xref: /openbmc/linux/mm/rmap.c (revision 643d1f7f)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  *                   zone->lock (within radix tree node alloc)
40  */
41 
42 #include <linux/mm.h>
43 #include <linux/pagemap.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/slab.h>
47 #include <linux/init.h>
48 #include <linux/rmap.h>
49 #include <linux/rcupdate.h>
50 #include <linux/module.h>
51 #include <linux/kallsyms.h>
52 
53 #include <asm/tlbflush.h>
54 
55 struct kmem_cache *anon_vma_cachep;
56 
57 /* This must be called under the mmap_sem. */
58 int anon_vma_prepare(struct vm_area_struct *vma)
59 {
60 	struct anon_vma *anon_vma = vma->anon_vma;
61 
62 	might_sleep();
63 	if (unlikely(!anon_vma)) {
64 		struct mm_struct *mm = vma->vm_mm;
65 		struct anon_vma *allocated, *locked;
66 
67 		anon_vma = find_mergeable_anon_vma(vma);
68 		if (anon_vma) {
69 			allocated = NULL;
70 			locked = anon_vma;
71 			spin_lock(&locked->lock);
72 		} else {
73 			anon_vma = anon_vma_alloc();
74 			if (unlikely(!anon_vma))
75 				return -ENOMEM;
76 			allocated = anon_vma;
77 			locked = NULL;
78 		}
79 
80 		/* page_table_lock to protect against threads */
81 		spin_lock(&mm->page_table_lock);
82 		if (likely(!vma->anon_vma)) {
83 			vma->anon_vma = anon_vma;
84 			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
85 			allocated = NULL;
86 		}
87 		spin_unlock(&mm->page_table_lock);
88 
89 		if (locked)
90 			spin_unlock(&locked->lock);
91 		if (unlikely(allocated))
92 			anon_vma_free(allocated);
93 	}
94 	return 0;
95 }
96 
97 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
98 {
99 	BUG_ON(vma->anon_vma != next->anon_vma);
100 	list_del(&next->anon_vma_node);
101 }
102 
103 void __anon_vma_link(struct vm_area_struct *vma)
104 {
105 	struct anon_vma *anon_vma = vma->anon_vma;
106 
107 	if (anon_vma)
108 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
109 }
110 
111 void anon_vma_link(struct vm_area_struct *vma)
112 {
113 	struct anon_vma *anon_vma = vma->anon_vma;
114 
115 	if (anon_vma) {
116 		spin_lock(&anon_vma->lock);
117 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
118 		spin_unlock(&anon_vma->lock);
119 	}
120 }
121 
122 void anon_vma_unlink(struct vm_area_struct *vma)
123 {
124 	struct anon_vma *anon_vma = vma->anon_vma;
125 	int empty;
126 
127 	if (!anon_vma)
128 		return;
129 
130 	spin_lock(&anon_vma->lock);
131 	list_del(&vma->anon_vma_node);
132 
133 	/* We must garbage collect the anon_vma if it's empty */
134 	empty = list_empty(&anon_vma->head);
135 	spin_unlock(&anon_vma->lock);
136 
137 	if (empty)
138 		anon_vma_free(anon_vma);
139 }
140 
141 static void anon_vma_ctor(struct kmem_cache *cachep, void *data)
142 {
143 	struct anon_vma *anon_vma = data;
144 
145 	spin_lock_init(&anon_vma->lock);
146 	INIT_LIST_HEAD(&anon_vma->head);
147 }
148 
149 void __init anon_vma_init(void)
150 {
151 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
152 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
153 }
154 
155 /*
156  * Getting a lock on a stable anon_vma from a page off the LRU is
157  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
158  */
159 static struct anon_vma *page_lock_anon_vma(struct page *page)
160 {
161 	struct anon_vma *anon_vma;
162 	unsigned long anon_mapping;
163 
164 	rcu_read_lock();
165 	anon_mapping = (unsigned long) page->mapping;
166 	if (!(anon_mapping & PAGE_MAPPING_ANON))
167 		goto out;
168 	if (!page_mapped(page))
169 		goto out;
170 
171 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
172 	spin_lock(&anon_vma->lock);
173 	return anon_vma;
174 out:
175 	rcu_read_unlock();
176 	return NULL;
177 }
178 
179 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
180 {
181 	spin_unlock(&anon_vma->lock);
182 	rcu_read_unlock();
183 }
184 
185 /*
186  * At what user virtual address is page expected in @vma?
