1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * page->flags PG_locked (lock_page) * (see hugetlbfs below) 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) 28 * mapping->i_mmap_rwsem 29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * folio_lock_memcg move_lock (in block_dirty_folio) 36 * i_pages lock (widely used) 37 * lruvec->lru_lock (in folio_lruvec_lock_irq) 38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 40 * sb_lock (within inode_lock in fs/fs-writeback.c) 41 * i_pages lock (widely used, in set_page_dirty, 42 * in arch-dependent flush_dcache_mmap_lock, 43 * within bdi.wb->list_lock in __sync_single_inode) 44 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 47 * pte map lock 48 * 49 * * hugetlbfs PageHuge() pages take locks in this order: 50 * mapping->i_mmap_rwsem 51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 52 * page->flags PG_locked (lock_page) 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/swapops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 #include <linux/mm_inline.h> 77 78 #include <asm/tlbflush.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/tlb.h> 82 #include <trace/events/migrate.h> 83 84 #include "internal.h" 85 86 static struct kmem_cache *anon_vma_cachep; 87 static struct kmem_cache *anon_vma_chain_cachep; 88 89 static inline struct anon_vma *anon_vma_alloc(void) 90 { 91 struct anon_vma *anon_vma; 92 93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 94 if (anon_vma) { 95 atomic_set(&anon_vma->refcount, 1); 96 anon_vma->degree = 1; /* Reference for first vma */ 97 anon_vma->parent = anon_vma; 98 /* 99 * Initialise the anon_vma root to point to itself. If called 100 * from fork, the root will be reset to the parents anon_vma. 101 */ 102 anon_vma->root = anon_vma; 103 } 104 105 return anon_vma; 106 } 107 108 static inline void anon_vma_free(struct anon_vma *anon_vma) 109 { 110 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 111 112 /* 113 * Synchronize against folio_lock_anon_vma_read() such that 114 * we can safely hold the lock without the anon_vma getting 115 * freed. 116 * 117 * Relies on the full mb implied by the atomic_dec_and_test() from 118 * put_anon_vma() against the acquire barrier implied by 119 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 120 * 121 * folio_lock_anon_vma_read() VS put_anon_vma() 122 * down_read_trylock() atomic_dec_and_test() 123 * LOCK MB 124 * atomic_read() rwsem_is_locked() 125 * 126 * LOCK should suffice since the actual taking of the lock must 127 * happen _before_ what follows. 128 */ 129 might_sleep(); 130 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 131 anon_vma_lock_write(anon_vma); 132 anon_vma_unlock_write(anon_vma); 133 } 134 135 kmem_cache_free(anon_vma_cachep, anon_vma); 136 } 137 138 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 139 { 140 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 141 } 142 143 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 144 { 145 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 146 } 147 148 static void anon_vma_chain_link(struct vm_area_struct *vma, 149 struct anon_vma_chain *avc, 150 struct anon_vma *anon_vma) 151 { 152 avc->vma = vma; 153 avc->anon_vma = anon_vma; 154 list_add(&avc->same_vma, &vma->anon_vma_chain); 155 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 156 } 157 158 /** 159 * __anon_vma_prepare - attach an anon_vma to a memory region 160 * @vma: the memory region in question 161 * 162 * This makes sure the memory mapping described by 'vma' has 163 * an 'anon_vma' attached to it, so that we can associate the 164 * anonymous pages mapped into it with that anon_vma. 165 * 166 * The common case will be that we already have one, which 167 * is handled inline by anon_vma_prepare(). But if 168 * not we either need to find an adjacent mapping that we 169 * can re-use the anon_vma from (very common when the only 170 * reason for splitting a vma has been mprotect()), or we 171 * allocate a new one. 172 * 173 * Anon-vma allocations are very subtle, because we may have 174 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 175 * and that may actually touch the rwsem even in the newly 176 * allocated vma (it depends on RCU to make sure that the 177 * anon_vma isn't actually destroyed). 178 * 179 * As a result, we need to do proper anon_vma locking even 180 * for the new allocation. At the same time, we do not want 181 * to do any locking for the common case of already having 182 * an anon_vma. 183 * 184 * This must be called with the mmap_lock held for reading. 185 */ 186 int __anon_vma_prepare(struct vm_area_struct *vma) 187 { 188 struct mm_struct *mm = vma->vm_mm; 189 struct anon_vma *anon_vma, *allocated; 190 struct anon_vma_chain *avc; 191 192 might_sleep(); 193 194 avc = anon_vma_chain_alloc(GFP_KERNEL); 195 if (!avc) 196 goto out_enomem; 197 198 anon_vma = find_mergeable_anon_vma(vma); 199 allocated = NULL; 200 if (!anon_vma) { 201 anon_vma = anon_vma_alloc(); 202 if (unlikely(!anon_vma)) 203 goto out_enomem_free_avc; 204 allocated = anon_vma; 205 } 206 207 anon_vma_lock_write(anon_vma); 208 /* page_table_lock to protect against threads */ 209 spin_lock(&mm->page_table_lock); 210 if (likely(!vma->anon_vma)) { 211 vma->anon_vma = anon_vma; 212 anon_vma_chain_link(vma, avc, anon_vma); 213 /* vma reference or self-parent link for new root */ 214 anon_vma->degree++; 215 allocated = NULL; 216 avc = NULL; 217 } 218 spin_unlock(&mm->page_table_lock); 219 anon_vma_unlock_write(anon_vma); 220 221 if (unlikely(allocated)) 222 put_anon_vma(allocated); 223 if (unlikely(avc)) 224 anon_vma_chain_free(avc); 225 226 return 0; 227 228 out_enomem_free_avc: 229 anon_vma_chain_free(avc); 230 out_enomem: 231 return -ENOMEM; 232 } 233 234 /* 235 * This is a useful helper function for locking the anon_vma root as 236 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 237 * have the same vma. 238 * 239 * Such anon_vma's should have the same root, so you'd expect to see 240 * just a single mutex_lock for the whole traversal. 241 */ 242 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 243 { 244 struct anon_vma *new_root = anon_vma->root; 245 if (new_root != root) { 246 if (WARN_ON_ONCE(root)) 247 up_write(&root->rwsem); 248 root = new_root; 249 down_write(&root->rwsem); 250 } 251 return root; 252 } 253 254 static inline void unlock_anon_vma_root(struct anon_vma *root) 255 { 256 if (root) 257 up_write(&root->rwsem); 258 } 259 260 /* 261 * Attach the anon_vmas from src to dst. 262 * Returns 0 on success, -ENOMEM on failure. 263 * 264 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and 265 * anon_vma_fork(). The first three want an exact copy of src, while the last 266 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent 267 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, 268 * we can identify this case by checking (!dst->anon_vma && src->anon_vma). 269 * 270 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 271 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 272 * This prevents degradation of anon_vma hierarchy to endless linear chain in 273 * case of constantly forking task. On the other hand, an anon_vma with more 274 * than one child isn't reused even if there was no alive vma, thus rmap 275 * walker has a good chance of avoiding scanning the whole hierarchy when it 276 * searches where page is mapped. 277 */ 278 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 279 { 280 struct anon_vma_chain *avc, *pavc; 281 struct anon_vma *root = NULL; 282 283 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 284 struct anon_vma *anon_vma; 285 286 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 287 if (unlikely(!avc)) { 288 unlock_anon_vma_root(root); 289 root = NULL; 290 avc = anon_vma_chain_alloc(GFP_KERNEL); 291 if (!avc) 292 goto enomem_failure; 293 } 294 anon_vma = pavc->anon_vma; 295 root = lock_anon_vma_root(root, anon_vma); 296 anon_vma_chain_link(dst, avc, anon_vma); 297 298 /* 299 * Reuse existing anon_vma if its degree lower than two, 300 * that means it has no vma and only one anon_vma child. 301 * 302 * Do not choose parent anon_vma, otherwise first child 303 * will always reuse it. Root anon_vma is never reused: 304 * it has self-parent reference and at least one child. 305 */ 306 if (!dst->anon_vma && src->anon_vma && 307 anon_vma != src->anon_vma && anon_vma->degree < 2) 308 dst->anon_vma = anon_vma; 309 } 310 if (dst->anon_vma) 311 dst->anon_vma->degree++; 312 unlock_anon_vma_root(root); 313 return 0; 314 315 enomem_failure: 316 /* 317 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 318 * decremented in unlink_anon_vmas(). 319 * We can safely do this because callers of anon_vma_clone() don't care 320 * about dst->anon_vma if anon_vma_clone() failed. 321 */ 322 dst->anon_vma = NULL; 323 unlink_anon_vmas(dst); 324 return -ENOMEM; 325 } 326 327 /* 328 * Attach vma to its own anon_vma, as well as to the anon_vmas that 329 * the corresponding VMA in the parent process is attached to. 330 * Returns 0 on success, non-zero on failure. 331 */ 332 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 333 { 334 struct anon_vma_chain *avc; 335 struct anon_vma *anon_vma; 336 int error; 337 338 /* Don't bother if the parent process has no anon_vma here. */ 339 if (!pvma->anon_vma) 340 return 0; 341 342 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 343 vma->anon_vma = NULL; 344 345 /* 346 * First, attach the new VMA to the parent VMA's anon_vmas, 347 * so rmap can find non-COWed pages in child processes. 