1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) 27 * mapping->i_mmap_rwsem 28 * anon_vma->rwsem 29 * mm->page_table_lock or pte_lock 30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) 35 * mapping->tree_lock (widely used) 36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 38 * sb_lock (within inode_lock in fs/fs-writeback.c) 39 * mapping->tree_lock (widely used, in set_page_dirty, 40 * in arch-dependent flush_dcache_mmap_lock, 41 * within bdi.wb->list_lock in __sync_single_inode) 42 * 43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 44 * ->tasklist_lock 45 * pte map lock 46 */ 47 48 #include <linux/mm.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sched/task.h> 51 #include <linux/pagemap.h> 52 #include <linux/swap.h> 53 #include <linux/swapops.h> 54 #include <linux/slab.h> 55 #include <linux/init.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/rcupdate.h> 59 #include <linux/export.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/migrate.h> 63 #include <linux/hugetlb.h> 64 #include <linux/backing-dev.h> 65 #include <linux/page_idle.h> 66 67 #include <asm/tlbflush.h> 68 69 #include <trace/events/tlb.h> 70 71 #include "internal.h" 72 73 static struct kmem_cache *anon_vma_cachep; 74 static struct kmem_cache *anon_vma_chain_cachep; 75 76 static inline struct anon_vma *anon_vma_alloc(void) 77 { 78 struct anon_vma *anon_vma; 79 80 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 81 if (anon_vma) { 82 atomic_set(&anon_vma->refcount, 1); 83 anon_vma->degree = 1; /* Reference for first vma */ 84 anon_vma->parent = anon_vma; 85 /* 86 * Initialise the anon_vma root to point to itself. If called 87 * from fork, the root will be reset to the parents anon_vma. 88 */ 89 anon_vma->root = anon_vma; 90 } 91 92 return anon_vma; 93 } 94 95 static inline void anon_vma_free(struct anon_vma *anon_vma) 96 { 97 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 98 99 /* 100 * Synchronize against page_lock_anon_vma_read() such that 101 * we can safely hold the lock without the anon_vma getting 102 * freed. 103 * 104 * Relies on the full mb implied by the atomic_dec_and_test() from 105 * put_anon_vma() against the acquire barrier implied by 106 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 107 * 108 * page_lock_anon_vma_read() VS put_anon_vma() 109 * down_read_trylock() atomic_dec_and_test() 110 * LOCK MB 111 * atomic_read() rwsem_is_locked() 112 * 113 * LOCK should suffice since the actual taking of the lock must 114 * happen _before_ what follows. 115 */ 116 might_sleep(); 117 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 118 anon_vma_lock_write(anon_vma); 119 anon_vma_unlock_write(anon_vma); 120 } 121 122 kmem_cache_free(anon_vma_cachep, anon_vma); 123 } 124 125 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 126 { 127 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 128 } 129 130 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 131 { 132 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 133 } 134 135 static void anon_vma_chain_link(struct vm_area_struct *vma, 136 struct anon_vma_chain *avc, 137 struct anon_vma *anon_vma) 138 { 139 avc->vma = vma; 140 avc->anon_vma = anon_vma; 141 list_add(&avc->same_vma, &vma->anon_vma_chain); 142 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 143 } 144 145 /** 146 * __anon_vma_prepare - attach an anon_vma to a memory region 147 * @vma: the memory region in question 148 * 149 * This makes sure the memory mapping described by 'vma' has 150 * an 'anon_vma' attached to it, so that we can associate the 151 * anonymous pages mapped into it with that anon_vma. 152 * 153 * The common case will be that we already have one, which 154 * is handled inline by anon_vma_prepare(). But if 155 * not we either need to find an adjacent mapping that we 156 * can re-use the anon_vma from (very common when the only 157 * reason for splitting a vma has been mprotect()), or we 158 * allocate a new one. 159 * 160 * Anon-vma allocations are very subtle, because we may have 161 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 162 * and that may actually touch the spinlock even in the newly 163 * allocated vma (it depends on RCU to make sure that the 164 * anon_vma isn't actually destroyed). 165 * 166 * As a result, we need to do proper anon_vma locking even 167 * for the new allocation. At the same time, we do not want 168 * to do any locking for the common case of already having 169 * an anon_vma. 170 * 171 * This must be called with the mmap_sem held for reading. 172 */ 173 int __anon_vma_prepare(struct vm_area_struct *vma) 174 { 175 struct mm_struct *mm = vma->vm_mm; 176 struct anon_vma *anon_vma, *allocated; 177 struct anon_vma_chain *avc; 178 179 might_sleep(); 180 181 avc = anon_vma_chain_alloc(GFP_KERNEL); 182 if (!avc) 183 goto out_enomem; 184 185 anon_vma = find_mergeable_anon_vma(vma); 186 allocated = NULL; 187 if (!anon_vma) { 188 anon_vma = anon_vma_alloc(); 189 if (unlikely(!anon_vma)) 190 goto out_enomem_free_avc; 191 allocated = anon_vma; 192 } 193 194 anon_vma_lock_write(anon_vma); 195 /* page_table_lock to protect against threads */ 196 spin_lock(&mm->page_table_lock); 197 if (likely(!vma->anon_vma)) { 198 vma->anon_vma = anon_vma; 199 anon_vma_chain_link(vma, avc, anon_vma); 200 /* vma reference or self-parent link for new root */ 201 anon_vma->degree++; 202 allocated = NULL; 203 avc = NULL; 204 } 205 spin_unlock(&mm->page_table_lock); 206 anon_vma_unlock_write(anon_vma); 207 208 if (unlikely(allocated)) 209 put_anon_vma(allocated); 210 if (unlikely(avc)) 211 anon_vma_chain_free(avc); 212 213 return 0; 214 215 out_enomem_free_avc: 216 anon_vma_chain_free(avc); 217 out_enomem: 218 return -ENOMEM; 219 } 220 221 /* 222 * This is a useful helper function for locking the anon_vma root as 223 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 224 * have the same vma. 225 * 226 * Such anon_vma's should have the same root, so you'd expect to see 227 * just a single mutex_lock for the whole traversal. 228 */ 229 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 230 { 231 struct anon_vma *new_root = anon_vma->root; 232 if (new_root != root) { 233 if (WARN_ON_ONCE(root)) 234 up_write(&root->rwsem); 235 root = new_root; 236 down_write(&root->rwsem); 237 } 238 return root; 239 } 240 241 static inline void unlock_anon_vma_root(struct anon_vma *root) 242 { 243 if (root) 244 up_write(&root->rwsem); 245 } 246 247 /* 248 * Attach the anon_vmas from src to dst. 249 * Returns 0 on success, -ENOMEM on failure. 