xref: /openbmc/linux/mm/rmap.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27  *         mapping->i_mmap_rwsem
28  *           anon_vma->rwsem
29  *             mm->page_table_lock or pte_lock
30  *               zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31  *               swap_lock (in swap_duplicate, swap_info_get)
32  *                 mmlist_lock (in mmput, drain_mmlist and others)
33  *                 mapping->private_lock (in __set_page_dirty_buffers)
34  *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35  *                     mapping->tree_lock (widely used)
36  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
39  *                   mapping->tree_lock (widely used, in set_page_dirty,
40  *                             in arch-dependent flush_dcache_mmap_lock,
41  *                             within bdi.wb->list_lock in __sync_single_inode)
42  *
43  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
44  *   ->tasklist_lock
45  *     pte map lock
46  */
47 
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66 
67 #include <asm/tlbflush.h>
68 
69 #include <trace/events/tlb.h>
70 
71 #include "internal.h"
72 
73 static struct kmem_cache *anon_vma_cachep;
74 static struct kmem_cache *anon_vma_chain_cachep;
75 
76 static inline struct anon_vma *anon_vma_alloc(void)
77 {
78 	struct anon_vma *anon_vma;
79 
80 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
81 	if (anon_vma) {
82 		atomic_set(&anon_vma->refcount, 1);
83 		anon_vma->degree = 1;	/* Reference for first vma */
84 		anon_vma->parent = anon_vma;
85 		/*
86 		 * Initialise the anon_vma root to point to itself. If called
87 		 * from fork, the root will be reset to the parents anon_vma.
88 		 */
89 		anon_vma->root = anon_vma;
90 	}
91 
92 	return anon_vma;
93 }
94 
95 static inline void anon_vma_free(struct anon_vma *anon_vma)
96 {
97 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
98 
99 	/*
100 	 * Synchronize against page_lock_anon_vma_read() such that
101 	 * we can safely hold the lock without the anon_vma getting
102 	 * freed.
103 	 *
104 	 * Relies on the full mb implied by the atomic_dec_and_test() from
105 	 * put_anon_vma() against the acquire barrier implied by
106 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
107 	 *
108 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
109 	 *   down_read_trylock()		  atomic_dec_and_test()
110 	 *   LOCK				  MB
111 	 *   atomic_read()			  rwsem_is_locked()
112 	 *
113 	 * LOCK should suffice since the actual taking of the lock must
114 	 * happen _before_ what follows.
115 	 */
116 	might_sleep();
117 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
118 		anon_vma_lock_write(anon_vma);
119 		anon_vma_unlock_write(anon_vma);
120 	}
121 
122 	kmem_cache_free(anon_vma_cachep, anon_vma);
123 }
124 
125 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
126 {
127 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
128 }
129 
130 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
131 {
132 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
133 }
134 
135 static void anon_vma_chain_link(struct vm_area_struct *vma,
136 				struct anon_vma_chain *avc,
137 				struct anon_vma *anon_vma)
138 {
139 	avc->vma = vma;
140 	avc->anon_vma = anon_vma;
141 	list_add(&avc->same_vma, &vma->anon_vma_chain);
142 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
143 }
144 
145 /**
146  * __anon_vma_prepare - attach an anon_vma to a memory region
147  * @vma: the memory region in question
148  *
149  * This makes sure the memory mapping described by 'vma' has
150  * an 'anon_vma' attached to it, so that we can associate the
151  * anonymous pages mapped into it with that anon_vma.
152  *
153  * The common case will be that we already have one, which
154  * is handled inline by anon_vma_prepare(). But if
155  * not we either need to find an adjacent mapping that we
156  * can re-use the anon_vma from (very common when the only
157  * reason for splitting a vma has been mprotect()), or we
158  * allocate a new one.
159  *
160  * Anon-vma allocations are very subtle, because we may have
161  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
162  * and that may actually touch the spinlock even in the newly
163  * allocated vma (it depends on RCU to make sure that the
164  * anon_vma isn't actually destroyed).
165  *
166  * As a result, we need to do proper anon_vma locking even
167  * for the new allocation. At the same time, we do not want
168  * to do any locking for the common case of already having
169  * an anon_vma.
170  *
171  * This must be called with the mmap_sem held for reading.
172  */
173 int __anon_vma_prepare(struct vm_area_struct *vma)
174 {
175 	struct mm_struct *mm = vma->vm_mm;
176 	struct anon_vma *anon_vma, *allocated;
177 	struct anon_vma_chain *avc;
178 
179 	might_sleep();
180 
181 	avc = anon_vma_chain_alloc(GFP_KERNEL);
182 	if (!avc)
183 		goto out_enomem;
184 
185 	anon_vma = find_mergeable_anon_vma(vma);
186 	allocated = NULL;
187 	if (!anon_vma) {
188 		anon_vma = anon_vma_alloc();
189 		if (unlikely(!anon_vma))
190 			goto out_enomem_free_avc;
191 		allocated = anon_vma;
192 	}
193 
194 	anon_vma_lock_write(anon_vma);
195 	/* page_table_lock to protect against threads */
196 	spin_lock(&mm->page_table_lock);
197 	if (likely(!vma->anon_vma)) {
198 		vma->anon_vma = anon_vma;
199 		anon_vma_chain_link(vma, avc, anon_vma);
200 		/* vma reference or self-parent link for new root */
201 		anon_vma->degree++;
202 		allocated = NULL;
203 		avc = NULL;
204 	}
205 	spin_unlock(&mm->page_table_lock);
206 	anon_vma_unlock_write(anon_vma);
207 
208 	if (unlikely(allocated))
209 		put_anon_vma(allocated);
210 	if (unlikely(avc))
211 		anon_vma_chain_free(avc);
212 
213 	return 0;
214 
215  out_enomem_free_avc:
216 	anon_vma_chain_free(avc);
217  out_enomem:
218 	return -ENOMEM;
219 }
220 
221 /*
222  * This is a useful helper function for locking the anon_vma root as
223  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
224  * have the same vma.
