parent anon_vma, otherwise first child 283 * will always reuse it. Root anon_vma is never reused: 284 * it has self-parent reference and at least one child. 285 */ 286 if (!dst->anon_vma && anon_vma != src->anon_vma && 287 anon_vma->degree < 2) 288 dst->anon_vma = anon_vma; 289 } 290 if (dst->anon_vma) 291 dst->anon_vma->degree++; 292 unlock_anon_vma_root(root); 293 return 0; 294 295 enomem_failure: 296 /* 297 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 298 * decremented in unlink_anon_vmas(). 299 * We can safely do this because callers of anon_vma_clone() don't care 300 * about dst->anon_vma if anon_vma_clone() failed. 301 */ 302 dst->anon_vma = NULL; 303 unlink_anon_vmas(dst); 304 return -ENOMEM; 305 } 306 307 /* 308 * Attach vma to its own anon_vma, as well as to the anon_vmas that 309 * the corresponding VMA in the parent process is attached to. 310 * Returns 0 on success, non-zero on failure. 311 */ 312 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 313 { 314 struct anon_vma_chain *avc; 315 struct anon_vma *anon_vma; 316 int error; 317 318 /* Don't bother if the parent process has no anon_vma here. */ 319 if (!pvma->anon_vma) 320 return 0; 321 322 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 323 vma->anon_vma = NULL; 324 325 /* 326 * First, attach the new VMA to the parent VMA's anon_vmas, 327 * so rmap can find non-COWed pages in child processes. 328 */ 329 error = anon_vma_clone(vma, pvma); 330 if (error) 331 return error; 332 333 /* An existing anon_vma has been reused, all done then. */ 334 if (vma->anon_vma) 335 return 0; 336 337 /* Then add our own anon_vma. */ 338 anon_vma = anon_vma_alloc(); 339 if (!anon_vma) 340 goto out_error; 341 avc = anon_vma_chain_alloc(GFP_KERNEL); 342 if (!avc) 343 goto out_error_free_anon_vma; 344 345 /* 346 * The root anon_vma's spinlock is the lock actually used when we 347 * lock any of the anon_vmas in this anon_vma tree. 348 */ 349 anon_vma->root = pvma->anon_vma->root; 350 anon_vma->parent = pvma->anon_vma; 351 /* 352 * With refcounts, an anon_vma can stay around longer than the 353 * process it belongs to. The root anon_vma needs to be pinned until 354 * this anon_vma is freed, because the lock lives in the root. 355 */ 356 get_anon_vma(anon_vma->root); 357 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 358 vma->anon_vma = anon_vma; 359 anon_vma_lock_write(anon_vma); 360 anon_vma_chain_link(vma, avc, anon_vma); 361 anon_vma->parent->degree++; 362 anon_vma_unlock_write(anon_vma); 363 364 return 0; 365 366 out_error_free_anon_vma: 367 put_anon_vma(anon_vma); 368 out_error: 369 unlink_anon_vmas(vma); 370 return -ENOMEM; 371 } 372 373 void unlink_anon_vmas(struct vm_area_struct *vma) 374 { 375 struct anon_vma_chain *avc, *next; 376 struct anon_vma *root = NULL; 377 378 /* 379 * Unlink each anon_vma chained to the VMA. This list is ordered 380 * from newest to oldest, ensuring the root anon_vma gets freed last. 381 */ 382 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 383 struct anon_vma *anon_vma = avc->anon_vma; 384 385 root = lock_anon_vma_root(root, anon_vma); 386 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 387 388 /* 389 * Leave empty anon_vmas on the list - we'll need 390 * to free them outside the lock. 391 */ 392 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) { 393 anon_vma->parent->degree--; 394 continue; 395 } 396 397 list_del(&avc->same_vma); 398 anon_vma_chain_free(avc); 399 } 400 if (vma->anon_vma) 401 vma->anon_vma->degree--; 402 unlock_anon_vma_root(root); 403 404 /* 405 * Iterate the list once more, it now only contains empty and unlinked 406 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 407 * needing to write-acquire the anon_vma->root->rwsem. 408 */ 409 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 410 struct anon_vma *anon_vma = avc->anon_vma; 411 412 VM_WARN_ON(anon_vma->degree); 413 put_anon_vma(anon_vma); 414 415 list_del(&avc->same_vma); 416 anon_vma_chain_free(avc); 417 } 418 } 419 420 static void anon_vma_ctor(void *data) 421 { 422 struct anon_vma *anon_vma = data; 423 424 init_rwsem(&anon_vma->rwsem); 425 atomic_set(&anon_vma->refcount, 0); 426 anon_vma->rb_root = RB_ROOT; 427 } 428 429 void __init anon_vma_init(void) 430 { 431 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 432 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 433 anon_vma_ctor); 434 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 435 SLAB_PANIC|SLAB_ACCOUNT); 436 } 437 438 /* 439 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 440 * 441 * Since there is no serialization what so ever against page_remove_rmap() 442 * the best this function can do is return a locked anon_vma that might 443 * have been relevant to this page. 444 * 445 * The page might have been remapped to a different anon_vma or the anon_vma 446 * returned may already be freed (and even reused). 447 * 448 * In case it was remapped to a different anon_vma, the new anon_vma will be a 449 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 450 * ensure that any anon_vma obtained from the page will still be valid for as 451 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 452 * 453 * All users of this function must be very careful when walking the anon_vma 454 * chain and verify that the page in question is indeed mapped in it 455 * [ something equivalent to page_mapped_in_vma() ]. 456 * 457 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 458 * that the anon_vma pointer from page->mapping is valid if there is a 459 * mapcount, we can dereference the anon_vma after observing those. 