250 * 251 * If dst->anon_vma is NULL this function tries to find and reuse existing 252 * anon_vma which has no vmas and only one child anon_vma. This prevents 253 * degradation of anon_vma hierarchy to endless linear chain in case of 254 * constantly forking task. On the other hand, an anon_vma with more than one 255 * child isn't reused even if there was no alive vma, thus rmap walker has a 256 * good chance of avoiding scanning the whole hierarchy when it searches where 257 * page is mapped. 258 */ 259 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 260 { 261 struct anon_vma_chain *avc, *pavc; 262 struct anon_vma *root = NULL; 263 264 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 265 struct anon_vma *anon_vma; 266 267 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 268 if (unlikely(!avc)) { 269 unlock_anon_vma_root(root); 270 root = NULL; 271 avc = anon_vma_chain_alloc(GFP_KERNEL); 272 if (!avc) 273 goto enomem_failure; 274 } 275 anon_vma = pavc->anon_vma; 276 root = lock_anon_vma_root(root, anon_vma); 277 anon_vma_chain_link(dst, avc, anon_vma); 278 279 /* 280 * Reuse existing anon_vma if its degree lower than two, 281 * that means it has no vma and only one anon_vma child. 282 * 283 * Do not chose parent anon_vma, otherwise first child 284 * will always reuse it. Root anon_vma is never reused: 285 * it has self-parent reference and at least one child. 286 */ 287 if (!dst->anon_vma && anon_vma != src->anon_vma && 288 anon_vma->degree < 2) 289 dst->anon_vma = anon_vma; 290 } 291 if (dst->anon_vma) 292 dst->anon_vma->degree++; 293 unlock_anon_vma_root(root); 294 return 0; 295 296 enomem_failure: 297 /* 298 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 299 * decremented in unlink_anon_vmas(). 300 * We can safely do this because callers of anon_vma_clone() don't care 301 * about dst->anon_vma if anon_vma_clone() failed. 302 */ 303 dst->anon_vma = NULL; 304 unlink_anon_vmas(dst); 305 return -ENOMEM; 306 } 307 308 /* 309 * Attach vma to its own anon_vma, as well as to the anon_vmas that 310 * the corresponding VMA in the parent process is attached to. 311 * Returns 0 on success, non-zero on failure. 312 */ 313 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 314 { 315 struct anon_vma_chain *avc; 316 struct anon_vma *anon_vma; 317 int error; 318 319 /* Don't bother if the parent process has no anon_vma here. */ 320 if (!pvma->anon_vma) 321 return 0; 322 323 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 324 vma->anon_vma = NULL; 325 326 /* 327 * First, attach the new VMA to the parent VMA's anon_vmas, 328 * so rmap can find non-COWed pages in child processes. 329 */ 330 error = anon_vma_clone(vma, pvma); 331 if (error) 332 return error; 333 334 /* An existing anon_vma has been reused, all done then. */ 335 if (vma->anon_vma) 336 return 0; 337 338 /* Then add our own anon_vma. */ 339 anon_vma = anon_vma_alloc(); 340 if (!anon_vma) 341 goto out_error; 342 avc = anon_vma_chain_alloc(GFP_KERNEL); 343 if (!avc) 344 goto out_error_free_anon_vma; 345 346 /* 347 * The root anon_vma's spinlock is the lock actually used when we 348 * lock any of the anon_vmas in this anon_vma tree. 349 */ 350 anon_vma->root = pvma->anon_vma->root; 351 anon_vma->parent = pvma->anon_vma; 352 /* 353 * With refcounts, an anon_vma can stay around longer than the 354 * process it belongs to. The root anon_vma needs to be pinned until 355 * this anon_vma is freed, because the lock lives in the root. 356 */ 357 get_anon_vma(anon_vma->root); 358 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 359 vma->anon_vma = anon_vma; 360 anon_vma_lock_write(anon_vma); 361 anon_vma_chain_link(vma, avc, anon_vma); 362 anon_vma->parent->degree++; 363 anon_vma_unlock_write(anon_vma); 364 365 return 0; 366 367 out_error_free_anon_vma: 368 put_anon_vma(anon_vma); 369 out_error: 370 unlink_anon_vmas(vma); 371 return -ENOMEM; 372 } 373 374 void unlink_anon_vmas(struct vm_area_struct *vma) 375 { 376 struct anon_vma_chain *avc, *next; 377 struct anon_vma *root = NULL; 378 379 /* 380 * Unlink each anon_vma chained to the VMA. This list is ordered 381 * from newest to oldest, ensuring the root anon_vma gets freed last. 382 */ 383 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 384 struct anon_vma *anon_vma = avc->anon_vma; 385 386 root = lock_anon_vma_root(root, anon_vma); 387 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 388 389 /* 390 * Leave empty anon_vmas on the list - we'll need 391 * to free them outside the lock. 392 */ 393 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) { 394 anon_vma->parent->degree--; 395 continue; 396 } 397 398 list_del(&avc->same_vma); 399 anon_vma_chain_free(avc); 400 } 401 if (vma->anon_vma) 402 vma->anon_vma->degree--; 403 unlock_anon_vma_root(root); 404 405 /* 406 * Iterate the list once more, it now only contains empty and unlinked 407 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 408 * needing to write-acquire the anon_vma->root->rwsem. 409 */ 410 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 411 struct anon_vma *anon_vma = avc->anon_vma; 412 413 VM_WARN_ON(anon_vma->degree); 414 put_anon_vma(anon_vma); 415 416 list_del(&avc->same_vma); 417 anon_vma_chain_free(avc); 418 } 419 } 420 421 static void anon_vma_ctor(void *data) 422 { 423 struct anon_vma *anon_vma = data; 424 425 init_rwsem(&anon_vma->rwsem); 426 atomic_set(&anon_vma->refcount, 0); 427 anon_vma->rb_root = RB_ROOT; 428 } 429 430 void __init anon_vma_init(void) 431 { 432 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 433 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 434 anon_vma_ctor); 435 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 436 SLAB_PANIC|SLAB_ACCOUNT); 437 } 438 439 /* 440 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 441 * 442 * Since there is no serialization what so ever against page_remove_rmap() 443 * the best this function can do is return a locked anon_vma that might 444 * have been relevant to this page. 445 * 446 * The page might have been remapped to a different anon_vma or the anon_vma 447 * returned may already be freed (and even reused). 