225  *
226  * Such anon_vma's should have the same root, so you'd expect to see
227  * just a single mutex_lock for the whole traversal.
228  */
229 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
230 {
231 	struct anon_vma *new_root = anon_vma->root;
232 	if (new_root != root) {
233 		if (WARN_ON_ONCE(root))
234 			up_write(&root->rwsem);
235 		root = new_root;
236 		down_write(&root->rwsem);
237 	}
238 	return root;
239 }
240 
241 static inline void unlock_anon_vma_root(struct anon_vma *root)
242 {
243 	if (root)
244 		up_write(&root->rwsem);
245 }
246 
247 /*
248  * Attach the anon_vmas from src to dst.
249  * Returns 0 on success, -ENOMEM on failure.
250  *
251  * If dst->anon_vma is NULL this function tries to find and reuse existing
252  * anon_vma which has no vmas and only one child anon_vma. This prevents
253  * degradation of anon_vma hierarchy to endless linear chain in case of
254  * constantly forking task. On the other hand, an anon_vma with more than one
255  * child isn't reused even if there was no alive vma, thus rmap walker has a
256  * good chance of avoiding scanning the whole hierarchy when it searches where
257  * page is mapped.
258  */
259 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
260 {
261 	struct anon_vma_chain *avc, *pavc;
262 	struct anon_vma *root = NULL;
263 
264 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
265 		struct anon_vma *anon_vma;
266 
267 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
268 		if (unlikely(!avc)) {
269 			unlock_anon_vma_root(root);
270 			root = NULL;
271 			avc = anon_vma_chain_alloc(GFP_KERNEL);
272 			if (!avc)
273 				goto enomem_failure;
274 		}
275 		anon_vma = pavc->anon_vma;
276 		root = lock_anon_vma_root(root, anon_vma);
277 		anon_vma_chain_link(dst, avc, anon_vma);
278 
279 		/*
280 		 * Reuse existing anon_vma if its degree lower than two,
281 		 * that means it has no vma and only one anon_vma child.
282 		 *
283 		 * Do not chose parent anon_vma, otherwise first child
284 		 * will always reuse it. Root anon_vma is never reused:
285 		 * it has self-parent reference and at least one child.
286 		 */
287 		if (!dst->anon_vma && anon_vma != src->anon_vma &&
288 				anon_vma->degree < 2)
289 			dst->anon_vma = anon_vma;
290 	}
291 	if (dst->anon_vma)
292 		dst->anon_vma->degree++;
293 	unlock_anon_vma_root(root);
294 	return 0;
295 
296  enomem_failure:
297 	/*
298 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
299 	 * decremented in unlink_anon_vmas().
300 	 * We can safely do this because callers of anon_vma_clone() don't care
301 	 * about dst->anon_vma if anon_vma_clone() failed.
302 	 */
303 	dst->anon_vma = NULL;
304 	unlink_anon_vmas(dst);
305 	return -ENOMEM;
306 }
307 
308 /*
309  * Attach vma to its own anon_vma, as well as to the anon_vmas that
310  * the corresponding VMA in the parent process is attached to.
311  * Returns 0 on success, non-zero on failure.
312  */
313 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
314 {
315 	struct anon_vma_chain *avc;
316 	struct anon_vma *anon_vma;
317 	int error;
318 
319 	/* Don't bother if the parent process has no anon_vma here. */
320 	if (!pvma->anon_vma)
321 		return 0;
322 
323 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
324 	vma->anon_vma = NULL;
325 
326 	/*
327 	 * First, attach the new VMA to the parent VMA's anon_vmas,
328 	 * so rmap can find non-COWed pages in child processes.
329 	 */
330 	error = anon_vma_clone(vma, pvma);
331 	if (error)
332 		return error;
333 
334 	/* An existing anon_vma has been reused, all done then. */
335 	if (vma->anon_vma)
336 		return 0;
337 
338 	/* Then add our own anon_vma. */
339 	anon_vma = anon_vma_alloc();
340 	if (!anon_vma)
341 		goto out_error;
342 	avc = anon_vma_chain_alloc(GFP_KERNEL);
343 	if (!avc)
344 		goto out_error_free_anon_vma;
345 
346 	/*
347 	 * The root anon_vma's spinlock is the lock actually used when we
348 	 * lock any of the anon_vmas in this anon_vma tree.