460 */ 461 struct anon_vma *page_get_anon_vma(struct page *page) 462 { 463 struct anon_vma *anon_vma = NULL; 464 unsigned long anon_mapping; 465 466 rcu_read_lock(); 467 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 468 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 469 goto out; 470 if (!page_mapped(page)) 471 goto out; 472 473 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 474 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 475 anon_vma = NULL; 476 goto out; 477 } 478 479 /* 480 * If this page is still mapped, then its anon_vma cannot have been 481 * freed. But if it has been unmapped, we have no security against the 482 * anon_vma structure being freed and reused (for another anon_vma: 483 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 484 * above cannot corrupt). 485 */ 486 if (!page_mapped(page)) { 487 rcu_read_unlock(); 488 put_anon_vma(anon_vma); 489 return NULL; 490 } 491 out: 492 rcu_read_unlock(); 493 494 return anon_vma; 495 } 496 497 /* 498 * Similar to page_get_anon_vma() except it locks the anon_vma. 499 * 500 * Its a little more complex as it tries to keep the fast path to a single 501 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 502 * reference like with page_get_anon_vma() and then block on the mutex. 503 */ 504 struct anon_vma *page_lock_anon_vma_read(struct page *page) 505 { 506 struct anon_vma *anon_vma = NULL; 507 struct anon_vma *root_anon_vma; 508 unsigned long anon_mapping; 509 510 rcu_read_lock(); 511 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 512 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 513 goto out; 514 if (!page_mapped(page)) 515 goto out; 516 517 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 518 root_anon_vma = READ_ONCE(anon_vma->root); 519 if (down_read_trylock(&root_anon_vma->rwsem)) { 520 /* 521 * If the page is still mapped, then this anon_vma is still 522 * its anon_vma, and holding the mutex ensures that it will 523 * not go away, see anon_vma_free(). 524 */ 525 if (!page_mapped(page)) { 526 up_read(&root_anon_vma->rwsem); 527 anon_vma = NULL; 528 } 529 goto out; 530 } 531 532 /* trylock failed, we got to sleep */ 533 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 534 anon_vma = NULL; 535 goto out; 536 } 537 538 if (!page_mapped(page)) { 539 rcu_read_unlock(); 540 put_anon_vma(anon_vma); 541 return NULL; 542 } 543 544 /* we pinned the anon_vma, its safe to sleep */ 545 rcu_read_unlock(); 546 anon_vma_lock_read(anon_vma); 547 548 if (atomic_dec_and_test(&anon_vma->refcount)) { 549 /* 550 * Oops, we held the last refcount, release the lock 551 * and bail -- can't simply use put_anon_vma() because 552 * we'll deadlock on the anon_vma_lock_write() recursion. 553 */ 554 anon_vma_unlock_read(anon_vma); 555 __put_anon_vma(anon_vma); 556 anon_vma = NULL; 557 } 558 559 return anon_vma; 560 561 out: 562 rcu_read_unlock(); 563 return anon_vma; 564 } 565 566 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 567 { 568 anon_vma_unlock_read(anon_vma); 569 } 570 571 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 572 /* 573 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 574 * important if a PTE was dirty when it was unmapped that it's flushed 575 * before any IO is initiated on the page to prevent lost writes. Similarly, 576 * it must be flushed before freeing to prevent data leakage. 577 */ 578 void try_to_unmap_flush(void) 579 { 580 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 581 int cpu; 582 583 if (!tlb_ubc->flush_required) 584 return; 585 586 cpu = get_cpu(); 587 588 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) { 589 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 590 local_flush_tlb(); 591 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL); 592 } 593 594 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) 595 flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL); 596 cpumask_clear(&tlb_ubc->cpumask); 597 tlb_ubc->flush_required = false; 598 tlb_ubc->writable = false; 599 put_cpu(); 600 } 601 602 /* Flush iff there are potentially writable TLB entries that can race with IO */ 603 void try_to_unmap_flush_dirty(void) 604 { 605 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 606 607 if (tlb_ubc->writable) 608 try_to_unmap_flush(); 609 } 610 611 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, 612 struct page *page, bool writable) 613 { 614 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 615 616 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm)); 617 tlb_ubc->flush_required = true; 618 619 /* 620 * If the PTE was dirty then it's best to assume it's writable. The 621 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 622 * before the page is queued for IO. 623 */ 624 if (writable) 625 tlb_ubc->writable = true; 626 } 627 628 /* 629 * Returns true if the TLB flush should be deferred to the end of a batch of 630 * unmap operations to reduce IPIs. 631 */ 632 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 633 { 634 bool should_defer = false; 635 636 if (!(flags & TTU_BATCH_FLUSH)) 637 return false; 638 639 /* If remote CPUs need to be flushed then defer batch the flush */ 640 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 641 should_defer = true; 642 put_cpu(); 643 644 return should_defer; 645 } 646 #else 647 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, 648 struct page *page, bool writable) 649 { 650 } 651 652 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 653 { 654 return false; 655 } 656 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 657 658 /* 659 * At what user virtual address is page expected in vma? 660 * Caller should check the page is actually part of the vma. 661 */ 662 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 663 { 664 unsigned long address; 665 if (PageAnon(page)) { 666 struct anon_vma *page__anon_vma = page_anon_vma(page); 667 /* 668 * Note: swapoff's unuse_vma() is more efficient with this 669 * check, and needs it to match anon_vma when KSM is active. 