1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem (vmtruncate_range) 25 * mm->mmap_sem 26 * page->flags PG_locked (lock_page) 27 * mapping->i_mmap_lock 28 * anon_vma->lock 29 * mm->page_table_lock or pte_lock 30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * inode_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within inode_lock in __sync_single_inode) 39 * zone->lock (within radix tree node alloc) 40 */ 41 42 #include <linux/mm.h> 43 #include <linux/pagemap.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/slab.h> 47 #include <linux/init.h> 48 #include <linux/rmap.h> 49 #include <linux/rcupdate.h> 50 #include <linux/module.h> 51 #include <linux/kallsyms.h> 52 53 #include <asm/tlbflush.h> 54 55 struct kmem_cache *anon_vma_cachep; 56 57 /* This must be called under the mmap_sem. */ 58 int anon_vma_prepare(struct vm_area_struct *vma) 59 { 60 struct anon_vma *anon_vma = vma->anon_vma; 61 62 might_sleep(); 63 if (unlikely(!anon_vma)) { 64 struct mm_struct *mm = vma->vm_mm; 65 struct anon_vma *allocated, *locked; 66 67 anon_vma = find_mergeable_anon_vma(vma); 68 if (anon_vma) { 69 allocated = NULL; 70 locked = anon_vma; 71 spin_lock(&locked->lock); 72 } else { 73 anon_vma = anon_vma_alloc(); 74 if (unlikely(!anon_vma)) 75 return -ENOMEM; 76 allocated = anon_vma; 77 locked = NULL; 78 } 79 80 /* page_table_lock to protect against threads */ 81 spin_lock(&mm->page_table_lock); 82 if (likely(!vma->anon_vma)) { 83 vma->anon_vma = anon_vma; 84 list_add_tail(&vma->anon_vma_node, &anon_vma->head); 85 allocated = NULL; 86 } 87 spin_unlock(&mm->page_table_lock); 88 89 if (locked) 90 spin_unlock(&locked->lock); 91 if (unlikely(allocated)) 92 anon_vma_free(allocated); 93 } 94 return 0; 95 } 96 97 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) 98 { 99 BUG_ON(vma->anon_vma != next->anon_vma); 100 list_del(&next->anon_vma_node); 101 } 102 103 void __anon_vma_link(struct vm_area_struct *vma) 104 { 105 struct anon_vma *anon_vma = vma->anon_vma; 106 107 if (anon_vma) 108 list_add_tail(&vma->anon_vma_node, &anon_vma->head); 109 } 110 111 void anon_vma_link(struct vm_area_struct *vma) 112 { 113 struct anon_vma *anon_vma = vma->anon_vma; 114 115 if (anon_vma) { 116 spin_lock(&anon_vma->lock); 117 list_add_tail(&vma->anon_vma_node, &anon_vma->head); 118 spin_unlock(&anon_vma->lock); 119 } 120 } 121 122 void anon_vma_unlink(struct vm_area_struct *vma) 123 { 124 struct anon_vma *anon_vma = vma->anon_vma; 125 int empty; 126 127 if (!anon_vma) 128 return; 129 130 spin_lock(&anon_vma->lock); 131 list_del(&vma->anon_vma_node); 132 133 /* We must garbage collect the anon_vma if it's empty */ 134 empty = list_empty(&anon_vma->head); 135 spin_unlock(&anon_vma->lock); 136 137 if (empty) 138 anon_vma_free(anon_vma); 139 } 140 141 static void anon_vma_ctor(struct kmem_cache *cachep, void *data) 142 { 143 struct anon_vma *anon_vma = data; 144 145 spin_lock_init(&anon_vma->lock); 146 INIT_LIST_HEAD(&anon_vma->head); 147 } 148 149 void __init anon_vma_init(void) 150 { 151 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 152 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 153 } 154 155 /* 156 * Getting a lock on a stable anon_vma from a page off the LRU is 157 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 158 */ 159 static struct anon_vma *page_lock_anon_vma(struct page *page) 160 { 161 struct anon_vma *anon_vma; 162 unsigned long anon_mapping; 163 164 rcu_read_lock(); 165 anon_mapping = (unsigned long) page->mapping; 166 if (!