1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * mapping->i_mmap_rwsem 27 * anon_vma->rwsem 28 * mm->page_table_lock or pte_lock 29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 30 * swap_lock (in swap_duplicate, swap_info_get) 31 * mmlist_lock (in mmput, drain_mmlist and others) 32 * mapping->private_lock (in __set_page_dirty_buffers) 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within bdi.wb->list_lock in __sync_single_inode) 39 * 40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 41 * ->tasklist_lock 42 * pte map lock 43 */ 44 45 #include <linux/mm.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/slab.h> 50 #include <linux/init.h> 51 #include <linux/ksm.h> 52 #include <linux/rmap.h> 53 #include <linux/rcupdate.h> 54 #include <linux/export.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/migrate.h> 58 #include <linux/hugetlb.h> 59 #include <linux/backing-dev.h> 60 61 #include <asm/tlbflush.h> 62 63 #include "internal.h" 64 65 static struct kmem_cache *anon_vma_cachep; 66 static struct kmem_cache *anon_vma_chain_cachep; 67 68 static inline struct anon_vma *anon_vma_alloc(void) 69 { 70 struct anon_vma *anon_vma; 71 72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 73 if (anon_vma) { 74 atomic_set(&anon_vma->refcount, 1); 75 anon_vma->degree = 1; /* Reference for first vma */ 76 anon_vma->parent = anon_vma; 77 /* 78 * Initialise the anon_vma root to point to itself. If called 79 * from fork, the root will be reset to the parents anon_vma. 80 */ 81 anon_vma->root = anon_vma; 82 } 83 84 return anon_vma; 85 } 86 87 static inline void anon_vma_free(struct anon_vma *anon_vma) 88 { 89 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 90 91 /* 92 * Synchronize against page_lock_anon_vma_read() such that 93 * we can safely hold the lock without the anon_vma getting 94 * freed. 95 * 96 * Relies on the full mb implied by the atomic_dec_and_test() from 97 * put_anon_vma() against the acquire barrier implied by 98 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 99 * 100 * page_lock_anon_vma_read() VS put_anon_vma() 101 * down_read_trylock() atomic_dec_and_test() 102 * LOCK MB 103 * atomic_read() rwsem_is_locked() 104 * 105 * LOCK should suffice since the actual taking of the lock must 106 * happen _before_ what follows. 107 */ 108 might_sleep(); 109 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 110 anon_vma_lock_write(anon_vma); 111 anon_vma_unlock_write(anon_vma); 112 } 113 114 kmem_cache_free(anon_vma_cachep, anon_vma); 115 } 116 117 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 118 { 119 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 120 } 121 122 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 123 { 124 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 125 } 126 127 static void anon_vma_chain_link(struct vm_area_struct *vma, 128 struct anon_vma_chain *avc, 129 struct anon_vma *anon_vma) 130 { 131 avc->vma = vma; 132 avc->anon_vma = anon_vma; 133 list_add(&avc->same_vma, &vma->anon_vma_chain); 134 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 135 } 136 137 /** 138 * anon_vma_prepare - attach an anon_vma to a memory region 139 * @vma: the memory region in question 140 * 141 * This makes sure the memory mapping described by 'vma' has 142 * an 'anon_vma' attached to it, so that we can associate the 143 * anonymous pages mapped into it with that anon_vma. 144 * 145 * The common case will be that we already have one, but if 146 * not we either need to find an adjacent mapping that we 147 * can re-use the anon_vma from (very common when the only 148 * reason for splitting a vma has been mprotect()), or we 149 * allocate a new one. 150 * 151 * Anon-vma allocations are very subtle, because we may have 152 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 153 * and that may actually touch the spinlock even in the newly 154 * allocated vma (it depends on RCU to make sure that the 155 * anon_vma isn't actually destroyed). 156 * 157 * As a result, we need to do proper anon_vma locking even 158 * for the new allocation. At the same time, we do not want 159 * to do any locking for the common case of already having 160 * an anon_vma. 161 * 162 * This must be called with the mmap_sem held for reading. 163 */ 164 int anon_vma_prepare(struct vm_area_struct *vma) 165 { 166 struct anon_vma *anon_vma = vma->anon_vma; 167 struct anon_vma_chain *avc; 168 169 might_sleep(); 170 if (unlikely(!anon_vma)) { 171 struct mm_struct *mm = vma->vm_mm; 172 struct anon_vma *allocated; 173 174 avc = anon_vma_chain_alloc(GFP_KERNEL); 175 if (!avc) 176 goto out_enomem; 177 178 anon_vma = find_mergeable_anon_vma(vma); 179 allocated = NULL; 180 if (!anon_vma) { 181 anon_vma = anon_vma_alloc(); 182 if (unlikely(!anon_vma)) 183 goto out_enomem_free_avc; 184 allocated = anon_vma; 185 } 186 187 anon_vma_lock_write(anon_vma); 188 /* page_table_lock to protect against threads */ 189 spin_lock(&mm->page_table_lock); 190 if (likely(!vma->anon_vma)) { 191 vma->anon_vma = anon_vma; 192 anon_vma_chain_link(vma, avc, anon_vma); 193 /* vma reference or self-parent link for new root */ 194 anon_vma->degree++; 195 allocated = NULL; 196 avc = NULL; 197 } 198 spin_unlock(&mm->page_table_lock); 199 anon_vma_unlock_write(anon_vma); 200 201 if (unlikely(allocated)) 202 put_anon_vma(allocated); 203 if (unlikely(avc)) 204 anon_vma_chain_free(avc); 205 } 206 return 0; 207 208 out_enomem_free_avc: 209 anon_vma_chain_free(avc); 210 out_enomem: 211 return -ENOMEM; 212 } 213 214 /* 215 * This is a useful helper function for locking the anon_vma root as 216 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 217 * have the same vma. 218 * 219 * Such anon_vma's should have the same root, so you'd expect to see 220 * just a single mutex_lock for the whole traversal. 