348 */ 349 error = anon_vma_clone(vma, pvma); 350 if (error) 351 return error; 352 353 /* An existing anon_vma has been reused, all done then. */ 354 if (vma->anon_vma) 355 return 0; 356 357 /* Then add our own anon_vma. */ 358 anon_vma = anon_vma_alloc(); 359 if (!anon_vma) 360 goto out_error; 361 avc = anon_vma_chain_alloc(GFP_KERNEL); 362 if (!avc) 363 goto out_error_free_anon_vma; 364 365 /* 366 * The root anon_vma's rwsem is the lock actually used when we 367 * lock any of the anon_vmas in this anon_vma tree. 368 */ 369 anon_vma->root = pvma->anon_vma->root; 370 anon_vma->parent = pvma->anon_vma; 371 /* 372 * With refcounts, an anon_vma can stay around longer than the 373 * process it belongs to. The root anon_vma needs to be pinned until 374 * this anon_vma is freed, because the lock lives in the root. 375 */ 376 get_anon_vma(anon_vma->root); 377 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 378 vma->anon_vma = anon_vma; 379 anon_vma_lock_write(anon_vma); 380 anon_vma_chain_link(vma, avc, anon_vma); 381 anon_vma->parent->degree++; 382 anon_vma_unlock_write(anon_vma); 383 384 return 0; 385 386 out_error_free_anon_vma: 387 put_anon_vma(anon_vma); 388 out_error: 389 unlink_anon_vmas(vma); 390 return -ENOMEM; 391 } 392 393 void unlink_anon_vmas(struct vm_area_struct *vma) 394 { 395 struct anon_vma_chain *avc, *next; 396 struct anon_vma *root = NULL; 397 398 /* 399 * Unlink each anon_vma chained to the VMA. This list is ordered 400 * from newest to oldest, ensuring the root anon_vma gets freed last. 401 */ 402 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 403 struct anon_vma *anon_vma = avc->anon_vma; 404 405 root = lock_anon_vma_root(root, anon_vma); 406 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 407 408 /* 409 * Leave empty anon_vmas on the list - we'll need 410 * to free them outside the lock. 411 */ 412 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 413 anon_vma->parent->degree--; 414 continue; 415 } 416 417 list_del(&avc->same_vma); 418 anon_vma_chain_free(avc); 419 } 420 if (vma->anon_vma) { 421 vma->anon_vma->degree--; 422 423 /* 424 * vma would still be needed after unlink, and anon_vma will be prepared 425 * when handle fault. 426 */ 427 vma->anon_vma = NULL; 428 } 429 unlock_anon_vma_root(root); 430 431 /* 432 * Iterate the list once more, it now only contains empty and unlinked 433 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 434 * needing to write-acquire the anon_vma->root->rwsem. 435 */ 436 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 437 struct anon_vma *anon_vma = avc->anon_vma; 438 439 VM_WARN_ON(anon_vma->degree); 440 put_anon_vma(anon_vma); 441 442 list_del(&avc->same_vma); 443 anon_vma_chain_free(avc); 444 } 445 } 446 447 static void anon_vma_ctor(void *data) 448 { 449 struct anon_vma *anon_vma = data; 450 451 init_rwsem(&anon_vma->rwsem); 452 atomic_set(&anon_vma->refcount, 0); 453 anon_vma->rb_root = RB_ROOT_CACHED; 454 } 455 456 void __init anon_vma_init(void) 457 { 458 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 459 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 460 anon_vma_ctor); 461 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 462 SLAB_PANIC|SLAB_ACCOUNT); 463 } 464 465 /* 466 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 467 * 468 * Since there is no serialization what so ever against page_remove_rmap() 469 * the best this function can do is return a refcount increased anon_vma 470 * that might have been relevant to this page. 471 * 472 * The page might have been remapped to a different anon_vma or the anon_vma 473 * returned may already be freed (and even reused). 474 * 475 * In case it was remapped to a different anon_vma, the new anon_vma will be a 476 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 477 * ensure that any anon_vma obtained from the page will still be valid for as 478 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 479 * 480 * All users of this function must be very careful when walking the anon_vma 481 * chain and verify that the page in question is indeed mapped in it 482 * [ something equivalent to page_mapped_in_vma() ]. 483 * 484 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 485 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 486 * if there is a mapcount, we can dereference the anon_vma after observing 487 * those. 488 */ 489 struct anon_vma *page_get_anon_vma(struct page *page) 490 { 491 struct anon_vma *anon_vma = NULL; 492 unsigned long anon_mapping; 493 494 rcu_read_lock(); 495 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 496 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 497 goto out; 498 if (!page_mapped(page)) 499 goto out; 500 501 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 502 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 503 anon_vma = NULL; 504 goto out; 505 } 506 507 /* 508 * If this page is still mapped, then its anon_vma cannot have been 509 * freed. But if it has been unmapped, we have no security against the 510 * anon_vma structure being freed and reused (for another anon_vma: 511 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 512 * above cannot corrupt). 513 */ 514 if (!page_mapped(page)) { 515 rcu_read_unlock(); 516 put_anon_vma(anon_vma); 517 return NULL; 518 } 519 out: 520 rcu_read_unlock(); 521 522 return anon_vma; 523 } 524 525 /* 526 * Similar to page_get_anon_vma() except it locks the anon_vma. 527 * 528 * Its a little more complex as it tries to keep the fast path to a single 529 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 530 * reference like with page_get_anon_vma() and then block on the mutex 531 * on !rwc->try_lock case. 532 */ 533 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 534 struct rmap_walk_control *rwc) 535 { 536 struct anon_vma *anon_vma = NULL; 537 struct anon_vma *root_anon_vma; 538 unsigned long anon_mapping; 539 540 rcu_read_lock(); 541 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 542 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 543 goto out; 544 if (!folio_mapped(folio)) 545 goto out; 546 547 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 548 root_anon_vma = READ_ONCE(anon_vma->root); 549 if (down_read_trylock(&root_anon_vma->rwsem)) { 550 /* 551 * If the folio is still mapped, then this anon_vma is still 552 * its anon_vma, and holding the mutex ensures that it will 553 * not go away, see anon_vma_free(). 554 */ 555 if (!folio_mapped(folio)) { 556 up_read(&root_anon_vma->rwsem); 557 anon_vma = NULL; 558 } 559 goto out; 560 } 561 562 if (rwc && rwc->try_lock) { 563 anon_vma = NULL; 564 rwc->contended = true; 565 goto out; 566 } 567 568 /* trylock failed, we got to sleep */ 569 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 570 anon_vma = NULL; 571 goto out; 572 } 573 574 if (!folio_mapped(folio)) { 575 rcu_read_unlock(); 576 put_anon_vma(anon_vma); 577 return NULL; 578 } 579 580 /* we pinned the anon_vma, its safe to sleep */ 581 rcu_read_unlock(); 582 anon_vma_lock_read(anon_vma); 583 584 if (atomic_dec_and_test(&anon_vma->refcount)) { 585 /* 586 * Oops, we held the last refcount, release the lock 587 * and bail -- can't simply use put_anon_vma() because 588 * we'll deadlock on the anon_vma_lock_write() recursion. 589 */ 590 anon_vma_unlock_read(anon_vma); 591 __put_anon_vma(anon_vma); 592 anon_vma = NULL; 593 } 594 595 return anon_vma; 596 597 out: 598 rcu_read_unlock(); 599 return anon_vma; 600 } 601 602 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 603 { 604 anon_vma_unlock_read(anon_vma); 605 } 606 607 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 608 /* 609 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 610 * important if a PTE was dirty when it was unmapped that it's flushed 611 * before any IO is initiated on the page to prevent lost writes. Similarly, 612 * it must be flushed before freeing to prevent data leakage. 613 */ 614 void try_to_unmap_flush(void) 615 { 616 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 617 618 if (!tlb_ubc->flush_required) 619 return; 620 621 arch_tlbbatch_flush(&tlb_ubc->arch); 622 tlb_ubc->flush_required = false; 623 tlb_ubc->writable = false; 624 } 625 626 /* Flush iff there are potentially writable TLB entries that can race with IO */ 627 void try_to_unmap_flush_dirty(void) 628 { 629 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 630 631 if (tlb_ubc->writable) 632 try_to_unmap_flush(); 633 } 634 635 /* 636 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 637 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 638 */ 639 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 640 #define TLB_FLUSH_BATCH_PENDING_MASK \ 641 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 642 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 643 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 644 645 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 646 { 647 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 648 int batch, nbatch; 649 650 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 651 tlb_ubc->flush_required = true; 652 653 /* 654 * Ensure compiler does not re-order the setting of tlb_flush_batched 655 * before the PTE is cleared. 656 */ 657 barrier(); 658 batch = atomic_read(&mm->tlb_flush_batched); 659 retry: 660 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 661 /* 662 * Prevent `pending' from catching up with `flushed' because of 663 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 664 * `pending' becomes large. 665 */ 666 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1); 667 if (nbatch != batch) { 668 batch = nbatch; 669 goto retry; 670 } 671 } else { 672 atomic_inc(&mm->tlb_flush_batched); 673 } 674 675 /* 676 * If the PTE was dirty then it's best to assume it's writable. The 677 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 678 * before the page is queued for IO. 679 */ 680 if (writable) 681 tlb_ubc->writable = true; 682 } 683 684 /* 685 * Returns true if the TLB flush should be deferred to the end of a batch of 686 * unmap operations to reduce IPIs. 687 */ 688 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 689 { 690 bool should_defer = false; 691 692 if (!