(anon_mapping & PAGE_MAPPING_ANON)) 167 goto out; 168 if (!page_mapped(page)) 169 goto out; 170 171 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 172 spin_lock(&anon_vma->lock); 173 return anon_vma; 174 out: 175 rcu_read_unlock(); 176 return NULL; 177 } 178 179 static void page_unlock_anon_vma(struct anon_vma *anon_vma) 180 { 181 spin_unlock(&anon_vma->lock); 182 rcu_read_unlock(); 183 } 184 185 /* 186 * At what user virtual address is page expected in @vma? 187 * Returns virtual address or -EFAULT if page's index/offset is not 188 * within the range mapped the @vma. 189 */ 190 static inline unsigned long 191 vma_address(struct page *page, struct vm_area_struct *vma) 192 { 193 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 194 unsigned long address; 195 196 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 197 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 198 /* page should be within @vma mapping range */ 199 return -EFAULT; 200 } 201 return address; 202 } 203 204 /* 205 * At what user virtual address is page expected in vma? checking that the 206 * page matches the vma: currently only used on anon pages, by unuse_vma; 207 */ 208 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 209 { 210 if (PageAnon(page)) { 211 if ((void *)vma->anon_vma != 212 (void *)page->mapping - PAGE_MAPPING_ANON) 213 return -EFAULT; 214 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 215 if (!vma->vm_file || 216 vma->vm_file->f_mapping != page->mapping) 217 return -EFAULT; 218 } else 219 return -EFAULT; 220 return vma_address(page, vma); 221 } 222 223 /* 224 * Check that @page is mapped at @address into @mm. 225 * 226 * On success returns with pte mapped and locked. 227 */ 228 pte_t *page_check_address(struct page *page, struct mm_struct *mm, 229 unsigned long address, spinlock_t **ptlp) 230 { 231 pgd_t *pgd; 232 pud_t *pud; 233 pmd_t *pmd; 234 pte_t *pte; 235 spinlock_t *ptl; 236 237 pgd = pgd_offset(mm, address); 238 if (!pgd_present(*pgd)) 239 return NULL; 240 241 pud = pud_offset(pgd, address); 242 if (!pud_present(*pud)) 243 return NULL; 244 245 pmd = pmd_offset(pud, address); 246 if (!pmd_present(*pmd)) 247 return NULL; 248 249 pte = pte_offset_map(pmd, address); 250 /* Make a quick check before getting the lock */ 251 if (!pte_present(*pte)) { 252 pte_unmap(pte); 253 return NULL; 254 } 255 256 ptl = pte_lockptr(mm, pmd); 257 spin_lock(ptl); 258 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 259 *ptlp = ptl; 260 return pte; 261 } 262 pte_unmap_unlock(pte, ptl); 263 return NULL; 264 } 265 266 /* 267 * Subfunctions of page_referenced: page_referenced_one called 268 * repeatedly from either page_referenced_anon or page_referenced_file. 269 */ 270 static int page_referenced_one(struct page *page, 271 struct vm_area_struct *vma, unsigned int *mapcount) 272 { 273 struct mm_struct *mm = vma->vm_mm; 274 unsigned long address; 275 pte_t *pte; 276 spinlock_t *ptl; 277 int referenced = 0; 278 279 address = vma_address(page, vma); 280 if (address == -EFAULT) 281 goto out; 282 283 pte = page_check_address(page, mm, address, &ptl); 284 if (!pte) 285 goto out; 286 287 if (ptep_clear_flush_young(vma, address, pte)) 288 referenced++; 289 290 /* Pretend the page is referenced if the task has the 291 swap token and is in the middle of a page fault. */ 292 if (mm != current->mm && has_swap_token(mm) && 293 rwsem_is_locked(&mm->mmap_sem)) 294 referenced++; 295 296 (*mapcount)--; 297 pte_unmap_unlock(pte, ptl); 298 out: 299 return referenced; 300 } 301 302 static int page_referenced_anon(struct page *page) 303 { 304 unsigned int mapcount; 305 struct anon_vma *anon_vma; 306 struct vm_area_struct *vma; 307 int referenced = 0; 308 309 anon_vma = page_lock_anon_vma(page); 310 if (!anon_vma) 311 return referenced; 312 313 mapcount = page_mapcount(page); 314 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 315 referenced += page_referenced_one(page, vma, &mapcount); 316 if (!mapcount) 317 break; 318 } 319 320 page_unlock_anon_vma(anon_vma); 321 return referenced; 322 } 323 324 /** 325 * page_referenced_file - referenced check for object-based rmap 326 * @page: the page we're checking references on. 327 * 328 * For an object-based mapped page, find all the places it is mapped and 329 * check/clear the referenced flag. This is done by following the page->mapping 330 * pointer, then walking the chain of vmas it holds. It returns the number 331 * of references it found. 