221 */ 222 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 223 { 224 struct anon_vma *new_root = anon_vma->root; 225 if (new_root != root) { 226 if (WARN_ON_ONCE(root)) 227 up_write(&root->rwsem); 228 root = new_root; 229 down_write(&root->rwsem); 230 } 231 return root; 232 } 233 234 static inline void unlock_anon_vma_root(struct anon_vma *root) 235 { 236 if (root) 237 up_write(&root->rwsem); 238 } 239 240 /* 241 * Attach the anon_vmas from src to dst. 242 * Returns 0 on success, -ENOMEM on failure. 243 * 244 * If dst->anon_vma is NULL this function tries to find and reuse existing 245 * anon_vma which has no vmas and only one child anon_vma. This prevents 246 * degradation of anon_vma hierarchy to endless linear chain in case of 247 * constantly forking task. On the other hand, an anon_vma with more than one 248 * child isn't reused even if there was no alive vma, thus rmap walker has a 249 * good chance of avoiding scanning the whole hierarchy when it searches where 250 * page is mapped. 251 */ 252 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 253 { 254 struct anon_vma_chain *avc, *pavc; 255 struct anon_vma *root = NULL; 256 257 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 258 struct anon_vma *anon_vma; 259 260 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 261 if (unlikely(!avc)) { 262 unlock_anon_vma_root(root); 263 root = NULL; 264 avc = anon_vma_chain_alloc(GFP_KERNEL); 265 if (!avc) 266 goto enomem_failure; 267 } 268 anon_vma = pavc->anon_vma; 269 root = lock_anon_vma_root(root, anon_vma); 270 anon_vma_chain_link(dst, avc, anon_vma); 271 272 /* 273 * Reuse existing anon_vma if its degree lower than two, 274 * that means it has no vma and only one anon_vma child. 275 * 276 * Do not chose parent anon_vma, otherwise first child 277 * will always reuse it. Root anon_vma is never reused: 278 * it has self-parent reference and at least one child. 279 */ 280 if (!dst->anon_vma && anon_vma != src->anon_vma && 281 anon_vma->degree < 2) 282 dst->anon_vma = anon_vma; 283 } 284 if (dst->anon_vma) 285 dst->anon_vma->degree++; 286 unlock_anon_vma_root(root); 287 return 0; 288 289 enomem_failure: 290 /* 291 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 292 * decremented in unlink_anon_vmas(). 293 * We can safely do this because callers of anon_vma_clone() don't care 294 * about dst->anon_vma if anon_vma_clone() failed. 295 */ 296 dst->anon_vma = NULL; 297 unlink_anon_vmas(dst); 298 return -ENOMEM; 299 } 300 301 /* 302 * Attach vma to its own anon_vma, as well as to the anon_vmas that 303 * the corresponding VMA in the parent process is attached to. 304 * Returns 0 on success, non-zero on failure. 305 */ 306 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 307 { 308 struct anon_vma_chain *avc; 309 struct anon_vma *anon_vma; 310 int error; 311 312 /* Don't bother if the parent process has no anon_vma here. */ 313 if (!pvma->anon_vma) 314 return 0; 315 316 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 317 vma->anon_vma = NULL; 318 319 /* 320 * First, attach the new VMA to the parent VMA's anon_vmas, 321 * so rmap can find non-COWed pages in child processes. 322 */ 323 error = anon_vma_clone(vma, pvma); 324 if (error) 325 return error; 326 327 /* An existing anon_vma has been reused, all done then. */ 328 if (vma->anon_vma) 329 return 0; 330 331 /* Then add our own anon_vma. */ 332 anon_vma = anon_vma_alloc(); 333 if (!anon_vma) 334 goto out_error; 335 avc = anon_vma_chain_alloc(GFP_KERNEL); 336 if (!avc) 337 goto out_error_free_anon_vma; 338 339 /* 340 * The root anon_vma's spinlock is the lock actually used when we 341 * lock any of the anon_vmas in this anon_vma tree. 342 */ 343 anon_vma->root = pvma->anon_vma->root; 344 anon_vma->parent = pvma->anon_vma; 345 /* 346 * With refcounts, an anon_vma can stay around longer than the 347 * process it belongs to. The root anon_vma needs to be pinned until 348 * this anon_vma is freed, because the lock lives in the root. 349 */ 350 get_anon_vma(anon_vma->root); 351 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 352 vma->anon_vma = anon_vma; 353 anon_vma_lock_write(anon_vma); 354 anon_vma_chain_link(vma, avc, anon_vma); 355 anon_vma->parent->degree++; 356 anon_vma_unlock_write(anon_vma); 357 358 return 0; 359 360 out_error_free_anon_vma: 361 put_anon_vma(anon_vma); 362 out_error: 363 unlink_anon_vmas(vma); 364 return -ENOMEM; 365 } 366 367 void unlink_anon_vmas(struct vm_area_struct *vma) 368 { 369 struct anon_vma_chain *avc, *next; 370 struct anon_vma *root = NULL; 371 372 /* 373 * Unlink each anon_vma chained to the VMA. This list is ordered 374 * from newest to oldest, ensuring the root anon_vma gets freed last. 375 */ 376 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 377 struct anon_vma *anon_vma = avc->anon_vma; 378 379 root = lock_anon_vma_root(root, anon_vma); 380 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 381 382 /* 383 * Leave empty anon_vmas on the list - we'll need 384 * to free them outside the lock. 385 */ 386 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) { 387 anon_vma->parent->degree--; 388 continue; 389 } 390 391 list_del(&avc->same_vma); 392 anon_vma_chain_free(avc); 393 } 394 if (vma->anon_vma) 395 vma->anon_vma->degree--; 396 unlock_anon_vma_root(root); 397 398 /* 399 * Iterate the list once more, it now only contains empty and unlinked 400 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 401 * needing to write-acquire the anon_vma->root->rwsem. 