(flags & TTU_BATCH_FLUSH)) 693 return false; 694 695 /* If remote CPUs need to be flushed then defer batch the flush */ 696 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 697 should_defer = true; 698 put_cpu(); 699 700 return should_defer; 701 } 702 703 /* 704 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 705 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 706 * operation such as mprotect or munmap to race between reclaim unmapping 707 * the page and flushing the page. If this race occurs, it potentially allows 708 * access to data via a stale TLB entry. Tracking all mm's that have TLB 709 * batching in flight would be expensive during reclaim so instead track 710 * whether TLB batching occurred in the past and if so then do a flush here 711 * if required. This will cost one additional flush per reclaim cycle paid 712 * by the first operation at risk such as mprotect and mumap. 713 * 714 * This must be called under the PTL so that an access to tlb_flush_batched 715 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 716 * via the PTL. 717 */ 718 void flush_tlb_batched_pending(struct mm_struct *mm) 719 { 720 int batch = atomic_read(&mm->tlb_flush_batched); 721 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 722 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 723 724 if (pending != flushed) { 725 flush_tlb_mm(mm); 726 /* 727 * If the new TLB flushing is pending during flushing, leave 728 * mm->tlb_flush_batched as is, to avoid losing flushing. 729 */ 730 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 731 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 732 } 733 } 734 #else 735 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 736 { 737 } 738 739 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 740 { 741 return false; 742 } 743 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 744 745 /* 746 * At what user virtual address is page expected in vma? 747 * Caller should check the page is actually part of the vma. 748 */ 749 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 750 { 751 struct folio *folio = page_folio(page); 752 if (folio_test_anon(folio)) { 753 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 754 /* 755 * Note: swapoff's unuse_vma() is more efficient with this 756 * check, and needs it to match anon_vma when KSM is active. 757 */ 758 if (!vma->anon_vma || !page__anon_vma || 759 vma->anon_vma->root != page__anon_vma->root) 760 return -EFAULT; 761 } else if (!vma->vm_file) { 762 return -EFAULT; 763 } else if (vma->vm_file->f_mapping != folio->mapping) { 764 return -EFAULT; 765 } 766 767 return vma_address(page, vma); 768 } 769 770 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 771 { 772 pgd_t *pgd; 773 p4d_t *p4d; 774 pud_t *pud; 775 pmd_t *pmd = NULL; 776 pmd_t pmde; 777 778 pgd = pgd_offset(mm, address); 779 if (!pgd_present(*pgd)) 780 goto out; 781 782 p4d = p4d_offset(pgd, address); 783 if (!p4d_present(*p4d)) 784 goto out; 785 786 pud = pud_offset(p4d, address); 787 if (!pud_present(*pud)) 788 goto out; 789 790 pmd = pmd_offset(pud, address); 791 /* 792 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 793 * without holding anon_vma lock for write. So when looking for a 794 * genuine pmde (in which to find pte), test present and !THP together. 795 */ 796 pmde = *pmd; 797 barrier(); 798 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 799 pmd = NULL; 800 out: 801 return pmd; 802 } 803 804 struct folio_referenced_arg { 805 int mapcount; 806 int referenced; 807 unsigned long vm_flags; 808 struct mem_cgroup *memcg; 809 }; 810 /* 811 * arg: folio_referenced_arg will be passed 812 */ 813 static bool folio_referenced_one(struct folio *folio, 814 struct vm_area_struct *vma, unsigned long address, void *arg) 815 { 816 struct folio_referenced_arg *pra = arg; 817 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 818 int referenced = 0; 819 820 while (page_vma_mapped_walk(&pvmw)) { 821 address = pvmw.address; 822 823 if ((vma->vm_flags & VM_LOCKED) && 824 (!folio_test_large(folio) || !pvmw.pte)) { 825 /* Restore the mlock which got missed */ 826 mlock_vma_folio(folio, vma, !pvmw.pte); 827 page_vma_mapped_walk_done(&pvmw); 828 pra->vm_flags |= VM_LOCKED; 829 return false; /* To break the loop */ 830 } 831 832 if (pvmw.pte) { 833 if (ptep_clear_flush_young_notify(vma, address, 834 pvmw.pte)) { 835 /* 836 * Don't treat a reference through 837 * a sequentially read mapping as such. 838 * If the folio has been used in another mapping, 839 * we will catch it; if this other mapping is 840 * already gone, the unmap path will have set 841 * the referenced flag or activated the folio. 842 */ 843 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 844 referenced++; 845 } 846 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 847 if (pmdp_clear_flush_young_notify(vma, address, 848 pvmw.pmd)) 849 referenced++; 850 } else { 851 /* unexpected pmd-mapped folio? */ 852 WARN_ON_ONCE(1); 853 } 854 855 pra->mapcount--; 856 } 857 858 if (referenced) 859 folio_clear_idle(folio); 860 if (folio_test_clear_young(folio)) 861 referenced++; 862 863 if (referenced) { 864 pra->referenced++; 865 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 866 } 867 868 if (!pra->mapcount) 869 return false; /* To break the loop */ 870 871 return true; 872 } 873 874 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 875 { 876 struct folio_referenced_arg *pra = arg; 877 struct mem_cgroup *memcg = pra->memcg; 878 879 if (!mm_match_cgroup(vma->vm_mm, memcg)) 880 return true; 881 882 return false; 883 } 884 885 /** 886 * folio_referenced() - Test if the folio was referenced. 887 * @folio: The folio to test. 888 * @is_locked: Caller holds lock on the folio. 889 * @memcg: target memory cgroup 890 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 891 * 892 * Quick test_and_clear_referenced for all mappings of a folio, 893 * 894 * Return: The number of mappings which referenced the folio. Return -1 if 895 * the function bailed out due to rmap lock contention. 896 */ 897 int folio_referenced(struct folio *folio, int is_locked, 898 struct mem_cgroup *memcg, unsigned long *vm_flags) 899 { 900 int we_locked = 0; 901 struct folio_referenced_arg pra = { 902 .mapcount = folio_mapcount(folio), 903 .memcg = memcg, 904 }; 905 struct rmap_walk_control rwc = { 906 .rmap_one = folio_referenced_one, 907 .arg = (void *)&pra, 908 .anon_lock = folio_lock_anon_vma_read, 909 .try_lock = true, 910 }; 911 912 *vm_flags = 0; 913 if (!pra.mapcount) 914 return 0; 915 916 if (!folio_raw_mapping(folio)) 917 return 0; 918 919 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 920 we_locked = folio_trylock(folio); 921 if (!we_locked) 922 return 1; 923 } 924 925 /* 926 * If we are reclaiming on behalf of a cgroup, skip 927 * counting on behalf of references from different 928 * cgroups 929 */ 930 if (memcg) { 931 rwc.invalid_vma = invalid_folio_referenced_vma; 932 } 933 934 rmap_walk(folio, &rwc); 935 *vm_flags = pra.vm_flags; 936 937 if (we_locked) 938 folio_unlock(folio); 939 940 return rwc.contended ? -1 : pra.referenced; 941 } 942 943 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 944 { 945 int cleaned = 0; 946 struct vm_area_struct *vma = pvmw->vma; 947 struct mmu_notifier_range range; 948 unsigned long address = pvmw->address; 949 950 /* 951 * We have to assume the worse case ie pmd for invalidation. Note that 952 * the folio can not be freed from this function. 953 */ 954 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 955 0, vma, vma->vm_mm, address, 956 vma_address_end(pvmw)); 957 mmu_notifier_invalidate_range_start(&range); 958 959 while (page_vma_mapped_walk(pvmw)) { 960 int ret = 0; 961 962 address = pvmw->address; 963 if (pvmw->pte) { 964 pte_t entry; 965 pte_t *pte = pvmw->pte; 966 967 if (!pte_dirty(*pte) && !pte_write(*pte)) 968 continue; 969 970 flush_cache_page(vma, address, pte_pfn(*pte)); 971 entry = ptep_clear_flush(vma, address, pte); 972 entry = pte_wrprotect(entry); 973 entry = pte_mkclean(entry); 974 set_pte_at(vma->vm_mm, address, pte, entry); 975 ret = 1; 976 } else { 977 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 978 pmd_t *pmd = pvmw->pmd; 979 pmd_t entry; 980 981 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 982 continue; 983 984 flush_cache_range(vma, address, 985 address + HPAGE_PMD_SIZE); 986 entry = pmdp_invalidate(vma, address, pmd); 987 entry = pmd_wrprotect(entry); 988 entry = pmd_mkclean(entry); 989 set_pmd_at(vma->vm_mm, address, pmd, entry); 990 ret = 1; 991 #else 992 /* unexpected pmd-mapped folio? */ 993 WARN_ON_ONCE(1); 994 #endif 995 } 996 997 /* 998 * No need to call mmu_notifier_invalidate_range() as we are 999 * downgrading page table protection not changing it to point 1000 * to a new page. 1001 * 1002 * See Documentation/vm/mmu_notifier.rst 1003 */ 1004 if (ret) 1005 cleaned++; 1006 } 1007 1008 mmu_notifier_invalidate_range_end(&range); 1009 1010 return cleaned; 1011 } 1012 1013 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1014 unsigned long address, void *arg) 1015 { 1016 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1017 int *cleaned = arg; 1018 1019 *cleaned += page_vma_mkclean_one(&pvmw); 1020 1021 return true; 1022 } 1023 1024 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1025 { 1026 if (vma->vm_flags & VM_SHARED) 1027 return false; 1028 1029 return true; 1030 } 1031 1032 int folio_mkclean(struct folio *folio) 1033 { 1034 int cleaned = 0; 1035 struct address_space *mapping; 1036 struct rmap_walk_control rwc = { 1037 .arg = (void *)&cleaned, 1038 .rmap_one = page_mkclean_one, 1039 .invalid_vma = invalid_mkclean_vma, 1040 }; 1041 1042 BUG_ON(!folio_test_locked(folio)); 1043 1044 if (!folio_mapped(folio)) 1045 return 0; 1046 1047 mapping = folio_mapping(folio); 1048 if (!mapping) 1049 return 0; 1050 1051 rmap_walk(folio, &rwc); 1052 1053 return cleaned; 1054 } 1055 EXPORT_SYMBOL_GPL(folio_mkclean); 1056 1057 /** 1058 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1059 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1060 * within the @vma of shared mappings. And since clean PTEs 1061 * should also be readonly, write protects them too. 1062 * @pfn: start pfn. 1063 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1064 * @pgoff: page offset that the @pfn mapped with. 1065 * @vma: vma that @pfn mapped within. 