332 * 333 * This function is only called from page_referenced for object-based pages. 334 */ 335 static int page_referenced_file(struct page *page) 336 { 337 unsigned int mapcount; 338 struct address_space *mapping = page->mapping; 339 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 340 struct vm_area_struct *vma; 341 struct prio_tree_iter iter; 342 int referenced = 0; 343 344 /* 345 * The caller's checks on page->mapping and !PageAnon have made 346 * sure that this is a file page: the check for page->mapping 347 * excludes the case just before it gets set on an anon page. 348 */ 349 BUG_ON(PageAnon(page)); 350 351 /* 352 * The page lock not only makes sure that page->mapping cannot 353 * suddenly be NULLified by truncation, it makes sure that the 354 * structure at mapping cannot be freed and reused yet, 355 * so we can safely take mapping->i_mmap_lock. 356 */ 357 BUG_ON(!PageLocked(page)); 358 359 spin_lock(&mapping->i_mmap_lock); 360 361 /* 362 * i_mmap_lock does not stabilize mapcount at all, but mapcount 363 * is more likely to be accurate if we note it after spinning. 364 */ 365 mapcount = page_mapcount(page); 366 367 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 368 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) 369 == (VM_LOCKED|VM_MAYSHARE)) { 370 referenced++; 371 break; 372 } 373 referenced += page_referenced_one(page, vma, &mapcount); 374 if (!mapcount) 375 break; 376 } 377 378 spin_unlock(&mapping->i_mmap_lock); 379 return referenced; 380 } 381 382 /** 383 * page_referenced - test if the page was referenced 384 * @page: the page to test 385 * @is_locked: caller holds lock on the page 386 * 387 * Quick test_and_clear_referenced for all mappings to a page, 388 * returns the number of ptes which referenced the page. 389 */ 390 int page_referenced(struct page *page, int is_locked) 391 { 392 int referenced = 0; 393 394 if (page_test_and_clear_young(page)) 395 referenced++; 396 397 if (TestClearPageReferenced(page)) 398 referenced++; 399 400 if (page_mapped(page) && page->mapping) { 401 if (PageAnon(page)) 402 referenced += page_referenced_anon(page); 403 else if (is_locked) 404 referenced += page_referenced_file(page); 405 else if (TestSetPageLocked(page)) 406 referenced++; 407 else { 408 if (page->mapping) 409 referenced += page_referenced_file(page); 410 unlock_page(page); 411 } 412 } 413 return referenced; 414 } 415 416 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma) 417 { 418 struct mm_struct *mm = vma->vm_mm; 419 unsigned long address; 420 pte_t *pte; 421 spinlock_t *ptl; 422 int ret = 0; 423 424 address = vma_address(page, vma); 425 if (address == -EFAULT) 426 goto out; 427 428 pte = page_check_address(page, mm, address, &ptl); 429 if (!pte) 430 goto out; 431 432 if (pte_dirty(*pte) || pte_write(*pte)) { 433 pte_t entry; 434 435 flush_cache_page(vma, address, pte_pfn(*pte)); 436 entry = ptep_clear_flush(vma, address, pte); 437 entry = pte_wrprotect(entry); 438 entry = pte_mkclean(entry); 439 set_pte_at(mm, address, pte, entry); 440 ret = 1; 441 } 442 443 pte_unmap_unlock(pte, ptl); 444 out: 445 return ret; 446 } 447 448 static int page_mkclean_file(struct address_space *mapping, struct page *page) 449 { 450 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 451 struct vm_area_struct *vma; 452 struct prio_tree_iter iter; 453 int ret = 0; 454 455 BUG_ON(PageAnon(page)); 456 457 spin_lock(&mapping->i_mmap_lock); 458 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 459 if (vma->vm_flags & VM_SHARED) 460 ret += page_mkclean_one(page, vma); 461 } 462 spin_unlock(&mapping->i_mmap_lock); 463 return ret; 464 } 465 466 int page_mkclean(struct page *page) 467 { 468 int ret = 0; 469 470 BUG_ON(!PageLocked(page)); 471 472 if (page_mapped(page)) { 473 struct address_space *mapping = page_mapping(page); 474 if (mapping) { 475 ret = page_mkclean_file(mapping, page); 476 if (page_test_dirty(page)) { 