1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * page->flags PG_locked (lock_page) 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * mapping->i_mmap_rwsem 29 * anon_vma->rwsem 30 * mm->page_table_lock or pte_lock 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in block_dirty_folio) 34 * folio_lock_memcg move_lock (in block_dirty_folio) 35 * i_pages lock (widely used) 36 * lruvec->lru_lock (in folio_lruvec_lock_irq) 37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 39 * sb_lock (within inode_lock in fs/fs-writeback.c) 40 * i_pages lock (widely used, in set_page_dirty, 41 * in arch-dependent flush_dcache_mmap_lock, 42 * within bdi.wb->list_lock in __sync_single_inode) 43 * 44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 45 * ->tasklist_lock 46 * pte map lock 47 * 48 * hugetlbfs PageHuge() take locks in this order: 49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 50 * vma_lock (hugetlb specific lock for pmd_sharing) 51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 52 * page->flags PG_locked (lock_page) 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/swapops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 #include <linux/mm_inline.h> 77 78 #include <asm/tlbflush.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/tlb.h> 82 #include <trace/events/migrate.h> 83 84 #include "internal.h" 85 86 static struct kmem_cache *anon_vma_cachep; 87 static struct kmem_cache *anon_vma_chain_cachep; 88 89 static inline struct anon_vma *anon_vma_alloc(void) 90 { 91 struct anon_vma *anon_vma; 92 93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 94 if (anon_vma) { 95 atomic_set(&anon_vma->refcount, 1); 96 anon_vma->num_children = 0; 97 anon_vma->num_active_vmas = 0; 98 anon_vma->parent = anon_vma; 99 /* 100 * Initialise the anon_vma root to point to itself. If called 101 * from fork, the root will be reset to the parents anon_vma. 102 */ 103 anon_vma->root = anon_vma; 104 } 105 106 return anon_vma; 107 } 108 109 static inline void anon_vma_free(struct anon_vma *anon_vma) 110 { 111 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 112 113 /* 114 * Synchronize against folio_lock_anon_vma_read() such that 115 * we can safely hold the lock without the anon_vma getting 116 * freed. 117 * 118 * Relies on the full mb implied by the atomic_dec_and_test() from 119 * put_anon_vma() against the acquire barrier implied by 120 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 121 * 122 * folio_lock_anon_vma_read() VS put_anon_vma() 123 * down_read_trylock() atomic_dec_and_test() 124 * LOCK MB 125 * atomic_read() rwsem_is_locked() 126 * 127 * LOCK should suffice since the actual taking of the lock must 128 * happen _before_ what follows. 129 */ 130 might_sleep(); 131 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 132 anon_vma_lock_write(anon_vma); 133 anon_vma_unlock_write(anon_vma); 134 } 135 136 kmem_cache_free(anon_vma_cachep, anon_vma); 137 } 138 139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 140 { 141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 142 } 143 144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 145 { 146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 147 } 148 149 static void anon_vma_chain_link(struct vm_area_struct *vma, 150 struct anon_vma_chain *avc, 151 struct anon_vma *anon_vma) 152 { 153 avc->vma = vma; 154 avc->anon_vma = anon_vma; 155 list_add(&avc->same_vma, &vma->anon_vma_chain); 156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 157 } 158 159 /** 160 * __anon_vma_prepare - attach an anon_vma to a memory region 161 * @vma: the memory region in question 162 * 163 * This makes sure the memory mapping described by 'vma' has 164 * an 'anon_vma' attached to it, so that we can associate the 165 * anonymous pages mapped into it with that anon_vma. 166 * 167 * The common case will be that we already have one, which 168 * is handled inline by anon_vma_prepare(). But if 169 * not we either need to find an adjacent mapping that we 170 * can re-use the anon_vma from (very common when the only 171 * reason for splitting a vma has been mprotect()), or we 172 * allocate a new one. 173 * 174 * Anon-vma allocations are very subtle, because we may have 175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 176 * and that may actually touch the rwsem even in the newly 177 * allocated vma (it depends on RCU to make sure that the 178 * anon_vma isn't actually destroyed). 179 * 180 * As a result, we need to do proper anon_vma locking even 181 * for the new allocation. At the same time, we do not want 182 * to do any locking for the common case of already having 183 * an anon_vma. 184 * 185 * This must be called with the mmap_lock held for reading. 186 */ 187 int __anon_vma_prepare(struct vm_area_struct *vma) 188 { 189 struct mm_struct *mm = vma->vm_mm; 190 struct anon_vma *anon_vma, *allocated; 191 struct anon_vma_chain *avc; 192 193 might_sleep(); 194 195 avc = anon_vma_chain_alloc(GFP_KERNEL); 196 if (!avc) 197 goto out_enomem; 198 199 anon_vma = find_mergeable_anon_vma(vma); 200 allocated = NULL; 201 if (!anon_vma) { 202 anon_vma = anon_vma_alloc(); 203 if (unlikely(!anon_vma)) 204 goto out_enomem_free_avc; 205 anon_vma->num_children++; /* self-parent link for new root */ 206 allocated = anon_vma; 207 } 208 209 anon_vma_lock_write(anon_vma); 210 /* page_table_lock to protect against threads */ 211 spin_lock(&mm->page_table_lock); 212 if (likely(!vma->anon_vma)) { 213 vma->anon_vma = anon_vma; 214 anon_vma_chain_link(vma, avc, anon_vma); 215 anon_vma->num_active_vmas++; 216 allocated = NULL; 217 avc = NULL; 218 } 219 spin_unlock(&mm->page_table_lock); 220 anon_vma_unlock_write(anon_vma); 221 222 if (unlikely(allocated)) 223 put_anon_vma(allocated); 224 if (unlikely(avc)) 225 anon_vma_chain_free(avc); 226 227 return 0; 228 229 out_enomem_free_avc: 230 anon_vma_chain_free(avc); 231 out_enomem: 232 return -ENOMEM; 233 } 234 235 /* 236 * This is a useful helper function for locking the anon_vma root as 237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 238 * have the same vma. 239 * 240 * Such anon_vma's should have the same root, so you'd expect to see 241 * just a single mutex_lock for the whole traversal. 242 */ 243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 244 { 245 struct anon_vma *new_root = anon_vma->root; 246 if (new_root != root) { 247 if (WARN_ON_ONCE(root)) 248 up_write(&root->rwsem); 249 root = new_root; 250 down_write(&root->rwsem); 251 } 252 return root; 253 } 254 255 static inline void unlock_anon_vma_root(struct anon_vma *root) 256 { 257 if (root) 258 up_write(&root->rwsem); 259 } 260 261 /* 262 * Attach the anon_vmas from src to dst. 263 * Returns 0 on success, -ENOMEM on failure. 264 * 265 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and 266 * anon_vma_fork(). The first three want an exact copy of src, while the last 267 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent 268 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, 269 * we can identify this case by checking (!dst->anon_vma && src->anon_vma). 270 * 271 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 272 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 273 * This prevents degradation of anon_vma hierarchy to endless linear chain in 274 * case of constantly forking task. On the other hand, an anon_vma with more 275 * than one child isn't reused even if there was no alive vma, thus rmap 276 * walker has a good chance of avoiding scanning the whole hierarchy when it 277 * searches where page is mapped. 278 */ 279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 280 { 281 struct anon_vma_chain *avc, *pavc; 282 struct anon_vma *root = NULL; 283 284 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 285 struct anon_vma *anon_vma; 286 287 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 288 if (unlikely(!avc)) { 289 unlock_anon_vma_root(root); 290 root = NULL; 291 avc = anon_vma_chain_alloc(GFP_KERNEL); 292 if (!avc) 293 goto enomem_failure; 294 } 295 anon_vma = pavc->anon_vma; 296 root = lock_anon_vma_root(root, anon_vma); 297 anon_vma_chain_link(dst, avc, anon_vma); 298 299 /* 300 * Reuse existing anon_vma if it has no vma and only one 301 * anon_vma child. 302 * 303 * Root anon_vma is never reused: 304 * it has self-parent reference and at least one child. 305 */ 306 if (!dst->anon_vma && src->anon_vma && 307 anon_vma->num_children < 2 && 308 anon_vma->num_active_vmas == 0) 309 dst->anon_vma = anon_vma; 310 } 311 if (dst->anon_vma) 312 dst->anon_vma->num_active_vmas++; 313 unlock_anon_vma_root(root); 314 return 0; 315 316 enomem_failure: 317 /* 318 * dst->anon_vma is dropped here otherwise its num_active_vmas can 319 * be incorrectly decremented in unlink_anon_vmas(). 320 * We can safely do this because callers of anon_vma_clone() don't care 321 * about dst->anon_vma if anon_vma_clone() failed. 322 */ 323 dst->anon_vma = NULL; 324 unlink_anon_vmas(dst); 325 return -ENOMEM; 326 } 327 328 /* 329 * Attach vma to its own anon_vma, as well as to the anon_vmas that 330 * the corresponding VMA in the parent process is attached to. 331 * Returns 0 on success, non-zero on failure. 332 */ 333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 334 { 335 struct anon_vma_chain *avc; 336 struct anon_vma *anon_vma; 337 int error; 338 339 /* Don't bother if the parent process has no anon_vma here. */ 340 if (!pvma->anon_vma) 341 return 0; 342 343 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 344 vma->anon_vma = NULL; 345 346 /* 347 * First, attach the new VMA to the parent VMA's anon_vmas, 348 * so rmap can find non-COWed pages in child processes. 