402 */ 403 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 404 struct anon_vma *anon_vma = avc->anon_vma; 405 406 BUG_ON(anon_vma->degree); 407 put_anon_vma(anon_vma); 408 409 list_del(&avc->same_vma); 410 anon_vma_chain_free(avc); 411 } 412 } 413 414 static void anon_vma_ctor(void *data) 415 { 416 struct anon_vma *anon_vma = data; 417 418 init_rwsem(&anon_vma->rwsem); 419 atomic_set(&anon_vma->refcount, 0); 420 anon_vma->rb_root = RB_ROOT; 421 } 422 423 void __init anon_vma_init(void) 424 { 425 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 426 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 427 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 428 } 429 430 /* 431 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 432 * 433 * Since there is no serialization what so ever against page_remove_rmap() 434 * the best this function can do is return a locked anon_vma that might 435 * have been relevant to this page. 436 * 437 * The page might have been remapped to a different anon_vma or the anon_vma 438 * returned may already be freed (and even reused). 439 * 440 * In case it was remapped to a different anon_vma, the new anon_vma will be a 441 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 442 * ensure that any anon_vma obtained from the page will still be valid for as 443 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 444 * 445 * All users of this function must be very careful when walking the anon_vma 446 * chain and verify that the page in question is indeed mapped in it 447 * [ something equivalent to page_mapped_in_vma() ]. 448 * 449 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 450 * that the anon_vma pointer from page->mapping is valid if there is a 451 * mapcount, we can dereference the anon_vma after observing those. 452 */ 453 struct anon_vma *page_get_anon_vma(struct page *page) 454 { 455 struct anon_vma *anon_vma = NULL; 456 unsigned long anon_mapping; 457 458 rcu_read_lock(); 459 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 460 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 461 goto out; 462 if (!page_mapped(page)) 463 goto out; 464 465 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 466 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 467 anon_vma = NULL; 468 goto out; 469 } 470 471 /* 472 * If this page is still mapped, then its anon_vma cannot have been 473 * freed. But if it has been unmapped, we have no security against the 474 * anon_vma structure being freed and reused (for another anon_vma: 475 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 476 * above cannot corrupt). 477 */ 478 if (!page_mapped(page)) { 479 rcu_read_unlock(); 480 put_anon_vma(anon_vma); 481 return NULL; 482 } 483 out: 484 rcu_read_unlock(); 485 486 return anon_vma; 487 } 488 489 /* 490 * Similar to page_get_anon_vma() except it locks the anon_vma. 491 * 492 * Its a little more complex as it tries to keep the fast path to a single 493 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 494 * reference like with page_get_anon_vma() and then block on the mutex. 495 */ 496 struct anon_vma *page_lock_anon_vma_read(struct page *page) 497 { 498 struct anon_vma *anon_vma = NULL; 499 struct anon_vma *root_anon_vma; 500 unsigned long anon_mapping; 501 502 rcu_read_lock(); 503 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 504 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 505 goto out; 506 if (!page_mapped(page)) 507 goto out; 508 509 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 510 root_anon_vma = READ_ONCE(anon_vma->root); 511 if (down_read_trylock(&root_anon_vma->rwsem)) { 512 /* 513 * If the page is still mapped, then this anon_vma is still 514 * its anon_vma, and holding the mutex ensures that it will 515 * not go away, see anon_vma_free(). 516 */ 517 if (!page_mapped(page)) { 518 up_read(&root_anon_vma->rwsem); 519 anon_vma = NULL; 520 } 521 goto out; 522 } 523 524 /* trylock failed, we got to sleep */ 525 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 526 anon_vma = NULL; 527 goto out; 528 } 529 530 if (!page_mapped(page)) { 531 rcu_read_unlock(); 532 put_anon_vma(anon_vma); 533 return NULL; 534 } 535 536 /* we pinned the anon_vma, its safe to sleep */ 537 rcu_read_unlock(); 538 anon_vma_lock_read(anon_vma); 539 540 if (atomic_dec_and_test(&anon_vma->refcount)) { 541 /* 542 * Oops, we held the last refcount, release the lock 543 * and bail -- can't simply use put_anon_vma() because 544 * we'll deadlock on the anon_vma_lock_write() recursion. 545 */ 546 anon_vma_unlock_read(anon_vma); 547 __put_anon_vma(anon_vma); 548 anon_vma = NULL; 549 } 550 551 return anon_vma; 552 553 out: 554 rcu_read_unlock(); 555 return anon_vma; 556 } 557 558 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 559 { 560 anon_vma_unlock_read(anon_vma); 561 } 562 563 /* 564 * At what user virtual address is page expected in @vma? 565 */ 566 static inline unsigned long 567 __vma_address(struct page *page, struct vm_area_struct *vma) 568 { 569 pgoff_t pgoff = page_to_pgoff(page); 570 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 571 } 572 573 inline unsigned long 574 vma_address(struct page *page, struct vm_area_struct *vma) 575 { 576 unsigned long address = __vma_address(page, vma); 577 578 /* page should be within @vma mapping range */ 579 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 580 581 return address; 582 } 583 584 /* 585 * At what user virtual address is page expected in vma? 586 * Caller should check the page is actually part of the vma. 587 */ 588 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 589 { 590 unsigned long address; 591 if (PageAnon(page)) { 592 struct anon_vma *page__anon_vma = page_anon_vma(page); 593 /* 594 * Note: swapoff's unuse_vma() is more efficient with this 595 * check, and needs it to match anon_vma when KSM is active. 