670 */ 671 if (!vma->anon_vma || !page__anon_vma || 672 vma->anon_vma->root != page__anon_vma->root) 673 return -EFAULT; 674 } else if (page->mapping) { 675 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) 676 return -EFAULT; 677 } else 678 return -EFAULT; 679 address = __vma_address(page, vma); 680 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 681 return -EFAULT; 682 return address; 683 } 684 685 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 686 { 687 pgd_t *pgd; 688 pud_t *pud; 689 pmd_t *pmd = NULL; 690 pmd_t pmde; 691 692 pgd = pgd_offset(mm, address); 693 if (!pgd_present(*pgd)) 694 goto out; 695 696 pud = pud_offset(pgd, address); 697 if (!pud_present(*pud)) 698 goto out; 699 700 pmd = pmd_offset(pud, address); 701 /* 702 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 703 * without holding anon_vma lock for write. So when looking for a 704 * genuine pmde (in which to find pte), test present and !THP together. 705 */ 706 pmde = *pmd; 707 barrier(); 708 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 709 pmd = NULL; 710 out: 711 return pmd; 712 } 713 714 /* 715 * Check that @page is mapped at @address into @mm. 716 * 717 * If @sync is false, page_check_address may perform a racy check to avoid 718 * the page table lock when the pte is not present (helpful when reclaiming 719 * highly shared pages). 720 * 721 * On success returns with pte mapped and locked. 722 */ 723 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 724 unsigned long address, spinlock_t **ptlp, int sync) 725 { 726 pmd_t *pmd; 727 pte_t *pte; 728 spinlock_t *ptl; 729 730 if (unlikely(PageHuge(page))) { 731 /* when pud is not present, pte will be NULL */ 732 pte = huge_pte_offset(mm, address); 733 if (!pte) 734 return NULL; 735 736 ptl = huge_pte_lockptr(page_hstate(page), mm, pte); 737 goto check; 738 } 739 740 pmd = mm_find_pmd(mm, address); 741 if (!pmd) 742 return NULL; 743 744 pte = pte_offset_map(pmd, address); 745 /* Make a quick check before getting the lock */ 746 if (!sync && !pte_present(*pte)) { 747 pte_unmap(pte); 748 return NULL; 749 } 750 751 ptl = pte_lockptr(mm, pmd); 752 check: 753 spin_lock(ptl); 754 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 755 *ptlp = ptl; 756 return pte; 757 } 758 pte_unmap_unlock(pte, ptl); 759 return NULL; 760 } 761 762 /** 763 * page_mapped_in_vma - check whether a page is really mapped in a VMA 764 * @page: the page to test 765 * @vma: the VMA to test 766 * 767 * Returns 1 if the page is mapped into the page tables of the VMA, 0 768 * if the page is not mapped into the page tables of this VMA. Only 769 * valid for normal file or anonymous VMAs. 770 */ 771 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 772 { 773 unsigned long address; 774 pte_t *pte; 775 spinlock_t *ptl; 776 777 address = __vma_address(page, vma); 778 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 779 return 0; 780 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 781 if (!pte) /* the page is not in this mm */ 782 return 0; 783 pte_unmap_unlock(pte, ptl); 784 785 return 1; 786 } 787 788 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 789 /* 790 * Check that @page is mapped at @address into @mm. In contrast to 791 * page_check_address(), this function can handle transparent huge pages. 792 * 793 * On success returns true with pte mapped and locked. For PMD-mapped 794 * transparent huge pages *@ptep is set to NULL. 795 */ 796 bool page_check_address_transhuge(struct page *page, struct mm_struct *mm, 797 unsigned long address, pmd_t **pmdp, 798 pte_t **ptep, spinlock_t **ptlp) 799 { 800 pgd_t *pgd; 801 pud_t *pud; 802 pmd_t *pmd; 803 pte_t *pte; 804 spinlock_t *ptl; 805 806 if (unlikely(PageHuge(page))) { 807 /* when pud is not present, pte will be NULL */ 808 pte = huge_pte_offset(mm, address); 809 if (!pte) 810 return false; 811 812 ptl = huge_pte_lockptr(page_hstate(page), mm, pte); 813 pmd = NULL; 814 goto check_pte; 815 } 816 817 pgd = pgd_offset(mm, address); 818 if (!pgd_present(*pgd)) 819 return false; 820 pud = pud_offset(pgd, address); 821 if (!pud_present(*pud)) 822 return false; 823 pmd = pmd_offset(pud, address); 824 825 if (pmd_trans_huge(*pmd)) { 826 ptl = pmd_lock(mm, pmd); 827 if (!pmd_present(*pmd)) 828 goto unlock_pmd; 829 if (unlikely(!pmd_trans_huge(*pmd))) { 830 spin_unlock(ptl); 831 goto map_pte; 832 } 833 834 if (pmd_page(*pmd) != page) 835 goto unlock_pmd; 836 837 pte = NULL; 838 goto found; 839 unlock_pmd: 840 spin_unlock(ptl); 841 return false; 842 } else { 843 pmd_t pmde = *pmd; 844 845 barrier(); 846 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 847 return false; 848 } 849 map_pte: 850 pte = pte_offset_map(pmd, address); 851 if (!pte_present(*pte)) { 852 pte_unmap(pte); 853 return false; 854 } 855 856 ptl = pte_lockptr(mm, pmd); 857 check_pte: 858 spin_lock(ptl); 859 860 if (!pte_present(*pte)) { 861 pte_unmap_unlock(pte, ptl); 862 return false; 863 } 864 865 /* THP can be referenced by any subpage */ 866 if (pte_pfn(*pte) - page_to_pfn(page) >= hpage_nr_pages(page)) { 867 pte_unmap_unlock(pte, ptl); 868 return false; 869 } 870 found: 871 *ptep = pte; 872 *pmdp = pmd; 873 *ptlp = ptl; 874 return true; 875 } 876 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 877 878 struct page_referenced_arg { 879 int mapcount; 880 int referenced; 881 unsigned long vm_flags; 882 struct mem_cgroup *memcg; 883 }; 884 /* 885 * arg: page_referenced_arg will be passed 886 */ 887 static int page_referenced_one(struct page *page, struct vm_area_struct *vma, 888 unsigned long address, void *arg) 889 { 890 struct mm_struct *mm = vma->vm_mm; 891 struct page_referenced_arg *pra = arg; 892 pmd_t *pmd; 893 pte_t *pte; 894 spinlock_t *ptl; 895 int referenced = 0; 896 897 if (!page_check_address_transhuge(page, mm, address, &pmd, &pte, &ptl)) 898 return SWAP_AGAIN; 899 900 if (vma->vm_flags & VM_LOCKED) { 901 if (pte) 902 pte_unmap(pte); 903 spin_unlock(ptl); 904 pra->vm_flags |= VM_LOCKED; 905 return SWAP_FAIL; /* To break the loop */ 906 } 907 908 if (pte) { 909 if (ptep_clear_flush_young_notify(vma, address, pte)) { 910 /* 911 * Don't treat a reference through a sequentially read 912 * mapping as such. If the page has been used in 913 * another mapping, we will catch it; if this other 914 * mapping is already gone, the unmap path will have 915 * set PG_referenced or activated the page. 916 */ 917 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 918 referenced++; 919 } 920 pte_unmap(pte); 921 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 922 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 923 referenced++; 924 } else { 925 /* unexpected pmd-mapped page? */ 926 WARN_ON_ONCE(1); 927 } 928 spin_unlock(ptl); 929 930 if (referenced) 931 clear_page_idle(page); 932 if (test_and_clear_page_young(page)) 933 referenced++; 934 935 if (referenced) { 936 pra->referenced++; 937 pra->vm_flags |= vma->vm_flags; 938 } 939 940 pra->mapcount--; 941 if (!pra->mapcount) 942 return SWAP_SUCCESS; /* To break the loop */ 943 944 return SWAP_AGAIN; 945 } 946 947 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 948 { 949 struct page_referenced_arg *pra = arg; 950 struct mem_cgroup *memcg = pra->memcg; 951 952 if (!mm_match_cgroup(vma->vm_mm, memcg)) 953 return true; 954 955 return false; 956 } 957 958 /** 959 * page_referenced - test if the page was referenced 960 * @page: the page to test 961 * @is_locked: caller holds lock on the page 962 * @memcg: target memory cgroup 963 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 964 * 965 * Quick test_and_clear_referenced for all mappings to a page, 966 * returns the number of ptes which referenced the page. 967 */ 968 int page_referenced(struct page *page, 969 int is_locked, 970 struct mem_cgroup *memcg, 971 unsigned long *vm_flags) 972 { 973 int ret; 974 int we_locked = 0; 975 struct page_referenced_arg pra = { 976 .mapcount = total_mapcount(page), 977 .memcg = memcg, 978 }; 979 struct rmap_walk_control rwc = { 980 .rmap_one = page_referenced_one, 981 .arg = (void *)&pra, 982 .anon_lock = page_lock_anon_vma_read, 983 }; 984 985 *vm_flags = 0; 986 if (!page_mapped(page)) 987 return 0; 988 989 if (!page_rmapping(page)) 990 return 0; 991 992 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 993 we_locked = trylock_page(page); 994 if (!we_locked) 995 return 1; 996 } 997 998 /* 999 * If we are reclaiming on behalf of a cgroup, skip 1000 * counting on behalf of references from different 1001 * cgroups 1002 */ 1003 if (memcg) { 1004 rwc.invalid_vma = invalid_page_referenced_vma; 1005 } 1006 1007 ret = rmap_walk(page, &rwc); 1008 *vm_flags = pra.vm_flags; 1009 1010 if (we_locked) 1011 unlock_page(page); 1012 1013 return pra.referenced; 1014 } 1015 1016 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 1017 unsigned long address, void *arg) 1018 { 1019 struct mm_struct *mm = vma->vm_mm; 1020 pte_t *pte; 1021 spinlock_t *ptl; 1022 int ret = 0; 1023 int *cleaned = arg; 1024 1025 pte = page_check_address(page, mm, address, &ptl, 1); 1026 if (!pte) 1027 goto out; 1028 1029 if (pte_dirty(*pte) || pte_write(*pte)) { 1030 pte_t entry; 1031 1032 flush_cache_page(vma, address, pte_pfn(*pte)); 1033 entry = ptep_clear_flush(vma, address, pte); 1034 entry = pte_wrprotect(entry); 1035 entry = pte_mkclean(entry); 1036 set_pte_at(mm, address, pte, entry); 1037 ret = 1; 1038 } 1039 1040 pte_unmap_unlock(pte, ptl); 1041 1042 if (ret) { 1043 mmu_notifier_invalidate_page(mm, address); 1044 (*cleaned)++; 1045 } 1046 out: 1047 return SWAP_AGAIN; 1048 } 1049 1050 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1051 { 1052 if (vma->vm_flags & VM_SHARED) 1053 return false; 1054 1055 return true; 1056 } 1057 1058 int page_mkclean(struct page *page) 1059 { 1060 int cleaned = 0; 1061 struct address_space *mapping; 1062 struct rmap_walk_control rwc = { 1063 .arg = (void *)&cleaned, 1064 .rmap_one = page_mkclean_one, 1065 .invalid_vma = invalid_mkclean_vma, 1066 }; 1067 1068 BUG_ON(!PageLocked(page)); 1069 1070 if (!page_mapped(page)) 1071 return 0; 1072 1073 mapping = page_mapping(page); 1074 if (!mapping) 1075 return 0; 1076 1077 rmap_walk(page, &rwc); 1078 1079 return cleaned; 1080 } 1081 EXPORT_SYMBOL_GPL(page_mkclean); 1082 1083 /** 1084 * page_move_anon_rmap - move a page to our anon_vma 1085 * @page: the page to move to our anon_vma 1086 * @vma: the vma the page belongs to 1087 * @address: the user virtual address mapped 1088 * 1089 * When a page belongs exclusively to one process after a COW event, 1090 * that page can be moved into the anon_vma that belongs to just that 1091 * process, so the rmap code will not search the parent or sibling 1092 * processes. 1093 */ 1094 void page_move_anon_rmap(struct page *page, 1095 struct vm_area_struct *vma, unsigned long address) 1096 { 1097 struct anon_vma *anon_vma = vma->anon_vma; 1098 1099 VM_BUG_ON_PAGE(!PageLocked(page), page); 1100 VM_BUG_ON_VMA(!anon_vma, vma); 1101 if (IS_ENABLED(CONFIG_DEBUG_VM) && PageTransHuge(page)) 1102 address &= HPAGE_PMD_MASK; 1103 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page); 1104 1105 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1106 /* 1107 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1108 * simultaneously, so a concurrent reader (eg page_referenced()'s 1109 * PageAnon()) will not see one without the other. 1110 */ 1111 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1112 } 1113 1114 /** 1115 * __page_set_anon_rmap - set up new anonymous rmap 1116 * @page: Page to add to rmap 1117 * @vma: VM area to add page to. 1118 * @address: User virtual address of the mapping 1119 * @exclusive: the page is exclusively owned by the current process 1120 */ 1121 static void __page_set_anon_rmap(struct page *page, 1122 struct vm_area_struct *vma, unsigned long address, int exclusive) 1123 { 1124 struct anon_vma *anon_vma = vma->anon_vma; 1125 1126 BUG_ON(!anon_vma); 1127 1128 if (PageAnon(page)) 1129 return; 1130 1131 /* 1132 * If the page isn't exclusively mapped into this vma, 1133 * we must use the _oldest_ possible anon_vma for the 1134 * page mapping! 