187  * Returns virtual address or -EFAULT if page's index/offset is not
188  * within the range mapped the @vma.
189  */
190 static inline unsigned long
191 vma_address(struct page *page, struct vm_area_struct *vma)
192 {
193 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
194 	unsigned long address;
195 
196 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
197 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
198 		/* page should be within @vma mapping range */
199 		return -EFAULT;
200 	}
201 	return address;
202 }
203 
204 /*
205  * At what user virtual address is page expected in vma? checking that the
206  * page matches the vma: currently only used on anon pages, by unuse_vma;
207  */
208 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
209 {
210 	if (PageAnon(page)) {
211 		if ((void *)vma->anon_vma !=
212 		    (void *)page->mapping - PAGE_MAPPING_ANON)
213 			return -EFAULT;
214 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
215 		if (!vma->vm_file ||
216 		    vma->vm_file->f_mapping != page->mapping)
217 			return -EFAULT;
218 	} else
219 		return -EFAULT;
220 	return vma_address(page, vma);
221 }
222 
223 /*
224  * Check that @page is mapped at @address into @mm.
225  *
226  * On success returns with pte mapped and locked.
227  */
228 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
229 			  unsigned long address, spinlock_t **ptlp)
230 {
231 	pgd_t *pgd;
232 	pud_t *pud;
233 	pmd_t *pmd;
234 	pte_t *pte;
235 	spinlock_t *ptl;
236 
237 	pgd = pgd_offset(mm, address);
238 	if (!pgd_present(*pgd))
239 		return NULL;
240 
241 	pud = pud_offset(pgd, address);
242 	if (!pud_present(*pud))
243 		return NULL;
244 
245 	pmd = pmd_offset(pud, address);
246 	if (!pmd_present(*pmd))
247 		return NULL;
248 
249 	pte = pte_offset_map(pmd, address);
250 	/* Make a quick check before getting the lock */
251 	if (!pte_present(*pte)) {
252 		pte_unmap(pte);
253 		return NULL;
254 	}
255 
256 	ptl = pte_lockptr(mm, pmd);
257 	spin_lock(ptl);
258 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
259 		*ptlp = ptl;
260 		return pte;
261 	}
262 	pte_unmap_unlock(pte, ptl);
263 	return NULL;
264 }
265 
266 /*
267  * Subfunctions of page_referenced: page_referenced_one called
268  * repeatedly from either page_referenced_anon or page_referenced_file.
269  */
270 static int page_referenced_one(struct page *page,
271 	struct vm_area_struct *vma, unsigned int *mapcount)
272 {
273 	struct mm_struct *mm = vma->vm_mm;
274 	unsigned long address;
275 	pte_t *pte;
276 	spinlock_t *ptl;
277 	int referenced = 0;
278 
279 	address = vma_address(page, vma);
280 	if (address == -EFAULT)
281 		goto out;
282 
283 	pte = page_check_address(page, mm, address, &ptl);
284 	if (!pte)
285 		goto out;
286 
287 	if (ptep_clear_flush_young(vma, address, pte))
288 		referenced++;
289 
290 	/* Pretend the page is referenced if the task has the
291 	   swap token and is in the middle of a page fault. */
292 	if (mm != current->mm && has_swap_token(mm) &&
293 			rwsem_is_locked(&mm->mmap_sem))
294 		referenced++;
295 
296 	(*mapcount)--;
297 	pte_unmap_unlock(pte, ptl);
298 out:
299 	return referenced;
300 }
301 
302 static int page_referenced_anon(struct page *page)
303 {
304 	unsigned int mapcount;
305 	struct anon_vma *anon_vma;
306 	struct vm_area_struct *vma;
307 	int referenced = 0;
308 
309 	anon_vma = page_lock_anon_vma(page);
310 	if (!anon_vma)
311 		return referenced;
312 
313 	mapcount = page_mapcount(page);
314 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
315 		referenced += page_referenced_one(page, vma, &mapcount);
316 		if (!mapcount)
317 			break;
318 	}
319 
320 	page_unlock_anon_vma(anon_vma);
321 	return referenced;
322 }
323 
324 /**
325  * page_referenced_file - referenced check for object-based rmap
326  * @page: the page we're checking references on.
327  *
328  * For an object-based mapped page, find all the places it is mapped and
329  * check/clear the referenced flag.  This is done by following the page->mapping
330  * pointer, then walking the chain of vmas it holds.  It returns the number
331  * of references it found.