448 * 449 * In case it was remapped to a different anon_vma, the new anon_vma will be a 450 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 451 * ensure that any anon_vma obtained from the page will still be valid for as 452 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 453 * 454 * All users of this function must be very careful when walking the anon_vma 455 * chain and verify that the page in question is indeed mapped in it 456 * [ something equivalent to page_mapped_in_vma() ]. 457 * 458 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 459 * that the anon_vma pointer from page->mapping is valid if there is a 460 * mapcount, we can dereference the anon_vma after observing those. 461 */ 462 struct anon_vma *page_get_anon_vma(struct page *page) 463 { 464 struct anon_vma *anon_vma = NULL; 465 unsigned long anon_mapping; 466 467 rcu_read_lock(); 468 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 469 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 470 goto out; 471 if (!page_mapped(page)) 472 goto out; 473 474 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 475 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 476 anon_vma = NULL; 477 goto out; 478 } 479 480 /* 481 * If this page is still mapped, then its anon_vma cannot have been 482 * freed. But if it has been unmapped, we have no security against the 483 * anon_vma structure being freed and reused (for another anon_vma: 484 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 485 * above cannot corrupt). 486 */ 487 if (!page_mapped(page)) { 488 rcu_read_unlock(); 489 put_anon_vma(anon_vma); 490 return NULL; 491 } 492 out: 493 rcu_read_unlock(); 494 495 return anon_vma; 496 } 497 498 /* 499 * Similar to page_get_anon_vma() except it locks the anon_vma. 500 * 501 * Its a little more complex as it tries to keep the fast path to a single 502 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 503 * reference like with page_get_anon_vma() and then block on the mutex. 504 */ 505 struct anon_vma *page_lock_anon_vma_read(struct page *page) 506 { 507 struct anon_vma *anon_vma = NULL; 508 struct anon_vma *root_anon_vma; 509 unsigned long anon_mapping; 510 511 rcu_read_lock(); 512 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 513 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 514 goto out; 515 if (!page_mapped(page)) 516 goto out; 517 518 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 519 root_anon_vma = READ_ONCE(anon_vma->root); 520 if (down_read_trylock(&root_anon_vma->rwsem)) { 521 /* 522 * If the page is still mapped, then this anon_vma is still 523 * its anon_vma, and holding the mutex ensures that it will 524 * not go away, see anon_vma_free(). 525 */ 526 if (!page_mapped(page)) { 527 up_read(&root_anon_vma->rwsem); 528 anon_vma = NULL; 529 } 530 goto out; 531 } 532 533 /* trylock failed, we got to sleep */ 534 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 535 anon_vma = NULL; 536 goto out; 537 } 538 539 if (!page_mapped(page)) { 540 rcu_read_unlock(); 541 put_anon_vma(anon_vma); 542 return NULL; 543 } 544 545 /* we pinned the anon_vma, its safe to sleep */ 546 rcu_read_unlock(); 547 anon_vma_lock_read(anon_vma); 548 549 if (atomic_dec_and_test(&anon_vma->refcount)) { 550 /* 551 * Oops, we held the last refcount, release the lock 552 * and bail -- can't simply use put_anon_vma() because 553 * we'll deadlock on the anon_vma_lock_write() recursion. 554 */ 555 anon_vma_unlock_read(anon_vma); 556 __put_anon_vma(anon_vma); 557 anon_vma = NULL; 558 } 559 560 return anon_vma; 561 562 out: 563 rcu_read_unlock(); 564 return anon_vma; 565 } 566 567 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 568 { 569 anon_vma_unlock_read(anon_vma); 570 } 571 572 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 573 /* 574 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 575 * important if a PTE was dirty when it was unmapped that it's flushed 576 * before any IO is initiated on the page to prevent lost writes. Similarly, 577 * it must be flushed before freeing to prevent data leakage. 578 */ 579 void try_to_unmap_flush(void) 580 { 581 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 582 583 if (!tlb_ubc->flush_required) 584 return; 585 586 arch_tlbbatch_flush(&tlb_ubc->arch); 587 tlb_ubc->flush_required = false; 588 tlb_ubc->writable = false; 589 } 590 591 /* Flush iff there are potentially writable TLB entries that can race with IO */ 592 void try_to_unmap_flush_dirty(void) 593 { 594 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 595 596 if (tlb_ubc->writable) 597 try_to_unmap_flush(); 598 } 599 600 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 601 { 602 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 603 604 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 605 tlb_ubc->flush_required = true; 606 607 /* 608 * If the PTE was dirty then it's best to assume it's writable. The 609 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 610 * before the page is queued for IO. 611 */ 612 if (writable) 613 tlb_ubc->writable = true; 614 } 615 616 /* 617 * Returns true if the TLB flush should be deferred to the end of a batch of 618 * unmap operations to reduce IPIs. 619 */ 620 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 621 { 622 bool should_defer = false; 623 624 if (!(flags & TTU_BATCH_FLUSH)) 625 return false; 626 627 /* If remote CPUs need to be flushed then defer batch the flush */ 628 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 629 should_defer = true; 630 put_cpu(); 631 632 return should_defer; 633 } 634 #else 635 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 636 { 637 } 638 639 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 640 { 641 return false; 642 } 643 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 644 645 /* 646 * At what user virtual address is page expected in vma? 647 * Caller should check the page is actually part of the vma. 648 */ 649 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 650 { 651 unsigned long address; 652 if (PageAnon(page)) { 653 struct anon_vma *page__anon_vma = page_anon_vma(page); 654 /* 655 * Note: swapoff's unuse_vma() is more efficient with this 656 * check, and needs it to match anon_vma when KSM is active. 