xref: /openbmc/linux/mm/rmap.c (revision 545e4006)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  */
40 
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 #include <linux/memcontrol.h>
52 
53 #include <asm/tlbflush.h>
54 
55 struct kmem_cache *anon_vma_cachep;
56 
57 /* This must be called under the mmap_sem. */
58 int anon_vma_prepare(struct vm_area_struct *vma)
59 {
60 	struct anon_vma *anon_vma = vma->anon_vma;
61 
62 	might_sleep();
63 	if (unlikely(!anon_vma)) {
64 		struct mm_struct *mm = vma->vm_mm;
65 		struct anon_vma *allocated, *locked;
66 
67 		anon_vma = find_mergeable_anon_vma(vma);
68 		if (anon_vma) {
69 			allocated = NULL;
70 			locked = anon_vma;
71 			spin_lock(&locked->lock);
72 		} else {
73 			anon_vma = anon_vma_alloc();
74 			if (unlikely(!anon_vma))
75 				return -ENOMEM;
76 			allocated = anon_vma;
77 			locked = NULL;
78 		}
79 
80 		/* page_table_lock to protect against threads */
81 		spin_lock(&mm->page_table_lock);
82 		if (likely(!vma->anon_vma)) {
83 			vma->anon_vma = anon_vma;
84 			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
85 			allocated = NULL;
86 		}
87 		spin_unlock(&mm->page_table_lock);
88 
89 		if (locked)
90 			spin_unlock(&locked->lock);
91 		if (unlikely(allocated))
92 			anon_vma_free(allocated);
93 	}
94 	return 0;
95 }
96 
97 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
98 {
99 	BUG_ON(vma->anon_vma != next->anon_vma);
100 	list_del(&next->anon_vma_node);
101 }
102 
103 void __anon_vma_link(struct vm_area_struct *vma)
104 {
105 	struct anon_vma *anon_vma = vma->anon_vma;
106 
107 	if (anon_vma)
108 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
109 }
110 
111 void anon_vma_link(struct vm_area_struct *vma)
112 {
113 	struct anon_vma *anon_vma = vma->anon_vma;
114 
115 	if (anon_vma) {
116 		spin_lock(&anon_vma->lock);
117 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
118 		spin_unlock(&anon_vma->lock);
119 	}
120 }
121 
122 void anon_vma_unlink(struct vm_area_struct *vma)
123 {
124 	struct anon_vma *anon_vma = vma->anon_vma;
125 	int empty;
126 
127 	if (!anon_vma)
128 		return;
129 
130 	spin_lock(&anon_vma->lock);
131 	list_del(&vma->anon_vma_node);
132 
133 	/* We must garbage collect the anon_vma if it's empty */
134 	empty = list_empty(&anon_vma->head);
135 	spin_unlock(&anon_vma->lock);
136 
137 	if (empty)
138 		anon_vma_free(anon_vma);
139 }
140 
141 static void anon_vma_ctor(struct kmem_cache *cachep, void *data)
142 {
143 	struct anon_vma *anon_vma = data;
144 
145 	spin_lock_init(&anon_vma->lock);
146 	INIT_LIST_HEAD(&anon_vma->head);
147 }
148 
149 void __init anon_vma_init(void)
150 {
151 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
152 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
153 }
154 
155 /*
156  * Getting a lock on a stable anon_vma from a page off the LRU is
157  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
158  */
159 static struct anon_vma *page_lock_anon_vma(struct page *page)
160 {
161 	struct anon_vma *anon_vma;
162 	unsigned long anon_mapping;
163 
164 	rcu_read_lock();
165 	anon_mapping = (unsigned long) page->mapping;
166 	if (!(anon_mapping & PAGE_MAPPING_ANON))
167 		goto out;
168 	if (!page_mapped(page))
169 		goto out;
170 
171 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
172 	spin_lock(&anon_vma->lock);
173 	return anon_vma;
174 out:
175 	rcu_read_unlock();
176 	return NULL;
177 }
178 
179 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
180 {
181 	spin_unlock(&anon_vma->lock);
182 	rcu_read_unlock();
183 }
184 
185 /*
186  * At what user virtual address is page expected in @vma?