1066 * 1067 * Returns the number of cleaned PTEs (including PMDs). 1068 */ 1069 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1070 struct vm_area_struct *vma) 1071 { 1072 struct page_vma_mapped_walk pvmw = { 1073 .pfn = pfn, 1074 .nr_pages = nr_pages, 1075 .pgoff = pgoff, 1076 .vma = vma, 1077 .flags = PVMW_SYNC, 1078 }; 1079 1080 if (invalid_mkclean_vma(vma, NULL)) 1081 return 0; 1082 1083 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); 1084 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1085 1086 return page_vma_mkclean_one(&pvmw); 1087 } 1088 1089 /** 1090 * page_move_anon_rmap - move a page to our anon_vma 1091 * @page: the page to move to our anon_vma 1092 * @vma: the vma the page belongs to 1093 * 1094 * When a page belongs exclusively to one process after a COW event, 1095 * that page can be moved into the anon_vma that belongs to just that 1096 * process, so the rmap code will not search the parent or sibling 1097 * processes. 1098 */ 1099 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1100 { 1101 struct anon_vma *anon_vma = vma->anon_vma; 1102 struct page *subpage = page; 1103 1104 page = compound_head(page); 1105 1106 VM_BUG_ON_PAGE(!PageLocked(page), page); 1107 VM_BUG_ON_VMA(!anon_vma, vma); 1108 1109 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1110 /* 1111 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1112 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1113 * folio_test_anon()) will not see one without the other. 1114 */ 1115 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1116 SetPageAnonExclusive(subpage); 1117 } 1118 1119 /** 1120 * __page_set_anon_rmap - set up new anonymous rmap 1121 * @page: Page or Hugepage to add to rmap 1122 * @vma: VM area to add page to. 1123 * @address: User virtual address of the mapping 1124 * @exclusive: the page is exclusively owned by the current process 1125 */ 1126 static void __page_set_anon_rmap(struct page *page, 1127 struct vm_area_struct *vma, unsigned long address, int exclusive) 1128 { 1129 struct anon_vma *anon_vma = vma->anon_vma; 1130 1131 BUG_ON(!anon_vma); 1132 1133 if (PageAnon(page)) 1134 goto out; 1135 1136 /* 1137 * If the page isn't exclusively mapped into this vma, 1138 * we must use the _oldest_ possible anon_vma for the 1139 * page mapping! 1140 */ 1141 if (!exclusive) 1142 anon_vma = anon_vma->root; 1143 1144 /* 1145 * page_idle does a lockless/optimistic rmap scan on page->mapping. 1146 * Make sure the compiler doesn't split the stores of anon_vma and 1147 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1148 * could mistake the mapping for a struct address_space and crash. 1149 */ 1150 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1151 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1152 page->index = linear_page_index(vma, address); 1153 out: 1154 if (exclusive) 1155 SetPageAnonExclusive(page); 1156 } 1157 1158 /** 1159 * __page_check_anon_rmap - sanity check anonymous rmap addition 1160 * @page: the page to add the mapping to 1161 * @vma: the vm area in which the mapping is added 1162 * @address: the user virtual address mapped 1163 */ 1164 static void __page_check_anon_rmap(struct page *page, 1165 struct vm_area_struct *vma, unsigned long address) 1166 { 1167 struct folio *folio = page_folio(page); 1168 /* 1169 * The page's anon-rmap details (mapping and index) are guaranteed to 1170 * be set up correctly at this point. 1171 * 1172 * We have exclusion against page_add_anon_rmap because the caller 1173 * always holds the page locked. 1174 * 1175 * We have exclusion against page_add_new_anon_rmap because those pages 1176 * are initially only visible via the pagetables, and the pte is locked 1177 * over the call to page_add_new_anon_rmap. 1178 */ 1179 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1180 folio); 1181 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1182 page); 1183 } 1184 1185 /** 1186 * page_add_anon_rmap - add pte mapping to an anonymous page 1187 * @page: the page to add the mapping to 1188 * @vma: the vm area in which the mapping is added 1189 * @address: the user virtual address mapped 1190 * @flags: the rmap flags 1191 * 1192 * The caller needs to hold the pte lock, and the page must be locked in 1193 * the anon_vma case: to serialize mapping,index checking after setting, 1194 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1195 * (but PageKsm is never downgraded to PageAnon). 1196 */ 1197 void page_add_anon_rmap(struct page *page, 1198 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1199 { 1200 bool compound = flags & RMAP_COMPOUND; 1201 bool first; 1202 1203 if (unlikely(PageKsm(page))) 1204 lock_page_memcg(page); 1205 else 1206 VM_BUG_ON_PAGE(!PageLocked(page), page); 1207 1208 if (compound) { 1209 atomic_t *mapcount; 1210 VM_BUG_ON_PAGE(!PageLocked(page), page); 1211 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1212 mapcount = compound_mapcount_ptr(page); 1213 first = atomic_inc_and_test(mapcount); 1214 } else { 1215 first = atomic_inc_and_test(&page->_mapcount); 1216 } 1217 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 1218 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 1219 1220 if (first) { 1221 int nr = compound ? thp_nr_pages(page) : 1; 1222 /* 1223 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1224 * these counters are not modified in interrupt context, and 1225 * pte lock(a spinlock) is held, which implies preemption 1226 * disabled. 1227 */ 1228 if (compound) 1229 __mod_lruvec_page_state(page, NR_ANON_THPS, nr); 1230 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1231 } 1232 1233 if (unlikely(PageKsm(page))) 1234 unlock_page_memcg(page); 1235 1236 /* address might be in next vma when migration races vma_adjust */ 1237 else if (first) 1238 __page_set_anon_rmap(page, vma, address, 1239 !!(flags & RMAP_EXCLUSIVE)); 1240 else 1241 __page_check_anon_rmap(page, vma, address); 1242 1243 mlock_vma_page(page, vma, compound); 1244 } 1245 1246 /** 1247 * page_add_new_anon_rmap - add mapping to a new anonymous page 1248 * @page: the page to add the mapping to 1249 * @vma: the vm area in which the mapping is added 1250 * @address: the user virtual address mapped 1251 * 1252 * If it's a compound page, it is accounted as a compound page. As the page 1253 * is new, it's assume to get mapped exclusively by a single process. 1254 * 1255 * Same as page_add_anon_rmap but must only be called on *new* pages. 1256 * This means the inc-and-test can be bypassed. 1257 * Page does not have to be locked. 1258 */ 1259 void page_add_new_anon_rmap(struct page *page, 1260 struct vm_area_struct *vma, unsigned long address) 1261 { 1262 const bool compound = PageCompound(page); 1263 int nr = compound ? thp_nr_pages(page) : 1; 1264 1265 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1266 __SetPageSwapBacked(page); 1267 if (compound) { 1268 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1269 /* increment count (starts at -1) */ 1270 atomic_set(compound_mapcount_ptr(page), 0); 1271 atomic_set(compound_pincount_ptr(page), 0); 1272 1273 __mod_lruvec_page_state(page, NR_ANON_THPS, nr); 1274 } else { 1275 /* increment count (starts at -1) */ 1276 atomic_set(&page->_mapcount, 0); 1277 } 1278 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1279 __page_set_anon_rmap(page, vma, address, 1); 1280 } 1281 1282 /** 1283 * page_add_file_rmap - add pte mapping to a file page 1284 * @page: the page to add the mapping to 1285 * @vma: the vm area in which the mapping is added 1286 * @compound: charge the page as compound or small page 1287 * 1288 * The caller needs to hold the pte lock. 1289 */ 1290 void page_add_file_rmap(struct page *page, 1291 struct vm_area_struct *vma, bool compound) 1292 { 1293 int i, nr = 0; 1294 1295 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1296 lock_page_memcg(page); 1297 if (compound && PageTransHuge(page)) { 1298 int nr_pages = thp_nr_pages(page); 1299 1300 for (i = 0; i < nr_pages; i++) { 1301 if (atomic_inc_and_test(&page[i]._mapcount)) 1302 nr++; 1303 } 1304 if (!atomic_inc_and_test(compound_mapcount_ptr(page))) 1305 goto out; 1306 1307 /* 1308 * It is racy to ClearPageDoubleMap in page_remove_file_rmap(); 1309 * but page lock is held by all page_add_file_rmap() compound 1310 * callers, and SetPageDoubleMap below warns if !PageLocked: 1311 * so here is a place that DoubleMap can be safely cleared. 