657 */ 658 if (!vma->anon_vma || !page__anon_vma || 659 vma->anon_vma->root != page__anon_vma->root) 660 return -EFAULT; 661 } else if (page->mapping) { 662 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) 663 return -EFAULT; 664 } else 665 return -EFAULT; 666 address = __vma_address(page, vma); 667 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 668 return -EFAULT; 669 return address; 670 } 671 672 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 673 { 674 pgd_t *pgd; 675 p4d_t *p4d; 676 pud_t *pud; 677 pmd_t *pmd = NULL; 678 pmd_t pmde; 679 680 pgd = pgd_offset(mm, address); 681 if (!pgd_present(*pgd)) 682 goto out; 683 684 p4d = p4d_offset(pgd, address); 685 if (!p4d_present(*p4d)) 686 goto out; 687 688 pud = pud_offset(p4d, address); 689 if (!pud_present(*pud)) 690 goto out; 691 692 pmd = pmd_offset(pud, address); 693 /* 694 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 695 * without holding anon_vma lock for write. So when looking for a 696 * genuine pmde (in which to find pte), test present and !THP together. 697 */ 698 pmde = *pmd; 699 barrier(); 700 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 701 pmd = NULL; 702 out: 703 return pmd; 704 } 705 706 struct page_referenced_arg { 707 int mapcount; 708 int referenced; 709 unsigned long vm_flags; 710 struct mem_cgroup *memcg; 711 }; 712 /* 713 * arg: page_referenced_arg will be passed 714 */ 715 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, 716 unsigned long address, void *arg) 717 { 718 struct page_referenced_arg *pra = arg; 719 struct page_vma_mapped_walk pvmw = { 720 .page = page, 721 .vma = vma, 722 .address = address, 723 }; 724 int referenced = 0; 725 726 while (page_vma_mapped_walk(&pvmw)) { 727 address = pvmw.address; 728 729 if (vma->vm_flags & VM_LOCKED) { 730 page_vma_mapped_walk_done(&pvmw); 731 pra->vm_flags |= VM_LOCKED; 732 return false; /* To break the loop */ 733 } 734 735 if (pvmw.pte) { 736 if (ptep_clear_flush_young_notify(vma, address, 737 pvmw.pte)) { 738 /* 739 * Don't treat a reference through 740 * a sequentially read mapping as such. 741 * If the page has been used in another mapping, 742 * we will catch it; if this other mapping is 743 * already gone, the unmap path will have set 744 * PG_referenced or activated the page. 745 */ 746 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 747 referenced++; 748 } 749 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 750 if (pmdp_clear_flush_young_notify(vma, address, 751 pvmw.pmd)) 752 referenced++; 753 } else { 754 /* unexpected pmd-mapped page? */ 755 WARN_ON_ONCE(1); 756 } 757 758 pra->mapcount--; 759 } 760 761 if (referenced) 762 clear_page_idle(page); 763 if (test_and_clear_page_young(page)) 764 referenced++; 765 766 if (referenced) { 767 pra->referenced++; 768 pra->vm_flags |= vma->vm_flags; 769 } 770 771 if (!pra->mapcount) 772 return false; /* To break the loop */ 773 774 return true; 775 } 776 777 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 778 { 779 struct page_referenced_arg *pra = arg; 780 struct mem_cgroup *memcg = pra->memcg; 781 782 if (!mm_match_cgroup(vma->vm_mm, memcg)) 783 return true; 784 785 return false; 786 } 787 788 /** 789 * page_referenced - test if the page was referenced 790 * @page: the page to test 791 * @is_locked: caller holds lock on the page 792 * @memcg: target memory cgroup 793 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 794 * 795 * Quick test_and_clear_referenced for all mappings to a page, 796 * returns the number of ptes which referenced the page. 797 */ 798 int page_referenced(struct page *page, 799 int is_locked, 800 struct mem_cgroup *memcg, 801 unsigned long *vm_flags) 802 { 803 int we_locked = 0; 804 struct page_referenced_arg pra = { 805 .mapcount = total_mapcount(page), 806 .memcg = memcg, 807 }; 808 struct rmap_walk_control rwc = { 809 .rmap_one = page_referenced_one, 810 .arg = (void *)&pra, 811 .anon_lock = page_lock_anon_vma_read, 812 }; 813 814 *vm_flags = 0; 815 if (!page_mapped(page)) 816 return 0; 817 818 if (!page_rmapping(page)) 819 return 0; 820 821 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 822 we_locked = trylock_page(page); 823 if (!we_locked) 824 return 1; 825 } 826 827 /* 828 * If we are reclaiming on behalf of a cgroup, skip 829 * counting on behalf of references from different 830 * cgroups 831 */ 832 if (memcg) { 833 rwc.invalid_vma = invalid_page_referenced_vma; 834 } 835 836 rmap_walk(page, &rwc); 837 *vm_flags = pra.vm_flags; 838 839 if (we_locked) 840 unlock_page(page); 841 842 return pra.referenced; 843 } 844 845 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, 846 unsigned long address, void *arg) 847 { 848 struct page_vma_mapped_walk pvmw = { 849 .page = page, 850 .vma = vma, 851 .address = address, 852 .flags = PVMW_SYNC, 853 }; 854 int *cleaned = arg; 855 856 while (page_vma_mapped_walk(&pvmw)) { 857 int ret = 0; 858 address = pvmw.address; 859 if (pvmw.pte) { 860 pte_t entry; 861 pte_t *pte = pvmw.pte; 862 863 if (!pte_dirty(*pte) && !pte_write(*pte)) 864 continue; 865 866 flush_cache_page(vma, address, pte_pfn(*pte)); 867 entry = ptep_clear_flush(vma, address, pte); 868 entry = pte_wrprotect(entry); 869 entry = pte_mkclean(entry); 870 set_pte_at(vma->vm_mm, address, pte, entry); 871 ret = 1; 872 } else { 873 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 874 pmd_t *pmd = pvmw.pmd; 875 pmd_t entry; 876 877 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 878 continue; 879 880 flush_cache_page(vma, address, page_to_pfn(page)); 881 entry = pmdp_huge_clear_flush(vma, address, pmd); 882 entry = pmd_wrprotect(entry); 883 entry = pmd_mkclean(entry); 884 set_pmd_at(vma->vm_mm, address, pmd, entry); 885 ret = 1; 886 #else 887 /* unexpected pmd-mapped page? */ 888 WARN_ON_ONCE(1); 889 #endif 890 } 891 892 if (ret) { 893 mmu_notifier_invalidate_page(vma->vm_mm, address); 894 (*cleaned)++; 895 } 896 } 897 898 return true; 899 } 900 901 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 902 { 903 if (vma->vm_flags & VM_SHARED) 904 return false; 905 906 return true; 907 } 908 909 int page_mkclean(struct page *page) 910 { 911 int cleaned = 0; 912 struct address_space *mapping; 913 struct rmap_walk_control rwc = { 914 .arg = (void *)&cleaned, 915 .rmap_one = page_mkclean_one, 916 .invalid_vma = invalid_mkclean_vma, 917 }; 918 919 BUG_ON(!PageLocked(page)); 920 921 if (!page_mapped(page)) 922 return 0; 923 924 mapping = page_mapping(page); 925 if (!mapping) 926 return 0; 927 928 rmap_walk(page, &rwc); 929 930 return cleaned; 931 } 932 EXPORT_SYMBOL_GPL(page_mkclean); 933 934 /** 935 * page_move_anon_rmap - move a page to our anon_vma 936 * @page: the page to move to our anon_vma 937 * @vma: the vma the page belongs to 938 * 939 * When a page belongs exclusively to one process after a COW event, 940 * that page can be moved into the anon_vma that belongs to just that 941 * process, so the rmap code will not search the parent or sibling 942 * processes. 