349 	 */
350 	anon_vma->root = pvma->anon_vma->root;
351 	anon_vma->parent = pvma->anon_vma;
352 	/*
353 	 * With refcounts, an anon_vma can stay around longer than the
354 	 * process it belongs to. The root anon_vma needs to be pinned until
355 	 * this anon_vma is freed, because the lock lives in the root.
356 	 */
357 	get_anon_vma(anon_vma->root);
358 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
359 	vma->anon_vma = anon_vma;
360 	anon_vma_lock_write(anon_vma);
361 	anon_vma_chain_link(vma, avc, anon_vma);
362 	anon_vma->parent->degree++;
363 	anon_vma_unlock_write(anon_vma);
364 
365 	return 0;
366 
367  out_error_free_anon_vma:
368 	put_anon_vma(anon_vma);
369  out_error:
370 	unlink_anon_vmas(vma);
371 	return -ENOMEM;
372 }
373 
374 void unlink_anon_vmas(struct vm_area_struct *vma)
375 {
376 	struct anon_vma_chain *avc, *next;
377 	struct anon_vma *root = NULL;
378 
379 	/*
380 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
381 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
382 	 */
383 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
384 		struct anon_vma *anon_vma = avc->anon_vma;
385 
386 		root = lock_anon_vma_root(root, anon_vma);
387 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
388 
389 		/*
390 		 * Leave empty anon_vmas on the list - we'll need
391 		 * to free them outside the lock.
392 		 */
393 		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
394 			anon_vma->parent->degree--;
395 			continue;
396 		}
397 
398 		list_del(&avc->same_vma);
399 		anon_vma_chain_free(avc);
400 	}
401 	if (vma->anon_vma)
402 		vma->anon_vma->degree--;
403 	unlock_anon_vma_root(root);
404 
405 	/*
406 	 * Iterate the list once more, it now only contains empty and unlinked
407 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
408 	 * needing to write-acquire the anon_vma->root->rwsem.
409 	 */
410 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
411 		struct anon_vma *anon_vma = avc->anon_vma;
412 
413 		VM_WARN_ON(anon_vma->degree);
414 		put_anon_vma(anon_vma);
415 
416 		list_del(&avc->same_vma);
417 		anon_vma_chain_free(avc);
418 	}
419 }
420 
421 static void anon_vma_ctor(void *data)
422 {
423 	struct anon_vma *anon_vma = data;
424 
425 	init_rwsem(&anon_vma->rwsem);
426 	atomic_set(&anon_vma->refcount, 0);
427 	anon_vma->rb_root = RB_ROOT;
428 }
429 
430 void __init anon_vma_init(void)
431 {
432 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
433 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
434 			anon_vma_ctor);
435 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
436 			SLAB_PANIC|SLAB_ACCOUNT);
437 }
438 
439 /*
440  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
441  *
442  * Since there is no serialization what so ever against page_remove_rmap()
443  * the best this function can do is return a locked anon_vma that might
444  * have been relevant to this page.
445  *
446  * The page might have been remapped to a different anon_vma or the anon_vma
447  * returned may already be freed (and even reused).
448  *
449  * In case it was remapped to a different anon_vma, the new anon_vma will be a
450  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
451  * ensure that any anon_vma obtained from the page will still be valid for as
452  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
453  *
454  * All users of this function must be very careful when walking the anon_vma
455  * chain and verify that the page in question is indeed mapped in it
456  * [ something equivalent to page_mapped_in_vma() ].
457  *
458  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
459  * that the anon_vma pointer from page->mapping is valid if there is a
460  * mapcount, we can dereference the anon_vma after observing those.
461  */
462 struct anon_vma *page_get_anon_vma(struct page *page)
463 {
464 	struct anon_vma *anon_vma = NULL;
465 	unsigned long anon_mapping;
466 
467 	rcu_read_lock();
468 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
469 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
470 		goto out;
471 	if (!page_mapped(page))
472 		goto out;
473 
474 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
475 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
476 		anon_vma = NULL;
477 		goto out;
478 	}
479 
480 	/*
481 	 * If this page is still mapped, then its anon_vma cannot have been
482 	 * freed.  But if it has been unmapped, we have no security against the
483 	 * anon_vma structure being freed and reused (for another anon_vma:
484 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
485 	 * above cannot corrupt).
486 	 */
487 	if (!page_mapped(page)) {
488 		rcu_read_unlock();
489 		put_anon_vma(anon_vma);
490 		return NULL;
491 	}
492 out:
493 	rcu_read_unlock();
494 
495 	return anon_vma;
496 }
497 
498 /*
499  * Similar to page_get_anon_vma() except it locks the anon_vma.
500  *
501  * Its a little more complex as it tries to keep the fast path to a single
502  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
503  * reference like with page_get_anon_vma() and then block on the mutex.