1312 */ 1313 VM_WARN_ON_ONCE(!PageLocked(page)); 1314 if (nr == nr_pages && PageDoubleMap(page)) 1315 ClearPageDoubleMap(page); 1316 1317 if (PageSwapBacked(page)) 1318 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, 1319 nr_pages); 1320 else 1321 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, 1322 nr_pages); 1323 } else { 1324 if (PageTransCompound(page) && page_mapping(page)) { 1325 VM_WARN_ON_ONCE(!PageLocked(page)); 1326 SetPageDoubleMap(compound_head(page)); 1327 } 1328 if (atomic_inc_and_test(&page->_mapcount)) 1329 nr++; 1330 } 1331 out: 1332 if (nr) 1333 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); 1334 unlock_page_memcg(page); 1335 1336 mlock_vma_page(page, vma, compound); 1337 } 1338 1339 static void page_remove_file_rmap(struct page *page, bool compound) 1340 { 1341 int i, nr = 0; 1342 1343 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1344 1345 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1346 if (unlikely(PageHuge(page))) { 1347 /* hugetlb pages are always mapped with pmds */ 1348 atomic_dec(compound_mapcount_ptr(page)); 1349 return; 1350 } 1351 1352 /* page still mapped by someone else? */ 1353 if (compound && PageTransHuge(page)) { 1354 int nr_pages = thp_nr_pages(page); 1355 1356 for (i = 0; i < nr_pages; i++) { 1357 if (atomic_add_negative(-1, &page[i]._mapcount)) 1358 nr++; 1359 } 1360 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1361 goto out; 1362 if (PageSwapBacked(page)) 1363 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, 1364 -nr_pages); 1365 else 1366 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, 1367 -nr_pages); 1368 } else { 1369 if (atomic_add_negative(-1, &page->_mapcount)) 1370 nr++; 1371 } 1372 out: 1373 if (nr) 1374 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); 1375 } 1376 1377 static void page_remove_anon_compound_rmap(struct page *page) 1378 { 1379 int i, nr; 1380 1381 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1382 return; 1383 1384 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1385 if (unlikely(PageHuge(page))) 1386 return; 1387 1388 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1389 return; 1390 1391 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page)); 1392 1393 if (TestClearPageDoubleMap(page)) { 1394 /* 1395 * Subpages can be mapped with PTEs too. Check how many of 1396 * them are still mapped. 1397 */ 1398 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) { 1399 if (atomic_add_negative(-1, &page[i]._mapcount)) 1400 nr++; 1401 } 1402 1403 /* 1404 * Queue the page for deferred split if at least one small 1405 * page of the compound page is unmapped, but at least one 1406 * small page is still mapped. 1407 */ 1408 if (nr && nr < thp_nr_pages(page)) 1409 deferred_split_huge_page(page); 1410 } else { 1411 nr = thp_nr_pages(page); 1412 } 1413 1414 if (nr) 1415 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr); 1416 } 1417 1418 /** 1419 * page_remove_rmap - take down pte mapping from a page 1420 * @page: page to remove mapping from 1421 * @vma: the vm area from which the mapping is removed 1422 * @compound: uncharge the page as compound or small page 1423 * 1424 * The caller needs to hold the pte lock. 1425 */ 1426 void page_remove_rmap(struct page *page, 1427 struct vm_area_struct *vma, bool compound) 1428 { 1429 lock_page_memcg(page); 1430 1431 if (!PageAnon(page)) { 1432 page_remove_file_rmap(page, compound); 1433 goto out; 1434 } 1435 1436 if (compound) { 1437 page_remove_anon_compound_rmap(page); 1438 goto out; 1439 } 1440 1441 /* page still mapped by someone else? */ 1442 if (!atomic_add_negative(-1, &page->_mapcount)) 1443 goto out; 1444 1445 /* 1446 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1447 * these counters are not modified in interrupt context, and 1448 * pte lock(a spinlock) is held, which implies preemption disabled. 1449 */ 1450 __dec_lruvec_page_state(page, NR_ANON_MAPPED); 1451 1452 if (PageTransCompound(page)) 1453 deferred_split_huge_page(compound_head(page)); 1454 1455 /* 1456 * It would be tidy to reset the PageAnon mapping here, 1457 * but that might overwrite a racing page_add_anon_rmap 1458 * which increments mapcount after us but sets mapping 1459 * before us: so leave the reset to free_unref_page, 1460 * and remember that it's only reliable while mapped. 1461 * Leaving it set also helps swapoff to reinstate ptes 1462 * faster for those pages still in swapcache. 1463 */ 1464 out: 1465 unlock_page_memcg(page); 1466 1467 munlock_vma_page(page, vma, compound); 1468 } 1469 1470 /* 1471 * @arg: enum ttu_flags will be passed to this argument 1472 */ 1473 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1474 unsigned long address, void *arg) 1475 { 1476 struct mm_struct *mm = vma->vm_mm; 1477 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1478 pte_t pteval; 1479 struct page *subpage; 1480 bool anon_exclusive, ret = true; 1481 struct mmu_notifier_range range; 1482 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1483 1484 /* 1485 * When racing against e.g. zap_pte_range() on another cpu, 1486 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1487 * try_to_unmap() may return before page_mapped() has become false, 1488 * if page table locking is skipped: use TTU_SYNC to wait for that. 1489 */ 1490 if (flags & TTU_SYNC) 1491 pvmw.flags = PVMW_SYNC; 1492 1493 if (flags & TTU_SPLIT_HUGE_PMD) 1494 split_huge_pmd_address(vma, address, false, folio); 1495 1496 /* 1497 * For THP, we have to assume the worse case ie pmd for invalidation. 1498 * For hugetlb, it could be much worse if we need to do pud 1499 * invalidation in the case of pmd sharing. 1500 * 1501 * Note that the folio can not be freed in this function as call of 1502 * try_to_unmap() must hold a reference on the folio. 1503 */ 1504 range.end = vma_address_end(&pvmw); 1505 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1506 address, range.end); 1507 if (folio_test_hugetlb(folio)) { 1508 /* 1509 * If sharing is possible, start and end will be adjusted 1510 * accordingly. 1511 */ 1512 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1513 &range.end); 1514 } 1515 mmu_notifier_invalidate_range_start(&range); 1516 1517 while (page_vma_mapped_walk(&pvmw)) { 1518 /* Unexpected PMD-mapped THP? */ 1519 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1520 1521 /* 1522 * If the folio is in an mlock()d vma, we must not swap it out. 1523 */ 1524 if (!(flags & TTU_IGNORE_MLOCK) && 1525 (vma->vm_flags & VM_LOCKED)) { 1526 /* Restore the mlock which got missed */ 1527 mlock_vma_folio(folio, vma, false); 1528 page_vma_mapped_walk_done(&pvmw); 1529 ret = false; 1530 break; 1531 } 1532 1533 subpage = folio_page(folio, 1534 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1535 address = pvmw.address; 1536 anon_exclusive = folio_test_anon(folio) && 1537 PageAnonExclusive(subpage); 1538 1539 if (folio_test_hugetlb(folio)) { 1540 /* 1541 * The try_to_unmap() is only passed a hugetlb page 1542 * in the case where the hugetlb page is poisoned. 1543 */ 1544 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1545 /* 1546 * huge_pmd_unshare may unmap an entire PMD page. 1547 * There is no way of knowing exactly which PMDs may 1548 * be cached for this mm, so we must flush them all. 1549 * start/end were already adjusted above to cover this 1550 * range. 1551 */ 1552 flush_cache_range(vma, range.start, range.end); 1553 1554 if (!folio_test_anon(folio)) { 1555 /* 1556 * To call huge_pmd_unshare, i_mmap_rwsem must be 1557 * held in write mode. Caller needs to explicitly 1558 * do this outside rmap routines. 1559 */ 1560 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1561 1562 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { 1563 flush_tlb_range(vma, range.start, range.end); 1564 mmu_notifier_invalidate_range(mm, range.start, 1565 range.end); 1566 1567 /* 1568 * The ref count of the PMD page was dropped 1569 * which is part of the way map counting 1570 * is done for shared PMDs. Return 'true' 1571 * here. When there is no other sharing, 1572 * huge_pmd_unshare returns false and we will 1573 * unmap the actual page and drop map count 1574 * to zero. 1575 */ 1576 page_vma_mapped_walk_done(&pvmw); 1577 break; 1578 } 1579 } 1580 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1581 } else { 1582 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1583 /* 1584 * Nuke the page table entry. When having to clear 1585 * PageAnonExclusive(), we always have to flush. 1586 */ 1587 if (should_defer_flush(mm, flags) && !anon_exclusive) { 1588 /* 1589 * We clear the PTE but do not flush so potentially 1590 * a remote CPU could still be writing to the folio. 1591 * If the entry was previously clean then the 1592 * architecture must guarantee that a clear->dirty 1593 * transition on a cached TLB entry is written through 1594 * and traps if the PTE is unmapped. 1595 */ 1596 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1597 1598 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1599 } else { 1600 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1601 } 1602 } 1603 1604 /* 1605 * Now the pte is cleared. If this pte was uffd-wp armed, 1606 * we may want to replace a none pte with a marker pte if 1607 * it's file-backed, so we don't lose the tracking info. 1608 */ 1609 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1610 1611 /* Set the dirty flag on the folio now the pte is gone. */ 1612 if (pte_dirty(pteval)) 1613 folio_mark_dirty(folio); 1614 1615 /* Update high watermark before we lower rss */ 1616 update_hiwater_rss(mm); 1617 1618 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) { 1619 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1620 if (folio_test_hugetlb(folio)) { 1621 hugetlb_count_sub(folio_nr_pages(folio), mm); 1622 set_huge_swap_pte_at(mm, address, 1623 pvmw.pte, pteval, 1624 vma_mmu_pagesize(vma)); 1625 } else { 1626 dec_mm_counter(mm, mm_counter(&folio->page)); 1627 set_pte_at(mm, address, pvmw.pte, pteval); 1628 } 1629 1630 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1631 /* 1632 * The guest indicated that the page content is of no 1633 * interest anymore. Simply discard the pte, vmscan 1634 * will take care of the rest. 1635 * A future reference will then fault in a new zero 1636 * page. When userfaultfd is active, we must not drop 1637 * this page though, as its main user (postcopy 1638 * migration) will not expect userfaults on already 1639 * copied pages. 