477 page_clear_dirty(page); 478 ret = 1; 479 } 480 } 481 } 482 483 return ret; 484 } 485 EXPORT_SYMBOL_GPL(page_mkclean); 486 487 /** 488 * page_set_anon_rmap - setup new anonymous rmap 489 * @page: the page to add the mapping to 490 * @vma: the vm area in which the mapping is added 491 * @address: the user virtual address mapped 492 */ 493 static void __page_set_anon_rmap(struct page *page, 494 struct vm_area_struct *vma, unsigned long address) 495 { 496 struct anon_vma *anon_vma = vma->anon_vma; 497 498 BUG_ON(!anon_vma); 499 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 500 page->mapping = (struct address_space *) anon_vma; 501 502 page->index = linear_page_index(vma, address); 503 504 /* 505 * nr_mapped state can be updated without turning off 506 * interrupts because it is not modified via interrupt. 507 */ 508 __inc_zone_page_state(page, NR_ANON_PAGES); 509 } 510 511 /** 512 * page_set_anon_rmap - sanity check anonymous rmap addition 513 * @page: the page to add the mapping to 514 * @vma: the vm area in which the mapping is added 515 * @address: the user virtual address mapped 516 */ 517 static void __page_check_anon_rmap(struct page *page, 518 struct vm_area_struct *vma, unsigned long address) 519 { 520 #ifdef CONFIG_DEBUG_VM 521 /* 522 * The page's anon-rmap details (mapping and index) are guaranteed to 523 * be set up correctly at this point. 524 * 525 * We have exclusion against page_add_anon_rmap because the caller 526 * always holds the page locked, except if called from page_dup_rmap, 527 * in which case the page is already known to be setup. 528 * 529 * We have exclusion against page_add_new_anon_rmap because those pages 530 * are initially only visible via the pagetables, and the pte is locked 531 * over the call to page_add_new_anon_rmap. 532 */ 533 struct anon_vma *anon_vma = vma->anon_vma; 534 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 535 BUG_ON(page->mapping != (struct address_space *)anon_vma); 536 BUG_ON(page->index != linear_page_index(vma, address)); 537 #endif 538 } 539 540 /** 541 * page_add_anon_rmap - add pte mapping to an anonymous page 542 * @page: the page to add the mapping to 543 * @vma: the vm area in which the mapping is added 544 * @address: the user virtual address mapped 545 * 546 * The caller needs to hold the pte lock and the page must be locked. 547 */ 548 void page_add_anon_rmap(struct page *page, 549 struct vm_area_struct *vma, unsigned long address) 550 { 551 VM_BUG_ON(!PageLocked(page)); 552 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 553 if (atomic_inc_and_test(&page->_mapcount)) 554 __page_set_anon_rmap(page, vma, address); 555 else 556 __page_check_anon_rmap(page, vma, address); 557 } 558 559 /* 560 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 561 * @page: the page to add the mapping to 562 * @vma: the vm area in which the mapping is added 563 * @address: the user virtual address mapped 564 * 565 * Same as page_add_anon_rmap but must only be called on *new* pages. 566 * This means the inc-and-test can be bypassed. 567 * Page does not have to be locked. 568 */ 569 void page_add_new_anon_rmap(struct page *page, 570 struct vm_area_struct *vma, unsigned long address) 571 { 572 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 573 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */ 574 __page_set_anon_rmap(page, vma, address); 575 } 576 577 /** 578 * page_add_file_rmap - add pte mapping to a file page 579 * @page: the page to add the mapping to 580 * 581 * The caller needs to hold the pte lock. 582 */ 583 void page_add_file_rmap(struct page *page) 584 { 585 if (atomic_inc_and_test(&page->_mapcount)) 586 __inc_zone_page_state(page, NR_FILE_MAPPED); 587 } 588 589 #ifdef CONFIG_DEBUG_VM 590 /** 591 * page_dup_rmap - duplicate pte mapping to a page 592 * @page: the page to add the mapping to 593 * 594 * For copy_page_range only: minimal extract from page_add_file_rmap / 595 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's 596 * quicker. 