332  *
333  * This function is only called from page_referenced for object-based pages.
334  */
335 static int page_referenced_file(struct page *page)
336 {
337 	unsigned int mapcount;
338 	struct address_space *mapping = page->mapping;
339 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
340 	struct vm_area_struct *vma;
341 	struct prio_tree_iter iter;
342 	int referenced = 0;
343 
344 	/*
345 	 * The caller's checks on page->mapping and !PageAnon have made
346 	 * sure that this is a file page: the check for page->mapping
347 	 * excludes the case just before it gets set on an anon page.
348 	 */
349 	BUG_ON(PageAnon(page));
350 
351 	/*
352 	 * The page lock not only makes sure that page->mapping cannot
353 	 * suddenly be NULLified by truncation, it makes sure that the
354 	 * structure at mapping cannot be freed and reused yet,
355 	 * so we can safely take mapping->i_mmap_lock.
356 	 */
357 	BUG_ON(!PageLocked(page));
358 
359 	spin_lock(&mapping->i_mmap_lock);
360 
361 	/*
362 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
363 	 * is more likely to be accurate if we note it after spinning.
364 	 */
365 	mapcount = page_mapcount(page);
366 
367 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
368 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
369 				  == (VM_LOCKED|VM_MAYSHARE)) {
370 			referenced++;
371 			break;
372 		}
373 		referenced += page_referenced_one(page, vma, &mapcount);
374 		if (!mapcount)
375 			break;
376 	}
377 
378 	spin_unlock(&mapping->i_mmap_lock);
379 	return referenced;
380 }
381 
382 /**
383  * page_referenced - test if the page was referenced
384  * @page: the page to test
385  * @is_locked: caller holds lock on the page
386  *
387  * Quick test_and_clear_referenced for all mappings to a page,
388  * returns the number of ptes which referenced the page.
389  */
390 int page_referenced(struct page *page, int is_locked)
391 {
392 	int referenced = 0;
393 
394 	if (page_test_and_clear_young(page))
395 		referenced++;
396 
397 	if (TestClearPageReferenced(page))
398 		referenced++;
399 
400 	if (page_mapped(page) && page->mapping) {
401 		if (PageAnon(page))
402 			referenced += page_referenced_anon(page);
403 		else if (is_locked)
404 			referenced += page_referenced_file(page);
405 		else if (TestSetPageLocked(page))
406 			referenced++;
407 		else {
408 			if (page->mapping)
409 				referenced += page_referenced_file(page);
410 			unlock_page(page);
411 		}
412 	}
413 	return referenced;
414 }
415 
416 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
417 {
418 	struct mm_struct *mm = vma->vm_mm;
419 	unsigned long address;
420 	pte_t *pte;
421 	spinlock_t *ptl;
422 	int ret = 0;
423 
424 	address = vma_address(page, vma);
425 	if (address == -EFAULT)
426 		goto out;
427 
428 	pte = page_check_address(page, mm, address, &ptl);
429 	if (!pte)
430 		goto out;
431 
432 	if (pte_dirty(*pte) || pte_write(*pte)) {
433 		pte_t entry;
434 
435 		flush_cache_page(vma, address, pte_pfn(*pte));
436 		entry = ptep_clear_flush(vma, address, pte);
437 		entry = pte_wrprotect(entry);
438 		entry = pte_mkclean(entry);
439 		set_pte_at(mm, address, pte, entry);
440 		ret = 1;
441 	}
442 
443 	pte_unmap_unlock(pte, ptl);
444 out:
445 	return ret;
446 }
447 
448 static int page_mkclean_file(struct address_space *mapping, struct page *page)
449 {
450 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
451 	struct vm_area_struct *vma;
452 	struct prio_tree_iter iter;
453 	int ret = 0;
454 
455 	BUG_ON(PageAnon(page));
456 
457 	spin_lock(&mapping->i_mmap_lock);
458 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
459 		if (vma->vm_flags & VM_SHARED)
460 			ret += page_mkclean_one(page, vma);
461 	}
462 	spin_unlock(&mapping->i_mmap_lock);
463 	return ret;
464 }
465 
466 int page_mkclean(struct page *page)
467 {
468 	int ret = 0;
469 
470 	BUG_ON(!PageLocked(page));
471 
472 	if (page_mapped(page)) {
473 		struct address_space *mapping = page_mapping(page);
474 		if (mapping) {
475 			ret = page_mkclean_file(mapping, page);
476 			if (page_test_dirty(page)) {
477 				page_clear_dirty(page);
478 				ret = 1;
479 			}
480 		}
481 	}
482 
483 	return ret;
484 }
485 EXPORT_SYMBOL_GPL(page_mkclean);
486 
487 /**
488  * page_set_anon_rmap - setup new anonymous rmap
489  * @page:	the page to add the mapping to
490  * @vma:	the vm area in which the mapping is added
491  * @address:	the user virtual address mapped
492  */
493 static void __page_set_anon_rmap(struct page *page,
494 	struct vm_area_struct *vma, unsigned long address)
495 {
496 	struct anon_vma *anon_vma = vma->anon_vma;
497 
498 	BUG_ON(!anon_vma);
499 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
500 	page->mapping = (struct address_space *) anon_vma;
501 
502 	page->index = linear_page_index(vma, address);
503 
504 	/*
505 	 * nr_mapped state can be updated without turning off
506 	 * interrupts because it is not modified via interrupt.