1640 */ 1641 dec_mm_counter(mm, mm_counter(&folio->page)); 1642 /* We have to invalidate as we cleared the pte */ 1643 mmu_notifier_invalidate_range(mm, address, 1644 address + PAGE_SIZE); 1645 } else if (folio_test_anon(folio)) { 1646 swp_entry_t entry = { .val = page_private(subpage) }; 1647 pte_t swp_pte; 1648 /* 1649 * Store the swap location in the pte. 1650 * See handle_pte_fault() ... 1651 */ 1652 if (unlikely(folio_test_swapbacked(folio) != 1653 folio_test_swapcache(folio))) { 1654 WARN_ON_ONCE(1); 1655 ret = false; 1656 /* We have to invalidate as we cleared the pte */ 1657 mmu_notifier_invalidate_range(mm, address, 1658 address + PAGE_SIZE); 1659 page_vma_mapped_walk_done(&pvmw); 1660 break; 1661 } 1662 1663 /* MADV_FREE page check */ 1664 if (!folio_test_swapbacked(folio)) { 1665 int ref_count, map_count; 1666 1667 /* 1668 * Synchronize with gup_pte_range(): 1669 * - clear PTE; barrier; read refcount 1670 * - inc refcount; barrier; read PTE 1671 */ 1672 smp_mb(); 1673 1674 ref_count = folio_ref_count(folio); 1675 map_count = folio_mapcount(folio); 1676 1677 /* 1678 * Order reads for page refcount and dirty flag 1679 * (see comments in __remove_mapping()). 1680 */ 1681 smp_rmb(); 1682 1683 /* 1684 * The only page refs must be one from isolation 1685 * plus the rmap(s) (dropped by discard:). 1686 */ 1687 if (ref_count == 1 + map_count && 1688 !folio_test_dirty(folio)) { 1689 /* Invalidate as we cleared the pte */ 1690 mmu_notifier_invalidate_range(mm, 1691 address, address + PAGE_SIZE); 1692 dec_mm_counter(mm, MM_ANONPAGES); 1693 goto discard; 1694 } 1695 1696 /* 1697 * If the folio was redirtied, it cannot be 1698 * discarded. Remap the page to page table. 1699 */ 1700 set_pte_at(mm, address, pvmw.pte, pteval); 1701 folio_set_swapbacked(folio); 1702 ret = false; 1703 page_vma_mapped_walk_done(&pvmw); 1704 break; 1705 } 1706 1707 if (swap_duplicate(entry) < 0) { 1708 set_pte_at(mm, address, pvmw.pte, pteval); 1709 ret = false; 1710 page_vma_mapped_walk_done(&pvmw); 1711 break; 1712 } 1713 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1714 swap_free(entry); 1715 set_pte_at(mm, address, pvmw.pte, pteval); 1716 ret = false; 1717 page_vma_mapped_walk_done(&pvmw); 1718 break; 1719 } 1720 if (anon_exclusive && 1721 page_try_share_anon_rmap(subpage)) { 1722 swap_free(entry); 1723 set_pte_at(mm, address, pvmw.pte, pteval); 1724 ret = false; 1725 page_vma_mapped_walk_done(&pvmw); 1726 break; 1727 } 1728 /* 1729 * Note: We *don't* remember if the page was mapped 1730 * exclusively in the swap pte if the architecture 1731 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In 1732 * that case, swapin code has to re-determine that 1733 * manually and might detect the page as possibly 1734 * shared, for example, if there are other references on 1735 * the page or if the page is under writeback. We made 1736 * sure that there are no GUP pins on the page that 1737 * would rely on it, so for GUP pins this is fine. 1738 */ 1739 if (list_empty(&mm->mmlist)) { 1740 spin_lock(&mmlist_lock); 1741 if (list_empty(&mm->mmlist)) 1742 list_add(&mm->mmlist, &init_mm.mmlist); 1743 spin_unlock(&mmlist_lock); 1744 } 1745 dec_mm_counter(mm, MM_ANONPAGES); 1746 inc_mm_counter(mm, MM_SWAPENTS); 1747 swp_pte = swp_entry_to_pte(entry); 1748 if (anon_exclusive) 1749 swp_pte = pte_swp_mkexclusive(swp_pte); 1750 if (pte_soft_dirty(pteval)) 1751 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1752 if (pte_uffd_wp(pteval)) 1753 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1754 set_pte_at(mm, address, pvmw.pte, swp_pte); 1755 /* Invalidate as we cleared the pte */ 1756 mmu_notifier_invalidate_range(mm, address, 1757 address + PAGE_SIZE); 1758 } else { 1759 /* 1760 * This is a locked file-backed folio, 1761 * so it cannot be removed from the page 1762 * cache and replaced by a new folio before 1763 * mmu_notifier_invalidate_range_end, so no 1764 * concurrent thread might update its page table 1765 * to point at a new folio while a device is 1766 * still using this folio. 1767 * 1768 * See Documentation/vm/mmu_notifier.rst 1769 */ 1770 dec_mm_counter(mm, mm_counter_file(&folio->page)); 1771 } 1772 discard: 1773 /* 1774 * No need to call mmu_notifier_invalidate_range() it has be 1775 * done above for all cases requiring it to happen under page 1776 * table lock before mmu_notifier_invalidate_range_end() 1777 * 1778 * See Documentation/vm/mmu_notifier.rst 1779 */ 1780 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 1781 if (vma->vm_flags & VM_LOCKED) 1782 mlock_page_drain_local(); 1783 folio_put(folio); 1784 } 1785 1786 mmu_notifier_invalidate_range_end(&range); 1787 1788 return ret; 1789 } 1790 1791 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1792 { 1793 return vma_is_temporary_stack(vma); 1794 } 1795 1796 static int page_not_mapped(struct folio *folio) 1797 { 1798 return !folio_mapped(folio); 1799 } 1800 1801 /** 1802 * try_to_unmap - Try to remove all page table mappings to a folio. 1803 * @folio: The folio to unmap. 1804 * @flags: action and flags 1805 * 1806 * Tries to remove all the page table entries which are mapping this 1807 * folio. It is the caller's responsibility to check if the folio is 1808 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1809 * 1810 * Context: Caller must hold the folio lock. 1811 */ 1812 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1813 { 1814 struct rmap_walk_control rwc = { 1815 .rmap_one = try_to_unmap_one, 1816 .arg = (void *)flags, 1817 .done = page_not_mapped, 1818 .anon_lock = folio_lock_anon_vma_read, 1819 }; 1820 1821 if (flags & TTU_RMAP_LOCKED) 1822 rmap_walk_locked(folio, &rwc); 1823 else 1824 rmap_walk(folio, &rwc); 1825 } 1826 1827 /* 1828 * @arg: enum ttu_flags will be passed to this argument. 1829 * 1830 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1831 * containing migration entries. 1832 */ 1833 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 1834 unsigned long address, void *arg) 1835 { 1836 struct mm_struct *mm = vma->vm_mm; 1837 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1838 pte_t pteval; 1839 struct page *subpage; 1840 bool anon_exclusive, ret = true; 1841 struct mmu_notifier_range range; 1842 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1843 1844 /* 1845 * When racing against e.g. zap_pte_range() on another cpu, 1846 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1847 * try_to_migrate() may return before page_mapped() has become false, 1848 * if page table locking is skipped: use TTU_SYNC to wait for that. 1849 */ 1850 if (flags & TTU_SYNC) 1851 pvmw.flags = PVMW_SYNC; 1852 1853 /* 1854 * unmap_page() in mm/huge_memory.c is the only user of migration with 1855 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1856 */ 1857 if (flags & TTU_SPLIT_HUGE_PMD) 1858 split_huge_pmd_address(vma, address, true, folio); 1859 1860 /* 1861 * For THP, we have to assume the worse case ie pmd for invalidation. 1862 * For hugetlb, it could be much worse if we need to do pud 1863 * invalidation in the case of pmd sharing. 1864 * 1865 * Note that the page can not be free in this function as call of 1866 * try_to_unmap() must hold a reference on the page. 1867 */ 1868 range.end = vma_address_end(&pvmw); 1869 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1870 address, range.end); 1871 if (folio_test_hugetlb(folio)) { 1872 /* 1873 * If sharing is possible, start and end will be adjusted 1874 * accordingly. 1875 */ 1876 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1877 &range.end); 1878 } 1879 mmu_notifier_invalidate_range_start(&range); 1880 1881 while (page_vma_mapped_walk(&pvmw)) { 1882 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1883 /* PMD-mapped THP migration entry */ 1884 if (!pvmw.pte) { 1885 subpage = folio_page(folio, 1886 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 1887 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 1888 !folio_test_pmd_mappable(folio), folio); 1889 1890 if (set_pmd_migration_entry(&pvmw, subpage)) { 1891 ret = false; 1892 page_vma_mapped_walk_done(&pvmw); 1893 break; 1894 } 1895 continue; 1896 } 1897 #endif 1898 1899 /* Unexpected PMD-mapped THP? */ 1900 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1901 1902 if (folio_is_zone_device(folio)) { 1903 /* 1904 * Our PTE is a non-present device exclusive entry and 1905 * calculating the subpage as for the common case would 1906 * result in an invalid pointer. 1907 * 1908 * Since only PAGE_SIZE pages can currently be 1909 * migrated, just set it to page. This will need to be 1910 * changed when hugepage migrations to device private 1911 * memory are supported. 1912 */ 1913 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 1914 subpage = &folio->page; 1915 } else { 1916 subpage = folio_page(folio, 1917 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1918 } 1919 address = pvmw.address; 1920 anon_exclusive = folio_test_anon(folio) && 1921 PageAnonExclusive(subpage); 1922 1923 if (folio_test_hugetlb(folio)) { 1924 /* 1925 * huge_pmd_unshare may unmap an entire PMD page. 1926 * There is no way of knowing exactly which PMDs may 1927 * be cached for this mm, so we must flush them all. 1928 * start/end were already adjusted above to cover this 1929 * range. 1930 */ 1931 flush_cache_range(vma, range.start, range.end); 1932 1933 if (!folio_test_anon(folio)) { 1934 /* 1935 * To call huge_pmd_unshare, i_mmap_rwsem must be 1936 * held in write mode. Caller needs to explicitly 1937 * do this outside rmap routines. 