187  * Returns virtual address or -EFAULT if page's index/offset is not
188  * within the range mapped the @vma.
189  */
190 static inline unsigned long
191 vma_address(struct page *page, struct vm_area_struct *vma)
192 {
193 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
194 	unsigned long address;
195 
196 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
197 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
198 		/* page should be within @vma mapping range */
199 		return -EFAULT;
200 	}
201 	return address;
202 }
203 
204 /*
205  * At what user virtual address is page expected in vma? checking that the
206  * page matches the vma: currently only used on anon pages, by unuse_vma;
207  */
208 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
209 {
210 	if (PageAnon(page)) {
211 		if ((void *)vma->anon_vma !=
212 		    (void *)page->mapping - PAGE_MAPPING_ANON)
213 			return -EFAULT;
214 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
215 		if (!vma->vm_file ||
216 		    vma->vm_file->f_mapping != page->mapping)
217 			return -EFAULT;
218 	} else
219 		return -EFAULT;
220 	return vma_address(page, vma);
221 }
222 
223 /*
224  * Check that @page is mapped at @address into @mm.
225  *
226  * On success returns with pte mapped and locked.
227  */
228 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
229 			  unsigned long address, spinlock_t **ptlp)
230 {
231 	pgd_t *pgd;
232 	pud_t *pud;
233 	pmd_t *pmd;
234 	pte_t *pte;
235 	spinlock_t *ptl;
236 
237 	pgd = pgd_offset(mm, address);
238 	if (!pgd_present(*pgd))
239 		return NULL;
240 
241 	pud = pud_offset(pgd, address);
242 	if (!pud_present(*pud))
243 		return NULL;
244 
245 	pmd = pmd_offset(pud, address);
246 	if (!pmd_present(*pmd))
247 		return NULL;
248 
249 	pte = pte_offset_map(pmd, address);
250 	/* Make a quick check before getting the lock */
251 	if (!pte_present(*pte)) {
252 		pte_unmap(pte);
253 		return NULL;
254 	}
255 
256 	ptl = pte_lockptr(mm, pmd);
257 	spin_lock(ptl);
258 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
259 		*ptlp = ptl;
260 		return pte;
261 	}
262 	pte_unmap_unlock(pte, ptl);
263 	return NULL;
264 }
265 
266 /*
267  * Subfunctions of page_referenced: page_referenced_one called
268  * repeatedly from either page_referenced_anon or page_referenced_file.
269  */
270 static int page_referenced_one(struct page *page,
271 	struct vm_area_struct *vma, unsigned int *mapcount)
272 {
273 	struct mm_struct *mm = vma->vm_mm;
274 	unsigned long address;
275 	pte_t *pte;
276 	spinlock_t *ptl;
277 	int referenced = 0;
278 
279 	address = vma_address(page, vma);
280 	if (address == -EFAULT)
281 		goto out;
282 
283 	pte = page_check_address(page, mm, address, &ptl);
284 	if (!pte)
285 		goto out;
286 
287 	if (vma->vm_flags & VM_LOCKED) {
288 		referenced++;
289 		*mapcount = 1;	/* break early from loop */
290 	} else if (ptep_clear_flush_young(vma, address, pte))
291 		referenced++;
292 
293 	/* Pretend the page is referenced if the task has the
294 	   swap token and is in the middle of a page fault. */
295 	if (mm != current->mm && has_swap_token(mm) &&
296 			rwsem_is_locked(&mm->mmap_sem))
297 		referenced++;
298 
299 	(*mapcount)--;
300 	pte_unmap_unlock(pte, ptl);
301 out:
302 	return referenced;
303 }
304 
305 static int page_referenced_anon(struct page *page,
306 				struct mem_cgroup *mem_cont)
307 {
308 	unsigned int mapcount;
309 	struct anon_vma *anon_vma;
310 	struct vm_area_struct *vma;
311 	int referenced = 0;
312 
313 	anon_vma = page_lock_anon_vma(page);
314 	if (!anon_vma)
315 		return referenced;
316 
317 	mapcount = page_mapcount(page);
318 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
319 		/*
320 		 * If we are reclaiming on behalf of a cgroup, skip
321 		 * counting on behalf of references from different
322 		 * cgroups
323 		 */
324 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
325 			continue;
326 		referenced += page_referenced_one(page, vma, &mapcount);
327 		if (!mapcount)
328 			break;
329 	}
330 
331 	page_unlock_anon_vma(anon_vma);
332 	return referenced;
333 }
334 
335 /**
336  * page_referenced_file - referenced check for object-based rmap
337  * @page: the page we're checking references on.