504  */
505 struct anon_vma *page_lock_anon_vma_read(struct page *page)
506 {
507 	struct anon_vma *anon_vma = NULL;
508 	struct anon_vma *root_anon_vma;
509 	unsigned long anon_mapping;
510 
511 	rcu_read_lock();
512 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
513 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
514 		goto out;
515 	if (!page_mapped(page))
516 		goto out;
517 
518 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
519 	root_anon_vma = READ_ONCE(anon_vma->root);
520 	if (down_read_trylock(&root_anon_vma->rwsem)) {
521 		/*
522 		 * If the page is still mapped, then this anon_vma is still
523 		 * its anon_vma, and holding the mutex ensures that it will
524 		 * not go away, see anon_vma_free().
525 		 */
526 		if (!page_mapped(page)) {
527 			up_read(&root_anon_vma->rwsem);
528 			anon_vma = NULL;
529 		}
530 		goto out;
531 	}
532 
533 	/* trylock failed, we got to sleep */
534 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
535 		anon_vma = NULL;
536 		goto out;
537 	}
538 
539 	if (!page_mapped(page)) {
540 		rcu_read_unlock();
541 		put_anon_vma(anon_vma);
542 		return NULL;
543 	}
544 
545 	/* we pinned the anon_vma, its safe to sleep */
546 	rcu_read_unlock();
547 	anon_vma_lock_read(anon_vma);
548 
549 	if (atomic_dec_and_test(&anon_vma->refcount)) {
550 		/*
551 		 * Oops, we held the last refcount, release the lock
552 		 * and bail -- can't simply use put_anon_vma() because
553 		 * we'll deadlock on the anon_vma_lock_write() recursion.
554 		 */
555 		anon_vma_unlock_read(anon_vma);
556 		__put_anon_vma(anon_vma);
557 		anon_vma = NULL;
558 	}
559 
560 	return anon_vma;
561 
562 out:
563 	rcu_read_unlock();
564 	return anon_vma;
565 }
566 
567 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
568 {
569 	anon_vma_unlock_read(anon_vma);
570 }
571 
572 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
573 /*
574  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
575  * important if a PTE was dirty when it was unmapped that it's flushed
576  * before any IO is initiated on the page to prevent lost writes. Similarly,
577  * it must be flushed before freeing to prevent data leakage.
578  */
579 void try_to_unmap_flush(void)
580 {
581 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
582 	int cpu;
583 
584 	if (!tlb_ubc->flush_required)
585 		return;
586 
587 	cpu = get_cpu();
588 
589 	if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
590 		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
591 		local_flush_tlb();
592 		trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
593 	}
594 
595 	if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
596 		flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
597 	cpumask_clear(&tlb_ubc->cpumask);
598 	tlb_ubc->flush_required = false;
599 	tlb_ubc->writable = false;
600 	put_cpu();
601 }
602 
603 /* Flush iff there are potentially writable TLB entries that can race with IO */
604 void try_to_unmap_flush_dirty(void)
605 {
606 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
607 
608 	if (tlb_ubc->writable)
609 		try_to_unmap_flush();
610 }
611 
612 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
613 {
614 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
615 
616 	cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
617 	tlb_ubc->flush_required = true;
618 
619 	/*
620 	 * If the PTE was dirty then it's best to assume it's writable. The
621 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
622 	 * before the page is queued for IO.
623 	 */
624 	if (writable)
625 		tlb_ubc->writable = true;
626 }
627 
628 /*
629  * Returns true if the TLB flush should be deferred to the end of a batch of
630  * unmap operations to reduce IPIs.
631  */
632 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
633 {
634 	bool should_defer = false;
635 
636 	if (!(flags & TTU_BATCH_FLUSH))
637 		return false;
638 
639 	/* If remote CPUs need to be flushed then defer batch the flush */
640 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
641 		should_defer = true;
642 	put_cpu();
643 
644 	return should_defer;
645 }
646 #else
647 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
648 {
649 }
650 
651 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
652 {
653 	return false;
654 }
655 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
656 
657 /*
658  * At what user virtual address is page expected in vma?
659  * Caller should check the page is actually part of the vma.
660  */
661 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
662 {
663 	unsigned long address;
664 	if (PageAnon(page)) {
665 		struct anon_vma *page__anon_vma = page_anon_vma(page);
666 		/*
667 		 * Note: swapoff's unuse_vma() is more efficient with this
668 		 * check, and needs it to match anon_vma when KSM is active.
669 		 */
670 		if (!vma->anon_vma || !page__anon_vma ||
671 		    vma->anon_vma->root != page__anon_vma->root)
672 			return -EFAULT;
673 	} else if (page->mapping) {
674 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
675 			return -EFAULT;
676 	} else
677 		return -EFAULT;
678 	address = __vma_address(page, vma);
679 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
680 		return -EFAULT;
681 	return address;
682 }
683 
684 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
685 {
686 	pgd_t *pgd;
687 	p4d_t *p4d;
688 	pud_t *pud;
689 	pmd_t *pmd = NULL;
690 	pmd_t pmde;
691 
692 	pgd = pgd_offset(mm, address);
693 	if (!pgd_present(*pgd))
694 		goto out;
695 
696 	p4d = p4d_offset(pgd, address);
697 	if (!p4d_present(*p4d))
698 		goto out;
699 
700 	pud = pud_offset(p4d, address);
701 	if (!pud_present(*pud))
702 		goto out;
703 
704 	pmd = pmd_offset(pud, address);
705 	/*
706 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
707 	 * without holding anon_vma lock for write.  So when looking for a
708 	 * genuine pmde (in which to find pte), test present and !THP together.