596 */ 597 if (!vma->anon_vma || !page__anon_vma || 598 vma->anon_vma->root != page__anon_vma->root) 599 return -EFAULT; 600 } else if (page->mapping) { 601 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) 602 return -EFAULT; 603 } else 604 return -EFAULT; 605 address = __vma_address(page, vma); 606 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 607 return -EFAULT; 608 return address; 609 } 610 611 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 612 { 613 pgd_t *pgd; 614 pud_t *pud; 615 pmd_t *pmd = NULL; 616 pmd_t pmde; 617 618 pgd = pgd_offset(mm, address); 619 if (!pgd_present(*pgd)) 620 goto out; 621 622 pud = pud_offset(pgd, address); 623 if (!pud_present(*pud)) 624 goto out; 625 626 pmd = pmd_offset(pud, address); 627 /* 628 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at() 629 * without holding anon_vma lock for write. So when looking for a 630 * genuine pmde (in which to find pte), test present and !THP together. 631 */ 632 pmde = *pmd; 633 barrier(); 634 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 635 pmd = NULL; 636 out: 637 return pmd; 638 } 639 640 /* 641 * Check that @page is mapped at @address into @mm. 642 * 643 * If @sync is false, page_check_address may perform a racy check to avoid 644 * the page table lock when the pte is not present (helpful when reclaiming 645 * highly shared pages). 646 * 647 * On success returns with pte mapped and locked. 648 */ 649 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 650 unsigned long address, spinlock_t **ptlp, int sync) 651 { 652 pmd_t *pmd; 653 pte_t *pte; 654 spinlock_t *ptl; 655 656 if (unlikely(PageHuge(page))) { 657 /* when pud is not present, pte will be NULL */ 658 pte = huge_pte_offset(mm, address); 659 if (!pte) 660 return NULL; 661 662 ptl = huge_pte_lockptr(page_hstate(page), mm, pte); 663 goto check; 664 } 665 666 pmd = mm_find_pmd(mm, address); 667 if (!pmd) 668 return NULL; 669 670 pte = pte_offset_map(pmd, address); 671 /* Make a quick check before getting the lock */ 672 if (!sync && !pte_present(*pte)) { 673 pte_unmap(pte); 674 return NULL; 675 } 676 677 ptl = pte_lockptr(mm, pmd); 678 check: 679 spin_lock(ptl); 680 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 681 *ptlp = ptl; 682 return pte; 683 } 684 pte_unmap_unlock(pte, ptl); 685 return NULL; 686 } 687 688 /** 689 * page_mapped_in_vma - check whether a page is really mapped in a VMA 690 * @page: the page to test 691 * @vma: the VMA to test 692 * 693 * Returns 1 if the page is mapped into the page tables of the VMA, 0 694 * if the page is not mapped into the page tables of this VMA. Only 695 * valid for normal file or anonymous VMAs. 696 */ 697 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 698 { 699 unsigned long address; 700 pte_t *pte; 701 spinlock_t *ptl; 702 703 address = __vma_address(page, vma); 704 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 705 return 0; 706 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 707 if (!pte) /* the page is not in this mm */ 708 return 0; 709 pte_unmap_unlock(pte, ptl); 710 711 return 1; 712 } 713 714 struct page_referenced_arg { 715 int mapcount; 716 int referenced; 717 unsigned long vm_flags; 718 struct mem_cgroup *memcg; 719 }; 720 /* 721 * arg: page_referenced_arg will be passed 722 */ 723 static int page_referenced_one(struct page *page, struct vm_area_struct *vma, 724 unsigned long address, void *arg) 725 { 726 struct mm_struct *mm = vma->vm_mm; 727 spinlock_t *ptl; 728 int referenced = 0; 729 struct page_referenced_arg *pra = arg; 730 731 if (unlikely(PageTransHuge(page))) { 732 pmd_t *pmd; 733 734 /* 735 * rmap might return false positives; we must filter 736 * these out using page_check_address_pmd(). 737 */ 738 pmd = page_check_address_pmd(page, mm, address, 739 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl); 740 if (!pmd) 741 return SWAP_AGAIN; 742 743 if (vma->vm_flags & VM_LOCKED) { 744 spin_unlock(ptl); 745 pra->vm_flags |= VM_LOCKED; 746 return SWAP_FAIL; /* To break the loop */ 747 } 748 749 /* go ahead even if the pmd is pmd_trans_splitting() */ 750 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 751 referenced++; 752 spin_unlock(ptl); 753 } else { 754 pte_t *pte; 755 756 /* 757 * rmap might return false positives; we must filter 758 * these out using page_check_address(). 759 */ 760 pte = page_check_address(page, mm, address, &ptl, 0); 761 if (!pte) 762 return SWAP_AGAIN; 763 764 if (vma->vm_flags & VM_LOCKED) { 765 pte_unmap_unlock(pte, ptl); 766 pra->vm_flags |= VM_LOCKED; 767 return SWAP_FAIL; /* To break the loop */ 768 } 769 770 if (ptep_clear_flush_young_notify(vma, address, pte)) { 771 /* 772 * Don't treat a reference through a sequentially read 773 * mapping as such. If the page has been used in 774 * another mapping, we will catch it; if this other 775 * mapping is already gone, the unmap path will have 776 * set PG_referenced or activated the page. 777 */ 778 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 779 referenced++; 780 } 781 pte_unmap_unlock(pte, ptl); 782 } 783 784 if (referenced) { 785 pra->referenced++; 786 pra->vm_flags |= vma->vm_flags; 787 } 788 789 pra->mapcount--; 790 if (!pra->mapcount) 791 return SWAP_SUCCESS; /* To break the loop */ 792 793 return SWAP_AGAIN; 794 } 795 796 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 797 { 798 struct page_referenced_arg *pra = arg; 799 struct mem_cgroup *memcg = pra->memcg; 800 801 if (!mm_match_cgroup(vma->vm_mm, memcg)) 802 return true; 803 804 return false; 805 } 806 807 /** 808 * page_referenced - test if the page was referenced 809 * @page: the page to test 810 * @is_locked: caller holds lock on the page 811 * @memcg: target memory cgroup 812 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 813 * 814 * Quick test_and_clear_referenced for all mappings to a page, 815 * returns the number of ptes which referenced the page. 816 */ 817 int page_referenced(struct page *page, 818 int is_locked, 819 struct mem_cgroup *memcg, 820 unsigned long *vm_flags) 821 { 822 int ret; 823 int we_locked = 0; 824 struct page_referenced_arg pra = { 825 .mapcount = page_mapcount(page), 826 .memcg = memcg, 827 }; 828 struct rmap_walk_control rwc = { 829 .rmap_one = page_referenced_one, 830 .arg = (void *)&pra, 831 .anon_lock = page_lock_anon_vma_read, 832 }; 833 834 *vm_flags = 0; 835 if (!page_mapped(page)) 836 return 0; 837 838 if (!page_rmapping(page)) 839 return 0; 840 841 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 842 we_locked = trylock_page(page); 843 if (!we_locked) 844 return 1; 845 } 846 847 /* 848 * If we are reclaiming on behalf of a cgroup, skip 849 * counting on behalf of references from different 850 * cgroups 851 */ 852 if (memcg) { 853 rwc.invalid_vma = invalid_page_referenced_vma; 854 } 855 856 ret = rmap_walk(page, &rwc); 857 *vm_flags = pra.vm_flags; 858 859 if (we_locked) 860 unlock_page(page); 861 862 return pra.referenced; 863 } 864 865 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 866 unsigned long address, void *arg) 867 { 868 struct mm_struct *mm = vma->vm_mm; 869 pte_t *pte; 870 spinlock_t *ptl; 871 int ret = 0; 872 int *cleaned = arg; 873 874 pte = page_check_address(page, mm, address, &ptl, 1); 875 if (!pte) 876 goto out; 877 878 if (pte_dirty(*pte) || pte_write(*pte)) { 879 pte_t entry; 880 881 flush_cache_page(vma, address, pte_pfn(*pte)); 882 entry = ptep_clear_flush(vma, address, pte); 883 entry = pte_wrprotect(entry); 884 entry = pte_mkclean(entry); 885 set_pte_at(mm, address, pte, entry); 886 ret = 1; 887 } 888 889 pte_unmap_unlock(pte, ptl); 890 891 if (ret) { 892 mmu_notifier_invalidate_page(mm, address); 893 (*cleaned)++; 894 } 895 out: 896 return SWAP_AGAIN; 897 } 898 899 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 900 { 901 if (vma->vm_flags & VM_SHARED) 902 return false; 903 904 return true; 905 } 906 907 int page_mkclean(struct page *page) 908 { 909 int cleaned = 0; 910 struct address_space *mapping; 911 struct rmap_walk_control rwc = { 912 .arg = (void *)&cleaned, 913 .rmap_one = page_mkclean_one, 914 .invalid_vma = invalid_mkclean_vma, 915 }; 916 917 BUG_ON(!PageLocked(page)); 918 919 if (!page_mapped(page)) 920 return 0; 921 922 mapping = page_mapping(page); 923 if (!mapping) 924 return 0; 925 926 rmap_walk(page, &rwc); 927 928 return cleaned; 929 } 930 EXPORT_SYMBOL_GPL(page_mkclean); 931 932 /** 933 * page_move_anon_rmap - move a page to our anon_vma 934 * @page: the page to move to our anon_vma 935 * @vma: the vma the page belongs to 936 * @address: the user virtual address mapped 937 * 938 * When a page belongs exclusively to one process after a COW event, 939 * that page can be moved into the anon_vma that belongs to just that 940 * process, so the rmap code will not search the parent or sibling 941 * processes. 942 */ 943 void page_move_anon_rmap(struct page *page, 944 struct vm_area_struct *vma, unsigned long address) 945 { 946 struct anon_vma *anon_vma = vma->anon_vma; 947 948 VM_BUG_ON_PAGE(!PageLocked(page), page); 949 VM_BUG_ON_VMA(!anon_vma, vma); 950 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page); 951 952 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 953 page->mapping = (struct address_space *) anon_vma; 954 } 955 956 /** 957 * __page_set_anon_rmap - set up new anonymous rmap 958 * @page: Page to add to rmap 959 * @vma: VM area to add page to. 960 * @address: User virtual address of the mapping 961 * @exclusive: the page is exclusively owned by the current process 962 */ 963 static void __page_set_anon_rmap(struct page *page, 964 struct vm_area_struct *vma, unsigned long address, int exclusive) 965 { 966 struct anon_vma *anon_vma = vma->anon_vma; 967 968 BUG_ON(!anon_vma); 969 970 if (PageAnon(page)) 971 return; 972 973 /* 974 * If the page isn't exclusively mapped into this vma, 975 * we must use the _oldest_ possible anon_vma for the 976 * page mapping! 977 */ 978 if (!exclusive) 979 anon_vma = anon_vma->root; 980 981 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 982 page->mapping = (struct address_space *) anon_vma; 983 page->index = linear_page_index(vma, address); 984 } 985 986 /** 987 * __page_check_anon_rmap - sanity check anonymous rmap addition 988 * @page: the page to add the mapping to 989 * @vma: the vm area in which the mapping is added 990 * @address: the user virtual address mapped 991 */ 992 static void __page_check_anon_rmap(struct page *page, 993 struct vm_area_struct *vma, unsigned long address) 994 { 995 #ifdef CONFIG_DEBUG_VM 996 /* 997 * The page's anon-rmap details (mapping and index) are guaranteed to 998 * be set up correctly at this point. 999 * 1000 * We have exclusion against page_add_anon_rmap because the caller 1001 * always holds the page locked, except if called from page_dup_rmap, 1002 * in which case the page is already known to be setup. 1003 * 1004 * We have exclusion against page_add_new_anon_rmap because those pages 1005 * are initially only visible via the pagetables, and the pte is locked 1006 * over the call to page_add_new_anon_rmap. 1007 */ 1008 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1009 BUG_ON(page->index != linear_page_index(vma, address)); 1010 #endif 1011 } 1012 1013 /** 1014 * page_add_anon_rmap - add pte mapping to an anonymous page 1015 * @page: the page to add the mapping to 1016 * @vma: the vm area in which the mapping is added 1017 * @address: the user virtual address mapped 1018 * 1019 * The caller needs to hold the pte lock, and the page must be locked in 1020 * the anon_vma case: to serialize mapping,index checking after setting, 1021 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1022 * (but PageKsm is never downgraded to PageAnon). 1023 */ 1024 void page_add_anon_rmap(struct page *page, 1025 struct vm_area_struct *vma, unsigned long address) 1026 { 1027 do_page_add_anon_rmap(page, vma, address, 0); 1028 } 1029 1030 /* 1031 * Special version of the above for do_swap_page, which often runs 1032 * into pages that are exclusively owned by the current process. 1033 * Everybody else should continue to use page_add_anon_rmap above. 