349 */ 350 error = anon_vma_clone(vma, pvma); 351 if (error) 352 return error; 353 354 /* An existing anon_vma has been reused, all done then. */ 355 if (vma->anon_vma) 356 return 0; 357 358 /* Then add our own anon_vma. */ 359 anon_vma = anon_vma_alloc(); 360 if (!anon_vma) 361 goto out_error; 362 anon_vma->num_active_vmas++; 363 avc = anon_vma_chain_alloc(GFP_KERNEL); 364 if (!avc) 365 goto out_error_free_anon_vma; 366 367 /* 368 * The root anon_vma's rwsem is the lock actually used when we 369 * lock any of the anon_vmas in this anon_vma tree. 370 */ 371 anon_vma->root = pvma->anon_vma->root; 372 anon_vma->parent = pvma->anon_vma; 373 /* 374 * With refcounts, an anon_vma can stay around longer than the 375 * process it belongs to. The root anon_vma needs to be pinned until 376 * this anon_vma is freed, because the lock lives in the root. 377 */ 378 get_anon_vma(anon_vma->root); 379 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 380 vma->anon_vma = anon_vma; 381 anon_vma_lock_write(anon_vma); 382 anon_vma_chain_link(vma, avc, anon_vma); 383 anon_vma->parent->num_children++; 384 anon_vma_unlock_write(anon_vma); 385 386 return 0; 387 388 out_error_free_anon_vma: 389 put_anon_vma(anon_vma); 390 out_error: 391 unlink_anon_vmas(vma); 392 return -ENOMEM; 393 } 394 395 void unlink_anon_vmas(struct vm_area_struct *vma) 396 { 397 struct anon_vma_chain *avc, *next; 398 struct anon_vma *root = NULL; 399 400 /* 401 * Unlink each anon_vma chained to the VMA. This list is ordered 402 * from newest to oldest, ensuring the root anon_vma gets freed last. 403 */ 404 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 405 struct anon_vma *anon_vma = avc->anon_vma; 406 407 root = lock_anon_vma_root(root, anon_vma); 408 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 409 410 /* 411 * Leave empty anon_vmas on the list - we'll need 412 * to free them outside the lock. 413 */ 414 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 415 anon_vma->parent->num_children--; 416 continue; 417 } 418 419 list_del(&avc->same_vma); 420 anon_vma_chain_free(avc); 421 } 422 if (vma->anon_vma) { 423 vma->anon_vma->num_active_vmas--; 424 425 /* 426 * vma would still be needed after unlink, and anon_vma will be prepared 427 * when handle fault. 428 */ 429 vma->anon_vma = NULL; 430 } 431 unlock_anon_vma_root(root); 432 433 /* 434 * Iterate the list once more, it now only contains empty and unlinked 435 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 436 * needing to write-acquire the anon_vma->root->rwsem. 437 */ 438 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 439 struct anon_vma *anon_vma = avc->anon_vma; 440 441 VM_WARN_ON(anon_vma->num_children); 442 VM_WARN_ON(anon_vma->num_active_vmas); 443 put_anon_vma(anon_vma); 444 445 list_del(&avc->same_vma); 446 anon_vma_chain_free(avc); 447 } 448 } 449 450 static void anon_vma_ctor(void *data) 451 { 452 struct anon_vma *anon_vma = data; 453 454 init_rwsem(&anon_vma->rwsem); 455 atomic_set(&anon_vma->refcount, 0); 456 anon_vma->rb_root = RB_ROOT_CACHED; 457 } 458 459 void __init anon_vma_init(void) 460 { 461 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 462 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 463 anon_vma_ctor); 464 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 465 SLAB_PANIC|SLAB_ACCOUNT); 466 } 467 468 /* 469 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 470 * 471 * Since there is no serialization what so ever against page_remove_rmap() 472 * the best this function can do is return a refcount increased anon_vma 473 * that might have been relevant to this page. 474 * 475 * The page might have been remapped to a different anon_vma or the anon_vma 476 * returned may already be freed (and even reused). 477 * 478 * In case it was remapped to a different anon_vma, the new anon_vma will be a 479 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 480 * ensure that any anon_vma obtained from the page will still be valid for as 481 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 482 * 483 * All users of this function must be very careful when walking the anon_vma 484 * chain and verify that the page in question is indeed mapped in it 485 * [ something equivalent to page_mapped_in_vma() ]. 486 * 487 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 488 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 489 * if there is a mapcount, we can dereference the anon_vma after observing 490 * those. 491 */ 492 struct anon_vma *folio_get_anon_vma(struct folio *folio) 493 { 494 struct anon_vma *anon_vma = NULL; 495 unsigned long anon_mapping; 496 497 rcu_read_lock(); 498 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 499 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 500 goto out; 501 if (!folio_mapped(folio)) 502 goto out; 503 504 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 505 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 506 anon_vma = NULL; 507 goto out; 508 } 509 510 /* 511 * If this folio is still mapped, then its anon_vma cannot have been 512 * freed. But if it has been unmapped, we have no security against the 513 * anon_vma structure being freed and reused (for another anon_vma: 514 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 515 * above cannot corrupt). 516 */ 517 if (!folio_mapped(folio)) { 518 rcu_read_unlock(); 519 put_anon_vma(anon_vma); 520 return NULL; 521 } 522 out: 523 rcu_read_unlock(); 524 525 return anon_vma; 526 } 527 528 /* 529 * Similar to folio_get_anon_vma() except it locks the anon_vma. 530 * 531 * Its a little more complex as it tries to keep the fast path to a single 532 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 533 * reference like with folio_get_anon_vma() and then block on the mutex 534 * on !rwc->try_lock case. 535 */ 536 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 537 struct rmap_walk_control *rwc) 538 { 539 struct anon_vma *anon_vma = NULL; 540 struct anon_vma *root_anon_vma; 541 unsigned long anon_mapping; 542 543 rcu_read_lock(); 544 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 545 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 546 goto out; 547 if (!folio_mapped(folio)) 548 goto out; 549 550 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 551 root_anon_vma = READ_ONCE(anon_vma->root); 552 if (down_read_trylock(&root_anon_vma->rwsem)) { 553 /* 554 * If the folio is still mapped, then this anon_vma is still 555 * its anon_vma, and holding the mutex ensures that it will 556 * not go away, see anon_vma_free(). 557 */ 558 if (!folio_mapped(folio)) { 559 up_read(&root_anon_vma->rwsem); 560 anon_vma = NULL; 561 } 562 goto out; 563 } 564 565 if (rwc && rwc->try_lock) { 566 anon_vma = NULL; 567 rwc->contended = true; 568 goto out; 569 } 570 571 /* trylock failed, we got to sleep */ 572 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 573 anon_vma = NULL; 574 goto out; 575 } 576 577 if (!folio_mapped(folio)) { 578 rcu_read_unlock(); 579 put_anon_vma(anon_vma); 580 return NULL; 581 } 582 583 /* we pinned the anon_vma, its safe to sleep */ 584 rcu_read_unlock(); 585 anon_vma_lock_read(anon_vma); 586 587 if (atomic_dec_and_test(&anon_vma->refcount)) { 588 /* 589 * Oops, we held the last refcount, release the lock 590 * and bail -- can't simply use put_anon_vma() because 591 * we'll deadlock on the anon_vma_lock_write() recursion. 592 */ 593 anon_vma_unlock_read(anon_vma); 594 __put_anon_vma(anon_vma); 595 anon_vma = NULL; 596 } 597 598 return anon_vma; 599 600 out: 601 rcu_read_unlock(); 602 return anon_vma; 603 } 604 605 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 606 /* 607 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 608 * important if a PTE was dirty when it was unmapped that it's flushed 609 * before any IO is initiated on the page to prevent lost writes. Similarly, 610 * it must be flushed before freeing to prevent data leakage. 611 */ 612 void try_to_unmap_flush(void) 613 { 614 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 615 616 if (!tlb_ubc->flush_required) 617 return; 618 619 arch_tlbbatch_flush(&tlb_ubc->arch); 620 tlb_ubc->flush_required = false; 621 tlb_ubc->writable = false; 622 } 623 624 /* Flush iff there are potentially writable TLB entries that can race with IO */ 625 void try_to_unmap_flush_dirty(void) 626 { 627 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 628 629 if (tlb_ubc->writable) 630 try_to_unmap_flush(); 631 } 632 633 /* 634 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 635 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 636 */ 637 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 638 #define TLB_FLUSH_BATCH_PENDING_MASK \ 639 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 640 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 641 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 642 643 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 644 { 645 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 646 int batch, nbatch; 647 648 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 649 tlb_ubc->flush_required = true; 650 651 /* 652 * Ensure compiler does not re-order the setting of tlb_flush_batched 653 * before the PTE is cleared. 654 */ 655 barrier(); 656 batch = atomic_read(&mm->tlb_flush_batched); 657 retry: 658 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 659 /* 660 * Prevent `pending' from catching up with `flushed' because of 661 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 662 * `pending' becomes large. 663 */ 664 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1); 665 if (nbatch != batch) { 666 batch = nbatch; 667 goto retry; 668 } 669 } else { 670 atomic_inc(&mm->tlb_flush_batched); 671 } 672 673 /* 674 * If the PTE was dirty then it's best to assume it's writable. The 675 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 676 * before the page is queued for IO. 677 */ 678 if (writable) 679 tlb_ubc->writable = true; 680 } 681 682 /* 683 * Returns true if the TLB flush should be deferred to the end of a batch of 684 * unmap operations to reduce IPIs. 685 */ 686 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 687 { 688 bool should_defer = false; 689 690 if (!