943 */ 944 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 945 { 946 struct anon_vma *anon_vma = vma->anon_vma; 947 948 page = compound_head(page); 949 950 VM_BUG_ON_PAGE(!PageLocked(page), page); 951 VM_BUG_ON_VMA(!anon_vma, vma); 952 953 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 954 /* 955 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 956 * simultaneously, so a concurrent reader (eg page_referenced()'s 957 * PageAnon()) will not see one without the other. 958 */ 959 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 960 } 961 962 /** 963 * __page_set_anon_rmap - set up new anonymous rmap 964 * @page: Page to add to rmap 965 * @vma: VM area to add page to. 966 * @address: User virtual address of the mapping 967 * @exclusive: the page is exclusively owned by the current process 968 */ 969 static void __page_set_anon_rmap(struct page *page, 970 struct vm_area_struct *vma, unsigned long address, int exclusive) 971 { 972 struct anon_vma *anon_vma = vma->anon_vma; 973 974 BUG_ON(!anon_vma); 975 976 if (PageAnon(page)) 977 return; 978 979 /* 980 * If the page isn't exclusively mapped into this vma, 981 * we must use the _oldest_ possible anon_vma for the 982 * page mapping! 983 */ 984 if (!exclusive) 985 anon_vma = anon_vma->root; 986 987 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 988 page->mapping = (struct address_space *) anon_vma; 989 page->index = linear_page_index(vma, address); 990 } 991 992 /** 993 * __page_check_anon_rmap - sanity check anonymous rmap addition 994 * @page: the page to add the mapping to 995 * @vma: the vm area in which the mapping is added 996 * @address: the user virtual address mapped 997 */ 998 static void __page_check_anon_rmap(struct page *page, 999 struct vm_area_struct *vma, unsigned long address) 1000 { 1001 #ifdef CONFIG_DEBUG_VM 1002 /* 1003 * The page's anon-rmap details (mapping and index) are guaranteed to 1004 * be set up correctly at this point. 1005 * 1006 * We have exclusion against page_add_anon_rmap because the caller 1007 * always holds the page locked, except if called from page_dup_rmap, 1008 * in which case the page is already known to be setup. 1009 * 1010 * We have exclusion against page_add_new_anon_rmap because those pages 1011 * are initially only visible via the pagetables, and the pte is locked 1012 * over the call to page_add_new_anon_rmap. 1013 */ 1014 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1015 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address)); 1016 #endif 1017 } 1018 1019 /** 1020 * page_add_anon_rmap - add pte mapping to an anonymous page 1021 * @page: the page to add the mapping to 1022 * @vma: the vm area in which the mapping is added 1023 * @address: the user virtual address mapped 1024 * @compound: charge the page as compound or small page 1025 * 1026 * The caller needs to hold the pte lock, and the page must be locked in 1027 * the anon_vma case: to serialize mapping,index checking after setting, 1028 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1029 * (but PageKsm is never downgraded to PageAnon). 1030 */ 1031 void page_add_anon_rmap(struct page *page, 1032 struct vm_area_struct *vma, unsigned long address, bool compound) 1033 { 1034 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); 1035 } 1036 1037 /* 1038 * Special version of the above for do_swap_page, which often runs 1039 * into pages that are exclusively owned by the current process. 1040 * Everybody else should continue to use page_add_anon_rmap above. 1041 */ 1042 void do_page_add_anon_rmap(struct page *page, 1043 struct vm_area_struct *vma, unsigned long address, int flags) 1044 { 1045 bool compound = flags & RMAP_COMPOUND; 1046 bool first; 1047 1048 if (compound) { 1049 atomic_t *mapcount; 1050 VM_BUG_ON_PAGE(!PageLocked(page), page); 1051 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1052 mapcount = compound_mapcount_ptr(page); 1053 first = atomic_inc_and_test(mapcount); 1054 } else { 1055 first = atomic_inc_and_test(&page->_mapcount); 1056 } 1057 1058 if (first) { 1059 int nr = compound ? hpage_nr_pages(page) : 1; 1060 /* 1061 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1062 * these counters are not modified in interrupt context, and 1063 * pte lock(a spinlock) is held, which implies preemption 1064 * disabled. 1065 */ 1066 if (compound) 1067 __inc_node_page_state(page, NR_ANON_THPS); 1068 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); 1069 } 1070 if (unlikely(PageKsm(page))) 1071 return; 1072 1073 VM_BUG_ON_PAGE(!PageLocked(page), page); 1074 1075 /* address might be in next vma when migration races vma_adjust */ 1076 if (first) 1077 __page_set_anon_rmap(page, vma, address, 1078 flags & RMAP_EXCLUSIVE); 1079 else 1080 __page_check_anon_rmap(page, vma, address); 1081 } 1082 1083 /** 1084 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1085 * @page: the page to add the mapping to 1086 * @vma: the vm area in which the mapping is added 1087 * @address: the user virtual address mapped 1088 * @compound: charge the page as compound or small page 1089 * 1090 * Same as page_add_anon_rmap but must only be called on *new* pages. 1091 * This means the inc-and-test can be bypassed. 1092 * Page does not have to be locked. 1093 */ 1094 void page_add_new_anon_rmap(struct page *page, 1095 struct vm_area_struct *vma, unsigned long address, bool compound) 1096 { 1097 int nr = compound ? hpage_nr_pages(page) : 1; 1098 1099 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1100 __SetPageSwapBacked(page); 1101 if (compound) { 1102 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1103 /* increment count (starts at -1) */ 1104 atomic_set(compound_mapcount_ptr(page), 0); 1105 __inc_node_page_state(page, NR_ANON_THPS); 1106 } else { 1107 /* Anon THP always mapped first with PMD */ 1108 VM_BUG_ON_PAGE(PageTransCompound(page), page); 1109 /* increment count (starts at -1) */ 1110 atomic_set(&page->_mapcount, 0); 1111 } 1112 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); 1113 __page_set_anon_rmap(page, vma, address, 1); 1114 } 1115 1116 /** 1117 * page_add_file_rmap - add pte mapping to a file page 1118 * @page: the page to add the mapping to 1119 * 1120 * The caller needs to hold