338  * @mem_cont: target memory controller
339  *
340  * For an object-based mapped page, find all the places it is mapped and
341  * check/clear the referenced flag.  This is done by following the page->mapping
342  * pointer, then walking the chain of vmas it holds.  It returns the number
343  * of references it found.
344  *
345  * This function is only called from page_referenced for object-based pages.
346  */
347 static int page_referenced_file(struct page *page,
348 				struct mem_cgroup *mem_cont)
349 {
350 	unsigned int mapcount;
351 	struct address_space *mapping = page->mapping;
352 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
353 	struct vm_area_struct *vma;
354 	struct prio_tree_iter iter;
355 	int referenced = 0;
356 
357 	/*
358 	 * The caller's checks on page->mapping and !PageAnon have made
359 	 * sure that this is a file page: the check for page->mapping
360 	 * excludes the case just before it gets set on an anon page.
361 	 */
362 	BUG_ON(PageAnon(page));
363 
364 	/*
365 	 * The page lock not only makes sure that page->mapping cannot
366 	 * suddenly be NULLified by truncation, it makes sure that the
367 	 * structure at mapping cannot be freed and reused yet,
368 	 * so we can safely take mapping->i_mmap_lock.
369 	 */
370 	BUG_ON(!PageLocked(page));
371 
372 	spin_lock(&mapping->i_mmap_lock);
373 
374 	/*
375 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
376 	 * is more likely to be accurate if we note it after spinning.
377 	 */
378 	mapcount = page_mapcount(page);
379 
380 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
381 		/*
382 		 * If we are reclaiming on behalf of a cgroup, skip
383 		 * counting on behalf of references from different
384 		 * cgroups
385 		 */
386 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
387 			continue;
388 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
389 				  == (VM_LOCKED|VM_MAYSHARE)) {
390 			referenced++;
391 			break;
392 		}
393 		referenced += page_referenced_one(page, vma, &mapcount);
394 		if (!mapcount)
395 			break;
396 	}
397 
398 	spin_unlock(&mapping->i_mmap_lock);
399 	return referenced;
400 }
401 
402 /**
403  * page_referenced - test if the page was referenced
404  * @page: the page to test
405  * @is_locked: caller holds lock on the page
406  * @mem_cont: target memory controller
407  *
408  * Quick test_and_clear_referenced for all mappings to a page,
409  * returns the number of ptes which referenced the page.