(flags & TTU_BATCH_FLUSH)) 691 return false; 692 693 /* If remote CPUs need to be flushed then defer batch the flush */ 694 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 695 should_defer = true; 696 put_cpu(); 697 698 return should_defer; 699 } 700 701 /* 702 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 703 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 704 * operation such as mprotect or munmap to race between reclaim unmapping 705 * the page and flushing the page. If this race occurs, it potentially allows 706 * access to data via a stale TLB entry. Tracking all mm's that have TLB 707 * batching in flight would be expensive during reclaim so instead track 708 * whether TLB batching occurred in the past and if so then do a flush here 709 * if required. This will cost one additional flush per reclaim cycle paid 710 * by the first operation at risk such as mprotect and mumap. 711 * 712 * This must be called under the PTL so that an access to tlb_flush_batched 713 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 714 * via the PTL. 715 */ 716 void flush_tlb_batched_pending(struct mm_struct *mm) 717 { 718 int batch = atomic_read(&mm->tlb_flush_batched); 719 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 720 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 721 722 if (pending != flushed) { 723 flush_tlb_mm(mm); 724 /* 725 * If the new TLB flushing is pending during flushing, leave 726 * mm->tlb_flush_batched as is, to avoid losing flushing. 727 */ 728 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 729 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 730 } 731 } 732 #else 733 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 734 { 735 } 736 737 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 738 { 739 return false; 740 } 741 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 742 743 /* 744 * At what user virtual address is page expected in vma? 745 * Caller should check the page is actually part of the vma. 746 */ 747 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 748 { 749 struct folio *folio = page_folio(page); 750 if (folio_test_anon(folio)) { 751 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 752 /* 753 * Note: swapoff's unuse_vma() is more efficient with this 754 * check, and needs it to match anon_vma when KSM is active. 755 */ 756 if (!vma->anon_vma || !page__anon_vma || 757 vma->anon_vma->root != page__anon_vma->root) 758 return -EFAULT; 759 } else if (!vma->vm_file) { 760 return -EFAULT; 761 } else if (vma->vm_file->f_mapping != folio->mapping) { 762 return -EFAULT; 763 } 764 765 return vma_address(page, vma); 766 } 767 768 /* 769 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 770 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 771 * represents. 772 */ 773 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 774 { 775 pgd_t *pgd; 776 p4d_t *p4d; 777 pud_t *pud; 778 pmd_t *pmd = NULL; 779 780 pgd = pgd_offset(mm, address); 781 if (!pgd_present(*pgd)) 782 goto out; 783 784 p4d = p4d_offset(pgd, address); 785 if (!p4d_present(*p4d)) 786 goto out; 787 788 pud = pud_offset(p4d, address); 789 if (!pud_present(*pud)) 790 goto out; 791 792 pmd = pmd_offset(pud, address); 793 out: 794 return pmd; 795 } 796 797 struct folio_referenced_arg { 798 int mapcount; 799 int referenced; 800 unsigned long vm_flags; 801 struct mem_cgroup *memcg; 802 }; 803 /* 804 * arg: folio_referenced_arg will be passed 805 */ 806 static bool folio_referenced_one(struct folio *folio, 807 struct vm_area_struct *vma, unsigned long address, void *arg) 808 { 809 struct folio_referenced_arg *pra = arg; 810 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 811 int referenced = 0; 812 813 while (page_vma_mapped_walk(&pvmw)) { 814 address = pvmw.address; 815 816 if ((vma->vm_flags & VM_LOCKED) && 817 (!folio_test_large(folio) || !pvmw.pte)) { 818 /* Restore the mlock which got missed */ 819 mlock_vma_folio(folio, vma, !pvmw.pte); 820 page_vma_mapped_walk_done(&pvmw); 821 pra->vm_flags |= VM_LOCKED; 822 return false; /* To break the loop */ 823 } 824 825 if (pvmw.pte) { 826 if (lru_gen_enabled() && pte_young(*pvmw.pte)) { 827 lru_gen_look_around(&pvmw); 828 referenced++; 829 } 830 831 if (ptep_clear_flush_young_notify(vma, address, 832 pvmw.pte)) 833 referenced++; 834 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 835 if (pmdp_clear_flush_young_notify(vma, address, 836 pvmw.pmd)) 837 referenced++; 838 } else { 839 /* unexpected pmd-mapped folio? */ 840 WARN_ON_ONCE(1); 841 } 842 843 pra->mapcount--; 844 } 845 846 if (referenced) 847 folio_clear_idle(folio); 848 if (folio_test_clear_young(folio)) 849 referenced++; 850 851 if (referenced) { 852 pra->referenced++; 853 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 854 } 855 856 if (!pra->mapcount) 857 return false; /* To break the loop */ 858 859 return true; 860 } 861 862 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 863 { 864 struct folio_referenced_arg *pra = arg; 865 struct mem_cgroup *memcg = pra->memcg; 866 867 /* 868 * Ignore references from this mapping if it has no recency. If the 869 * folio has been used in another mapping, we will catch it; if this 870 * other mapping is already gone, the unmap path will have set the 871 * referenced flag or activated the folio in zap_pte_range(). 872 */ 873 if (!vma_has_recency(vma)) 874 return true; 875 876 /* 877 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 878 * of references from different cgroups. 879 */ 880 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 881 return true; 882 883 return false; 884 } 885 886 /** 887 * folio_referenced() - Test if the folio was referenced. 888 * @folio: The folio to test. 889 * @is_locked: Caller holds lock on the folio. 890 * @memcg: target memory cgroup 891 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 892 * 893 * Quick test_and_clear_referenced for all mappings of a folio, 894 * 895 * Return: The number of mappings which referenced the folio. Return -1 if 896 * the function bailed out due to rmap lock contention. 897 */ 898 int folio_referenced(struct folio *folio, int is_locked, 899 struct mem_cgroup *memcg, unsigned long *vm_flags) 900 { 901 int we_locked = 0; 902 struct folio_referenced_arg pra = { 903 .mapcount = folio_mapcount(folio), 904 .memcg = memcg, 905 }; 906 struct rmap_walk_control rwc = { 907 .rmap_one = folio_referenced_one, 908 .arg = (void *)&pra, 909 .anon_lock = folio_lock_anon_vma_read, 910 .try_lock = true, 911 .invalid_vma = invalid_folio_referenced_vma, 912 }; 913 914 *vm_flags = 0; 915 if (!pra.mapcount) 916 return 0; 917 918 if (!folio_raw_mapping(folio)) 919 return 0; 920 921 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 922 we_locked = folio_trylock(folio); 923 if (!we_locked) 924 return 1; 925 } 926 927 rmap_walk(folio, &rwc); 928 *vm_flags = pra.vm_flags; 929 930 if (we_locked) 931 folio_unlock(folio); 932 933 return rwc.contended ? -1 : pra.referenced; 934 } 935 936 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 937 { 938 int cleaned = 0; 939 struct vm_area_struct *vma = pvmw->vma; 940 struct mmu_notifier_range range; 941 unsigned long address = pvmw->address; 942 943 /* 944 * We have to assume the worse case ie pmd for invalidation. Note that 945 * the folio can not be freed from this function. 946 */ 947 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 948 vma->vm_mm, address, vma_address_end(pvmw)); 949 mmu_notifier_invalidate_range_start(&range); 950 951 while (page_vma_mapped_walk(pvmw)) { 952 int ret = 0; 953 954 address = pvmw->address; 955 if (pvmw->pte) { 956 pte_t entry; 957 pte_t *pte = pvmw->pte; 958 959 if (!pte_dirty(*pte) && !pte_write(*pte)) 960 continue; 961 962 flush_cache_page(vma, address, pte_pfn(*pte)); 963 entry = ptep_clear_flush(vma, address, pte); 964 entry = pte_wrprotect(entry); 965 entry = pte_mkclean(entry); 966 set_pte_at(vma->vm_mm, address, pte, entry); 967 ret = 1; 968 } else { 969 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 970 pmd_t *pmd = pvmw->pmd; 971 pmd_t entry; 972 973 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 974 continue; 975 976 flush_cache_range(vma, address, 977 address + HPAGE_PMD_SIZE); 978 entry = pmdp_invalidate(vma, address, pmd); 979 entry = pmd_wrprotect(entry); 980 entry = pmd_mkclean(entry); 981 set_pmd_at(vma->vm_mm, address, pmd, entry); 982 ret = 1; 983 #else 984 /* unexpected pmd-mapped folio? */ 985 WARN_ON_ONCE(1); 986 #endif 987 } 988 989 /* 990 * No need to call mmu_notifier_invalidate_range() as we are 991 * downgrading page table protection not changing it to point 992 * to a new page. 993 * 994 * See Documentation/mm/mmu_notifier.rst 995 */ 996 if (ret) 997 cleaned++; 998 } 999 1000 mmu_notifier_invalidate_range_end(&range); 1001 1002 return cleaned; 1003 } 1004 1005 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1006 unsigned long address, void *arg) 1007 { 1008 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1009 int *cleaned = arg; 1010 1011 *cleaned += page_vma_mkclean_one(&pvmw); 1012 1013 return true; 1014 } 1015 1016 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1017 { 1018 if (vma->vm_flags & VM_SHARED) 1019 return false; 1020 1021 return true; 1022 } 1023 1024 int folio_mkclean(struct folio *folio) 1025 { 1026 int cleaned = 0; 1027 struct address_space *mapping; 1028 struct rmap_walk_control rwc = { 1029 .arg = (void *)&cleaned, 1030 .rmap_one = page_mkclean_one, 1031 .invalid_vma = invalid_mkclean_vma, 1032 }; 1033 1034 BUG_ON(!folio_test_locked(folio)); 1035 1036 if (!folio_mapped(folio)) 1037 return 0; 1038 1039 mapping = folio_mapping(folio); 1040 if (!mapping) 1041 return 0; 1042 1043 rmap_walk(folio, &rwc); 1044 1045 return cleaned; 1046 } 1047 EXPORT_SYMBOL_GPL(folio_mkclean); 1048 1049 /** 1050 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1051 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1052 * within the @vma of shared mappings. And since clean PTEs 1053 * should also be readonly, write protects them too. 1054 * @pfn: start pfn. 1055 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1056 * @pgoff: page offset that the @pfn mapped with. 1057 * @vma: vma that @pfn mapped within. 