the pte lock. 1121 */ 1122 void page_add_file_rmap(struct page *page, bool compound) 1123 { 1124 int i, nr = 1; 1125 1126 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1127 lock_page_memcg(page); 1128 if (compound && PageTransHuge(page)) { 1129 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1130 if (atomic_inc_and_test(&page[i]._mapcount)) 1131 nr++; 1132 } 1133 if (!atomic_inc_and_test(compound_mapcount_ptr(page))) 1134 goto out; 1135 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 1136 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED); 1137 } else { 1138 if (PageTransCompound(page) && page_mapping(page)) { 1139 VM_WARN_ON_ONCE(!PageLocked(page)); 1140 1141 SetPageDoubleMap(compound_head(page)); 1142 if (PageMlocked(page)) 1143 clear_page_mlock(compound_head(page)); 1144 } 1145 if (!atomic_inc_and_test(&page->_mapcount)) 1146 goto out; 1147 } 1148 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); 1149 out: 1150 unlock_page_memcg(page); 1151 } 1152 1153 static void page_remove_file_rmap(struct page *page, bool compound) 1154 { 1155 int i, nr = 1; 1156 1157 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1158 lock_page_memcg(page); 1159 1160 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1161 if (unlikely(PageHuge(page))) { 1162 /* hugetlb pages are always mapped with pmds */ 1163 atomic_dec(compound_mapcount_ptr(page)); 1164 goto out; 1165 } 1166 1167 /* page still mapped by someone else? */ 1168 if (compound && PageTransHuge(page)) { 1169 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1170 if (atomic_add_negative(-1, &page[i]._mapcount)) 1171 nr++; 1172 } 1173 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1174 goto out; 1175 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 1176 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED); 1177 } else { 1178 if (!atomic_add_negative(-1, &page->_mapcount)) 1179 goto out; 1180 } 1181 1182 /* 1183 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because 1184 * these counters are not modified in interrupt context, and 1185 * pte lock(a spinlock) is held, which implies preemption disabled. 1186 */ 1187 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); 1188 1189 if (unlikely(PageMlocked(page))) 1190 clear_page_mlock(page); 1191 out: 1192 unlock_page_memcg(page); 1193 } 1194 1195 static void page_remove_anon_compound_rmap(struct page *page) 1196 { 1197 int i, nr; 1198 1199 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1200 return; 1201 1202 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1203 if (unlikely(PageHuge(page))) 1204 return; 1205 1206 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1207 return; 1208 1209 __dec_node_page_state(page, NR_ANON_THPS); 1210 1211 if (TestClearPageDoubleMap(page)) { 1212 /* 1213 * Subpages can be mapped with PTEs too. Check how many of 1214 * themi are still mapped. 1215 */ 1216 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1217 if (atomic_add_negative(-1, &page[i]._mapcount)) 1218 nr++; 1219 } 1220 } else { 1221 nr = HPAGE_PMD_NR; 1222 } 1223 1224 if (unlikely(PageMlocked(page))) 1225 clear_page_mlock(page); 1226 1227 if (nr) { 1228 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr); 1229 deferred_split_huge_page(page); 1230 } 1231 } 1232 1233 /** 1234 * page_remove_rmap - take down pte mapping from a page 1235 * @page: page to remove mapping from 1236 * @compound: uncharge the page as compound or small page 1237 * 1238 * The caller needs to hold the pte lock. 1239 */ 1240 void page_remove_rmap(struct page *page, bool compound) 1241 { 1242 if (!PageAnon(page)) 1243 return page_remove_file_rmap(page, compound); 1244 1245 if (compound) 1246 return page_remove_anon_compound_rmap(page); 1247 1248 /* page still mapped by someone else? */ 1249 if (!atomic_add_negative(-1, &page->_mapcount)) 1250 return; 1251 1252 /* 1253 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1254 * these counters are not modified in interrupt context, and 1255 * pte lock(a spinlock) is held, which implies preemption disabled. 1256 */ 1257 __dec_node_page_state(page, NR_ANON_MAPPED); 1258 1259 if (unlikely(PageMlocked(page))) 1260 clear_page_mlock(page); 1261 1262 if (PageTransCompound(page)) 1263 deferred_split_huge_page(compound_head(page)); 1264 1265 /* 1266 * It would be tidy to reset the PageAnon mapping here, 1267 * but that might overwrite a racing page_add_anon_rmap 1268 * which increments mapcount after us but sets mapping 1269 * before us: so leave the reset to free_hot_cold_page, 1270 * and remember that it's only reliable while mapped. 1271 * Leaving it set also helps swapoff to reinstate ptes 1272 * faster for those pages still in swapcache. 1273 */ 1274 } 1275 1276 /* 1277 * @arg: enum ttu_flags will be passed to this argument 1278 */ 1279 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1280 unsigned long address, void *arg) 1281 { 1282 struct mm_struct *mm = vma->vm_mm; 1283 struct page_vma_mapped_walk pvmw = { 1284 .page = page, 1285 .vma = vma, 1286 .address = address, 1287 }; 1288 pte_t pteval; 1289 struct page *subpage; 1290 bool ret = true; 1291 enum ttu_flags flags = (enum ttu_flags)arg; 1292 1293 /* munlock has nothing to gain from examining un-locked vmas */ 1294 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) 1295 return true; 1296 1297 if (flags & TTU_SPLIT_HUGE_PMD) { 1298 split_huge_pmd_address(vma, address, 1299 flags & TTU_MIGRATION, page); 1300 } 1301 1302 while (page_vma_mapped_walk(&pvmw)) { 1303 /* 1304 * If the page is mlock()d, we cannot swap it out. 1305 * If it's recently referenced (perhaps page_referenced 1306 * skipped over this mm) then we should reactivate it. 1307 */ 1308 if (!(flags & TTU_IGNORE_MLOCK)) { 1309 if (vma->vm_flags & VM_LOCKED) { 1310 /* PTE-mapped THP are never mlocked */ 1311 if (!PageTransCompound(page)) { 1312 /* 1313 * Holding pte lock, we do *not* need 1314 * mmap_sem here 1315 */ 1316 mlock_vma_page(page); 1317 } 1318 ret = false; 1319 page_vma_mapped_walk_done(&pvmw); 1320 break; 1321 } 1322 if (flags & TTU_MUNLOCK) 1323 continue; 1324 } 1325 1326 /* Unexpected PMD-mapped THP? */ 1327 VM_BUG_ON_PAGE(!pvmw.pte, page); 1328 1329 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); 1330 address = pvmw.address; 1331 1332 1333 if (!