709 	 */
710 	pmde = *pmd;
711 	barrier();
712 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
713 		pmd = NULL;
714 out:
715 	return pmd;
716 }
717 
718 struct page_referenced_arg {
719 	int mapcount;
720 	int referenced;
721 	unsigned long vm_flags;
722 	struct mem_cgroup *memcg;
723 };
724 /*
725  * arg: page_referenced_arg will be passed
726  */
727 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
728 			unsigned long address, void *arg)
729 {
730 	struct page_referenced_arg *pra = arg;
731 	struct page_vma_mapped_walk pvmw = {
732 		.page = page,
733 		.vma = vma,
734 		.address = address,
735 	};
736 	int referenced = 0;
737 
738 	while (page_vma_mapped_walk(&pvmw)) {
739 		address = pvmw.address;
740 
741 		if (vma->vm_flags & VM_LOCKED) {
742 			page_vma_mapped_walk_done(&pvmw);
743 			pra->vm_flags |= VM_LOCKED;
744 			return SWAP_FAIL; /* To break the loop */
745 		}
746 
747 		if (pvmw.pte) {
748 			if (ptep_clear_flush_young_notify(vma, address,
749 						pvmw.pte)) {
750 				/*
751 				 * Don't treat a reference through
752 				 * a sequentially read mapping as such.
753 				 * If the page has been used in another mapping,
754 				 * we will catch it; if this other mapping is
755 				 * already gone, the unmap path will have set
756 				 * PG_referenced or activated the page.
757 				 */
758 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
759 					referenced++;
760 			}
761 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
762 			if (pmdp_clear_flush_young_notify(vma, address,
763 						pvmw.pmd))
764 				referenced++;
765 		} else {
766 			/* unexpected pmd-mapped page? */
767 			WARN_ON_ONCE(1);
768 		}
769 
770 		pra->mapcount--;
771 	}
772 
773 	if (referenced)
774 		clear_page_idle(page);
775 	if (test_and_clear_page_young(page))
776 		referenced++;
777 
778 	if (referenced) {
779 		pra->referenced++;
780 		pra->vm_flags |= vma->vm_flags;
781 	}
782 
783 	if (!pra->mapcount)
784 		return SWAP_SUCCESS; /* To break the loop */
785 
786 	return SWAP_AGAIN;
787 }
788 
789 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
790 {
791 	struct page_referenced_arg *pra = arg;
792 	struct mem_cgroup *memcg = pra->memcg;
793 
794 	if (!mm_match_cgroup(vma->vm_mm, memcg))
795 		return true;
796 
797 	return false;
798 }
799 
800 /**
801  * page_referenced - test if the page was referenced
802  * @page: the page to test
803  * @is_locked: caller holds lock on the page
804  * @memcg: target memory cgroup
805  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
806  *
807  * Quick test_and_clear_referenced for all mappings to a page,
808  * returns the number of ptes which referenced the page.
809  */
810 int page_referenced(struct page *page,
811 		    int is_locked,
812 		    struct mem_cgroup *memcg,
813 		    unsigned long *vm_flags)
814 {
815 	int ret;
816 	int we_locked = 0;
817 	struct page_referenced_arg pra = {
818 		.mapcount = total_mapcount(page),
819 		.memcg = memcg,
820 	};
821 	struct rmap_walk_control rwc = {
822 		.rmap_one = page_referenced_one,
823 		.arg = (void *)&pra,
824 		.anon_lock = page_lock_anon_vma_read,
825 	};
826 
827 	*vm_flags = 0;
828 	if (!page_mapped(page))
829 		return 0;
830 
831 	if (!page_rmapping(page))
832 		return 0;
833 
834 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
835 		we_locked = trylock_page(page);
836 		if (!we_locked)
837 			return 1;
838 	}
839 
840 	/*
841 	 * If we are reclaiming on behalf of a cgroup, skip
842 	 * counting on behalf of references from different
843 	 * cgroups
844 	 */
845 	if (memcg) {
846 		rwc.invalid_vma = invalid_page_referenced_vma;
847 	}
848 
849 	ret = rmap_walk(page, &rwc);
850 	*vm_flags = pra.vm_flags;
851 
852 	if (we_locked)
853 		unlock_page(page);
854 
855 	return pra.referenced;
856 }
857 
858 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
859 			    unsigned long address, void *arg)
860 {
861 	struct page_vma_mapped_walk pvmw = {
862 		.page = page,
863 		.vma = vma,
864 		.address = address,
865 		.flags = PVMW_SYNC,
866 	};
867 	int *cleaned = arg;
868 
869 	while (page_vma_mapped_walk(&pvmw)) {
870 		int ret = 0;
871 		address = pvmw.address;
872 		if (pvmw.pte) {
873 			pte_t entry;
874 			pte_t *pte = pvmw.pte;
875 
876 			if (!pte_dirty(*pte) && !pte_write(*pte))
877 				continue;
878 
879 			flush_cache_page(vma, address, pte_pfn(*pte));
880 			entry = ptep_clear_flush(vma, address, pte);
881 			entry = pte_wrprotect(entry);
882 			entry = pte_mkclean(entry);
883 			set_pte_at(vma->vm_mm, address, pte, entry);
884 			ret = 1;
885 		} else {
886 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
887 			pmd_t *pmd = pvmw.pmd;
888 			pmd_t entry;
889 
890 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