1135 */ 1136 if (!exclusive) 1137 anon_vma = anon_vma->root; 1138 1139 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1140 page->mapping = (struct address_space *) anon_vma; 1141 page->index = linear_page_index(vma, address); 1142 } 1143 1144 /** 1145 * __page_check_anon_rmap - sanity check anonymous rmap addition 1146 * @page: the page to add the mapping to 1147 * @vma: the vm area in which the mapping is added 1148 * @address: the user virtual address mapped 1149 */ 1150 static void __page_check_anon_rmap(struct page *page, 1151 struct vm_area_struct *vma, unsigned long address) 1152 { 1153 #ifdef CONFIG_DEBUG_VM 1154 /* 1155 * The page's anon-rmap details (mapping and index) are guaranteed to 1156 * be set up correctly at this point. 1157 * 1158 * We have exclusion against page_add_anon_rmap because the caller 1159 * always holds the page locked, except if called from page_dup_rmap, 1160 * in which case the page is already known to be setup. 1161 * 1162 * We have exclusion against page_add_new_anon_rmap because those pages 1163 * are initially only visible via the pagetables, and the pte is locked 1164 * over the call to page_add_new_anon_rmap. 1165 */ 1166 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1167 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address)); 1168 #endif 1169 } 1170 1171 /** 1172 * page_add_anon_rmap - add pte mapping to an anonymous page 1173 * @page: the page to add the mapping to 1174 * @vma: the vm area in which the mapping is added 1175 * @address: the user virtual address mapped 1176 * @compound: charge the page as compound or small page 1177 * 1178 * The caller needs to hold the pte lock, and the page must be locked in 1179 * the anon_vma case: to serialize mapping,index checking after setting, 1180 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1181 * (but PageKsm is never downgraded to PageAnon). 1182 */ 1183 void page_add_anon_rmap(struct page *page, 1184 struct vm_area_struct *vma, unsigned long address, bool compound) 1185 { 1186 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); 1187 } 1188 1189 /* 1190 * Special version of the above for do_swap_page, which often runs 1191 * into pages that are exclusively owned by the current process. 1192 * Everybody else should continue to use page_add_anon_rmap above. 1193 */ 1194 void do_page_add_anon_rmap(struct page *page, 1195 struct vm_area_struct *vma, unsigned long address, int flags) 1196 { 1197 bool compound = flags & RMAP_COMPOUND; 1198 bool first; 1199 1200 if (compound) { 1201 atomic_t *mapcount; 1202 VM_BUG_ON_PAGE(!PageLocked(page), page); 1203 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1204 mapcount = compound_mapcount_ptr(page); 1205 first = atomic_inc_and_test(mapcount); 1206 } else { 1207 first = atomic_inc_and_test(&page->_mapcount); 1208 } 1209 1210 if (first) { 1211 int nr = compound ? hpage_nr_pages(page) : 1; 1212 /* 1213 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1214 * these counters are not modified in interrupt context, and 1215 * pte lock(a spinlock) is held, which implies preemption 1216 * disabled. 1217 */ 1218 if (compound) { 1219 __inc_zone_page_state(page, 1220 NR_ANON_TRANSPARENT_HUGEPAGES); 1221 } 1222 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr); 1223 } 1224 if (unlikely(PageKsm(page))) 1225 return; 1226 1227 VM_BUG_ON_PAGE(!PageLocked(page), page); 1228 1229 /* address might be in next vma when migration races vma_adjust */ 1230 if (first) 1231 __page_set_anon_rmap(page, vma, address, 1232 flags & RMAP_EXCLUSIVE); 1233 else 1234 __page_check_anon_rmap(page, vma, address); 1235 } 1236 1237 /** 1238 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1239 * @page: the page to add the mapping to 1240 * @vma: the vm area in which the mapping is added 1241 * @address: the user virtual address mapped 1242 * @compound: charge the page as compound or small page 1243 * 1244 * Same as page_add_anon_rmap but must only be called on *new* pages. 1245 * This means the inc-and-test can be bypassed. 1246 * Page does not have to be locked. 1247 */ 1248 void page_add_new_anon_rmap(struct page *page, 1249 struct vm_area_struct *vma, unsigned long address, bool compound) 1250 { 1251 int nr = compound ? hpage_nr_pages(page) : 1; 1252 1253 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1254 __SetPageSwapBacked(page); 1255 if (compound) { 1256 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1257 /* increment count (starts at -1) */ 1258 atomic_set(compound_mapcount_ptr(page), 0); 1259 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1260 } else { 1261 /* Anon THP always mapped first with PMD */ 1262 VM_BUG_ON_PAGE(PageTransCompound(page), page); 1263 /* increment count (starts at -1) */ 1264 atomic_set(&page->_mapcount, 0); 1265 } 1266 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr); 1267 __page_set_anon_rmap(page, vma, address, 1); 1268 } 1269 1270 /** 1271 * page_add_file_rmap - add pte mapping to a file page 1272 * @page: the page to add the mapping to 1273 * 1274 * The caller needs to hold the pte lock. 1275 */ 1276 void page_add_file_rmap(struct page *page) 1277 { 1278 lock_page_memcg(page); 1279 if (atomic_inc_and_test(&page->_mapcount)) { 1280 __inc_zone_page_state(page, NR_FILE_MAPPED); 1281 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); 1282 } 1283 unlock_page_memcg(page); 1284 } 1285 1286 static void page_remove_file_rmap(struct page *page) 1287 { 1288 lock_page_memcg(page); 1289 1290 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1291 if (unlikely(PageHuge(page))) { 1292 /* hugetlb pages are always mapped with pmds */ 1293 atomic_dec(compound_mapcount_ptr(page)); 1294 goto out; 1295 } 1296 1297 /* page still mapped by someone else? */ 1298 if (!atomic_add_negative(-1, &page->_mapcount)) 1299 goto out; 1300 1301 /* 1302 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1303 * these counters are not modified in interrupt context, and 1304 * pte lock(a spinlock) is held, which implies preemption disabled. 