410  */
411 int page_referenced(struct page *page, int is_locked,
412 			struct mem_cgroup *mem_cont)
413 {
414 	int referenced = 0;
415 
416 	if (TestClearPageReferenced(page))
417 		referenced++;
418 
419 	if (page_mapped(page) && page->mapping) {
420 		if (PageAnon(page))
421 			referenced += page_referenced_anon(page, mem_cont);
422 		else if (is_locked)
423 			referenced += page_referenced_file(page, mem_cont);
424 		else if (TestSetPageLocked(page))
425 			referenced++;
426 		else {
427 			if (page->mapping)
428 				referenced +=
429 					page_referenced_file(page, mem_cont);
430 			unlock_page(page);
431 		}
432 	}
433 
434 	if (page_test_and_clear_young(page))
435 		referenced++;
436 
437 	return referenced;
438 }
439 
440 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
441 {
442 	struct mm_struct *mm = vma->vm_mm;
443 	unsigned long address;
444 	pte_t *pte;
445 	spinlock_t *ptl;
446 	int ret = 0;
447 
448 	address = vma_address(page, vma);
449 	if (address == -EFAULT)
450 		goto out;
451 
452 	pte = page_check_address(page, mm, address, &ptl);
453 	if (!pte)
454 		goto out;
455 
456 	if (pte_dirty(*pte) || pte_write(*pte)) {
457 		pte_t entry;
458 
459 		flush_cache_page(vma, address, pte_pfn(*pte));
460 		entry = ptep_clear_flush(vma, address, pte);
461 		entry = pte_wrprotect(entry);
462 		entry = pte_mkclean(entry);
463 		set_pte_at(mm, address, pte, entry);
464 		ret = 1;
465 	}
466 
467 	pte_unmap_unlock(pte, ptl);
468 out:
469 	return ret;
470 }
471 
472 static int page_mkclean_file(struct address_space *mapping, struct page *page)
473 {
474 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
475 	struct vm_area_struct *vma;
476 	struct prio_tree_iter iter;
477 	int ret = 0;
478 
479 	BUG_ON(PageAnon(page));
480 
481 	spin_lock(&mapping->i_mmap_lock);
482 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
483 		if (vma->vm_flags & VM_SHARED)
484 			ret += page_mkclean_one(page, vma);
485 	}
486 	spin_unlock(&mapping->i_mmap_lock);
487 	return ret;
488 }
489 
490 int page_mkclean(struct page *page)
491 {
492 	int ret = 0;
493 
494 	BUG_ON(!PageLocked(page));
495 
496 	if (page_mapped(page)) {
497 		struct address_space *mapping = page_mapping(page);
498 		if (mapping) {
499 			ret = page_mkclean_file(mapping, page);
500 			if (page_test_dirty(page)) {
501 				page_clear_dirty(page);
502 				ret = 1;
503 			}
504 		}
505 	}
506 
507 	return ret;
508 }
509 EXPORT_SYMBOL_GPL(page_mkclean);
510 
511 /**
512  * __page_set_anon_rmap - setup new anonymous rmap
513  * @page:	the page to add the mapping to
514  * @vma:	the vm area in which the mapping is added
515  * @address:	the user virtual address mapped
516  */
517 static void __page_set_anon_rmap(struct page *page,
518 	struct vm_area_struct *vma, unsigned long address)
519 {
520 	struct anon_vma *anon_vma = vma->anon_vma;
521 
522 	BUG_ON(!anon_vma);
523 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
524 	page->mapping = (struct address_space *) anon_vma;
525 
526 	page->index = linear_page_index(vma, address);
527 
528 	/*
529 	 * nr_mapped state can be updated without turning off
530 	 * interrupts because it is not modified via interrupt.
531 	 */
532 	__inc_zone_page_state(page, NR_ANON_PAGES);
533 }
534 
535 /**
536  * __page_check_anon_rmap - sanity check anonymous rmap addition
537  * @page:	the page to add the mapping to
538  * @vma:	the vm area in which the mapping is added
539  * @address:	the user virtual address mapped
540  */
541 static void __page_check_anon_rmap(struct page *page,
542 	struct vm_area_struct *vma, unsigned long address)
543 {
544 #ifdef CONFIG_DEBUG_VM
545 	/*
546 	 * The page's anon-rmap details (mapping and index) are guaranteed to
547 	 * be set up correctly at this point.
548 	 *
549 	 * We have exclusion against page_add_anon_rmap because the caller
550 	 * always holds the page locked, except if called from page_dup_rmap,
551 	 * in which case the page is already known to be setup.
552 	 *
553 	 * We have exclusion against page_add_new_anon_rmap because those pages
554 	 * are initially only visible via the pagetables, and the pte is locked
555 	 * over the call to page_add_new_anon_rmap.