597 * 598 * The caller needs to hold the pte lock. 599 */ 600 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) 601 { 602 BUG_ON(page_mapcount(page) == 0); 603 if (PageAnon(page)) 604 __page_check_anon_rmap(page, vma, address); 605 atomic_inc(&page->_mapcount); 606 } 607 #endif 608 609 /** 610 * page_remove_rmap - take down pte mapping from a page 611 * @page: page to remove mapping from 612 * 613 * The caller needs to hold the pte lock. 614 */ 615 void page_remove_rmap(struct page *page, struct vm_area_struct *vma) 616 { 617 if (atomic_add_negative(-1, &page->_mapcount)) { 618 if (unlikely(page_mapcount(page) < 0)) { 619 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page)); 620 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page)); 621 printk (KERN_EMERG " page->flags = %lx\n", page->flags); 622 printk (KERN_EMERG " page->count = %x\n", page_count(page)); 623 printk (KERN_EMERG " page->mapping = %p\n", page->mapping); 624 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops); 625 if (vma->vm_ops) { 626 print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage); 627 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault); 628 } 629 if (vma->vm_file && vma->vm_file->f_op) 630 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap); 631 BUG(); 632 } 633 634 /* 635 * It would be tidy to reset the PageAnon mapping here, 636 * but that might overwrite a racing page_add_anon_rmap 637 * which increments mapcount after us but sets mapping 638 * before us: so leave the reset to free_hot_cold_page, 639 * and remember that it's only reliable while mapped. 640 * Leaving it set also helps swapoff to reinstate ptes 641 * faster for those pages still in swapcache. 642 */ 643 if (page_test_dirty(page)) { 644 page_clear_dirty(page); 645 set_page_dirty(page); 646 } 647 __dec_zone_page_state(page, 648 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED); 649 } 650 } 651 652 /* 653 * Subfunctions of try_to_unmap: try_to_unmap_one called 654 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 655 */ 656 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 657 int migration) 658 { 659 struct mm_struct *mm = vma->vm_mm; 660 unsigned long address; 661 pte_t *pte; 662 pte_t pteval; 663 spinlock_t *ptl; 664 int ret = SWAP_AGAIN; 665 666 address = vma_address(page, vma); 667 if (address == -EFAULT) 668 goto out; 669 670 pte = page_check_address(page, mm, address, &ptl); 671 if (!pte) 672 goto out; 673 674 /* 675 * If the page is mlock()d, we cannot swap it out. 676 * If it's recently referenced (perhaps page_referenced 677 * skipped over this mm) then we should reactivate it. 678 */ 679 if (!migration && ((vma->vm_flags & VM_LOCKED) || 680 (ptep_clear_flush_young(vma, address, pte)))) { 681 ret = SWAP_FAIL; 682 goto out_unmap; 683 } 684 685 /* Nuke the page table entry. */ 686 flush_cache_page(vma, address, page_to_pfn(page)); 687 pteval = ptep_clear_flush(vma, address, pte); 688 689 /* Move the dirty bit to the physical page now the pte is gone. */ 690 if (pte_dirty(pteval)) 691 set_page_dirty(page); 692 693 /* Update high watermark before we lower rss */ 694 update_hiwater_rss(mm); 695 696 if (PageAnon(page)) { 697 swp_entry_t entry = { .val = page_private(page) }; 698 699 if (PageSwapCache(page)) { 700 /* 701 * Store the swap location in the pte. 702 * See handle_pte_fault() ... 703 */ 704 swap_duplicate(entry); 705 if (list_empty(&mm->mmlist)) { 706 spin_lock(&mmlist_lock); 707 if (list_empty(&mm->mmlist)) 708 list_add(&mm->mmlist, &init_mm.mmlist); 709 spin_unlock(&mmlist_lock); 710 } 711 dec_mm_counter(mm, anon_rss); 712 #ifdef CONFIG_MIGRATION 713 } else { 714 /* 715 * Store the pfn of the page in a special migration 716 * pte. do_swap_page() will wait until the migration 717 * pte is removed and then restart fault handling. 