1305 */ 1306 __dec_zone_page_state(page, NR_FILE_MAPPED); 1307 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); 1308 1309 if (unlikely(PageMlocked(page))) 1310 clear_page_mlock(page); 1311 out: 1312 unlock_page_memcg(page); 1313 } 1314 1315 static void page_remove_anon_compound_rmap(struct page *page) 1316 { 1317 int i, nr; 1318 1319 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1320 return; 1321 1322 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1323 if (unlikely(PageHuge(page))) 1324 return; 1325 1326 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1327 return; 1328 1329 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1330 1331 if (TestClearPageDoubleMap(page)) { 1332 /* 1333 * Subpages can be mapped with PTEs too. Check how many of 1334 * themi are still mapped. 1335 */ 1336 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1337 if (atomic_add_negative(-1, &page[i]._mapcount)) 1338 nr++; 1339 } 1340 } else { 1341 nr = HPAGE_PMD_NR; 1342 } 1343 1344 if (unlikely(PageMlocked(page))) 1345 clear_page_mlock(page); 1346 1347 if (nr) { 1348 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, -nr); 1349 deferred_split_huge_page(page); 1350 } 1351 } 1352 1353 /** 1354 * page_remove_rmap - take down pte mapping from a page 1355 * @page: page to remove mapping from 1356 * @compound: uncharge the page as compound or small page 1357 * 1358 * The caller needs to hold the pte lock. 1359 */ 1360 void page_remove_rmap(struct page *page, bool compound) 1361 { 1362 if (!PageAnon(page)) { 1363 VM_BUG_ON_PAGE(compound && !PageHuge(page), page); 1364 page_remove_file_rmap(page); 1365 return; 1366 } 1367 1368 if (compound) 1369 return page_remove_anon_compound_rmap(page); 1370 1371 /* page still mapped by someone else? */ 1372 if (!atomic_add_negative(-1, &page->_mapcount)) 1373 return; 1374 1375 /* 1376 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1377 * these counters are not modified in interrupt context, and 1378 * pte lock(a spinlock) is held, which implies preemption disabled. 1379 */ 1380 __dec_zone_page_state(page, NR_ANON_PAGES); 1381 1382 if (unlikely(PageMlocked(page))) 1383 clear_page_mlock(page); 1384 1385 if (PageTransCompound(page)) 1386 deferred_split_huge_page(compound_head(page)); 1387 1388 /* 1389 * It would be tidy to reset the PageAnon mapping here, 1390 * but that might overwrite a racing page_add_anon_rmap 1391 * which increments mapcount after us but sets mapping 1392 * before us: so leave the reset to free_hot_cold_page, 1393 * and remember that it's only reliable while mapped. 1394 * Leaving it set also helps swapoff to reinstate ptes 1395 * faster for those pages still in swapcache. 1396 */ 1397 } 1398 1399 struct rmap_private { 1400 enum ttu_flags flags; 1401 int lazyfreed; 1402 }; 1403 1404 /* 1405 * @arg: enum ttu_flags will be passed to this argument 1406 */ 1407 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1408 unsigned long address, void *arg) 1409 { 1410 struct mm_struct *mm = vma->vm_mm; 1411 pte_t *pte; 1412 pte_t pteval; 1413 spinlock_t *ptl; 1414 int ret = SWAP_AGAIN; 1415 struct rmap_private *rp = arg; 1416 enum ttu_flags flags = rp->flags; 1417 1418 /* munlock has nothing to gain from examining un-locked vmas */ 1419 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) 1420 goto out; 1421 1422 if (flags & TTU_SPLIT_HUGE_PMD) { 1423 split_huge_pmd_address(vma, address, 1424 flags & TTU_MIGRATION, page); 1425 /* check if we have anything to do after split */ 1426 if (page_mapcount(page) == 0) 1427 goto out; 1428 } 1429 1430 pte = page_check_address(page, mm, address, &ptl, 0); 1431 if (!pte) 1432 goto out; 1433 1434 /* 1435 * If the page is mlock()d, we cannot swap it out. 1436 * If it's recently referenced (perhaps page_referenced 1437 * skipped over this mm) then we should reactivate it. 1438 */ 1439 if (!(flags & TTU_IGNORE_MLOCK)) { 1440 if (vma->vm_flags & VM_LOCKED) { 1441 /* Holding pte lock, we do *not* need mmap_sem here */ 1442 mlock_vma_page(page); 1443 ret = SWAP_MLOCK; 1444 goto out_unmap; 1445 } 1446 if (flags & TTU_MUNLOCK) 1447 goto out_unmap; 1448 } 1449 if (!(flags & TTU_IGNORE_ACCESS)) { 1450 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1451 ret = SWAP_FAIL; 1452 goto out_unmap; 1453 } 1454 } 1455 1456 /* Nuke the page table entry. */ 1457 flush_cache_page(vma, address, page_to_pfn(page)); 1458 if (should_defer_flush(mm, flags)) { 1459 /* 1460 * We clear the PTE but do not flush so potentially a remote 1461 * CPU could still be writing to the page. If the entry was 1462 * previously clean then the architecture must guarantee that 1463 * a clear->dirty transition on a cached TLB entry is written 1464 * through and traps if the PTE is unmapped. 1465 */ 1466 pteval = ptep_get_and_clear(mm, address, pte); 1467 1468 set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval)); 1469 } else { 1470 pteval = ptep_clear_flush(vma, address, pte); 1471 } 1472 1473 /* Move the dirty bit to the physical page now the pte is gone. */ 1474 if (pte_dirty(pteval)) 1475 set_page_dirty(page); 1476 1477 /* Update high watermark before we lower rss */ 1478 update_hiwater_rss(mm); 1479 1480 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1481 if (PageHuge(page)) { 1482 hugetlb_count_sub(1 << compound_order(page), mm); 1483 } else { 1484 dec_mm_counter(mm, mm_counter(page)); 1485 } 1486 set_pte_at(mm, address, pte, 1487 swp_entry_to_pte(make_hwpoison_entry(page))); 1488 } else if (pte_unused(pteval)) { 1489 /* 1490 * The guest indicated that the page content is of no 1491 * interest anymore. Simply discard the pte, vmscan 1492 * will take care of the rest. 1493 */ 1494 dec_mm_counter(mm, mm_counter(page)); 1495 } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) { 1496 swp_entry_t entry; 1497 pte_t swp_pte; 1498 /* 1499 * Store the pfn of the page in a special migration 1500 * pte. do_swap_page() will wait until the migration 1501 * pte is removed and then restart fault handling. 