1058 * 1059 * Returns the number of cleaned PTEs (including PMDs). 1060 */ 1061 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1062 struct vm_area_struct *vma) 1063 { 1064 struct page_vma_mapped_walk pvmw = { 1065 .pfn = pfn, 1066 .nr_pages = nr_pages, 1067 .pgoff = pgoff, 1068 .vma = vma, 1069 .flags = PVMW_SYNC, 1070 }; 1071 1072 if (invalid_mkclean_vma(vma, NULL)) 1073 return 0; 1074 1075 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); 1076 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1077 1078 return page_vma_mkclean_one(&pvmw); 1079 } 1080 1081 int folio_total_mapcount(struct folio *folio) 1082 { 1083 int mapcount = folio_entire_mapcount(folio); 1084 int nr_pages; 1085 int i; 1086 1087 /* In the common case, avoid the loop when no pages mapped by PTE */ 1088 if (folio_nr_pages_mapped(folio) == 0) 1089 return mapcount; 1090 /* 1091 * Add all the PTE mappings of those pages mapped by PTE. 1092 * Limit the loop to folio_nr_pages_mapped()? 1093 * Perhaps: given all the raciness, that may be a good or a bad idea. 1094 */ 1095 nr_pages = folio_nr_pages(folio); 1096 for (i = 0; i < nr_pages; i++) 1097 mapcount += atomic_read(&folio_page(folio, i)->_mapcount); 1098 1099 /* But each of those _mapcounts was based on -1 */ 1100 mapcount += nr_pages; 1101 return mapcount; 1102 } 1103 1104 /** 1105 * page_move_anon_rmap - move a page to our anon_vma 1106 * @page: the page to move to our anon_vma 1107 * @vma: the vma the page belongs to 1108 * 1109 * When a page belongs exclusively to one process after a COW event, 1110 * that page can be moved into the anon_vma that belongs to just that 1111 * process, so the rmap code will not search the parent or sibling 1112 * processes. 1113 */ 1114 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1115 { 1116 void *anon_vma = vma->anon_vma; 1117 struct folio *folio = page_folio(page); 1118 1119 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1120 VM_BUG_ON_VMA(!anon_vma, vma); 1121 1122 anon_vma += PAGE_MAPPING_ANON; 1123 /* 1124 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1125 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1126 * folio_test_anon()) will not see one without the other. 1127 */ 1128 WRITE_ONCE(folio->mapping, anon_vma); 1129 SetPageAnonExclusive(page); 1130 } 1131 1132 /** 1133 * __page_set_anon_rmap - set up new anonymous rmap 1134 * @page: Page or Hugepage to add to rmap 1135 * @vma: VM area to add page to. 1136 * @address: User virtual address of the mapping 1137 * @exclusive: the page is exclusively owned by the current process 1138 */ 1139 static void __page_set_anon_rmap(struct page *page, 1140 struct vm_area_struct *vma, unsigned long address, int exclusive) 1141 { 1142 struct anon_vma *anon_vma = vma->anon_vma; 1143 1144 BUG_ON(!anon_vma); 1145 1146 if (PageAnon(page)) 1147 goto out; 1148 1149 /* 1150 * If the page isn't exclusively mapped into this vma, 1151 * we must use the _oldest_ possible anon_vma for the 1152 * page mapping! 1153 */ 1154 if (!exclusive) 1155 anon_vma = anon_vma->root; 1156 1157 /* 1158 * page_idle does a lockless/optimistic rmap scan on page->mapping. 1159 * Make sure the compiler doesn't split the stores of anon_vma and 1160 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1161 * could mistake the mapping for a struct address_space and crash. 1162 */ 1163 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1164 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1165 page->index = linear_page_index(vma, address); 1166 out: 1167 if (exclusive) 1168 SetPageAnonExclusive(page); 1169 } 1170 1171 /** 1172 * __page_check_anon_rmap - sanity check anonymous rmap addition 1173 * @page: the page to add the mapping to 1174 * @vma: the vm area in which the mapping is added 1175 * @address: the user virtual address mapped 1176 */ 1177 static void __page_check_anon_rmap(struct page *page, 1178 struct vm_area_struct *vma, unsigned long address) 1179 { 1180 struct folio *folio = page_folio(page); 1181 /* 1182 * The page's anon-rmap details (mapping and index) are guaranteed to 1183 * be set up correctly at this point. 1184 * 1185 * We have exclusion against page_add_anon_rmap because the caller 1186 * always holds the page locked. 1187 * 1188 * We have exclusion against page_add_new_anon_rmap because those pages 1189 * are initially only visible via the pagetables, and the pte is locked 1190 * over the call to page_add_new_anon_rmap. 1191 */ 1192 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1193 folio); 1194 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1195 page); 1196 } 1197 1198 /** 1199 * page_add_anon_rmap - add pte mapping to an anonymous page 1200 * @page: the page to add the mapping to 1201 * @vma: the vm area in which the mapping is added 1202 * @address: the user virtual address mapped 1203 * @flags: the rmap flags 1204 * 1205 * The caller needs to hold the pte lock, and the page must be locked in 1206 * the anon_vma case: to serialize mapping,index checking after setting, 1207 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1208 * (but PageKsm is never downgraded to PageAnon). 1209 */ 1210 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 1211 unsigned long address, rmap_t flags) 1212 { 1213 struct folio *folio = page_folio(page); 1214 atomic_t *mapped = &folio->_nr_pages_mapped; 1215 int nr = 0, nr_pmdmapped = 0; 1216 bool compound = flags & RMAP_COMPOUND; 1217 bool first = true; 1218 1219 /* Is page being mapped by PTE? Is this its first map to be added? */ 1220 if (likely(!compound)) { 1221 first = atomic_inc_and_test(&page->_mapcount); 1222 nr = first; 1223 if (first && folio_test_large(folio)) { 1224 nr = atomic_inc_return_relaxed(mapped); 1225 nr = (nr < COMPOUND_MAPPED); 1226 } 1227 } else if (folio_test_pmd_mappable(folio)) { 1228 /* That test is redundant: it's for safety or to optimize out */ 1229 1230 first = atomic_inc_and_test(&folio->_entire_mapcount); 1231 if (first) { 1232 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1233 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1234 nr_pmdmapped = folio_nr_pages(folio); 1235 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1236 /* Raced ahead of a remove and another add? */ 1237 if (unlikely(nr < 0)) 1238 nr = 0; 1239 } else { 1240 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1241 nr = 0; 1242 } 1243 } 1244 } 1245 1246 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 1247 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 1248 1249 if (nr_pmdmapped) 1250 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped); 1251 if (nr) 1252 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1253 1254 if (likely(!folio_test_ksm(folio))) { 1255 /* address might be in next vma when migration races vma_adjust */ 1256 if (first) 1257 __page_set_anon_rmap(page, vma, address, 1258 !!(flags & RMAP_EXCLUSIVE)); 1259 else 1260 __page_check_anon_rmap(page, vma, address); 1261 } 1262 1263 mlock_vma_page(page, vma, compound); 1264 } 1265 1266 /** 1267 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1268 * @folio: The folio to add the mapping to. 1269 * @vma: the vm area in which the mapping is added 1270 * @address: the user virtual address mapped 1271 * 1272 * Like page_add_anon_rmap() but must only be called on *new* folios. 1273 * This means the inc-and-test can be bypassed. 1274 * The folio does not have to be locked. 1275 * 1276 * If the folio is large, it is accounted as a THP. As the folio 1277 * is new, it's assumed to be mapped exclusively by a single process. 1278 */ 1279 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1280 unsigned long address) 1281 { 1282 int nr; 1283 1284 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1285 __folio_set_swapbacked(folio); 1286 1287 if (likely(!folio_test_pmd_mappable(folio))) { 1288 /* increment count (starts at -1) */ 1289 atomic_set(&folio->_mapcount, 0); 1290 nr = 1; 1291 } else { 1292 /* increment count (starts at -1) */ 1293 atomic_set(&folio->_entire_mapcount, 0); 1294 atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED); 1295 nr = folio_nr_pages(folio); 1296 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr); 1297 } 1298 1299 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1300 __page_set_anon_rmap(&folio->page, vma, address, 1); 1301 } 1302 1303 /** 1304 * page_add_file_rmap - add pte mapping to a file page 1305 * @page: the page to add the mapping to 1306 * @vma: the vm area in which the mapping is added 1307 * @compound: charge the page as compound or small page 1308 * 1309 * The caller needs to hold the pte lock. 1310 */ 1311 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma, 1312 bool compound) 1313 { 1314 struct folio *folio = page_folio(page); 1315 atomic_t *mapped = &folio->_nr_pages_mapped; 1316 int nr = 0, nr_pmdmapped = 0; 1317 bool first; 1318 1319 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1320 1321 /* Is page being mapped by PTE? Is this its first map to be added? */ 1322 if (likely(!compound)) { 1323 first = atomic_inc_and_test(&page->_mapcount); 1324 nr = first; 1325 if (first && folio_test_large(folio)) { 1326 nr = atomic_inc_return_relaxed(mapped); 1327 nr = (nr < COMPOUND_MAPPED); 1328 } 1329 } else if (folio_test_pmd_mappable(folio)) { 1330 /* That test is redundant: it's for safety or to optimize out */ 1331 1332 first = atomic_inc_and_test(&folio->_entire_mapcount); 1333 if (first) { 1334 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1335 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1336 nr_pmdmapped = folio_nr_pages(folio); 1337 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1338 /* Raced ahead of a remove and another add? */ 1339 if (unlikely(nr < 0)) 1340 nr = 0; 1341 } else { 1342 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1343 nr = 0; 1344 } 1345 } 1346 } 1347 1348 if (nr_pmdmapped) 1349 __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ? 