891 				continue;
892 
893 			flush_cache_page(vma, address, page_to_pfn(page));
894 			entry = pmdp_huge_clear_flush(vma, address, pmd);
895 			entry = pmd_wrprotect(entry);
896 			entry = pmd_mkclean(entry);
897 			set_pmd_at(vma->vm_mm, address, pmd, entry);
898 			ret = 1;
899 #else
900 			/* unexpected pmd-mapped page? */
901 			WARN_ON_ONCE(1);
902 #endif
903 		}
904 
905 		if (ret) {
906 			mmu_notifier_invalidate_page(vma->vm_mm, address);
907 			(*cleaned)++;
908 		}
909 	}
910 
911 	return SWAP_AGAIN;
912 }
913 
914 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
915 {
916 	if (vma->vm_flags & VM_SHARED)
917 		return false;
918 
919 	return true;
920 }
921 
922 int page_mkclean(struct page *page)
923 {
924 	int cleaned = 0;
925 	struct address_space *mapping;
926 	struct rmap_walk_control rwc = {
927 		.arg = (void *)&cleaned,
928 		.rmap_one = page_mkclean_one,
929 		.invalid_vma = invalid_mkclean_vma,
930 	};
931 
932 	BUG_ON(!PageLocked(page));
933 
934 	if (!page_mapped(page))
935 		return 0;
936 
937 	mapping = page_mapping(page);
938 	if (!mapping)
939 		return 0;
940 
941 	rmap_walk(page, &rwc);
942 
943 	return cleaned;
944 }
945 EXPORT_SYMBOL_GPL(page_mkclean);
946 
947 /**
948  * page_move_anon_rmap - move a page to our anon_vma
949  * @page:	the page to move to our anon_vma
950  * @vma:	the vma the page belongs to
951  *
952  * When a page belongs exclusively to one process after a COW event,
953  * that page can be moved into the anon_vma that belongs to just that
954  * process, so the rmap code will not search the parent or sibling
955  * processes.
956  */
957 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
958 {
959 	struct anon_vma *anon_vma = vma->anon_vma;
960 
961 	page = compound_head(page);
962 
963 	VM_BUG_ON_PAGE(!PageLocked(page), page);
964 	VM_BUG_ON_VMA(!anon_vma, vma);
965 
966 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
967 	/*
968 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
969 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
970 	 * PageAnon()) will not see one without the other.
971 	 */
972 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
973 }
974 
975 /**
976  * __page_set_anon_rmap - set up new anonymous rmap
977  * @page:	Page to add to rmap
978  * @vma:	VM area to add page to.
979  * @address:	User virtual address of the mapping
980  * @exclusive:	the page is exclusively owned by the current process
981  */
982 static void __page_set_anon_rmap(struct page *page,
983 	struct vm_area_struct *vma, unsigned long address, int exclusive)
984 {
985 	struct anon_vma *anon_vma = vma->anon_vma;
986 
987 	BUG_ON(!anon_vma);
988 
989 	if (PageAnon(page))
990 		return;
991 
992 	/*
993 	 * If the page isn't exclusively mapped into this vma,
994 	 * we must use the _oldest_ possible anon_vma for the
995 	 * page mapping!
996 	 */
997 	if (!exclusive)
998 		anon_vma = anon_vma->root;
999 
1000 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1001 	page->mapping = (struct address_space *) anon_vma;
1002 	page->index = linear_page_index(vma, address);
1003 }
1004 
1005 /**
1006  * __page_check_anon_rmap - sanity check anonymous rmap addition
1007  * @page:	the page to add the mapping to
1008  * @vma:	the vm area in which the mapping is added
1009  * @address:	the user virtual address mapped
1010  */
1011 static void __page_check_anon_rmap(struct page *page,
1012 	struct vm_area_struct *vma, unsigned long address)
1013 {
1014 #ifdef CONFIG_DEBUG_VM
1015 	/*
1016 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1017 	 * be set up correctly at this point.
1018 	 *
1019 	 * We have exclusion against page_add_anon_rmap because the caller
1020 	 * always holds the page locked, except if called from page_dup_rmap,
1021 	 * in which case the page is already known to be setup.
1022 	 *
1023 	 * We have exclusion against page_add_new_anon_rmap because those pages
1024 	 * are initially only visible via the pagetables, and the pte is locked
1025 	 * over the call to page_add_new_anon_rmap.
1026 	 */
1027 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1028 	BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1029 #endif
1030 }
1031 
1032 /**
1033  * page_add_anon_rmap - add pte mapping to an anonymous page
1034  * @page:	the page to add the mapping to
1035  * @vma:	the vm area in which the mapping is added
1036  * @address:	the user virtual address mapped
1037  * @compound:	charge the page as compound or small page
1038  *
1039  * The caller needs to hold the pte lock, and the page must be locked in
1040  * the anon_vma case: to serialize mapping,index checking after setting,
1041  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1042  * (but PageKsm is never downgraded to PageAnon).