1034 */ 1035 void do_page_add_anon_rmap(struct page *page, 1036 struct vm_area_struct *vma, unsigned long address, int exclusive) 1037 { 1038 int first = atomic_inc_and_test(&page->_mapcount); 1039 if (first) { 1040 /* 1041 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1042 * these counters are not modified in interrupt context, and 1043 * pte lock(a spinlock) is held, which implies preemption 1044 * disabled. 1045 */ 1046 if (PageTransHuge(page)) 1047 __inc_zone_page_state(page, 1048 NR_ANON_TRANSPARENT_HUGEPAGES); 1049 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1050 hpage_nr_pages(page)); 1051 } 1052 if (unlikely(PageKsm(page))) 1053 return; 1054 1055 VM_BUG_ON_PAGE(!PageLocked(page), page); 1056 /* address might be in next vma when migration races vma_adjust */ 1057 if (first) 1058 __page_set_anon_rmap(page, vma, address, exclusive); 1059 else 1060 __page_check_anon_rmap(page, vma, address); 1061 } 1062 1063 /** 1064 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1065 * @page: the page to add the mapping to 1066 * @vma: the vm area in which the mapping is added 1067 * @address: the user virtual address mapped 1068 * 1069 * Same as page_add_anon_rmap but must only be called on *new* pages. 1070 * This means the inc-and-test can be bypassed. 1071 * Page does not have to be locked. 1072 */ 1073 void page_add_new_anon_rmap(struct page *page, 1074 struct vm_area_struct *vma, unsigned long address) 1075 { 1076 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1077 SetPageSwapBacked(page); 1078 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1079 if (PageTransHuge(page)) 1080 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1081 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1082 hpage_nr_pages(page)); 1083 __page_set_anon_rmap(page, vma, address, 1); 1084 } 1085 1086 /** 1087 * page_add_file_rmap - add pte mapping to a file page 1088 * @page: the page to add the mapping to 1089 * 1090 * The caller needs to hold the pte lock. 1091 */ 1092 void page_add_file_rmap(struct page *page) 1093 { 1094 struct mem_cgroup *memcg; 1095 1096 memcg = mem_cgroup_begin_page_stat(page); 1097 if (atomic_inc_and_test(&page->_mapcount)) { 1098 __inc_zone_page_state(page, NR_FILE_MAPPED); 1099 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); 1100 } 1101 mem_cgroup_end_page_stat(memcg); 1102 } 1103 1104 static void page_remove_file_rmap(struct page *page) 1105 { 1106 struct mem_cgroup *memcg; 1107 1108 memcg = mem_cgroup_begin_page_stat(page); 1109 1110 /* page still mapped by someone else? */ 1111 if (!atomic_add_negative(-1, &page->_mapcount)) 1112 goto out; 1113 1114 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1115 if (unlikely(PageHuge(page))) 1116 goto out; 1117 1118 /* 1119 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1120 * these counters are not modified in interrupt context, and 1121 * pte lock(a spinlock) is held, which implies preemption disabled. 1122 */ 1123 __dec_zone_page_state(page, NR_FILE_MAPPED); 1124 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); 1125 1126 if (unlikely(PageMlocked(page))) 1127 clear_page_mlock(page); 1128 out: 1129 mem_cgroup_end_page_stat(memcg); 1130 } 1131 1132 /** 1133 * page_remove_rmap - take down pte mapping from a page 1134 * @page: page to remove mapping from 1135 * 1136 * The caller needs to hold the pte lock. 1137 */ 1138 void page_remove_rmap(struct page *page) 1139 { 1140 if (!PageAnon(page)) { 1141 page_remove_file_rmap(page); 1142 return; 1143 } 1144 1145 /* page still mapped by someone else? */ 1146 if (!atomic_add_negative(-1, &page->_mapcount)) 1147 return; 1148 1149 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1150 if (unlikely(PageHuge(page))) 1151 return; 1152 1153 /* 1154 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1155 * these counters are not modified in interrupt context, and 1156 * pte lock(a spinlock) is held, which implies preemption disabled. 1157 */ 1158 if (PageTransHuge(page)) 1159 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1160 1161 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1162 -hpage_nr_pages(page)); 1163 1164 if (unlikely(PageMlocked(page))) 1165 clear_page_mlock(page); 1166 1167 /* 1168 * It would be tidy to reset the PageAnon mapping here, 1169 * but that might overwrite a racing page_add_anon_rmap 1170 * which increments mapcount after us but sets mapping 1171 * before us: so leave the reset to free_hot_cold_page, 1172 * and remember that it's only reliable while mapped. 1173 * Leaving it set also helps swapoff to reinstate ptes 1174 * faster for those pages still in swapcache. 1175 */ 1176 } 1177 1178 /* 1179 * @arg: enum ttu_flags will be passed to this argument 1180 */ 1181 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1182 unsigned long address, void *arg) 1183 { 1184 struct mm_struct *mm = vma->vm_mm; 1185 pte_t *pte; 1186 pte_t pteval; 1187 spinlock_t *ptl; 1188 int ret = SWAP_AGAIN; 1189 enum ttu_flags flags = (enum ttu_flags)arg; 1190 1191 pte = page_check_address(page, mm, address, &ptl, 0); 1192 if (!pte) 1193 goto out; 1194 1195 /* 1196 * If the page is mlock()d, we cannot swap it out. 1197 * If it's recently referenced (perhaps page_referenced 1198 * skipped over this mm) then we should reactivate it. 1199 */ 1200 if (!(flags & TTU_IGNORE_MLOCK)) { 1201 if (vma->vm_flags & VM_LOCKED) 1202 goto out_mlock; 1203 1204 if (flags & TTU_MUNLOCK) 1205 goto out_unmap; 1206 } 1207 if (!