1350 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped); 1351 if (nr) 1352 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr); 1353 1354 mlock_vma_page(page, vma, compound); 1355 } 1356 1357 /** 1358 * page_remove_rmap - take down pte mapping from a page 1359 * @page: page to remove mapping from 1360 * @vma: the vm area from which the mapping is removed 1361 * @compound: uncharge the page as compound or small page 1362 * 1363 * The caller needs to hold the pte lock. 1364 */ 1365 void page_remove_rmap(struct page *page, struct vm_area_struct *vma, 1366 bool compound) 1367 { 1368 struct folio *folio = page_folio(page); 1369 atomic_t *mapped = &folio->_nr_pages_mapped; 1370 int nr = 0, nr_pmdmapped = 0; 1371 bool last; 1372 enum node_stat_item idx; 1373 1374 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1375 1376 /* Hugetlb pages are not counted in NR_*MAPPED */ 1377 if (unlikely(folio_test_hugetlb(folio))) { 1378 /* hugetlb pages are always mapped with pmds */ 1379 atomic_dec(&folio->_entire_mapcount); 1380 return; 1381 } 1382 1383 /* Is page being unmapped by PTE? Is this its last map to be removed? */ 1384 if (likely(!compound)) { 1385 last = atomic_add_negative(-1, &page->_mapcount); 1386 nr = last; 1387 if (last && folio_test_large(folio)) { 1388 nr = atomic_dec_return_relaxed(mapped); 1389 nr = (nr < COMPOUND_MAPPED); 1390 } 1391 } else if (folio_test_pmd_mappable(folio)) { 1392 /* That test is redundant: it's for safety or to optimize out */ 1393 1394 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1395 if (last) { 1396 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped); 1397 if (likely(nr < COMPOUND_MAPPED)) { 1398 nr_pmdmapped = folio_nr_pages(folio); 1399 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1400 /* Raced ahead of another remove and an add? */ 1401 if (unlikely(nr < 0)) 1402 nr = 0; 1403 } else { 1404 /* An add of COMPOUND_MAPPED raced ahead */ 1405 nr = 0; 1406 } 1407 } 1408 } 1409 1410 if (nr_pmdmapped) { 1411 if (folio_test_anon(folio)) 1412 idx = NR_ANON_THPS; 1413 else if (folio_test_swapbacked(folio)) 1414 idx = NR_SHMEM_PMDMAPPED; 1415 else 1416 idx = NR_FILE_PMDMAPPED; 1417 __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped); 1418 } 1419 if (nr) { 1420 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1421 __lruvec_stat_mod_folio(folio, idx, -nr); 1422 1423 /* 1424 * Queue anon THP for deferred split if at least one 1425 * page of the folio is unmapped and at least one page 1426 * is still mapped. 1427 */ 1428 if (folio_test_pmd_mappable(folio) && folio_test_anon(folio)) 1429 if (!compound || nr < nr_pmdmapped) 1430 deferred_split_folio(folio); 1431 } 1432 1433 /* 1434 * It would be tidy to reset PageAnon mapping when fully unmapped, 1435 * but that might overwrite a racing page_add_anon_rmap 1436 * which increments mapcount after us but sets mapping 1437 * before us: so leave the reset to free_pages_prepare, 1438 * and remember that it's only reliable while mapped. 1439 */ 1440 1441 munlock_vma_page(page, vma, compound); 1442 } 1443 1444 /* 1445 * @arg: enum ttu_flags will be passed to this argument 1446 */ 1447 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1448 unsigned long address, void *arg) 1449 { 1450 struct mm_struct *mm = vma->vm_mm; 1451 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1452 pte_t pteval; 1453 struct page *subpage; 1454 bool anon_exclusive, ret = true; 1455 struct mmu_notifier_range range; 1456 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1457 1458 /* 1459 * When racing against e.g. zap_pte_range() on another cpu, 1460 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1461 * try_to_unmap() may return before page_mapped() has become false, 1462 * if page table locking is skipped: use TTU_SYNC to wait for that. 1463 */ 1464 if (flags & TTU_SYNC) 1465 pvmw.flags = PVMW_SYNC; 1466 1467 if (flags & TTU_SPLIT_HUGE_PMD) 1468 split_huge_pmd_address(vma, address, false, folio); 1469 1470 /* 1471 * For THP, we have to assume the worse case ie pmd for invalidation. 1472 * For hugetlb, it could be much worse if we need to do pud 1473 * invalidation in the case of pmd sharing. 1474 * 1475 * Note that the folio can not be freed in this function as call of 1476 * try_to_unmap() must hold a reference on the folio. 1477 */ 1478 range.end = vma_address_end(&pvmw); 1479 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1480 address, range.end); 1481 if (folio_test_hugetlb(folio)) { 1482 /* 1483 * If sharing is possible, start and end will be adjusted 1484 * accordingly. 1485 */ 1486 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1487 &range.end); 1488 } 1489 mmu_notifier_invalidate_range_start(&range); 1490 1491 while (page_vma_mapped_walk(&pvmw)) { 1492 /* Unexpected PMD-mapped THP? */ 1493 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1494 1495 /* 1496 * If the folio is in an mlock()d vma, we must not swap it out. 1497 */ 1498 if (!(flags & TTU_IGNORE_MLOCK) && 1499 (vma->vm_flags & VM_LOCKED)) { 1500 /* Restore the mlock which got missed */ 1501 mlock_vma_folio(folio, vma, false); 1502 page_vma_mapped_walk_done(&pvmw); 1503 ret = false; 1504 break; 1505 } 1506 1507 subpage = folio_page(folio, 1508 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1509 address = pvmw.address; 1510 anon_exclusive = folio_test_anon(folio) && 1511 PageAnonExclusive(subpage); 1512 1513 if (folio_test_hugetlb(folio)) { 1514 bool anon = folio_test_anon(folio); 1515 1516 /* 1517 * The try_to_unmap() is only passed a hugetlb page 1518 * in the case where the hugetlb page is poisoned. 1519 */ 1520 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1521 /* 1522 * huge_pmd_unshare may unmap an entire PMD page. 1523 * There is no way of knowing exactly which PMDs may 1524 * be cached for this mm, so we must flush them all. 1525 * start/end were already adjusted above to cover this 1526 * range. 1527 */ 1528 flush_cache_range(vma, range.start, range.end); 1529 1530 /* 1531 * To call huge_pmd_unshare, i_mmap_rwsem must be 1532 * held in write mode. Caller needs to explicitly 1533 * do this outside rmap routines. 1534 * 1535 * We also must hold hugetlb vma_lock in write mode. 1536 * Lock order dictates acquiring vma_lock BEFORE 1537 * i_mmap_rwsem. We can only try lock here and fail 1538 * if unsuccessful. 1539 */ 1540 if (!anon) { 1541 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1542 if (!hugetlb_vma_trylock_write(vma)) { 1543 page_vma_mapped_walk_done(&pvmw); 1544 ret = false; 1545 break; 1546 } 1547 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1548 hugetlb_vma_unlock_write(vma); 1549 flush_tlb_range(vma, 1550 range.start, range.end); 1551 mmu_notifier_invalidate_range(mm, 1552 range.start, range.end); 1553 /* 1554 * The ref count of the PMD page was 1555 * dropped which is part of the way map 1556 * counting is done for shared PMDs. 1557 * Return 'true' here. When there is 1558 * no other sharing, huge_pmd_unshare 1559 * returns false and we will unmap the 1560 * actual page and drop map count 1561 * to zero. 1562 */ 1563 page_vma_mapped_walk_done(&pvmw); 1564 break; 1565 } 1566 hugetlb_vma_unlock_write(vma); 1567 } 1568 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1569 } else { 1570 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1571 /* Nuke the page table entry. */ 1572 if (should_defer_flush(mm, flags)) { 1573 /* 1574 * We clear the PTE but do not flush so potentially 1575 * a remote CPU could still be writing to the folio. 1576 * If the entry was previously clean then the 1577 * architecture must guarantee that a clear->dirty 1578 * transition on a cached TLB entry is written through 1579 * and traps if the PTE is unmapped. 1580 */ 1581 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1582 1583 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1584 } else { 1585 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1586 } 1587 } 1588 1589 /* 1590 * Now the pte is cleared. If this pte was uffd-wp armed, 1591 * we may want to replace a none pte with a marker pte if 1592 * it's file-backed, so we don't lose the tracking info. 1593 */ 1594 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1595 1596 /* Set the dirty flag on the folio now the pte is gone. */ 1597 if (pte_dirty(pteval)) 1598 folio_mark_dirty(folio); 1599 1600 /* Update high watermark before we lower rss */ 1601 update_hiwater_rss(mm); 1602 1603 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) { 1604 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1605 if (folio_test_hugetlb(folio)) { 1606 hugetlb_count_sub(folio_nr_pages(folio), mm); 1607 set_huge_pte_at(mm, address, pvmw.pte, pteval); 1608 } else { 1609 dec_mm_counter(mm, mm_counter(&folio->page)); 1610 set_pte_at(mm, address, pvmw.pte, pteval); 1611 } 1612 1613 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1614 /* 1615 * The guest indicated that the page content is of no 1616 * interest anymore. Simply discard the pte, vmscan 1617 * will take care of the rest. 1618 * A future reference will then fault in a new zero 1619 * page. When userfaultfd is active, we must not drop 1620 * this page though, as its main user (postcopy 1621 * migration) will not expect userfaults on already 1622 * copied pages. 1623 */ 1624 dec_mm_counter(mm, mm_counter(&folio->page)); 1625 /* We have to invalidate as we cleared the pte */ 1626 mmu_notifier_invalidate_range(mm, address, 1627 address + PAGE_SIZE); 1628 } else if (folio_test_anon(folio)) { 1629 swp_entry_t entry = { .val = page_private(subpage) }; 1630 pte_t swp_pte; 1631 /* 1632 * Store the swap location in the pte. 1633 * See handle_pte_fault() ... 