556 	 */
557 	struct anon_vma *anon_vma = vma->anon_vma;
558 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
559 	BUG_ON(page->mapping != (struct address_space *)anon_vma);
560 	BUG_ON(page->index != linear_page_index(vma, address));
561 #endif
562 }
563 
564 /**
565  * page_add_anon_rmap - add pte mapping to an anonymous page
566  * @page:	the page to add the mapping to
567  * @vma:	the vm area in which the mapping is added
568  * @address:	the user virtual address mapped
569  *
570  * The caller needs to hold the pte lock and the page must be locked.
571  */
572 void page_add_anon_rmap(struct page *page,
573 	struct vm_area_struct *vma, unsigned long address)
574 {
575 	VM_BUG_ON(!PageLocked(page));
576 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
577 	if (atomic_inc_and_test(&page->_mapcount))
578 		__page_set_anon_rmap(page, vma, address);
579 	else {
580 		__page_check_anon_rmap(page, vma, address);
581 		/*
582 		 * We unconditionally charged during prepare, we uncharge here
583 		 * This takes care of balancing the reference counts
584 		 */
585 		mem_cgroup_uncharge_page(page);
586 	}
587 }
588 
589 /**
590  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
591  * @page:	the page to add the mapping to
592  * @vma:	the vm area in which the mapping is added
593  * @address:	the user virtual address mapped
594  *
595  * Same as page_add_anon_rmap but must only be called on *new* pages.
596  * This means the inc-and-test can be bypassed.
597  * Page does not have to be locked.
598  */
599 void page_add_new_anon_rmap(struct page *page,
600 	struct vm_area_struct *vma, unsigned long address)
601 {
602 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
603 	atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
604 	__page_set_anon_rmap(page, vma, address);
605 }
606 
607 /**
608  * page_add_file_rmap - add pte mapping to a file page
609  * @page: the page to add the mapping to
610  *
611  * The caller needs to hold the pte lock.
612  */
613 void page_add_file_rmap(struct page *page)
614 {
615 	if (atomic_inc_and_test(&page->_mapcount))
616 		__inc_zone_page_state(page, NR_FILE_MAPPED);
617 	else
618 		/*
619 		 * We unconditionally charged during prepare, we uncharge here
620 		 * This takes care of balancing the reference counts
621 		 */
622 		mem_cgroup_uncharge_page(page);
623 }
624 
625 #ifdef CONFIG_DEBUG_VM
626 /**
627  * page_dup_rmap - duplicate pte mapping to a page
628  * @page:	the page to add the mapping to
629  * @vma:	the vm area being duplicated
630  * @address:	the user virtual address mapped
631  *
632  * For copy_page_range only: minimal extract from page_add_file_rmap /
633  * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
634  * quicker.
635  *
636  * The caller needs to hold the pte lock.
637  */
638 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
639 {
640 	BUG_ON(page_mapcount(page) == 0);
641 	if (PageAnon(page))
642 		__page_check_anon_rmap(page, vma, address);
643 	atomic_inc(&page->_mapcount);
644 }
645 #endif
646 
647 /**
648  * page_remove_rmap - take down pte mapping from a page
649  * @page: page to remove mapping from
650  * @vma: the vm area in which the mapping is removed
651  *
652  * The caller needs to hold the pte lock.
653  */
654 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
655 {
656 	if (atomic_add_negative(-1, &page->_mapcount)) {
657 		if (unlikely(page_mapcount(page) < 0)) {
658 			printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
659 			printk (KERN_EMERG "  page pfn = %lx\n", page_to_pfn(page));
660 			printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
661 			printk (KERN_EMERG "  page->count = %x\n", page_count(page));
662 			printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
663 			print_symbol (KERN_EMERG "  vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
664 			if (vma->vm_ops) {
665 				print_symbol (KERN_EMERG "  vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
666 			}
667 			if (vma->vm_file && vma->vm_file->f_op)
668 				print_symbol (KERN_EMERG "  vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
669 			BUG();
670 		}
671 
672 		/*
673 		 * It would be tidy to reset the PageAnon mapping here,
674 		 * but that might overwrite a racing page_add_anon_rmap
675 		 * which increments mapcount after us but sets mapping
676 		 * before us: so leave the reset to free_hot_cold_page,
677 		 * and remember that it's only reliable while mapped.