(flags & TTU_IGNORE_ACCESS)) { 1208 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1209 ret = SWAP_FAIL; 1210 goto out_unmap; 1211 } 1212 } 1213 1214 /* Nuke the page table entry. */ 1215 flush_cache_page(vma, address, page_to_pfn(page)); 1216 pteval = ptep_clear_flush(vma, address, pte); 1217 1218 /* Move the dirty bit to the physical page now the pte is gone. */ 1219 if (pte_dirty(pteval)) 1220 set_page_dirty(page); 1221 1222 /* Update high watermark before we lower rss */ 1223 update_hiwater_rss(mm); 1224 1225 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1226 if (!PageHuge(page)) { 1227 if (PageAnon(page)) 1228 dec_mm_counter(mm, MM_ANONPAGES); 1229 else 1230 dec_mm_counter(mm, MM_FILEPAGES); 1231 } 1232 set_pte_at(mm, address, pte, 1233 swp_entry_to_pte(make_hwpoison_entry(page))); 1234 } else if (pte_unused(pteval)) { 1235 /* 1236 * The guest indicated that the page content is of no 1237 * interest anymore. Simply discard the pte, vmscan 1238 * will take care of the rest. 1239 */ 1240 if (PageAnon(page)) 1241 dec_mm_counter(mm, MM_ANONPAGES); 1242 else 1243 dec_mm_counter(mm, MM_FILEPAGES); 1244 } else if (PageAnon(page)) { 1245 swp_entry_t entry = { .val = page_private(page) }; 1246 pte_t swp_pte; 1247 1248 if (PageSwapCache(page)) { 1249 /* 1250 * Store the swap location in the pte. 1251 * See handle_pte_fault() ... 1252 */ 1253 if (swap_duplicate(entry) < 0) { 1254 set_pte_at(mm, address, pte, pteval); 1255 ret = SWAP_FAIL; 1256 goto out_unmap; 1257 } 1258 if (list_empty(&mm->mmlist)) { 1259 spin_lock(&mmlist_lock); 1260 if (list_empty(&mm->mmlist)) 1261 list_add(&mm->mmlist, &init_mm.mmlist); 1262 spin_unlock(&mmlist_lock); 1263 } 1264 dec_mm_counter(mm, MM_ANONPAGES); 1265 inc_mm_counter(mm, MM_SWAPENTS); 1266 } else if (IS_ENABLED(CONFIG_MIGRATION)) { 1267 /* 1268 * Store the pfn of the page in a special migration 1269 * pte. do_swap_page() will wait until the migration 1270 * pte is removed and then restart fault handling. 1271 */ 1272 BUG_ON(!(flags & TTU_MIGRATION)); 1273 entry = make_migration_entry(page, pte_write(pteval)); 1274 } 1275 swp_pte = swp_entry_to_pte(entry); 1276 if (pte_soft_dirty(pteval)) 1277 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1278 set_pte_at(mm, address, pte, swp_pte); 1279 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1280 (flags & TTU_MIGRATION)) { 1281 /* Establish migration entry for a file page */ 1282 swp_entry_t entry; 1283 entry = make_migration_entry(page, pte_write(pteval)); 1284 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1285 } else 1286 dec_mm_counter(mm, MM_FILEPAGES); 1287 1288 page_remove_rmap(page); 1289 page_cache_release(page); 1290 1291 out_unmap: 1292 pte_unmap_unlock(pte, ptl); 1293 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK)) 1294 mmu_notifier_invalidate_page(mm, address); 1295 out: 1296 return ret; 1297 1298 out_mlock: 1299 pte_unmap_unlock(pte, ptl); 1300 1301 1302 /* 1303 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1304 * unstable result and race. Plus, We can't wait here because 1305 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem. 1306 * if trylock failed, the page remain in evictable lru and later 1307 * vmscan could retry to move the page to unevictable lru if the 1308 * page is actually mlocked. 1309 */ 1310 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1311 if (vma->vm_flags & VM_LOCKED) { 1312 mlock_vma_page(page); 1313 ret = SWAP_MLOCK; 1314 } 1315 up_read(&vma->vm_mm->mmap_sem); 1316 } 1317 return ret; 1318 } 1319 1320 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1321 { 1322 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1323 1324 if (!maybe_stack) 1325 return false; 1326 1327 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1328 VM_STACK_INCOMPLETE_SETUP) 1329 return true; 1330 1331 return false; 1332 } 1333 1334 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1335 { 1336 return is_vma_temporary_stack(vma); 1337 } 1338 1339 static int page_not_mapped(struct page *page) 1340 { 1341 return !page_mapped(page); 1342 }; 1343 1344 /** 1345 * try_to_unmap - try to remove all page table mappings to a page 1346 * @page: the page to get unmapped 1347 * @flags: action and flags 1348 * 1349 * Tries to remove all the page table entries which are mapping this 1350 * page, used in the pageout path. Caller must hold the page lock. 1351 * Return values are: 1352 * 1353 * SWAP_SUCCESS - we succeeded in removing all mappings 1354 * SWAP_AGAIN - we missed a mapping, try again later 1355 * SWAP_FAIL - the page is unswappable 1356 * SWAP_MLOCK - page is mlocked. 1357 */ 1358 int try_to_unmap(struct page *page, enum ttu_flags flags) 1359 { 1360 int ret; 1361 struct rmap_walk_control rwc = { 1362 .rmap_one = try_to_unmap_one, 1363 .arg = (void *)flags, 1364 .done = page_not_mapped, 1365 .anon_lock = page_lock_anon_vma_read, 1366 }; 1367 1368 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page); 1369 1370 /* 1371 * During exec, a temporary VMA is setup and later moved. 1372 * The VMA is moved under the anon_vma lock but not the 1373 * page tables leading to a race where migration cannot 1374 * find the migration ptes. Rather than increasing the 1375 * locking requirements of exec(), migration skips 1376 * temporary VMAs until after exec() completes. 1377 */ 1378 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) 1379 rwc.invalid_vma = invalid_migration_vma; 1380 1381 ret = rmap_walk(page, &rwc); 1382 1383 if (ret != SWAP_MLOCK && !page_mapped(page)) 1384 ret = SWAP_SUCCESS; 1385 return ret; 1386 } 1387 1388 /** 1389 * try_to_munlock - try to munlock a page 1390 * @page: the page to be munlocked 1391 * 1392 * Called from munlock code. Checks all of the VMAs mapping the page 1393 * to make sure nobody else has this page mlocked. The page will be 1394 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1395 * 1396 * Return values are: 1397 * 1398 * SWAP_AGAIN - no vma is holding page mlocked, or, 1399 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1400 * SWAP_FAIL - page cannot be located at present 1401 * SWAP_MLOCK - page is now mlocked. 