(flags & TTU_IGNORE_ACCESS)) { 1334 if (ptep_clear_flush_young_notify(vma, address, 1335 pvmw.pte)) { 1336 ret = false; 1337 page_vma_mapped_walk_done(&pvmw); 1338 break; 1339 } 1340 } 1341 1342 /* Nuke the page table entry. */ 1343 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1344 if (should_defer_flush(mm, flags)) { 1345 /* 1346 * We clear the PTE but do not flush so potentially 1347 * a remote CPU could still be writing to the page. 1348 * If the entry was previously clean then the 1349 * architecture must guarantee that a clear->dirty 1350 * transition on a cached TLB entry is written through 1351 * and traps if the PTE is unmapped. 1352 */ 1353 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1354 1355 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1356 } else { 1357 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1358 } 1359 1360 /* Move the dirty bit to the page. Now the pte is gone. */ 1361 if (pte_dirty(pteval)) 1362 set_page_dirty(page); 1363 1364 /* Update high watermark before we lower rss */ 1365 update_hiwater_rss(mm); 1366 1367 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1368 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1369 if (PageHuge(page)) { 1370 int nr = 1 << compound_order(page); 1371 hugetlb_count_sub(nr, mm); 1372 set_huge_swap_pte_at(mm, address, 1373 pvmw.pte, pteval, 1374 vma_mmu_pagesize(vma)); 1375 } else { 1376 dec_mm_counter(mm, mm_counter(page)); 1377 set_pte_at(mm, address, pvmw.pte, pteval); 1378 } 1379 1380 } else if (pte_unused(pteval)) { 1381 /* 1382 * The guest indicated that the page content is of no 1383 * interest anymore. Simply discard the pte, vmscan 1384 * will take care of the rest. 1385 */ 1386 dec_mm_counter(mm, mm_counter(page)); 1387 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1388 (flags & TTU_MIGRATION)) { 1389 swp_entry_t entry; 1390 pte_t swp_pte; 1391 /* 1392 * Store the pfn of the page in a special migration 1393 * pte. do_swap_page() will wait until the migration 1394 * pte is removed and then restart fault handling. 1395 */ 1396 entry = make_migration_entry(subpage, 1397 pte_write(pteval)); 1398 swp_pte = swp_entry_to_pte(entry); 1399 if (pte_soft_dirty(pteval)) 1400 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1401 set_pte_at(mm, address, pvmw.pte, swp_pte); 1402 } else if (PageAnon(page)) { 1403 swp_entry_t entry = { .val = page_private(subpage) }; 1404 pte_t swp_pte; 1405 /* 1406 * Store the swap location in the pte. 1407 * See handle_pte_fault() ... 1408 */ 1409 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { 1410 WARN_ON_ONCE(1); 1411 ret = false; 1412 page_vma_mapped_walk_done(&pvmw); 1413 break; 1414 } 1415 1416 /* MADV_FREE page check */ 1417 if (!PageSwapBacked(page)) { 1418 if (!PageDirty(page)) { 1419 dec_mm_counter(mm, MM_ANONPAGES); 1420 goto discard; 1421 } 1422 1423 /* 1424 * If the page was redirtied, it cannot be 1425 * discarded. Remap the page to page table. 1426 */ 1427 set_pte_at(mm, address, pvmw.pte, pteval); 1428 SetPageSwapBacked(page); 1429 ret = false; 1430 page_vma_mapped_walk_done(&pvmw); 1431 break; 1432 } 1433 1434 if (swap_duplicate(entry) < 0) { 1435 set_pte_at(mm, address, pvmw.pte, pteval); 1436 ret = false; 1437 page_vma_mapped_walk_done(&pvmw); 1438 break; 1439 } 1440 if (list_empty(&mm->mmlist)) { 1441 spin_lock(&mmlist_lock); 1442 if (list_empty(&mm->mmlist)) 1443 list_add(&mm->mmlist, &init_mm.mmlist); 1444 spin_unlock(&mmlist_lock); 1445 } 1446 dec_mm_counter(mm, MM_ANONPAGES); 1447 inc_mm_counter(mm, MM_SWAPENTS); 1448 swp_pte = swp_entry_to_pte(entry); 1449 if (pte_soft_dirty(pteval)) 1450 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1451 set_pte_at(mm, address, pvmw.pte, swp_pte); 1452 } else 1453 dec_mm_counter(mm, mm_counter_file(page)); 1454 discard: 1455 page_remove_rmap(subpage, PageHuge(page)); 1456 put_page(page); 1457 mmu_notifier_invalidate_page(mm, address); 1458 } 1459 return ret; 1460 } 1461 1462 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1463 { 1464 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1465 1466 if (!maybe_stack) 1467 return false; 1468 1469 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1470 VM_STACK_INCOMPLETE_SETUP) 1471 return true; 1472 1473 return false; 1474 } 1475 1476 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1477 { 1478 return is_vma_temporary_stack(vma); 1479 } 1480 1481 static int page_mapcount_is_zero(struct page *page) 1482 { 1483 return !total_mapcount(page); 1484 } 1485 1486 /** 1487 * try_to_unmap - try to remove all page table mappings to a page 1488 * @page: the page to get unmapped 1489 * @flags: action and flags 1490 * 1491 * Tries to remove all the page table entries which are mapping this 1492 * page, used in the pageout path. Caller must hold the page lock. 1493 * 1494 * If unmap is successful, return true. Otherwise, false. 1495 */ 1496 bool try_to_unmap(struct page *page, enum ttu_flags flags) 1497 { 1498 struct rmap_walk_control rwc = { 1499 .rmap_one = try_to_unmap_one, 1500 .arg = (void *)flags, 1501 .done = page_mapcount_is_zero, 1502 .anon_lock = page_lock_anon_vma_read, 1503 }; 1504 1505 /* 1506 * During exec, a temporary VMA is setup and later moved. 1507 * The VMA is moved under the anon_vma lock but not the 1508 * page tables leading to a race where migration cannot 1509 * find the migration ptes. Rather than increasing the 1510 * locking requirements of exec(), migration skips 1511 * temporary VMAs until after exec() completes. 1512 */ 1513 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) 1514 rwc.invalid_vma = invalid_migration_vma; 1515 1516 if (flags & TTU_RMAP_LOCKED) 1517 rmap_walk_locked(page, &rwc); 1518 else 1519 rmap_walk(page, &rwc); 1520 1521 return !page_mapcount(page) ? true : false; 1522 } 1523 1524 static int page_not_mapped(struct page *page) 1525 { 1526 return !page_mapped(page); 1527 }; 1528 1529 /** 1530 * try_to_munlock - try to munlock a page 1531 * @page: the page to be munlocked 1532 * 1533 * Called from munlock code. Checks all of the VMAs mapping the page 1534 * to make sure nobody else has this page mlocked. The page will be 1535 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1536 */ 1537 1538 void try_to_munlock(struct page *page) 1539 { 1540 struct rmap_walk_control rwc = { 1541 .rmap_one = try_to_unmap_one, 1542 .arg = (void *)TTU_MUNLOCK, 1543 .done = page_not_mapped, 1544 .anon_lock = page_lock_anon_vma_read, 1545 1546 }; 1547 1548 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 1549 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 