678 		 * Leaving it set also helps swapoff to reinstate ptes
679 		 * faster for those pages still in swapcache.
680 		 */
681 		if (page_test_dirty(page)) {
682 			page_clear_dirty(page);
683 			set_page_dirty(page);
684 		}
685 		mem_cgroup_uncharge_page(page);
686 
687 		__dec_zone_page_state(page,
688 				PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
689 	}
690 }
691 
692 /*
693  * Subfunctions of try_to_unmap: try_to_unmap_one called
694  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
695  */
696 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
697 				int migration)
698 {
699 	struct mm_struct *mm = vma->vm_mm;
700 	unsigned long address;
701 	pte_t *pte;
702 	pte_t pteval;
703 	spinlock_t *ptl;
704 	int ret = SWAP_AGAIN;
705 
706 	address = vma_address(page, vma);
707 	if (address == -EFAULT)
708 		goto out;
709 
710 	pte = page_check_address(page, mm, address, &ptl);
711 	if (!pte)
712 		goto out;
713 
714 	/*
715 	 * If the page is mlock()d, we cannot swap it out.
716 	 * If it's recently referenced (perhaps page_referenced
717 	 * skipped over this mm) then we should reactivate it.
718 	 */
719 	if (!migration && ((vma->vm_flags & VM_LOCKED) ||
720 			(ptep_clear_flush_young(vma, address, pte)))) {
721 		ret = SWAP_FAIL;
722 		goto out_unmap;
723 	}
724 
725 	/* Nuke the page table entry. */
726 	flush_cache_page(vma, address, page_to_pfn(page));
727 	pteval = ptep_clear_flush(vma, address, pte);
728 
729 	/* Move the dirty bit to the physical page now the pte is gone. */
730 	if (pte_dirty(pteval))
731 		set_page_dirty(page);
732 
733 	/* Update high watermark before we lower rss */
734 	update_hiwater_rss(mm);
735 
736 	if (PageAnon(page)) {
737 		swp_entry_t entry = { .val = page_private(page) };
738 
739 		if (PageSwapCache(page)) {
740 			/*
741 			 * Store the swap location in the pte.
742 			 * See handle_pte_fault() ...
743 			 */
744 			swap_duplicate(entry);
745 			if (list_empty(&mm->mmlist)) {
746 				spin_lock(&mmlist_lock);
747 				if (list_empty(&mm->mmlist))
748 					list_add(&mm->mmlist, &init_mm.mmlist);
749 				spin_unlock(&mmlist_lock);
750 			}
751 			dec_mm_counter(mm, anon_rss);
752 #ifdef CONFIG_MIGRATION
753 		} else {
754 			/*
755 			 * Store the pfn of the page in a special migration
756 			 * pte. do_swap_page() will wait until the migration
757 			 * pte is removed and then restart fault handling.
758 			 */
759 			BUG_ON(!migration);
760 			entry = make_migration_entry(page, pte_write(pteval));
761 #endif
762 		}
763 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
764 		BUG_ON(pte_file(*pte));
765 	} else
766 #ifdef CONFIG_MIGRATION
767 	if (migration) {
768 		/* Establish migration entry for a file page */
769 		swp_entry_t entry;
770 		entry = make_migration_entry(page, pte_write(pteval));
771 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
772 	} else
773 #endif
774 		dec_mm_counter(mm, file_rss);
775 
776 
777 	page_remove_rmap(page, vma);
778 	page_cache_release(page);
779 
780 out_unmap:
781 	pte_unmap_unlock(pte, ptl);
782 out:
783 	return ret;
784 }
785 
786 /*
787  * objrmap doesn't work for nonlinear VMAs because the assumption that
788  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
789  * Consequently, given a particular page and its ->index, we cannot locate the
790  * ptes which are mapping that page without an exhaustive linear search.