1402 */ 1403 int try_to_munlock(struct page *page) 1404 { 1405 int ret; 1406 struct rmap_walk_control rwc = { 1407 .rmap_one = try_to_unmap_one, 1408 .arg = (void *)TTU_MUNLOCK, 1409 .done = page_not_mapped, 1410 .anon_lock = page_lock_anon_vma_read, 1411 1412 }; 1413 1414 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 1415 1416 ret = rmap_walk(page, &rwc); 1417 return ret; 1418 } 1419 1420 void __put_anon_vma(struct anon_vma *anon_vma) 1421 { 1422 struct anon_vma *root = anon_vma->root; 1423 1424 anon_vma_free(anon_vma); 1425 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1426 anon_vma_free(root); 1427 } 1428 1429 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 1430 struct rmap_walk_control *rwc) 1431 { 1432 struct anon_vma *anon_vma; 1433 1434 if (rwc->anon_lock) 1435 return rwc->anon_lock(page); 1436 1437 /* 1438 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1439 * because that depends on page_mapped(); but not all its usages 1440 * are holding mmap_sem. Users without mmap_sem are required to 1441 * take a reference count to prevent the anon_vma disappearing 1442 */ 1443 anon_vma = page_anon_vma(page); 1444 if (!anon_vma) 1445 return NULL; 1446 1447 anon_vma_lock_read(anon_vma); 1448 return anon_vma; 1449 } 1450 1451 /* 1452 * rmap_walk_anon - do something to anonymous page using the object-based 1453 * rmap method 1454 * @page: the page to be handled 1455 * @rwc: control variable according to each walk type 1456 * 1457 * Find all the mappings of a page using the mapping pointer and the vma chains 1458 * contained in the anon_vma struct it points to. 1459 * 1460 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1461 * where the page was found will be held for write. So, we won't recheck 1462 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1463 * LOCKED. 1464 */ 1465 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc) 1466 { 1467 struct anon_vma *anon_vma; 1468 pgoff_t pgoff; 1469 struct anon_vma_chain *avc; 1470 int ret = SWAP_AGAIN; 1471 1472 anon_vma = rmap_walk_anon_lock(page, rwc); 1473 if (!anon_vma) 1474 return ret; 1475 1476 pgoff = page_to_pgoff(page); 1477 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1478 struct vm_area_struct *vma = avc->vma; 1479 unsigned long address = vma_address(page, vma); 1480 1481 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1482 continue; 1483 1484 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1485 if (ret != SWAP_AGAIN) 1486 break; 1487 if (rwc->done && rwc->done(page)) 1488 break; 1489 } 1490 anon_vma_unlock_read(anon_vma); 1491 return ret; 1492 } 1493 1494 /* 1495 * rmap_walk_file - do something to file page using the object-based rmap method 1496 * @page: the page to be handled 1497 * @rwc: control variable according to each walk type 1498 * 1499 * Find all the mappings of a page using the mapping pointer and the vma chains 1500 * contained in the address_space struct it points to. 1501 * 1502 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1503 * where the page was found will be held for write. So, we won't recheck 1504 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1505 * LOCKED. 1506 */ 1507 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc) 1508 { 1509 struct address_space *mapping = page->mapping; 1510 pgoff_t pgoff; 1511 struct vm_area_struct *vma; 1512 int ret = SWAP_AGAIN; 1513 1514 /* 1515 * The page lock not only makes sure that page->mapping cannot 1516 * suddenly be NULLified by truncation, it makes sure that the 1517 * structure at mapping cannot be freed and reused yet, 1518 * so we can safely take mapping->i_mmap_rwsem. 1519 */ 1520 VM_BUG_ON_PAGE(!PageLocked(page), page); 1521 1522 if (!mapping) 1523 return ret; 1524 1525 pgoff = page_to_pgoff(page); 1526 i_mmap_lock_read(mapping); 1527 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1528 unsigned long address = vma_address(page, vma); 1529 1530 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1531 continue; 1532 1533 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1534 if (ret != SWAP_AGAIN) 1535 goto done; 1536 if (rwc->done && rwc->done(page)) 1537 goto done; 1538 } 1539 1540 done: 1541 i_mmap_unlock_read(mapping); 1542 return ret; 1543 } 1544 1545 int rmap_walk(struct page *page, struct rmap_walk_control *rwc) 1546 { 1547 if (unlikely(PageKsm(page))) 1548 return rmap_walk_ksm(page, rwc); 1549 else if (PageAnon(page)) 1550 return rmap_walk_anon(page, rwc); 1551 else 1552 return rmap_walk_file(page, rwc); 1553 } 1554 1555 #ifdef CONFIG_HUGETLB_PAGE 1556 /* 1557 * The following three functions are for anonymous (private mapped) hugepages. 1558 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1559 * and no lru code, because we handle hugepages differently from common pages. 1560 */ 1561 static void __hugepage_set_anon_rmap(struct page *page, 1562 struct vm_area_struct *vma, unsigned long address, int exclusive) 1563 { 1564 struct anon_vma *anon_vma = vma->anon_vma; 1565 1566 BUG_ON(!anon_vma); 1567 1568 if (PageAnon(page)) 1569 return; 1570 if (!exclusive) 1571 anon_vma = anon_vma->root; 1572 1573 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1574 page->mapping = (struct address_space *) anon_vma; 1575 page->index = linear_page_index(vma, address); 1576 } 1577 1578 void hugepage_add_anon_rmap(struct page *page, 1579 struct vm_area_struct *vma, unsigned long address) 1580 { 1581 struct anon_vma *anon_vma = vma->anon_vma; 1582 int first; 1583 1584 BUG_ON(!PageLocked(page)); 1585 BUG_ON(!anon_vma); 1586 /* address might be in next vma when migration races vma_adjust */ 1587 first = atomic_inc_and_test(&page->_mapcount); 1588 if (first) 1589 __hugepage_set_anon_rmap(page, vma, address, 0); 1590 } 1591 1592 void hugepage_add_new_anon_rmap(struct page *page, 1593 struct vm_area_struct *vma, unsigned long address) 1594 { 1595 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1596 atomic_set(&page->_mapcount, 0); 1597 __hugepage_set_anon_rmap(page, vma, address, 1); 1598 } 1599 #endif /* CONFIG_HUGETLB_PAGE */ 1600