1043  */
1044 void page_add_anon_rmap(struct page *page,
1045 	struct vm_area_struct *vma, unsigned long address, bool compound)
1046 {
1047 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1048 }
1049 
1050 /*
1051  * Special version of the above for do_swap_page, which often runs
1052  * into pages that are exclusively owned by the current process.
1053  * Everybody else should continue to use page_add_anon_rmap above.
1054  */
1055 void do_page_add_anon_rmap(struct page *page,
1056 	struct vm_area_struct *vma, unsigned long address, int flags)
1057 {
1058 	bool compound = flags & RMAP_COMPOUND;
1059 	bool first;
1060 
1061 	if (compound) {
1062 		atomic_t *mapcount;
1063 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1064 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1065 		mapcount = compound_mapcount_ptr(page);
1066 		first = atomic_inc_and_test(mapcount);
1067 	} else {
1068 		first = atomic_inc_and_test(&page->_mapcount);
1069 	}
1070 
1071 	if (first) {
1072 		int nr = compound ? hpage_nr_pages(page) : 1;
1073 		/*
1074 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1075 		 * these counters are not modified in interrupt context, and
1076 		 * pte lock(a spinlock) is held, which implies preemption
1077 		 * disabled.
1078 		 */
1079 		if (compound)
1080 			__inc_node_page_state(page, NR_ANON_THPS);
1081 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1082 	}
1083 	if (unlikely(PageKsm(page)))
1084 		return;
1085 
1086 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1087 
1088 	/* address might be in next vma when migration races vma_adjust */
1089 	if (first)
1090 		__page_set_anon_rmap(page, vma, address,
1091 				flags & RMAP_EXCLUSIVE);
1092 	else
1093 		__page_check_anon_rmap(page, vma, address);
1094 }
1095 
1096 /**
1097  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1098  * @page:	the page to add the mapping to
1099  * @vma:	the vm area in which the mapping is added
1100  * @address:	the user virtual address mapped
1101  * @compound:	charge the page as compound or small page
1102  *
1103  * Same as page_add_anon_rmap but must only be called on *new* pages.
1104  * This means the inc-and-test can be bypassed.
1105  * Page does not have to be locked.
1106  */
1107 void page_add_new_anon_rmap(struct page *page,
1108 	struct vm_area_struct *vma, unsigned long address, bool compound)
1109 {
1110 	int nr = compound ? hpage_nr_pages(page) : 1;
1111 
1112 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1113 	__SetPageSwapBacked(page);
1114 	if (compound) {
1115 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1116 		/* increment count (starts at -1) */
1117 		atomic_set(compound_mapcount_ptr(page), 0);
1118 		__inc_node_page_state(page, NR_ANON_THPS);
1119 	} else {
1120 		/* Anon THP always mapped first with PMD */
1121 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1122 		/* increment count (starts at -1) */
1123 		atomic_set(&page->_mapcount, 0);
1124 	}
1125 	__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1126 	__page_set_anon_rmap(page, vma, address, 1);
1127 }
1128 
1129 /**
1130  * page_add_file_rmap - add pte mapping to a file page
1131  * @page: the page to add the mapping to
1132  *
1133  * The caller needs to hold the pte lock.
1134  */
1135 void page_add_file_rmap(struct page *page, bool compound)
1136 {
1137 	int i, nr = 1;
1138 
1139 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1140 	lock_page_memcg(page);
1141 	if (compound && PageTransHuge(page)) {
1142 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1143 			if (atomic_inc_and_test(&page[i]._mapcount))
1144 				nr++;
1145 		}
1146 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1147 			goto out;
1148 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1149 		__inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1150 	} else {
1151 		if (PageTransCompound(page) && page_mapping(page)) {
1152 			VM_WARN_ON_ONCE(!PageLocked(page));
1153 
1154 			SetPageDoubleMap(compound_head(page));
1155 			if (PageMlocked(page))
1156 				clear_page_mlock(compound_head(page));
1157 		}
1158 		if (!atomic_inc_and_test(&page->_mapcount))
1159 			goto out;
1160 	}
1161 	__mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr);
1162 	mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1163 out:
1164 	unlock_page_memcg(page);
1165 }
1166 
1167 static void page_remove_file_rmap(struct page *page, bool compound)
1168 {
1169 	int i, nr = 1;
1170 
1171 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1172 	lock_page_memcg(page);
1173 
1174 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1175 	if (unlikely(PageHuge(page))) {
1176 		/* hugetlb pages are always mapped with pmds */
1177 		atomic_dec(compound_mapcount_ptr(page));
1178 		goto out;
1179 	}
1180 
1181 	/* page still mapped by someone else? */
1182 	if (compound && PageTransHuge(page)) {
1183 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1184 			if (atomic_add_negative(-1, &page[i]._mapcount))
1185 				nr++;
1186 		}
1187 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1188 			goto out;
1189 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1190 		__dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1191 	} else {
1192 		if (!atomic_add_negative(-1, &page->_mapcount))
1193 			goto out;
1194 	}
1195 
1196 	/*
1197 	 * We use the irq-unsafe __{inc|mod}_zone_page_state because
1198 	 * these counters are not modified in interrupt context, and
1199 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1200 	 */
1201 	__mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr);
1202 	mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1203 
1204 	if (unlikely(PageMlocked(page)))
1205 		clear_page_mlock(page);
1206 out:
1207 	unlock_page_memcg(page);
1208 }
1209 
1210 static void page_remove_anon_compound_rmap(struct page *page)
1211 {
1212 	int i, nr;
1213 
1214 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1215 		return;
1216 
1217 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1218 	if (unlikely(PageHuge(page)))
1219 		return;
1220 
1221 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1222 		return;
1223 
1224 	__dec_node_page_state(page, NR_ANON_THPS);
1225 
1226 	if (TestClearPageDoubleMap(page)) {
1227 		/*
1228 		 * Subpages can be mapped with PTEs too. Check how many of
1229 		 * themi are still mapped.