791  *
792  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
793  * maps the file to which the target page belongs.  The ->vm_private_data field
794  * holds the current cursor into that scan.  Successive searches will circulate
795  * around the vma's virtual address space.
796  *
797  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
798  * more scanning pressure is placed against them as well.   Eventually pages
799  * will become fully unmapped and are eligible for eviction.
800  *
801  * For very sparsely populated VMAs this is a little inefficient - chances are
802  * there there won't be many ptes located within the scan cluster.  In this case
803  * maybe we could scan further - to the end of the pte page, perhaps.
804  */
805 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
806 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
807 
808 static void try_to_unmap_cluster(unsigned long cursor,
809 	unsigned int *mapcount, struct vm_area_struct *vma)
810 {
811 	struct mm_struct *mm = vma->vm_mm;
812 	pgd_t *pgd;
813 	pud_t *pud;
814 	pmd_t *pmd;
815 	pte_t *pte;
816 	pte_t pteval;
817 	spinlock_t *ptl;
818 	struct page *page;
819 	unsigned long address;
820 	unsigned long end;
821 
822 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
823 	end = address + CLUSTER_SIZE;
824 	if (address < vma->vm_start)
825 		address = vma->vm_start;
826 	if (end > vma->vm_end)
827 		end = vma->vm_end;
828 
829 	pgd = pgd_offset(mm, address);
830 	if (!pgd_present(*pgd))
831 		return;
832 
833 	pud = pud_offset(pgd, address);
834 	if (!pud_present(*pud))
835 		return;
836 
837 	pmd = pmd_offset(pud, address);
838 	if (!pmd_present(*pmd))
839 		return;
840 
841 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
842 
843 	/* Update high watermark before we lower rss */
844 	update_hiwater_rss(mm);
845 
846 	for (; address < end; pte++, address += PAGE_SIZE) {
847 		if (!pte_present(*pte))
848 			continue;
849 		page = vm_normal_page(vma, address, *pte);
850 		BUG_ON(!page || PageAnon(page));
851 
852 		if (ptep_clear_flush_young(vma, address, pte))
853 			continue;
854 
855 		/* Nuke the page table entry. */
856 		flush_cache_page(vma, address, pte_pfn(*pte));
857 		pteval = ptep_clear_flush(vma, address, pte);
858 
859 		/* If nonlinear, store the file page offset in the pte. */
860 		if (page->index != linear_page_index(vma, address))
861 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
862 
863 		/* Move the dirty bit to the physical page now the pte is gone. */
864 		if (pte_dirty(pteval))
865 			set_page_dirty(page);
866 
867 		page_remove_rmap(page, vma);
868 		page_cache_release(page);
869 		dec_mm_counter(mm, file_rss);
870 		(*mapcount)--;
871 	}
872 	pte_unmap_unlock(pte - 1, ptl);
873 }
874 
875 static int try_to_unmap_anon(struct page *page, int migration)
876 {
877 	struct anon_vma *anon_vma;
878 	struct vm_area_struct *vma;
879 	int ret = SWAP_AGAIN;
880 
881 	anon_vma = page_lock_anon_vma(page);
882 	if (!anon_vma)
883 		return ret;
884 
885 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
886 		ret = try_to_unmap_one(page, vma, migration);
887 		if (ret == SWAP_FAIL || !page_mapped(page))
888 			break;
889 	}
890 
891 	page_unlock_anon_vma(anon_vma);
892 	return ret;
893 }
894 
895 /**
896  * try_to_unmap_file - unmap file page using the object-based rmap method
897  * @page: the page to unmap
898  * @migration: migration flag
899  *
900  * Find all the mappings of a page using the mapping pointer and the vma chains
901  * contained in the address_space struct it points to.
902  *
903  * This function is only called from try_to_unmap for object-based pages.