507 	 */
508 	__inc_zone_page_state(page, NR_ANON_PAGES);
509 }
510 
511 /**
512  * page_set_anon_rmap - sanity check anonymous rmap addition
513  * @page:	the page to add the mapping to
514  * @vma:	the vm area in which the mapping is added
515  * @address:	the user virtual address mapped
516  */
517 static void __page_check_anon_rmap(struct page *page,
518 	struct vm_area_struct *vma, unsigned long address)
519 {
520 #ifdef CONFIG_DEBUG_VM
521 	/*
522 	 * The page's anon-rmap details (mapping and index) are guaranteed to
523 	 * be set up correctly at this point.
524 	 *
525 	 * We have exclusion against page_add_anon_rmap because the caller
526 	 * always holds the page locked, except if called from page_dup_rmap,
527 	 * in which case the page is already known to be setup.
528 	 *
529 	 * We have exclusion against page_add_new_anon_rmap because those pages
530 	 * are initially only visible via the pagetables, and the pte is locked
531 	 * over the call to page_add_new_anon_rmap.
532 	 */
533 	struct anon_vma *anon_vma = vma->anon_vma;
534 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
535 	BUG_ON(page->mapping != (struct address_space *)anon_vma);
536 	BUG_ON(page->index != linear_page_index(vma, address));
537 #endif
538 }
539 
540 /**
541  * page_add_anon_rmap - add pte mapping to an anonymous page
542  * @page:	the page to add the mapping to
543  * @vma:	the vm area in which the mapping is added
544  * @address:	the user virtual address mapped
545  *
546  * The caller needs to hold the pte lock and the page must be locked.
547  */
548 void page_add_anon_rmap(struct page *page,
549 	struct vm_area_struct *vma, unsigned long address)
550 {
551 	VM_BUG_ON(!PageLocked(page));
552 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
553 	if (atomic_inc_and_test(&page->_mapcount))
554 		__page_set_anon_rmap(page, vma, address);
555 	else
556 		__page_check_anon_rmap(page, vma, address);
557 }
558 
559 /*
560  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
561  * @page:	the page to add the mapping to
562  * @vma:	the vm area in which the mapping is added
563  * @address:	the user virtual address mapped
564  *
565  * Same as page_add_anon_rmap but must only be called on *new* pages.
566  * This means the inc-and-test can be bypassed.
567  * Page does not have to be locked.
568  */
569 void page_add_new_anon_rmap(struct page *page,
570 	struct vm_area_struct *vma, unsigned long address)
571 {
572 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
573 	atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
574 	__page_set_anon_rmap(page, vma, address);
575 }
576 
577 /**
578  * page_add_file_rmap - add pte mapping to a file page
579  * @page: the page to add the mapping to
580  *
581  * The caller needs to hold the pte lock.
582  */
583 void page_add_file_rmap(struct page *page)
584 {
585 	if (atomic_inc_and_test(&page->_mapcount))
586 		__inc_zone_page_state(page, NR_FILE_MAPPED);
587 }
588 
589 #ifdef CONFIG_DEBUG_VM
590 /**
591  * page_dup_rmap - duplicate pte mapping to a page
592  * @page:	the page to add the mapping to
593  *
594  * For copy_page_range only: minimal extract from page_add_file_rmap /
595  * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
596  * quicker.