1634 */ 1635 if (unlikely(folio_test_swapbacked(folio) != 1636 folio_test_swapcache(folio))) { 1637 WARN_ON_ONCE(1); 1638 ret = false; 1639 /* We have to invalidate as we cleared the pte */ 1640 mmu_notifier_invalidate_range(mm, address, 1641 address + PAGE_SIZE); 1642 page_vma_mapped_walk_done(&pvmw); 1643 break; 1644 } 1645 1646 /* MADV_FREE page check */ 1647 if (!folio_test_swapbacked(folio)) { 1648 int ref_count, map_count; 1649 1650 /* 1651 * Synchronize with gup_pte_range(): 1652 * - clear PTE; barrier; read refcount 1653 * - inc refcount; barrier; read PTE 1654 */ 1655 smp_mb(); 1656 1657 ref_count = folio_ref_count(folio); 1658 map_count = folio_mapcount(folio); 1659 1660 /* 1661 * Order reads for page refcount and dirty flag 1662 * (see comments in __remove_mapping()). 1663 */ 1664 smp_rmb(); 1665 1666 /* 1667 * The only page refs must be one from isolation 1668 * plus the rmap(s) (dropped by discard:). 1669 */ 1670 if (ref_count == 1 + map_count && 1671 !folio_test_dirty(folio)) { 1672 /* Invalidate as we cleared the pte */ 1673 mmu_notifier_invalidate_range(mm, 1674 address, address + PAGE_SIZE); 1675 dec_mm_counter(mm, MM_ANONPAGES); 1676 goto discard; 1677 } 1678 1679 /* 1680 * If the folio was redirtied, it cannot be 1681 * discarded. Remap the page to page table. 1682 */ 1683 set_pte_at(mm, address, pvmw.pte, pteval); 1684 folio_set_swapbacked(folio); 1685 ret = false; 1686 page_vma_mapped_walk_done(&pvmw); 1687 break; 1688 } 1689 1690 if (swap_duplicate(entry) < 0) { 1691 set_pte_at(mm, address, pvmw.pte, pteval); 1692 ret = false; 1693 page_vma_mapped_walk_done(&pvmw); 1694 break; 1695 } 1696 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1697 swap_free(entry); 1698 set_pte_at(mm, address, pvmw.pte, pteval); 1699 ret = false; 1700 page_vma_mapped_walk_done(&pvmw); 1701 break; 1702 } 1703 1704 /* See page_try_share_anon_rmap(): clear PTE first. */ 1705 if (anon_exclusive && 1706 page_try_share_anon_rmap(subpage)) { 1707 swap_free(entry); 1708 set_pte_at(mm, address, pvmw.pte, pteval); 1709 ret = false; 1710 page_vma_mapped_walk_done(&pvmw); 1711 break; 1712 } 1713 /* 1714 * Note: We *don't* remember if the page was mapped 1715 * exclusively in the swap pte if the architecture 1716 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In 1717 * that case, swapin code has to re-determine that 1718 * manually and might detect the page as possibly 1719 * shared, for example, if there are other references on 1720 * the page or if the page is under writeback. We made 1721 * sure that there are no GUP pins on the page that 1722 * would rely on it, so for GUP pins this is fine. 1723 */ 1724 if (list_empty(&mm->mmlist)) { 1725 spin_lock(&mmlist_lock); 1726 if (list_empty(&mm->mmlist)) 1727 list_add(&mm->mmlist, &init_mm.mmlist); 1728 spin_unlock(&mmlist_lock); 1729 } 1730 dec_mm_counter(mm, MM_ANONPAGES); 1731 inc_mm_counter(mm, MM_SWAPENTS); 1732 swp_pte = swp_entry_to_pte(entry); 1733 if (anon_exclusive) 1734 swp_pte = pte_swp_mkexclusive(swp_pte); 1735 if (pte_soft_dirty(pteval)) 1736 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1737 if (pte_uffd_wp(pteval)) 1738 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1739 set_pte_at(mm, address, pvmw.pte, swp_pte); 1740 /* Invalidate as we cleared the pte */ 1741 mmu_notifier_invalidate_range(mm, address, 1742 address + PAGE_SIZE); 1743 } else { 1744 /* 1745 * This is a locked file-backed folio, 1746 * so it cannot be removed from the page 1747 * cache and replaced by a new folio before 1748 * mmu_notifier_invalidate_range_end, so no 1749 * concurrent thread might update its page table 1750 * to point at a new folio while a device is 1751 * still using this folio. 1752 * 1753 * See Documentation/mm/mmu_notifier.rst 1754 */ 1755 dec_mm_counter(mm, mm_counter_file(&folio->page)); 1756 } 1757 discard: 1758 /* 1759 * No need to call mmu_notifier_invalidate_range() it has be 1760 * done above for all cases requiring it to happen under page 1761 * table lock before mmu_notifier_invalidate_range_end() 1762 * 1763 * See Documentation/mm/mmu_notifier.rst 1764 */ 1765 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 1766 if (vma->vm_flags & VM_LOCKED) 1767 mlock_drain_local(); 1768 folio_put(folio); 1769 } 1770 1771 mmu_notifier_invalidate_range_end(&range); 1772 1773 return ret; 1774 } 1775 1776 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1777 { 1778 return vma_is_temporary_stack(vma); 1779 } 1780 1781 static int folio_not_mapped(struct folio *folio) 1782 { 1783 return !folio_mapped(folio); 1784 } 1785 1786 /** 1787 * try_to_unmap - Try to remove all page table mappings to a folio. 1788 * @folio: The folio to unmap. 1789 * @flags: action and flags 1790 * 1791 * Tries to remove all the page table entries which are mapping this 1792 * folio. It is the caller's responsibility to check if the folio is 1793 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1794 * 1795 * Context: Caller must hold the folio lock. 1796 */ 1797 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1798 { 1799 struct rmap_walk_control rwc = { 1800 .rmap_one = try_to_unmap_one, 1801 .arg = (void *)flags, 1802 .done = folio_not_mapped, 1803 .anon_lock = folio_lock_anon_vma_read, 1804 }; 1805 1806 if (flags & TTU_RMAP_LOCKED) 1807 rmap_walk_locked(folio, &rwc); 1808 else 1809 rmap_walk(folio, &rwc); 1810 } 1811 1812 /* 1813 * @arg: enum ttu_flags will be passed to this argument. 1814 * 1815 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1816 * containing migration entries. 1817 */ 1818 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 1819 unsigned long address, void *arg) 1820 { 1821 struct mm_struct *mm = vma->vm_mm; 1822 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1823 pte_t pteval; 1824 struct page *subpage; 1825 bool anon_exclusive, ret = true; 1826 struct mmu_notifier_range range; 1827 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1828 1829 /* 1830 * When racing against e.g. zap_pte_range() on another cpu, 1831 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1832 * try_to_migrate() may return before page_mapped() has become false, 1833 * if page table locking is skipped: use TTU_SYNC to wait for that. 1834 */ 1835 if (flags & TTU_SYNC) 1836 pvmw.flags = PVMW_SYNC; 1837 1838 /* 1839 * unmap_page() in mm/huge_memory.c is the only user of migration with 1840 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1841 */ 1842 if (flags & TTU_SPLIT_HUGE_PMD) 1843 split_huge_pmd_address(vma, address, true, folio); 1844 1845 /* 1846 * For THP, we have to assume the worse case ie pmd for invalidation. 1847 * For hugetlb, it could be much worse if we need to do pud 1848 * invalidation in the case of pmd sharing. 1849 * 1850 * Note that the page can not be free in this function as call of 1851 * try_to_unmap() must hold a reference on the page. 1852 */ 1853 range.end = vma_address_end(&pvmw); 1854 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1855 address, range.end); 1856 if (folio_test_hugetlb(folio)) { 1857 /* 1858 * If sharing is possible, start and end will be adjusted 1859 * accordingly. 1860 */ 1861 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1862 &range.end); 1863 } 1864 mmu_notifier_invalidate_range_start(&range); 1865 1866 while (page_vma_mapped_walk(&pvmw)) { 1867 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1868 /* PMD-mapped THP migration entry */ 1869 if (!pvmw.pte) { 1870 subpage = folio_page(folio, 1871 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 1872 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 1873 !folio_test_pmd_mappable(folio), folio); 1874 1875 if (set_pmd_migration_entry(&pvmw, subpage)) { 1876 ret = false; 1877 page_vma_mapped_walk_done(&pvmw); 1878 break; 1879 } 1880 continue; 1881 } 1882 #endif 1883 1884 /* Unexpected PMD-mapped THP? */ 1885 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1886 1887 if (folio_is_zone_device(folio)) { 1888 /* 1889 * Our PTE is a non-present device exclusive entry and 1890 * calculating the subpage as for the common case would 1891 * result in an invalid pointer. 1892 * 1893 * Since only PAGE_SIZE pages can currently be 1894 * migrated, just set it to page. This will need to be 1895 * changed when hugepage migrations to device private 1896 * memory are supported. 1897 */ 1898 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 1899 subpage = &folio->page; 1900 } else { 1901 subpage = folio_page(folio, 1902 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1903 } 1904 address = pvmw.address; 1905 anon_exclusive = folio_test_anon(folio) && 1906 PageAnonExclusive(subpage); 1907 1908 if (folio_test_hugetlb(folio)) { 1909 bool anon = folio_test_anon(folio); 1910 1911 /* 1912 * huge_pmd_unshare may unmap an entire PMD page. 1913 * There is no way of knowing exactly which PMDs may 1914 * be cached for this mm, so we must flush them all. 1915 * start/end were already adjusted above to cover this 1916 * range. 1917 */ 1918 flush_cache_range(vma, range.start, range.end); 1919 1920 /* 1921 * To call huge_pmd_unshare, i_mmap_rwsem must be 1922 * held in write mode. Caller needs to explicitly 1923 * do this outside rmap routines. 1924 * 1925 * We also must hold hugetlb vma_lock in write mode. 1926 * Lock order dictates acquiring vma_lock BEFORE 1927 * i_mmap_rwsem. We can only try lock here and 1928 * fail if unsuccessful. 