904  */
905 static int try_to_unmap_file(struct page *page, int migration)
906 {
907 	struct address_space *mapping = page->mapping;
908 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
909 	struct vm_area_struct *vma;
910 	struct prio_tree_iter iter;
911 	int ret = SWAP_AGAIN;
912 	unsigned long cursor;
913 	unsigned long max_nl_cursor = 0;
914 	unsigned long max_nl_size = 0;
915 	unsigned int mapcount;
916 
917 	spin_lock(&mapping->i_mmap_lock);
918 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
919 		ret = try_to_unmap_one(page, vma, migration);
920 		if (ret == SWAP_FAIL || !page_mapped(page))
921 			goto out;
922 	}
923 
924 	if (list_empty(&mapping->i_mmap_nonlinear))
925 		goto out;
926 
927 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
928 						shared.vm_set.list) {
929 		if ((vma->vm_flags & VM_LOCKED) && !migration)
930 			continue;
931 		cursor = (unsigned long) vma->vm_private_data;
932 		if (cursor > max_nl_cursor)
933 			max_nl_cursor = cursor;
934 		cursor = vma->vm_end - vma->vm_start;
935 		if (cursor > max_nl_size)
936 			max_nl_size = cursor;
937 	}
938 
939 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
940 		ret = SWAP_FAIL;
941 		goto out;
942 	}
943 
944 	/*
945 	 * We don't try to search for this page in the nonlinear vmas,
946 	 * and page_referenced wouldn't have found it anyway.  Instead
947 	 * just walk the nonlinear vmas trying to age and unmap some.
948 	 * The mapcount of the page we came in with is irrelevant,
949 	 * but even so use it as a guide to how hard we should try?
950 	 */
951 	mapcount = page_mapcount(page);
952 	if (!mapcount)
953 		goto out;
954 	cond_resched_lock(&mapping->i_mmap_lock);
955 
956 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
957 	if (max_nl_cursor == 0)
958 		max_nl_cursor = CLUSTER_SIZE;
959 
960 	do {
961 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
962 						shared.vm_set.list) {
963 			if ((vma->vm_flags & VM_LOCKED) && !migration)
964 				continue;
965 			cursor = (unsigned long) vma->vm_private_data;
966 			while ( cursor < max_nl_cursor &&
967 				cursor < vma->vm_end - vma->vm_start) {
968 				try_to_unmap_cluster(cursor, &mapcount, vma);
969 				cursor += CLUSTER_SIZE;
970 				vma->vm_private_data = (void *) cursor;
971 				if ((int)mapcount <= 0)
972 					goto out;
973 			}
974 			vma->vm_private_data = (void *) max_nl_cursor;
975 		}
976 		cond_resched_lock(&mapping->i_mmap_lock);
977 		max_nl_cursor += CLUSTER_SIZE;
978 	} while (max_nl_cursor <= max_nl_size);
979 
980 	/*
981 	 * Don't loop forever (perhaps all the remaining pages are
982 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
983 	 * vmas, now forgetting on which ones it had fallen behind.
984 	 */
985 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
986 		vma->vm_private_data = NULL;
987 out:
988 	spin_unlock(&mapping->i_mmap_lock);
989 	return ret;
990 }
991 
992 /**
993  * try_to_unmap - try to remove all page table mappings to a page
994  * @page: the page to get unmapped
995  * @migration: migration flag
996  *
997  * Tries to remove all the page table entries which are mapping this
998  * page, used in the pageout path.  Caller must hold the page lock.
999  * Return values are:
1000  *
1001  * SWAP_SUCCESS	- we succeeded in removing all mappings
1002  * SWAP_AGAIN	- we missed a mapping, try again later
1003  * SWAP_FAIL	- the page is unswappable
1004  */
1005 int try_to_unmap(struct page *page, int migration)
1006 {
1007 	int ret;
1008 
1009 	BUG_ON(!PageLocked(page));
1010 
1011 	if (PageAnon(page))
1012 		ret = try_to_unmap_anon(page, migration);
1013 	else
1014 		ret = try_to_unmap_file(page, migration);
1015 
1016 	if (!page_mapped(page))
1017 		ret = SWAP_SUCCESS;
1018 	return ret;
1019 }
1020 
1021