597  *
598  * The caller needs to hold the pte lock.
599  */
600 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
601 {
602 	BUG_ON(page_mapcount(page) == 0);
603 	if (PageAnon(page))
604 		__page_check_anon_rmap(page, vma, address);
605 	atomic_inc(&page->_mapcount);
606 }
607 #endif
608 
609 /**
610  * page_remove_rmap - take down pte mapping from a page
611  * @page: page to remove mapping from
612  *
613  * The caller needs to hold the pte lock.
614  */
615 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
616 {
617 	if (atomic_add_negative(-1, &page->_mapcount)) {
618 		if (unlikely(page_mapcount(page) < 0)) {
619 			printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
620 			printk (KERN_EMERG "  page pfn = %lx\n", page_to_pfn(page));
621 			printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
622 			printk (KERN_EMERG "  page->count = %x\n", page_count(page));
623 			printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
624 			print_symbol (KERN_EMERG "  vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
625 			if (vma->vm_ops) {
626 				print_symbol (KERN_EMERG "  vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
627 				print_symbol (KERN_EMERG "  vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
628 			}
629 			if (vma->vm_file && vma->vm_file->f_op)
630 				print_symbol (KERN_EMERG "  vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
631 			BUG();
632 		}
633 
634 		/*
635 		 * It would be tidy to reset the PageAnon mapping here,
636 		 * but that might overwrite a racing page_add_anon_rmap
637 		 * which increments mapcount after us but sets mapping
638 		 * before us: so leave the reset to free_hot_cold_page,
639 		 * and remember that it's only reliable while mapped.
640 		 * Leaving it set also helps swapoff to reinstate ptes
641 		 * faster for those pages still in swapcache.
642 		 */
643 		if (page_test_dirty(page)) {
644 			page_clear_dirty(page);
645 			set_page_dirty(page);
646 		}
647 		__dec_zone_page_state(page,
648 				PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
649 	}
650 }
651 
652 /*
653  * Subfunctions of try_to_unmap: try_to_unmap_one called
654  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
655  */
656 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
657 				int migration)
658 {
659 	struct mm_struct *mm = vma->vm_mm;
660 	unsigned long address;
661 	pte_t *pte;
662 	pte_t pteval;
663 	spinlock_t *ptl;
664 	int ret = SWAP_AGAIN;
665 
666 	address = vma_address(page, vma);
667 	if (address == -EFAULT)
668 		goto out;
669 
670 	pte = page_check_address(page, mm, address, &ptl);
671 	if (!pte)
672 		goto out;
673 
674 	/*
675 	 * If the page is mlock()d, we cannot swap it out.
676 	 * If it's recently referenced (perhaps page_referenced
677 	 * skipped over this mm) then we should reactivate it.
678 	 */
679 	if (!migration && ((vma->vm_flags & VM_LOCKED) ||
680 			(ptep_clear_flush_young(vma, address, pte)))) {
681 		ret = SWAP_FAIL;
682 		goto out_unmap;
683 	}
684 
685 	/* Nuke the page table entry. */
686 	flush_cache_page(vma, address, page_to_pfn(page));
687 	pteval = ptep_clear_flush(vma, address, pte);
688 
689 	/* Move the dirty bit to the physical page now the pte is gone. */
690 	if (pte_dirty(pteval))
691 		set_page_dirty(page);
692 
693 	/* Update high watermark before we lower rss */
694 	update_hiwater_rss(mm);
695 
696 	if (PageAnon(page)) {
697 		swp_entry_t entry = { .val = page_private(page) };
698 
699 		if (PageSwapCache(page)) {
700 			/*
701 			 * Store the swap location in the pte.
702 			 * See handle_pte_fault() ...
703 			 */
704 			swap_duplicate(entry);
705 			if (list_empty(&mm->mmlist)) {
706 				spin_lock(&mmlist_lock);
707 				if (list_empty(&mm->mmlist))
708 					list_add(&mm->mmlist, &init_mm.mmlist);
709 				spin_unlock(&mmlist_lock);
710 			}
711 			dec_mm_counter(mm, anon_rss);
712 #ifdef CONFIG_MIGRATION
713 		} else {
714 			/*
715 			 * Store the pfn of the page in a special migration
716 			 * pte. do_swap_page() will wait until the migration
717 			 * pte is removed and then restart fault handling.