1550 1551 rmap_walk(page, &rwc); 1552 } 1553 1554 void __put_anon_vma(struct anon_vma *anon_vma) 1555 { 1556 struct anon_vma *root = anon_vma->root; 1557 1558 anon_vma_free(anon_vma); 1559 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1560 anon_vma_free(root); 1561 } 1562 1563 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 1564 struct rmap_walk_control *rwc) 1565 { 1566 struct anon_vma *anon_vma; 1567 1568 if (rwc->anon_lock) 1569 return rwc->anon_lock(page); 1570 1571 /* 1572 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1573 * because that depends on page_mapped(); but not all its usages 1574 * are holding mmap_sem. Users without mmap_sem are required to 1575 * take a reference count to prevent the anon_vma disappearing 1576 */ 1577 anon_vma = page_anon_vma(page); 1578 if (!anon_vma) 1579 return NULL; 1580 1581 anon_vma_lock_read(anon_vma); 1582 return anon_vma; 1583 } 1584 1585 /* 1586 * rmap_walk_anon - do something to anonymous page using the object-based 1587 * rmap method 1588 * @page: the page to be handled 1589 * @rwc: control variable according to each walk type 1590 * 1591 * Find all the mappings of a page using the mapping pointer and the vma chains 1592 * contained in the anon_vma struct it points to. 1593 * 1594 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1595 * where the page was found will be held for write. So, we won't recheck 1596 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1597 * LOCKED. 1598 */ 1599 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, 1600 bool locked) 1601 { 1602 struct anon_vma *anon_vma; 1603 pgoff_t pgoff_start, pgoff_end; 1604 struct anon_vma_chain *avc; 1605 1606 if (locked) { 1607 anon_vma = page_anon_vma(page); 1608 /* anon_vma disappear under us? */ 1609 VM_BUG_ON_PAGE(!anon_vma, page); 1610 } else { 1611 anon_vma = rmap_walk_anon_lock(page, rwc); 1612 } 1613 if (!anon_vma) 1614 return; 1615 1616 pgoff_start = page_to_pgoff(page); 1617 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; 1618 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 1619 pgoff_start, pgoff_end) { 1620 struct vm_area_struct *vma = avc->vma; 1621 unsigned long address = vma_address(page, vma); 1622 1623 cond_resched(); 1624 1625 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1626 continue; 1627 1628 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 1629 break; 1630 if (rwc->done && rwc->done(page)) 1631 break; 1632 } 1633 1634 if (!locked) 1635 anon_vma_unlock_read(anon_vma); 1636 } 1637 1638 /* 1639 * rmap_walk_file - do something to file page using the object-based rmap method 1640 * @page: the page to be handled 1641 * @rwc: control variable according to each walk type 1642 * 1643 * Find all the mappings of a page using the mapping pointer and the vma chains 1644 * contained in the address_space struct it points to. 1645 * 1646 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1647 * where the page was found will be held for write. So, we won't recheck 1648 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1649 * LOCKED. 1650 */ 1651 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, 1652 bool locked) 1653 { 1654 struct address_space *mapping = page_mapping(page); 1655 pgoff_t pgoff_start, pgoff_end; 1656 struct vm_area_struct *vma; 1657 1658 /* 1659 * The page lock not only makes sure that page->mapping cannot 1660 * suddenly be NULLified by truncation, it makes sure that the 1661 * structure at mapping cannot be freed and reused yet, 1662 * so we can safely take mapping->i_mmap_rwsem. 1663 */ 1664 VM_BUG_ON_PAGE(!PageLocked(page), page); 1665 1666 if (!mapping) 1667 return; 1668 1669 pgoff_start = page_to_pgoff(page); 1670 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; 1671 if (!locked) 1672 i_mmap_lock_read(mapping); 1673 vma_interval_tree_foreach(vma, &mapping->i_mmap, 1674 pgoff_start, pgoff_end) { 1675 unsigned long address = vma_address(page, vma); 1676 1677 cond_resched(); 1678 1679 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1680 continue; 1681 1682 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 1683 goto done; 1684 if (rwc->done && rwc->done(page)) 1685 goto done; 1686 } 1687 1688 done: 1689 if (!locked) 1690 i_mmap_unlock_read(mapping); 1691 } 1692 1693 void rmap_walk(struct page *page, struct rmap_walk_control *rwc) 1694 { 1695 if (unlikely(PageKsm(page))) 1696 rmap_walk_ksm(page, rwc); 1697 else if (PageAnon(page)) 1698 rmap_walk_anon(page, rwc, false); 1699 else 1700 rmap_walk_file(page, rwc, false); 1701 } 1702 1703 /* Like rmap_walk, but caller holds relevant rmap lock */ 1704 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) 1705 { 1706 /* no ksm support for now */ 1707 VM_BUG_ON_PAGE(PageKsm(page), page); 1708 if (PageAnon(page)) 1709 rmap_walk_anon(page, rwc, true); 1710 else 1711 rmap_walk_file(page, rwc, true); 1712 } 1713 1714 #ifdef CONFIG_HUGETLB_PAGE 1715 /* 1716 * The following three functions are for anonymous (private mapped) hugepages. 1717 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1718 * and no lru code, because we handle hugepages differently from common pages. 1719 */ 1720 static void __hugepage_set_anon_rmap(struct page *page, 1721 struct vm_area_struct *vma, unsigned long address, int exclusive) 1722 { 1723 struct anon_vma *anon_vma = vma->anon_vma; 1724 1725 BUG_ON(!anon_vma); 1726 1727 if (PageAnon(page)) 1728 return; 1729 if (!exclusive) 1730 anon_vma = anon_vma->root; 1731 1732 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1733 page->mapping = (struct address_space *) anon_vma; 1734 page->index = linear_page_index(vma, address); 1735 } 1736 1737 void hugepage_add_anon_rmap(struct page *page, 1738 struct vm_area_struct *vma, unsigned long address) 1739 { 1740 struct anon_vma *anon_vma = vma->anon_vma; 1741 int first; 1742 1743 BUG_ON(!PageLocked(page)); 1744 BUG_ON(!anon_vma); 1745 /* address might be in next vma when migration races vma_adjust */ 1746 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 1747 if (first) 1748 __hugepage_set_anon_rmap(page, vma, address, 0); 1749 } 1750 1751 void hugepage_add_new_anon_rmap(struct page *page, 1752 struct vm_area_struct *vma, unsigned long address) 1753 { 1754 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1755 atomic_set(compound_mapcount_ptr(page), 0); 1756 __hugepage_set_anon_rmap(page, vma, address, 1); 1757 } 1758 #endif /* CONFIG_HUGETLB_PAGE */ 1759