718 */ 719 BUG_ON(!migration); 720 entry = make_migration_entry(page, pte_write(pteval)); 721 #endif 722 } 723 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 724 BUG_ON(pte_file(*pte)); 725 } else 726 #ifdef CONFIG_MIGRATION 727 if (migration) { 728 /* Establish migration entry for a file page */ 729 swp_entry_t entry; 730 entry = make_migration_entry(page, pte_write(pteval)); 731 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 732 } else 733 #endif 734 dec_mm_counter(mm, file_rss); 735 736 737 page_remove_rmap(page, vma); 738 page_cache_release(page); 739 740 out_unmap: 741 pte_unmap_unlock(pte, ptl); 742 out: 743 return ret; 744 } 745 746 /* 747 * objrmap doesn't work for nonlinear VMAs because the assumption that 748 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 749 * Consequently, given a particular page and its ->index, we cannot locate the 750 * ptes which are mapping that page without an exhaustive linear search. 751 * 752 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 753 * maps the file to which the target page belongs. The ->vm_private_data field 754 * holds the current cursor into that scan. Successive searches will circulate 755 * around the vma's virtual address space. 756 * 757 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 758 * more scanning pressure is placed against them as well. Eventually pages 759 * will become fully unmapped and are eligible for eviction. 760 * 761 * For very sparsely populated VMAs this is a little inefficient - chances are 762 * there there won't be many ptes located within the scan cluster. In this case 763 * maybe we could scan further - to the end of the pte page, perhaps. 764 */ 765 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 766 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 767 768 static void try_to_unmap_cluster(unsigned long cursor, 769 unsigned int *mapcount, struct vm_area_struct *vma) 770 { 771 struct mm_struct *mm = vma->vm_mm; 772 pgd_t *pgd; 773 pud_t *pud; 774 pmd_t *pmd; 775 pte_t *pte; 776 pte_t pteval; 777 spinlock_t *ptl; 778 struct page *page; 779 unsigned long address; 780 unsigned long end; 781 782 address = (vma->vm_start + cursor) & CLUSTER_MASK; 783 end = address + CLUSTER_SIZE; 784 if (address < vma->vm_start) 785 address = vma->vm_start; 786 if (end > vma->vm_end) 787 end = vma->vm_end; 788 789 pgd = pgd_offset(mm, address); 790 if (!pgd_present(*pgd)) 791 return; 792 793 pud = pud_offset(pgd, address); 794 if (!pud_present(*pud)) 795 return; 796 797 pmd = pmd_offset(pud, address); 798 if (!pmd_present(*pmd)) 799 return; 800 801 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 802 803 /* Update high watermark before we lower rss */ 804 update_hiwater_rss(mm); 805 806 for (; address < end; pte++, address += PAGE_SIZE) { 807 if (!pte_present(*pte)) 808 continue; 809 page = vm_normal_page(vma, address, *pte); 810 BUG_ON(!page || PageAnon(page)); 811 812 if (ptep_clear_flush_young(vma, address, pte)) 813 continue; 814 815 /* Nuke the page table entry. */ 816 flush_cache_page(vma, address, pte_pfn(*pte)); 817 pteval = ptep_clear_flush(vma, address, pte); 818 819 /* If nonlinear, store the file page offset in the pte. */ 820 if (page->index != linear_page_index(vma, address)) 821 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 822 823 /* Move the dirty bit to the physical page now the pte is gone. */ 824 if (pte_dirty(pteval)) 825 set_page_dirty(page); 826 827 page_remove_rmap(page, vma); 828 page_cache_release(page); 829 dec_mm_counter(mm, file_rss); 830 (*mapcount)--; 831 } 832 pte_unmap_unlock(pte - 1, ptl); 833 } 834 835 static int try_to_unmap_anon(struct page *page, int migration) 836 { 837 struct anon_vma *anon_vma; 838 struct vm_area_struct *vma; 839 int ret = SWAP_AGAIN; 840 841 anon_vma = page_lock_anon_vma(page); 842 if (!anon_vma) 843 return ret; 844 845 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 846 ret = try_to_unmap_one(page, vma, migration); 847 if (ret == SWAP_FAIL || !page_mapped(page)) 848 break; 849 } 850 851 page_unlock_anon_vma(anon_vma); 852 return ret; 853 } 854 855 /** 856 * try_to_unmap_file - unmap file page using the object-based rmap method 857 * @page: the page to unmap 858 * 859 * Find all the mappings of a page using the mapping pointer and the vma chains 860 * contained in the address_space struct it points to. 861 * 862 * This function is only called from try_to_unmap for object-based pages. 