1502 */ 1503 entry = make_migration_entry(page, pte_write(pteval)); 1504 swp_pte = swp_entry_to_pte(entry); 1505 if (pte_soft_dirty(pteval)) 1506 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1507 set_pte_at(mm, address, pte, swp_pte); 1508 } else if (PageAnon(page)) { 1509 swp_entry_t entry = { .val = page_private(page) }; 1510 pte_t swp_pte; 1511 /* 1512 * Store the swap location in the pte. 1513 * See handle_pte_fault() ... 1514 */ 1515 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 1516 1517 if (!PageDirty(page) && (flags & TTU_LZFREE)) { 1518 /* It's a freeable page by MADV_FREE */ 1519 dec_mm_counter(mm, MM_ANONPAGES); 1520 rp->lazyfreed++; 1521 goto discard; 1522 } 1523 1524 if (swap_duplicate(entry) < 0) { 1525 set_pte_at(mm, address, pte, pteval); 1526 ret = SWAP_FAIL; 1527 goto out_unmap; 1528 } 1529 if (list_empty(&mm->mmlist)) { 1530 spin_lock(&mmlist_lock); 1531 if (list_empty(&mm->mmlist)) 1532 list_add(&mm->mmlist, &init_mm.mmlist); 1533 spin_unlock(&mmlist_lock); 1534 } 1535 dec_mm_counter(mm, MM_ANONPAGES); 1536 inc_mm_counter(mm, MM_SWAPENTS); 1537 swp_pte = swp_entry_to_pte(entry); 1538 if (pte_soft_dirty(pteval)) 1539 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1540 set_pte_at(mm, address, pte, swp_pte); 1541 } else 1542 dec_mm_counter(mm, mm_counter_file(page)); 1543 1544 discard: 1545 page_remove_rmap(page, PageHuge(page)); 1546 put_page(page); 1547 1548 out_unmap: 1549 pte_unmap_unlock(pte, ptl); 1550 if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK)) 1551 mmu_notifier_invalidate_page(mm, address); 1552 out: 1553 return ret; 1554 } 1555 1556 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1557 { 1558 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1559 1560 if (!maybe_stack) 1561 return false; 1562 1563 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1564 VM_STACK_INCOMPLETE_SETUP) 1565 return true; 1566 1567 return false; 1568 } 1569 1570 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1571 { 1572 return is_vma_temporary_stack(vma); 1573 } 1574 1575 static int page_mapcount_is_zero(struct page *page) 1576 { 1577 return !page_mapcount(page); 1578 } 1579 1580 /** 1581 * try_to_unmap - try to remove all page table mappings to a page 1582 * @page: the page to get unmapped 1583 * @flags: action and flags 1584 * 1585 * Tries to remove all the page table entries which are mapping this 1586 * page, used in the pageout path. Caller must hold the page lock. 1587 * Return values are: 1588 * 1589 * SWAP_SUCCESS - we succeeded in removing all mappings 1590 * SWAP_AGAIN - we missed a mapping, try again later 1591 * SWAP_FAIL - the page is unswappable 1592 * SWAP_MLOCK - page is mlocked. 1593 */ 1594 int try_to_unmap(struct page *page, enum ttu_flags flags) 1595 { 1596 int ret; 1597 struct rmap_private rp = { 1598 .flags = flags, 1599 .lazyfreed = 0, 1600 }; 1601 1602 struct rmap_walk_control rwc = { 1603 .rmap_one = try_to_unmap_one, 1604 .arg = &rp, 1605 .done = page_mapcount_is_zero, 1606 .anon_lock = page_lock_anon_vma_read, 1607 }; 1608 1609 /* 1610 * During exec, a temporary VMA is setup and later moved. 1611 * The VMA is moved under the anon_vma lock but not the 1612 * page tables leading to a race where migration cannot 1613 * find the migration ptes. Rather than increasing the 1614 * locking requirements of exec(), migration skips 1615 * temporary VMAs until after exec() completes. 1616 */ 1617 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) 1618 rwc.invalid_vma = invalid_migration_vma; 1619 1620 if (flags & TTU_RMAP_LOCKED) 1621 ret = rmap_walk_locked(page, &rwc); 1622 else 1623 ret = rmap_walk(page, &rwc); 1624 1625 if (ret != SWAP_MLOCK && !page_mapcount(page)) { 1626 ret = SWAP_SUCCESS; 1627 if (rp.lazyfreed && !PageDirty(page)) 1628 ret = SWAP_LZFREE; 1629 } 1630 return ret; 1631 } 1632 1633 static int page_not_mapped(struct page *page) 1634 { 1635 return !page_mapped(page); 1636 }; 1637 1638 /** 1639 * try_to_munlock - try to munlock a page 1640 * @page: the page to be munlocked 1641 * 1642 * Called from munlock code. Checks all of the VMAs mapping the page 1643 * to make sure nobody else has this page mlocked. The page will be 1644 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1645 * 1646 * Return values are: 1647 * 1648 * SWAP_AGAIN - no vma is holding page mlocked, or, 1649 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1650 * SWAP_FAIL - page cannot be located at present 1651 * SWAP_MLOCK - page is now mlocked. 1652 */ 1653 int try_to_munlock(struct page *page) 1654 { 1655 int ret; 1656 struct rmap_private rp = { 1657 .flags = TTU_MUNLOCK, 1658 .lazyfreed = 0, 1659 }; 1660 1661 struct rmap_walk_control rwc = { 1662 .rmap_one = try_to_unmap_one, 1663 .arg = &rp, 1664 .done = page_not_mapped, 1665 .anon_lock = page_lock_anon_vma_read, 1666 1667 }; 1668 1669 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 1670 1671 ret = rmap_walk(page, &rwc); 1672 return ret; 1673 } 1674 1675 void __put_anon_vma(struct anon_vma *anon_vma) 1676 { 1677 struct anon_vma *root = anon_vma->root; 1678 1679 anon_vma_free(anon_vma); 1680 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1681 anon_vma_free(root); 1682 } 1683 1684 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 1685 struct rmap_walk_control *rwc) 1686 { 1687 struct anon_vma *anon_vma; 1688 1689 if (rwc->anon_lock) 1690 return rwc->anon_lock(page); 1691 1692 /* 1693 