718 			 */
719 			BUG_ON(!migration);
720 			entry = make_migration_entry(page, pte_write(pteval));
721 #endif
722 		}
723 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
724 		BUG_ON(pte_file(*pte));
725 	} else
726 #ifdef CONFIG_MIGRATION
727 	if (migration) {
728 		/* Establish migration entry for a file page */
729 		swp_entry_t entry;
730 		entry = make_migration_entry(page, pte_write(pteval));
731 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
732 	} else
733 #endif
734 		dec_mm_counter(mm, file_rss);
735 
736 
737 	page_remove_rmap(page, vma);
738 	page_cache_release(page);
739 
740 out_unmap:
741 	pte_unmap_unlock(pte, ptl);
742 out:
743 	return ret;
744 }
745 
746 /*
747  * objrmap doesn't work for nonlinear VMAs because the assumption that
748  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
749  * Consequently, given a particular page and its ->index, we cannot locate the
750  * ptes which are mapping that page without an exhaustive linear search.
751  *
752  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
753  * maps the file to which the target page belongs.  The ->vm_private_data field
754  * holds the current cursor into that scan.  Successive searches will circulate
755  * around the vma's virtual address space.
756  *
757  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
758  * more scanning pressure is placed against them as well.   Eventually pages
759  * will become fully unmapped and are eligible for eviction.
760  *
761  * For very sparsely populated VMAs this is a little inefficient - chances are
762  * there there won't be many ptes located within the scan cluster.  In this case
763  * maybe we could scan further - to the end of the pte page, perhaps.
764  */
765 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
766 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
767 
768 static void try_to_unmap_cluster(unsigned long cursor,
769 	unsigned int *mapcount, struct vm_area_struct *vma)
770 {
771 	struct mm_struct *mm = vma->vm_mm;
772 	pgd_t *pgd;
773 	pud_t *pud;
774 	pmd_t *pmd;
775 	pte_t *pte;
776 	pte_t pteval;
777 	spinlock_t *ptl;
778 	struct page *page;
779 	unsigned long address;
780 	unsigned long end;
781 
782 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
783 	end = address + CLUSTER_SIZE;
784 	if (address < vma->vm_start)
785 		address = vma->vm_start;
786 	if (end > vma->vm_end)
787 		end = vma->vm_end;
788 
789 	pgd = pgd_offset(mm, address);
790 	if (!pgd_present(*pgd))
791 		return;
792 
793 	pud = pud_offset(pgd, address);
794 	if (!pud_present(*pud))
795 		return;
796 
797 	pmd = pmd_offset(pud, address);
798 	if (!pmd_present(*pmd))
799 		return;
800 
801 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
802 
803 	/* Update high watermark before we lower rss */
804 	update_hiwater_rss(mm);
805 
806 	for (; address < end; pte++, address += PAGE_SIZE) {
807 		if (!pte_present(*pte))
808 			continue;
809 		page = vm_normal_page(vma, address, *pte);
810 		BUG_ON(!page || PageAnon(page));
811 
812 		if (ptep_clear_flush_young(vma, address, pte))
813 			continue;
814 
815 		/* Nuke the page table entry. */
816 		flush_cache_page(vma, address, pte_pfn(*pte));
817 		pteval = ptep_clear_flush(vma, address, pte);
818 
819 		/* If nonlinear, store the file page offset in the pte. */
820 		if (page->index != linear_page_index(vma, address))
821 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
822 
823 		/* Move the dirty bit to the physical page now the pte is gone. */
824 		if (pte_dirty(pteval))
825 			set_page_dirty(page);
826 
827 		page_remove_rmap(page, vma);
828 		page_cache_release(page);
829 		dec_mm_counter(mm, file_rss);
830 		(*mapcount)--;
831 	}
832 	pte_unmap_unlock(pte - 1, ptl);
833 }
834 
835 static int try_to_unmap_anon(struct page *page, int migration)
836 {
837 	struct anon_vma *anon_vma;
838 	struct vm_area_struct *vma;
839 	int ret = SWAP_AGAIN;
840 
841 	anon_vma = page_lock_anon_vma(page);
842 	if (!anon_vma)
843 		return ret;
844 
845 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
846 		ret = try_to_unmap_one(page, vma, migration);
847 		if (ret == SWAP_FAIL || !page_mapped(page))
848 			break;
849 	}
850 
851 	page_unlock_anon_vma(anon_vma);
852 	return ret;
853 }
854 
855 /**
856  * try_to_unmap_file - unmap file page using the object-based rmap method
857  * @page: the page to unmap
858  *
859  * Find all the mappings of a page using the mapping pointer and the vma chains
860  * contained in the address_space struct it points to.