863 */ 864 static int try_to_unmap_file(struct page *page, int migration) 865 { 866 struct address_space *mapping = page->mapping; 867 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 868 struct vm_area_struct *vma; 869 struct prio_tree_iter iter; 870 int ret = SWAP_AGAIN; 871 unsigned long cursor; 872 unsigned long max_nl_cursor = 0; 873 unsigned long max_nl_size = 0; 874 unsigned int mapcount; 875 876 spin_lock(&mapping->i_mmap_lock); 877 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 878 ret = try_to_unmap_one(page, vma, migration); 879 if (ret == SWAP_FAIL || !page_mapped(page)) 880 goto out; 881 } 882 883 if (list_empty(&mapping->i_mmap_nonlinear)) 884 goto out; 885 886 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 887 shared.vm_set.list) { 888 if ((vma->vm_flags & VM_LOCKED) && !migration) 889 continue; 890 cursor = (unsigned long) vma->vm_private_data; 891 if (cursor > max_nl_cursor) 892 max_nl_cursor = cursor; 893 cursor = vma->vm_end - vma->vm_start; 894 if (cursor > max_nl_size) 895 max_nl_size = cursor; 896 } 897 898 if (max_nl_size == 0) { /* any nonlinears locked or reserved */ 899 ret = SWAP_FAIL; 900 goto out; 901 } 902 903 /* 904 * We don't try to search for this page in the nonlinear vmas, 905 * and page_referenced wouldn't have found it anyway. Instead 906 * just walk the nonlinear vmas trying to age and unmap some. 907 * The mapcount of the page we came in with is irrelevant, 908 * but even so use it as a guide to how hard we should try? 909 */ 910 mapcount = page_mapcount(page); 911 if (!mapcount) 912 goto out; 913 cond_resched_lock(&mapping->i_mmap_lock); 914 915 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 916 if (max_nl_cursor == 0) 917 max_nl_cursor = CLUSTER_SIZE; 918 919 do { 920 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 921 shared.vm_set.list) { 922 if ((vma->vm_flags & VM_LOCKED) && !migration) 923 continue; 924 cursor = (unsigned long) vma->vm_private_data; 925 while ( cursor < max_nl_cursor && 926 cursor < vma->vm_end - vma->vm_start) { 927 try_to_unmap_cluster(cursor, &mapcount, vma); 928 cursor += CLUSTER_SIZE; 929 vma->vm_private_data = (void *) cursor; 930 if ((int)mapcount <= 0) 931 goto out; 932 } 933 vma->vm_private_data = (void *) max_nl_cursor; 934 } 935 cond_resched_lock(&mapping->i_mmap_lock); 936 max_nl_cursor += CLUSTER_SIZE; 937 } while (max_nl_cursor <= max_nl_size); 938 939 /* 940 * Don't loop forever (perhaps all the remaining pages are 941 * in locked vmas). Reset cursor on all unreserved nonlinear 942 * vmas, now forgetting on which ones it had fallen behind. 943 */ 944 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 945 vma->vm_private_data = NULL; 946 out: 947 spin_unlock(&mapping->i_mmap_lock); 948 return ret; 949 } 950 951 /** 952 * try_to_unmap - try to remove all page table mappings to a page 953 * @page: the page to get unmapped 954 * 955 * Tries to remove all the page table entries which are mapping this 956 * page, used in the pageout path. Caller must hold the page lock. 957 * Return values are: 958 * 959 * SWAP_SUCCESS - we succeeded in removing all mappings 960 * SWAP_AGAIN - we missed a mapping, try again later 961 * SWAP_FAIL - the page is unswappable 962 */ 963 int try_to_unmap(struct page *page, int migration) 964 { 965 int ret; 966 967 BUG_ON(!PageLocked(page)); 968 969 if (PageAnon(page)) 970 ret = try_to_unmap_anon(page, migration); 971 else 972 ret = try_to_unmap_file(page, migration); 973 974 if (!page_mapped(page)) 975 ret = SWAP_SUCCESS; 976 return ret; 977 } 978 979