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1694 * because that depends on page_mapped(); but not all its usages 1695 * are holding mmap_sem. Users without mmap_sem are required to 1696 * take a reference count to prevent the anon_vma disappearing 1697 */ 1698 anon_vma = page_anon_vma(page); 1699 if (!anon_vma) 1700 return NULL; 1701 1702 anon_vma_lock_read(anon_vma); 1703 return anon_vma; 1704 } 1705 1706 /* 1707 * rmap_walk_anon - do something to anonymous page using the object-based 1708 * rmap method 1709 * @page: the page to be handled 1710 * @rwc: control variable according to each walk type 1711 * 1712 * Find all the mappings of a page using the mapping pointer and the vma chains 1713 * contained in the anon_vma struct it points to. 1714 * 1715 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1716 * where the page was found will be held for write. So, we won't recheck 1717 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1718 * LOCKED. 1719 */ 1720 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, 1721 bool locked) 1722 { 1723 struct anon_vma *anon_vma; 1724 pgoff_t pgoff; 1725 struct anon_vma_chain *avc; 1726 int ret = SWAP_AGAIN; 1727 1728 if (locked) { 1729 anon_vma = page_anon_vma(page); 1730 /* anon_vma disappear under us? */ 1731 VM_BUG_ON_PAGE(!anon_vma, page); 1732 } else { 1733 anon_vma = rmap_walk_anon_lock(page, rwc); 1734 } 1735 if (!anon_vma) 1736 return ret; 1737 1738 pgoff = page_to_pgoff(page); 1739 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1740 struct vm_area_struct *vma = avc->vma; 1741 unsigned long address = vma_address(page, vma); 1742 1743 cond_resched(); 1744 1745 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1746 continue; 1747 1748 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1749 if (ret != SWAP_AGAIN) 1750 break; 1751 if (rwc->done && rwc->done(page)) 1752 break; 1753 } 1754 1755 if (!locked) 1756 anon_vma_unlock_read(anon_vma); 1757 return ret; 1758 } 1759 1760 /* 1761 * rmap_walk_file - do something to file page using the object-based rmap method 1762 * @page: the page to be handled 1763 * @rwc: control variable according to each walk type 1764 * 1765 * Find all the mappings of a page using the mapping pointer and the vma chains 1766 * contained in the address_space struct it points to. 1767 * 1768 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1769 * where the page was found will be held for write. So, we won't recheck 1770 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1771 * LOCKED. 1772 */ 1773 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, 1774 bool locked) 1775 { 1776 struct address_space *mapping = page_mapping(page); 1777 pgoff_t pgoff; 1778 struct vm_area_struct *vma; 1779 int ret = SWAP_AGAIN; 1780 1781 /* 1782 * The page lock not only makes sure that page->mapping cannot 1783 * suddenly be NULLified by truncation, it makes sure that the 1784 * structure at mapping cannot be freed and reused yet, 1785 * so we can safely take mapping->i_mmap_rwsem. 1786 */ 1787 VM_BUG_ON_PAGE(!PageLocked(page), page); 1788 1789 if (!mapping) 1790 return ret; 1791 1792 pgoff = page_to_pgoff(page); 1793 if (!locked) 1794 i_mmap_lock_read(mapping); 1795 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1796 unsigned long address = vma_address(page, vma); 1797 1798 cond_resched(); 1799 1800 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1801 continue; 1802 1803 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1804 if (ret != SWAP_AGAIN) 1805 goto done; 1806 if (rwc->done && rwc->done(page)) 1807 goto done; 1808 } 1809 1810 done: 1811 if (!locked) 1812 i_mmap_unlock_read(mapping); 1813 return ret; 1814 } 1815 1816 int rmap_walk(struct page *page, struct rmap_walk_control *rwc) 1817 { 1818 if (unlikely(PageKsm(page))) 1819 return rmap_walk_ksm(page, rwc); 1820 else if (PageAnon(page)) 1821 return rmap_walk_anon(page, rwc, false); 1822 else 1823 return rmap_walk_file(page, rwc, false); 1824 } 1825 1826 /* Like rmap_walk, but caller holds relevant rmap lock */ 1827 int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) 1828 { 1829 /* no ksm support for now */ 1830 VM_BUG_ON_PAGE(PageKsm(page), page); 1831 if (PageAnon(page)) 1832 return rmap_walk_anon(page, rwc, true); 1833 else 1834 return rmap_walk_file(page, rwc, true); 1835 } 1836 1837 #ifdef CONFIG_HUGETLB_PAGE 1838 /* 1839 * The following three functions are for anonymous (private mapped) hugepages. 1840 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1841 * and no lru code, because we handle hugepages differently from common pages. 1842 */ 1843 static void __hugepage_set_anon_rmap(struct page *page, 1844 struct vm_area_struct *vma, unsigned long address, int exclusive) 1845 { 1846 struct anon_vma *anon_vma = vma->anon_vma; 1847 1848 BUG_ON(!anon_vma); 1849 1850 if (PageAnon(page)) 1851 return; 1852 if (!exclusive) 1853 anon_vma = anon_vma->root; 1854 1855 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1856 page->mapping = (struct address_space *) anon_vma; 1857 page->index = linear_page_index(vma, address); 1858 } 1859 1860 void hugepage_add_anon_rmap(struct page *page, 1861 struct vm_area_struct *vma, unsigned long address) 1862 { 1863 struct anon_vma *anon_vma = vma->anon_vma; 1864 int first; 1865 1866 BUG_ON(!PageLocked(page)); 1867 BUG_ON(!anon_vma); 1868 /* address might be in next vma when migration races vma_adjust */ 1869 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 1870 if (first) 1871 __hugepage_set_anon_rmap(page, vma, address, 0); 1872 } 1873 1874 void hugepage_add_new_anon_rmap(struct page *page, 1875 struct vm_area_struct *vma, unsigned long address) 1876 { 1877 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1878 atomic_set(compound_mapcount_ptr(page), 0); 1879 __hugepage_set_anon_rmap(page, vma, address, 1); 1880 } 1881 #endif /* CONFIG_HUGETLB_PAGE */ 1882