1929 */ 1930 if (!anon) { 1931 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1932 if (!hugetlb_vma_trylock_write(vma)) { 1933 page_vma_mapped_walk_done(&pvmw); 1934 ret = false; 1935 break; 1936 } 1937 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1938 hugetlb_vma_unlock_write(vma); 1939 flush_tlb_range(vma, 1940 range.start, range.end); 1941 mmu_notifier_invalidate_range(mm, 1942 range.start, range.end); 1943 1944 /* 1945 * The ref count of the PMD page was 1946 * dropped which is part of the way map 1947 * counting is done for shared PMDs. 1948 * Return 'true' here. When there is 1949 * no other sharing, huge_pmd_unshare 1950 * returns false and we will unmap the 1951 * actual page and drop map count 1952 * to zero. 1953 */ 1954 page_vma_mapped_walk_done(&pvmw); 1955 break; 1956 } 1957 hugetlb_vma_unlock_write(vma); 1958 } 1959 /* Nuke the hugetlb page table entry */ 1960 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1961 } else { 1962 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1963 /* Nuke the page table entry. */ 1964 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1965 } 1966 1967 /* Set the dirty flag on the folio now the pte is gone. */ 1968 if (pte_dirty(pteval)) 1969 folio_mark_dirty(folio); 1970 1971 /* Update high watermark before we lower rss */ 1972 update_hiwater_rss(mm); 1973 1974 if (folio_is_device_private(folio)) { 1975 unsigned long pfn = folio_pfn(folio); 1976 swp_entry_t entry; 1977 pte_t swp_pte; 1978 1979 if (anon_exclusive) 1980 BUG_ON(page_try_share_anon_rmap(subpage)); 1981 1982 /* 1983 * Store the pfn of the page in a special migration 1984 * pte. do_swap_page() will wait until the migration 1985 * pte is removed and then restart fault handling. 1986 */ 1987 entry = pte_to_swp_entry(pteval); 1988 if (is_writable_device_private_entry(entry)) 1989 entry = make_writable_migration_entry(pfn); 1990 else if (anon_exclusive) 1991 entry = make_readable_exclusive_migration_entry(pfn); 1992 else 1993 entry = make_readable_migration_entry(pfn); 1994 swp_pte = swp_entry_to_pte(entry); 1995 1996 /* 1997 * pteval maps a zone device page and is therefore 1998 * a swap pte. 1999 */ 2000 if (pte_swp_soft_dirty(pteval)) 2001 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2002 if (pte_swp_uffd_wp(pteval)) 2003 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2004 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2005 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2006 compound_order(&folio->page)); 2007 /* 2008 * No need to invalidate here it will synchronize on 2009 * against the special swap migration pte. 2010 */ 2011 } else if (PageHWPoison(subpage)) { 2012 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2013 if (folio_test_hugetlb(folio)) { 2014 hugetlb_count_sub(folio_nr_pages(folio), mm); 2015 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2016 } else { 2017 dec_mm_counter(mm, mm_counter(&folio->page)); 2018 set_pte_at(mm, address, pvmw.pte, pteval); 2019 } 2020 2021 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2022 /* 2023 * The guest indicated that the page content is of no 2024 * interest anymore. Simply discard the pte, vmscan 2025 * will take care of the rest. 2026 * A future reference will then fault in a new zero 2027 * page. When userfaultfd is active, we must not drop 2028 * this page though, as its main user (postcopy 2029 * migration) will not expect userfaults on already 2030 * copied pages. 2031 */ 2032 dec_mm_counter(mm, mm_counter(&folio->page)); 2033 /* We have to invalidate as we cleared the pte */ 2034 mmu_notifier_invalidate_range(mm, address, 2035 address + PAGE_SIZE); 2036 } else { 2037 swp_entry_t entry; 2038 pte_t swp_pte; 2039 2040 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2041 if (folio_test_hugetlb(folio)) 2042 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2043 else 2044 set_pte_at(mm, address, pvmw.pte, pteval); 2045 ret = false; 2046 page_vma_mapped_walk_done(&pvmw); 2047 break; 2048 } 2049 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2050 !anon_exclusive, subpage); 2051 2052 /* See page_try_share_anon_rmap(): clear PTE first. */ 2053 if (anon_exclusive && 2054 page_try_share_anon_rmap(subpage)) { 2055 if (folio_test_hugetlb(folio)) 2056 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2057 else 2058 set_pte_at(mm, address, pvmw.pte, pteval); 2059 ret = false; 2060 page_vma_mapped_walk_done(&pvmw); 2061 break; 2062 } 2063 2064 /* 2065 * Store the pfn of the page in a special migration 2066 * pte. do_swap_page() will wait until the migration 2067 * pte is removed and then restart fault handling. 2068 */ 2069 if (pte_write(pteval)) 2070 entry = make_writable_migration_entry( 2071 page_to_pfn(subpage)); 2072 else if (anon_exclusive) 2073 entry = make_readable_exclusive_migration_entry( 2074 page_to_pfn(subpage)); 2075 else 2076 entry = make_readable_migration_entry( 2077 page_to_pfn(subpage)); 2078 if (pte_young(pteval)) 2079 entry = make_migration_entry_young(entry); 2080 if (pte_dirty(pteval)) 2081 entry = make_migration_entry_dirty(entry); 2082 swp_pte = swp_entry_to_pte(entry); 2083 if (pte_soft_dirty(pteval)) 2084 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2085 if (pte_uffd_wp(pteval)) 2086 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2087 if (folio_test_hugetlb(folio)) 2088 set_huge_pte_at(mm, address, pvmw.pte, swp_pte); 2089 else 2090 set_pte_at(mm, address, pvmw.pte, swp_pte); 2091 trace_set_migration_pte(address, pte_val(swp_pte), 2092 compound_order(&folio->page)); 2093 /* 2094 * No need to invalidate here it will synchronize on 2095 * against the special swap migration pte. 2096 */ 2097 } 2098 2099 /* 2100 * No need to call mmu_notifier_invalidate_range() it has be 2101 * done above for all cases requiring it to happen under page 2102 * table lock before mmu_notifier_invalidate_range_end() 2103 * 2104 * See Documentation/mm/mmu_notifier.rst 2105 */ 2106 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 2107 if (vma->vm_flags & VM_LOCKED) 2108 mlock_drain_local(); 2109 folio_put(folio); 2110 } 2111 2112 mmu_notifier_invalidate_range_end(&range); 2113 2114 return ret; 2115 } 2116 2117 /** 2118 * try_to_migrate - try to replace all page table mappings with swap entries 2119 * @folio: the folio to replace page table entries for 2120 * @flags: action and flags 2121 * 2122 * Tries to remove all the page table entries which are mapping this folio and 2123 * replace them with special swap entries. Caller must hold the folio lock. 2124 */ 2125 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2126 { 2127 struct rmap_walk_control rwc = { 2128 .rmap_one = try_to_migrate_one, 2129 .arg = (void *)flags, 2130 .done = folio_not_mapped, 2131 .anon_lock = folio_lock_anon_vma_read, 2132 }; 2133 2134 /* 2135 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2136 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags. 2137 */ 2138 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2139 TTU_SYNC))) 2140 return; 2141 2142 if (folio_is_zone_device(folio) && 2143 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2144 return; 2145 2146 /* 2147 * During exec, a temporary VMA is setup and later moved. 2148 * The VMA is moved under the anon_vma lock but not the 2149 * page tables leading to a race where migration cannot 2150 * find the migration ptes. Rather than increasing the 2151 * locking requirements of exec(), migration skips 2152 * temporary VMAs until after exec() completes. 2153 */ 2154 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2155 rwc.invalid_vma = invalid_migration_vma; 2156 2157 if (flags & TTU_RMAP_LOCKED) 2158 rmap_walk_locked(folio, &rwc); 2159 else 2160 rmap_walk(folio, &rwc); 2161 } 2162 2163 #ifdef CONFIG_DEVICE_PRIVATE 2164 struct make_exclusive_args { 2165 struct mm_struct *mm; 2166 unsigned long address; 2167 void *owner; 2168 bool valid; 2169 }; 2170 2171 static bool page_make_device_exclusive_one(struct folio *folio, 2172 struct vm_area_struct *vma, unsigned long address, void *priv) 2173 { 2174 struct mm_struct *mm = vma->vm_mm; 2175 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2176 struct make_exclusive_args *args = priv; 2177 pte_t pteval; 2178 struct page *subpage; 2179 bool ret = true; 2180 struct mmu_notifier_range range; 2181 swp_entry_t entry; 2182 pte_t swp_pte; 2183 2184 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2185 vma->vm_mm, address, min(vma->vm_end, 2186 address + folio_size(folio)), 2187 args->owner); 2188 mmu_notifier_invalidate_range_start(&range); 2189 2190 while (page_vma_mapped_walk(&pvmw)) { 2191 /* Unexpected PMD-mapped THP? */ 2192 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2193 2194 if (!pte_present(*pvmw.pte)) { 2195 ret = false; 2196 page_vma_mapped_walk_done(&pvmw); 2197 break; 2198 } 2199 2200 subpage = folio_page(folio, 2201 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 2202 address = pvmw.address; 2203 2204 /* Nuke the page table entry. */ 2205 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 2206 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2207 2208 /* Set the dirty flag on the folio now the pte is gone. */ 2209 if (pte_dirty(pteval)) 2210 folio_mark_dirty(folio); 2211 2212 /* 2213 * Check that our target page is still mapped at the expected 2214 * address. 2215 */ 2216 if (args->mm == mm && args->address == address && 2217 pte_write(pteval)) 2218 args->valid = true; 2219 2220 /* 2221 * Store the pfn of the page in a special migration 2222 * pte. do_swap_page() will wait until the migration 2223 * pte is removed and then restart fault handling. 2224 */ 2225 if (pte_write(pteval)) 2226 entry = make_writable_device_exclusive_entry( 2227 page_to_pfn(subpage)); 2228 else 2229 entry = make_readable_device_exclusive_entry( 2230 page_to_pfn(subpage)); 2231 swp_pte = swp_entry_to_pte(entry); 2232 if (pte_soft_dirty(pteval)) 2233 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2234 if (pte_uffd_wp(pteval)) 2235 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2236 2237 set_pte_at(mm, address, pvmw.pte, swp_pte); 2238 2239 /* 2240 * There is a reference on the page for the swap entry which has 2241 * been removed, so shouldn't take another. 