1938 */ 1939 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1940 1941 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { 1942 flush_tlb_range(vma, range.start, range.end); 1943 mmu_notifier_invalidate_range(mm, range.start, 1944 range.end); 1945 1946 /* 1947 * The ref count of the PMD page was dropped 1948 * which is part of the way map counting 1949 * is done for shared PMDs. Return 'true' 1950 * here. When there is no other sharing, 1951 * huge_pmd_unshare returns false and we will 1952 * unmap the actual page and drop map count 1953 * to zero. 1954 */ 1955 page_vma_mapped_walk_done(&pvmw); 1956 break; 1957 } 1958 } 1959 1960 /* Nuke the hugetlb page table entry */ 1961 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1962 } else { 1963 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1964 /* Nuke the page table entry. */ 1965 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1966 } 1967 1968 /* Set the dirty flag on the folio now the pte is gone. */ 1969 if (pte_dirty(pteval)) 1970 folio_mark_dirty(folio); 1971 1972 /* Update high watermark before we lower rss */ 1973 update_hiwater_rss(mm); 1974 1975 if (folio_is_zone_device(folio)) { 1976 unsigned long pfn = folio_pfn(folio); 1977 swp_entry_t entry; 1978 pte_t swp_pte; 1979 1980 if (anon_exclusive) 1981 BUG_ON(page_try_share_anon_rmap(subpage)); 1982 1983 /* 1984 * Store the pfn of the page in a special migration 1985 * pte. do_swap_page() will wait until the migration 1986 * pte is removed and then restart fault handling. 1987 */ 1988 entry = pte_to_swp_entry(pteval); 1989 if (is_writable_device_private_entry(entry)) 1990 entry = make_writable_migration_entry(pfn); 1991 else if (anon_exclusive) 1992 entry = make_readable_exclusive_migration_entry(pfn); 1993 else 1994 entry = make_readable_migration_entry(pfn); 1995 swp_pte = swp_entry_to_pte(entry); 1996 1997 /* 1998 * pteval maps a zone device page and is therefore 1999 * a swap pte. 2000 */ 2001 if (pte_swp_soft_dirty(pteval)) 2002 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2003 if (pte_swp_uffd_wp(pteval)) 2004 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2005 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2006 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2007 compound_order(&folio->page)); 2008 /* 2009 * No need to invalidate here it will synchronize on 2010 * against the special swap migration pte. 2011 */ 2012 } else if (PageHWPoison(subpage)) { 2013 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2014 if (folio_test_hugetlb(folio)) { 2015 hugetlb_count_sub(folio_nr_pages(folio), mm); 2016 set_huge_swap_pte_at(mm, address, 2017 pvmw.pte, pteval, 2018 vma_mmu_pagesize(vma)); 2019 } else { 2020 dec_mm_counter(mm, mm_counter(&folio->page)); 2021 set_pte_at(mm, address, pvmw.pte, pteval); 2022 } 2023 2024 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2025 /* 2026 * The guest indicated that the page content is of no 2027 * interest anymore. Simply discard the pte, vmscan 2028 * will take care of the rest. 2029 * A future reference will then fault in a new zero 2030 * page. When userfaultfd is active, we must not drop 2031 * this page though, as its main user (postcopy 2032 * migration) will not expect userfaults on already 2033 * copied pages. 2034 */ 2035 dec_mm_counter(mm, mm_counter(&folio->page)); 2036 /* We have to invalidate as we cleared the pte */ 2037 mmu_notifier_invalidate_range(mm, address, 2038 address + PAGE_SIZE); 2039 } else { 2040 swp_entry_t entry; 2041 pte_t swp_pte; 2042 2043 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2044 if (folio_test_hugetlb(folio)) 2045 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2046 else 2047 set_pte_at(mm, address, pvmw.pte, pteval); 2048 ret = false; 2049 page_vma_mapped_walk_done(&pvmw); 2050 break; 2051 } 2052 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2053 !anon_exclusive, subpage); 2054 if (anon_exclusive && 2055 page_try_share_anon_rmap(subpage)) { 2056 if (folio_test_hugetlb(folio)) 2057 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2058 else 2059 set_pte_at(mm, address, pvmw.pte, pteval); 2060 ret = false; 2061 page_vma_mapped_walk_done(&pvmw); 2062 break; 2063 } 2064 2065 /* 2066 * Store the pfn of the page in a special migration 2067 * pte. do_swap_page() will wait until the migration 2068 * pte is removed and then restart fault handling. 2069 */ 2070 if (pte_write(pteval)) 2071 entry = make_writable_migration_entry( 2072 page_to_pfn(subpage)); 2073 else if (anon_exclusive) 2074 entry = make_readable_exclusive_migration_entry( 2075 page_to_pfn(subpage)); 2076 else 2077 entry = make_readable_migration_entry( 2078 page_to_pfn(subpage)); 2079 2080 swp_pte = swp_entry_to_pte(entry); 2081 if (pte_soft_dirty(pteval)) 2082 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2083 if (pte_uffd_wp(pteval)) 2084 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2085 if (folio_test_hugetlb(folio)) 2086 set_huge_swap_pte_at(mm, address, pvmw.pte, 2087 swp_pte, vma_mmu_pagesize(vma)); 2088 else 2089 set_pte_at(mm, address, pvmw.pte, swp_pte); 2090 trace_set_migration_pte(address, pte_val(swp_pte), 2091 compound_order(&folio->page)); 2092 /* 2093 * No need to invalidate here it will synchronize on 2094 * against the special swap migration pte. 2095 */ 2096 } 2097 2098 /* 2099 * No need to call mmu_notifier_invalidate_range() it has be 2100 * done above for all cases requiring it to happen under page 2101 * table lock before mmu_notifier_invalidate_range_end() 2102 * 2103 * See Documentation/vm/mmu_notifier.rst 2104 */ 2105 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 2106 if (vma->vm_flags & VM_LOCKED) 2107 mlock_page_drain_local(); 2108 folio_put(folio); 2109 } 2110 2111 mmu_notifier_invalidate_range_end(&range); 2112 2113 return ret; 2114 } 2115 2116 /** 2117 * try_to_migrate - try to replace all page table mappings with swap entries 2118 * @folio: the folio to replace page table entries for 2119 * @flags: action and flags 2120 * 2121 * Tries to remove all the page table entries which are mapping this folio and 2122 * replace them with special swap entries. Caller must hold the folio lock. 2123 */ 2124 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2125 { 2126 struct rmap_walk_control rwc = { 2127 .rmap_one = try_to_migrate_one, 2128 .arg = (void *)flags, 2129 .done = page_not_mapped, 2130 .anon_lock = folio_lock_anon_vma_read, 2131 }; 2132 2133 /* 2134 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2135 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags. 2136 */ 2137 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2138 TTU_SYNC))) 2139 return; 2140 2141 if (folio_is_zone_device(folio) && !folio_is_device_private(folio)) 2142 return; 2143 2144 /* 2145 * During exec, a temporary VMA is setup and later moved. 2146 * The VMA is moved under the anon_vma lock but not the 2147 * page tables leading to a race where migration cannot 2148 * find the migration ptes. Rather than increasing the 2149 * locking requirements of exec(), migration skips 2150 * temporary VMAs until after exec() completes. 2151 */ 2152 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2153 rwc.invalid_vma = invalid_migration_vma; 2154 2155 if (flags & TTU_RMAP_LOCKED) 2156 rmap_walk_locked(folio, &rwc); 2157 else 2158 rmap_walk(folio, &rwc); 2159 } 2160 2161 #ifdef CONFIG_DEVICE_PRIVATE 2162 struct make_exclusive_args { 2163 struct mm_struct *mm; 2164 unsigned long address; 2165 void *owner; 2166 bool valid; 2167 }; 2168 2169 static bool page_make_device_exclusive_one(struct folio *folio, 2170 struct vm_area_struct *vma, unsigned long address, void *priv) 2171 { 2172 struct mm_struct *mm = vma->vm_mm; 2173 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2174 struct make_exclusive_args *args = priv; 2175 pte_t pteval; 2176 struct page *subpage; 2177 bool ret = true; 2178 struct mmu_notifier_range range; 2179 swp_entry_t entry; 2180 pte_t swp_pte; 2181 2182 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, 2183 vma->vm_mm, address, min(vma->vm_end, 2184 address + folio_size(folio)), 2185 args->owner); 2186 mmu_notifier_invalidate_range_start(&range); 2187 2188 while (page_vma_mapped_walk(&pvmw)) { 2189 /* Unexpected PMD-mapped THP? */ 2190 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2191 2192 if (!pte_present(*pvmw.pte)) { 2193 ret = false; 2194 page_vma_mapped_walk_done(&pvmw); 2195 break; 2196 } 2197 2198 subpage = folio_page(folio, 2199 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 2200 address = pvmw.address; 2201 2202 /* Nuke the page table entry. */ 2203 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 2204 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2205 2206 /* Set the dirty flag on the folio now the pte is gone. */ 2207 if (pte_dirty(pteval)) 2208 folio_mark_dirty(folio); 2209 2210 /* 2211 * Check that our target page is still mapped at the expected 2212 * address. 2213 */ 2214 if (args->mm == mm && args->address == address && 2215 pte_write(pteval)) 2216 args->valid = true; 2217 2218 /* 2219 * Store the pfn of the page in a special migration 2220 * pte. do_swap_page() will wait until the migration 2221 * pte is removed and then restart fault handling. 2222 */ 2223 if (pte_write(pteval)) 2224 entry = make_writable_device_exclusive_entry( 2225 page_to_pfn(subpage)); 2226 else 2227 entry = make_readable_device_exclusive_entry( 2228 page_to_pfn(subpage)); 2229 swp_pte = swp_entry_to_pte(entry); 2230 if (pte_soft_dirty(pteval)) 2231 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2232 if (pte_uffd_wp(pteval)) 2233 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2234 2235 set_pte_at(mm, address, pvmw.pte, swp_pte); 2236 2237 /* 2238 * There is a reference on the page for the swap entry which has 2239 * been removed, so shouldn't take another. 