861  *
862  * This function is only called from try_to_unmap for object-based pages.
863  */
864 static int try_to_unmap_file(struct page *page, int migration)
865 {
866 	struct address_space *mapping = page->mapping;
867 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
868 	struct vm_area_struct *vma;
869 	struct prio_tree_iter iter;
870 	int ret = SWAP_AGAIN;
871 	unsigned long cursor;
872 	unsigned long max_nl_cursor = 0;
873 	unsigned long max_nl_size = 0;
874 	unsigned int mapcount;
875 
876 	spin_lock(&mapping->i_mmap_lock);
877 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
878 		ret = try_to_unmap_one(page, vma, migration);
879 		if (ret == SWAP_FAIL || !page_mapped(page))
880 			goto out;
881 	}
882 
883 	if (list_empty(&mapping->i_mmap_nonlinear))
884 		goto out;
885 
886 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
887 						shared.vm_set.list) {
888 		if ((vma->vm_flags & VM_LOCKED) && !migration)
889 			continue;
890 		cursor = (unsigned long) vma->vm_private_data;
891 		if (cursor > max_nl_cursor)
892 			max_nl_cursor = cursor;
893 		cursor = vma->vm_end - vma->vm_start;
894 		if (cursor > max_nl_size)
895 			max_nl_size = cursor;
896 	}
897 
898 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
899 		ret = SWAP_FAIL;
900 		goto out;
901 	}
902 
903 	/*
904 	 * We don't try to search for this page in the nonlinear vmas,
905 	 * and page_referenced wouldn't have found it anyway.  Instead
906 	 * just walk the nonlinear vmas trying to age and unmap some.
907 	 * The mapcount of the page we came in with is irrelevant,
908 	 * but even so use it as a guide to how hard we should try?
909 	 */
910 	mapcount = page_mapcount(page);
911 	if (!mapcount)
912 		goto out;
913 	cond_resched_lock(&mapping->i_mmap_lock);
914 
915 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
916 	if (max_nl_cursor == 0)
917 		max_nl_cursor = CLUSTER_SIZE;
918 
919 	do {
920 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
921 						shared.vm_set.list) {
922 			if ((vma->vm_flags & VM_LOCKED) && !migration)
923 				continue;
924 			cursor = (unsigned long) vma->vm_private_data;
925 			while ( cursor < max_nl_cursor &&
926 				cursor < vma->vm_end - vma->vm_start) {
927 				try_to_unmap_cluster(cursor, &mapcount, vma);
928 				cursor += CLUSTER_SIZE;
929 				vma->vm_private_data = (void *) cursor;
930 				if ((int)mapcount <= 0)
931 					goto out;
932 			}
933 			vma->vm_private_data = (void *) max_nl_cursor;
934 		}
935 		cond_resched_lock(&mapping->i_mmap_lock);
936 		max_nl_cursor += CLUSTER_SIZE;
937 	} while (max_nl_cursor <= max_nl_size);
938 
939 	/*
940 	 * Don't loop forever (perhaps all the remaining pages are
941 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
942 	 * vmas, now forgetting on which ones it had fallen behind.
943 	 */
944 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
945 		vma->vm_private_data = NULL;
946 out:
947 	spin_unlock(&mapping->i_mmap_lock);
948 	return ret;
949 }
950 
951 /**
952  * try_to_unmap - try to remove all page table mappings to a page
953  * @page: the page to get unmapped
954  *
955  * Tries to remove all the page table entries which are mapping this
956  * page, used in the pageout path.  Caller must hold the page lock.
957  * Return values are:
958  *
959  * SWAP_SUCCESS	- we succeeded in removing all mappings
960  * SWAP_AGAIN	- we missed a mapping, try again later
961  * SWAP_FAIL	- the page is unswappable
962  */
963 int try_to_unmap(struct page *page, int migration)
964 {
965 	int ret;
966 
967 	BUG_ON(!PageLocked(page));
968 
969 	if (PageAnon(page))
970 		ret = try_to_unmap_anon(page, migration);
971 	else
972 		ret = try_to_unmap_file(page, migration);
973 
974 	if (!page_mapped(page))
975 		ret = SWAP_SUCCESS;
976 	return ret;
977 }
978 
979