2242 */ 2243 page_remove_rmap(subpage, vma, false); 2244 } 2245 2246 mmu_notifier_invalidate_range_end(&range); 2247 2248 return ret; 2249 } 2250 2251 /** 2252 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2253 * @folio: The folio to replace page table entries for. 2254 * @mm: The mm_struct where the folio is expected to be mapped. 2255 * @address: Address where the folio is expected to be mapped. 2256 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2257 * 2258 * Tries to remove all the page table entries which are mapping this 2259 * folio and replace them with special device exclusive swap entries to 2260 * grant a device exclusive access to the folio. 2261 * 2262 * Context: Caller must hold the folio lock. 2263 * Return: false if the page is still mapped, or if it could not be unmapped 2264 * from the expected address. Otherwise returns true (success). 2265 */ 2266 static bool folio_make_device_exclusive(struct folio *folio, 2267 struct mm_struct *mm, unsigned long address, void *owner) 2268 { 2269 struct make_exclusive_args args = { 2270 .mm = mm, 2271 .address = address, 2272 .owner = owner, 2273 .valid = false, 2274 }; 2275 struct rmap_walk_control rwc = { 2276 .rmap_one = page_make_device_exclusive_one, 2277 .done = folio_not_mapped, 2278 .anon_lock = folio_lock_anon_vma_read, 2279 .arg = &args, 2280 }; 2281 2282 /* 2283 * Restrict to anonymous folios for now to avoid potential writeback 2284 * issues. 2285 */ 2286 if (!folio_test_anon(folio)) 2287 return false; 2288 2289 rmap_walk(folio, &rwc); 2290 2291 return args.valid && !folio_mapcount(folio); 2292 } 2293 2294 /** 2295 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2296 * @mm: mm_struct of associated target process 2297 * @start: start of the region to mark for exclusive device access 2298 * @end: end address of region 2299 * @pages: returns the pages which were successfully marked for exclusive access 2300 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2301 * 2302 * Returns: number of pages found in the range by GUP. A page is marked for 2303 * exclusive access only if the page pointer is non-NULL. 2304 * 2305 * This function finds ptes mapping page(s) to the given address range, locks 2306 * them and replaces mappings with special swap entries preventing userspace CPU 2307 * access. On fault these entries are replaced with the original mapping after 2308 * calling MMU notifiers. 2309 * 2310 * A driver using this to program access from a device must use a mmu notifier 2311 * critical section to hold a device specific lock during programming. Once 2312 * programming is complete it should drop the page lock and reference after 2313 * which point CPU access to the page will revoke the exclusive access. 2314 */ 2315 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2316 unsigned long end, struct page **pages, 2317 void *owner) 2318 { 2319 long npages = (end - start) >> PAGE_SHIFT; 2320 long i; 2321 2322 npages = get_user_pages_remote(mm, start, npages, 2323 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2324 pages, NULL, NULL); 2325 if (npages < 0) 2326 return npages; 2327 2328 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2329 struct folio *folio = page_folio(pages[i]); 2330 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2331 folio_put(folio); 2332 pages[i] = NULL; 2333 continue; 2334 } 2335 2336 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2337 folio_unlock(folio); 2338 folio_put(folio); 2339 pages[i] = NULL; 2340 } 2341 } 2342 2343 return npages; 2344 } 2345 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2346 #endif 2347 2348 void __put_anon_vma(struct anon_vma *anon_vma) 2349 { 2350 struct anon_vma *root = anon_vma->root; 2351 2352 anon_vma_free(anon_vma); 2353 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2354 anon_vma_free(root); 2355 } 2356 2357 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2358 struct rmap_walk_control *rwc) 2359 { 2360 struct anon_vma *anon_vma; 2361 2362 if (rwc->anon_lock) 2363 return rwc->anon_lock(folio, rwc); 2364 2365 /* 2366 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2367 * because that depends on page_mapped(); but not all its usages 2368 * are holding mmap_lock. Users without mmap_lock are required to 2369 * take a reference count to prevent the anon_vma disappearing 2370 */ 2371 anon_vma = folio_anon_vma(folio); 2372 if (!anon_vma) 2373 return NULL; 2374 2375 if (anon_vma_trylock_read(anon_vma)) 2376 goto out; 2377 2378 if (rwc->try_lock) { 2379 anon_vma = NULL; 2380 rwc->contended = true; 2381 goto out; 2382 } 2383 2384 anon_vma_lock_read(anon_vma); 2385 out: 2386 return anon_vma; 2387 } 2388 2389 /* 2390 * rmap_walk_anon - do something to anonymous page using the object-based 2391 * rmap method 2392 * @page: the page to be handled 2393 * @rwc: control variable according to each walk type 2394 * 2395 * Find all the mappings of a page using the mapping pointer and the vma chains 2396 * contained in the anon_vma struct it points to. 2397 */ 2398 static void rmap_walk_anon(struct folio *folio, 2399 struct rmap_walk_control *rwc, bool locked) 2400 { 2401 struct anon_vma *anon_vma; 2402 pgoff_t pgoff_start, pgoff_end; 2403 struct anon_vma_chain *avc; 2404 2405 if (locked) { 2406 anon_vma = folio_anon_vma(folio); 2407 /* anon_vma disappear under us? */ 2408 VM_BUG_ON_FOLIO(!anon_vma, folio); 2409 } else { 2410 anon_vma = rmap_walk_anon_lock(folio, rwc); 2411 } 2412 if (!anon_vma) 2413 return; 2414 2415 pgoff_start = folio_pgoff(folio); 2416 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2417 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2418 pgoff_start, pgoff_end) { 2419 struct vm_area_struct *vma = avc->vma; 2420 unsigned long address = vma_address(&folio->page, vma); 2421 2422 VM_BUG_ON_VMA(address == -EFAULT, vma); 2423 cond_resched(); 2424 2425 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2426 continue; 2427 2428 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2429 break; 2430 if (rwc->done && rwc->done(folio)) 2431 break; 2432 } 2433 2434 if (!locked) 2435 anon_vma_unlock_read(anon_vma); 2436 } 2437 2438 /* 2439 * rmap_walk_file - do something to file page using the object-based rmap method 2440 * @page: the page to be handled 2441 * @rwc: control variable according to each walk type 2442 * 2443 * Find all the mappings of a page using the mapping pointer and the vma chains 2444 * contained in the address_space struct it points to. 2445 */ 2446 static void rmap_walk_file(struct folio *folio, 2447 struct rmap_walk_control *rwc, bool locked) 2448 { 2449 struct address_space *mapping = folio_mapping(folio); 2450 pgoff_t pgoff_start, pgoff_end; 2451 struct vm_area_struct *vma; 2452 2453 /* 2454 * The page lock not only makes sure that page->mapping cannot 2455 * suddenly be NULLified by truncation, it makes sure that the 2456 * structure at mapping cannot be freed and reused yet, 2457 * so we can safely take mapping->i_mmap_rwsem. 2458 */ 2459 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2460 2461 if (!mapping) 2462 return; 2463 2464 pgoff_start = folio_pgoff(folio); 2465 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2466 if (!locked) { 2467 if (i_mmap_trylock_read(mapping)) 2468 goto lookup; 2469 2470 if (rwc->try_lock) { 2471 rwc->contended = true; 2472 return; 2473 } 2474 2475 i_mmap_lock_read(mapping); 2476 } 2477 lookup: 2478 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2479 pgoff_start, pgoff_end) { 2480 unsigned long address = vma_address(&folio->page, vma); 2481 2482 VM_BUG_ON_VMA(address == -EFAULT, vma); 2483 cond_resched(); 2484 2485 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2486 continue; 2487 2488 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2489 goto done; 2490 if (rwc->done && rwc->done(folio)) 2491 goto done; 2492 } 2493 2494 done: 2495 if (!locked) 2496 i_mmap_unlock_read(mapping); 2497 } 2498 2499 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2500 { 2501 if (unlikely(folio_test_ksm(folio))) 2502 rmap_walk_ksm(folio, rwc); 2503 else if (folio_test_anon(folio)) 2504 rmap_walk_anon(folio, rwc, false); 2505 else 2506 rmap_walk_file(folio, rwc, false); 2507 } 2508 2509 /* Like rmap_walk, but caller holds relevant rmap lock */ 2510 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2511 { 2512 /* no ksm support for now */ 2513 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2514 if (folio_test_anon(folio)) 2515 rmap_walk_anon(folio, rwc, true); 2516 else 2517 rmap_walk_file(folio, rwc, true); 2518 } 2519 2520 #ifdef CONFIG_HUGETLB_PAGE 2521 /* 2522 * The following two functions are for anonymous (private mapped) hugepages. 2523 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2524 * and no lru code, because we handle hugepages differently from common pages. 2525 * 2526 * RMAP_COMPOUND is ignored. 2527 */ 2528 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 2529 unsigned long address, rmap_t flags) 2530 { 2531 struct folio *folio = page_folio(page); 2532 struct anon_vma *anon_vma = vma->anon_vma; 2533 int first; 2534 2535 BUG_ON(!folio_test_locked(folio)); 2536 BUG_ON(!anon_vma); 2537 /* address might be in next vma when migration races vma_adjust */ 2538 first = atomic_inc_and_test(&folio->_entire_mapcount); 2539 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 2540 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 2541 if (first) 2542 __page_set_anon_rmap(page, vma, address, 2543 !!(flags & RMAP_EXCLUSIVE)); 2544 } 2545 2546 void hugepage_add_new_anon_rmap(struct page *page, 2547 struct vm_area_struct *vma, unsigned long address) 2548 { 2549 struct folio *folio = page_folio(page); 2550 2551 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2552 /* increment count (starts at -1) */ 2553 atomic_set(&folio->_entire_mapcount, 0); 2554 folio_clear_hugetlb_restore_reserve(folio); 2555 __page_set_anon_rmap(page, vma, address, 1); 2556 } 2557 #endif /* CONFIG_HUGETLB_PAGE */ 2558