2240 */ 2241 page_remove_rmap(subpage, vma, false); 2242 } 2243 2244 mmu_notifier_invalidate_range_end(&range); 2245 2246 return ret; 2247 } 2248 2249 /** 2250 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2251 * @folio: The folio to replace page table entries for. 2252 * @mm: The mm_struct where the folio is expected to be mapped. 2253 * @address: Address where the folio is expected to be mapped. 2254 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2255 * 2256 * Tries to remove all the page table entries which are mapping this 2257 * folio and replace them with special device exclusive swap entries to 2258 * grant a device exclusive access to the folio. 2259 * 2260 * Context: Caller must hold the folio lock. 2261 * Return: false if the page is still mapped, or if it could not be unmapped 2262 * from the expected address. Otherwise returns true (success). 2263 */ 2264 static bool folio_make_device_exclusive(struct folio *folio, 2265 struct mm_struct *mm, unsigned long address, void *owner) 2266 { 2267 struct make_exclusive_args args = { 2268 .mm = mm, 2269 .address = address, 2270 .owner = owner, 2271 .valid = false, 2272 }; 2273 struct rmap_walk_control rwc = { 2274 .rmap_one = page_make_device_exclusive_one, 2275 .done = page_not_mapped, 2276 .anon_lock = folio_lock_anon_vma_read, 2277 .arg = &args, 2278 }; 2279 2280 /* 2281 * Restrict to anonymous folios for now to avoid potential writeback 2282 * issues. 2283 */ 2284 if (!folio_test_anon(folio)) 2285 return false; 2286 2287 rmap_walk(folio, &rwc); 2288 2289 return args.valid && !folio_mapcount(folio); 2290 } 2291 2292 /** 2293 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2294 * @mm: mm_struct of associated target process 2295 * @start: start of the region to mark for exclusive device access 2296 * @end: end address of region 2297 * @pages: returns the pages which were successfully marked for exclusive access 2298 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2299 * 2300 * Returns: number of pages found in the range by GUP. A page is marked for 2301 * exclusive access only if the page pointer is non-NULL. 2302 * 2303 * This function finds ptes mapping page(s) to the given address range, locks 2304 * them and replaces mappings with special swap entries preventing userspace CPU 2305 * access. On fault these entries are replaced with the original mapping after 2306 * calling MMU notifiers. 2307 * 2308 * A driver using this to program access from a device must use a mmu notifier 2309 * critical section to hold a device specific lock during programming. Once 2310 * programming is complete it should drop the page lock and reference after 2311 * which point CPU access to the page will revoke the exclusive access. 2312 */ 2313 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2314 unsigned long end, struct page **pages, 2315 void *owner) 2316 { 2317 long npages = (end - start) >> PAGE_SHIFT; 2318 long i; 2319 2320 npages = get_user_pages_remote(mm, start, npages, 2321 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2322 pages, NULL, NULL); 2323 if (npages < 0) 2324 return npages; 2325 2326 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2327 struct folio *folio = page_folio(pages[i]); 2328 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2329 folio_put(folio); 2330 pages[i] = NULL; 2331 continue; 2332 } 2333 2334 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2335 folio_unlock(folio); 2336 folio_put(folio); 2337 pages[i] = NULL; 2338 } 2339 } 2340 2341 return npages; 2342 } 2343 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2344 #endif 2345 2346 void __put_anon_vma(struct anon_vma *anon_vma) 2347 { 2348 struct anon_vma *root = anon_vma->root; 2349 2350 anon_vma_free(anon_vma); 2351 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2352 anon_vma_free(root); 2353 } 2354 2355 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2356 struct rmap_walk_control *rwc) 2357 { 2358 struct anon_vma *anon_vma; 2359 2360 if (rwc->anon_lock) 2361 return rwc->anon_lock(folio, rwc); 2362 2363 /* 2364 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2365 * because that depends on page_mapped(); but not all its usages 2366 * are holding mmap_lock. Users without mmap_lock are required to 2367 * take a reference count to prevent the anon_vma disappearing 2368 */ 2369 anon_vma = folio_anon_vma(folio); 2370 if (!anon_vma) 2371 return NULL; 2372 2373 if (anon_vma_trylock_read(anon_vma)) 2374 goto out; 2375 2376 if (rwc->try_lock) { 2377 anon_vma = NULL; 2378 rwc->contended = true; 2379 goto out; 2380 } 2381 2382 anon_vma_lock_read(anon_vma); 2383 out: 2384 return anon_vma; 2385 } 2386 2387 /* 2388 * rmap_walk_anon - do something to anonymous page using the object-based 2389 * rmap method 2390 * @page: the page to be handled 2391 * @rwc: control variable according to each walk type 2392 * 2393 * Find all the mappings of a page using the mapping pointer and the vma chains 2394 * contained in the anon_vma struct it points to. 2395 */ 2396 static void rmap_walk_anon(struct folio *folio, 2397 struct rmap_walk_control *rwc, bool locked) 2398 { 2399 struct anon_vma *anon_vma; 2400 pgoff_t pgoff_start, pgoff_end; 2401 struct anon_vma_chain *avc; 2402 2403 if (locked) { 2404 anon_vma = folio_anon_vma(folio); 2405 /* anon_vma disappear under us? */ 2406 VM_BUG_ON_FOLIO(!anon_vma, folio); 2407 } else { 2408 anon_vma = rmap_walk_anon_lock(folio, rwc); 2409 } 2410 if (!anon_vma) 2411 return; 2412 2413 pgoff_start = folio_pgoff(folio); 2414 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2415 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2416 pgoff_start, pgoff_end) { 2417 struct vm_area_struct *vma = avc->vma; 2418 unsigned long address = vma_address(&folio->page, vma); 2419 2420 VM_BUG_ON_VMA(address == -EFAULT, vma); 2421 cond_resched(); 2422 2423 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2424 continue; 2425 2426 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2427 break; 2428 if (rwc->done && rwc->done(folio)) 2429 break; 2430 } 2431 2432 if (!locked) 2433 anon_vma_unlock_read(anon_vma); 2434 } 2435 2436 /* 2437 * rmap_walk_file - do something to file page using the object-based rmap method 2438 * @page: the page to be handled 2439 * @rwc: control variable according to each walk type 2440 * 2441 * Find all the mappings of a page using the mapping pointer and the vma chains 2442 * contained in the address_space struct it points to. 2443 */ 2444 static void rmap_walk_file(struct folio *folio, 2445 struct rmap_walk_control *rwc, bool locked) 2446 { 2447 struct address_space *mapping = folio_mapping(folio); 2448 pgoff_t pgoff_start, pgoff_end; 2449 struct vm_area_struct *vma; 2450 2451 /* 2452 * The page lock not only makes sure that page->mapping cannot 2453 * suddenly be NULLified by truncation, it makes sure that the 2454 * structure at mapping cannot be freed and reused yet, 2455 * so we can safely take mapping->i_mmap_rwsem. 2456 */ 2457 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2458 2459 if (!mapping) 2460 return; 2461 2462 pgoff_start = folio_pgoff(folio); 2463 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2464 if (!locked) { 2465 if (i_mmap_trylock_read(mapping)) 2466 goto lookup; 2467 2468 if (rwc->try_lock) { 2469 rwc->contended = true; 2470 return; 2471 } 2472 2473 i_mmap_lock_read(mapping); 2474 } 2475 lookup: 2476 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2477 pgoff_start, pgoff_end) { 2478 unsigned long address = vma_address(&folio->page, vma); 2479 2480 VM_BUG_ON_VMA(address == -EFAULT, vma); 2481 cond_resched(); 2482 2483 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2484 continue; 2485 2486 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2487 goto done; 2488 if (rwc->done && rwc->done(folio)) 2489 goto done; 2490 } 2491 2492 done: 2493 if (!locked) 2494 i_mmap_unlock_read(mapping); 2495 } 2496 2497 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2498 { 2499 if (unlikely(folio_test_ksm(folio))) 2500 rmap_walk_ksm(folio, rwc); 2501 else if (folio_test_anon(folio)) 2502 rmap_walk_anon(folio, rwc, false); 2503 else 2504 rmap_walk_file(folio, rwc, false); 2505 } 2506 2507 /* Like rmap_walk, but caller holds relevant rmap lock */ 2508 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2509 { 2510 /* no ksm support for now */ 2511 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2512 if (folio_test_anon(folio)) 2513 rmap_walk_anon(folio, rwc, true); 2514 else 2515 rmap_walk_file(folio, rwc, true); 2516 } 2517 2518 #ifdef CONFIG_HUGETLB_PAGE 2519 /* 2520 * The following two functions are for anonymous (private mapped) hugepages. 2521 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2522 * and no lru code, because we handle hugepages differently from common pages. 2523 * 2524 * RMAP_COMPOUND is ignored. 2525 */ 2526 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 2527 unsigned long address, rmap_t flags) 2528 { 2529 struct anon_vma *anon_vma = vma->anon_vma; 2530 int first; 2531 2532 BUG_ON(!PageLocked(page)); 2533 BUG_ON(!anon_vma); 2534 /* address might be in next vma when migration races vma_adjust */ 2535 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 2536 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 2537 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 2538 if (first) 2539 __page_set_anon_rmap(page, vma, address, 2540 !!(flags & RMAP_EXCLUSIVE)); 2541 } 2542 2543 void hugepage_add_new_anon_rmap(struct page *page, 2544 struct vm_area_struct *vma, unsigned long address) 2545 { 2546 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2547 atomic_set(compound_mapcount_ptr(page), 0); 2548 atomic_set(compound_pincount_ptr(page), 0); 2549 2550 __page_set_anon_rmap(page, vma, address, 1); 2551 } 2552 #endif /* CONFIG_HUGETLB_PAGE */ 2553