1230 		 */
1231 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1232 			if (atomic_add_negative(-1, &page[i]._mapcount))
1233 				nr++;
1234 		}
1235 	} else {
1236 		nr = HPAGE_PMD_NR;
1237 	}
1238 
1239 	if (unlikely(PageMlocked(page)))
1240 		clear_page_mlock(page);
1241 
1242 	if (nr) {
1243 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1244 		deferred_split_huge_page(page);
1245 	}
1246 }
1247 
1248 /**
1249  * page_remove_rmap - take down pte mapping from a page
1250  * @page:	page to remove mapping from
1251  * @compound:	uncharge the page as compound or small page
1252  *
1253  * The caller needs to hold the pte lock.
1254  */
1255 void page_remove_rmap(struct page *page, bool compound)
1256 {
1257 	if (!PageAnon(page))
1258 		return page_remove_file_rmap(page, compound);
1259 
1260 	if (compound)
1261 		return page_remove_anon_compound_rmap(page);
1262 
1263 	/* page still mapped by someone else? */
1264 	if (!atomic_add_negative(-1, &page->_mapcount))
1265 		return;
1266 
1267 	/*
1268 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1269 	 * these counters are not modified in interrupt context, and
1270 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1271 	 */
1272 	__dec_node_page_state(page, NR_ANON_MAPPED);
1273 
1274 	if (unlikely(PageMlocked(page)))
1275 		clear_page_mlock(page);
1276 
1277 	if (PageTransCompound(page))
1278 		deferred_split_huge_page(compound_head(page));
1279 
1280 	/*
1281 	 * It would be tidy to reset the PageAnon mapping here,
1282 	 * but that might overwrite a racing page_add_anon_rmap
1283 	 * which increments mapcount after us but sets mapping
1284 	 * before us: so leave the reset to free_hot_cold_page,
1285 	 * and remember that it's only reliable while mapped.
1286 	 * Leaving it set also helps swapoff to reinstate ptes
1287 	 * faster for those pages still in swapcache.
1288 	 */
1289 }
1290 
1291 struct rmap_private {
1292 	enum ttu_flags flags;
1293 	int lazyfreed;
1294 };
1295 
1296 /*
1297  * @arg: enum ttu_flags will be passed to this argument
1298  */
1299 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1300 		     unsigned long address, void *arg)
1301 {
1302 	struct mm_struct *mm = vma->vm_mm;
1303 	struct page_vma_mapped_walk pvmw = {
1304 		.page = page,
1305 		.vma = vma,
1306 		.address = address,
1307 	};
1308 	pte_t pteval;
1309 	struct page *subpage;
1310 	int ret = SWAP_AGAIN;
1311 	struct rmap_private *rp = arg;
1312 	enum ttu_flags flags = rp->flags;
1313 
1314 	/* munlock has nothing to gain from examining un-locked vmas */
1315 	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1316 		return SWAP_AGAIN;
1317 
1318 	if (flags & TTU_SPLIT_HUGE_PMD) {
1319 		split_huge_pmd_address(vma, address,
1320 				flags & TTU_MIGRATION, page);
1321 	}
1322 
1323 	while (page_vma_mapped_walk(&pvmw)) {
1324 		/*
1325 		 * If the page is mlock()d, we cannot swap it out.
1326 		 * If it's recently referenced (perhaps page_referenced
1327 		 * skipped over this mm) then we should reactivate it.
1328 		 */
1329 		if (!(flags & TTU_IGNORE_MLOCK)) {
1330 			if (vma->vm_flags & VM_LOCKED) {
1331 				/* PTE-mapped THP are never mlocked */
1332 				if (!PageTransCompound(page)) {
1333 					/*
1334 					 * Holding pte lock, we do *not* need
1335 					 * mmap_sem here
1336 					 */
1337 					mlock_vma_page(page);
1338 				}
1339 				ret = SWAP_MLOCK;
1340 				page_vma_mapped_walk_done(&pvmw);
1341 				break;
1342 			}
1343 			if (flags & TTU_MUNLOCK)
1344 				continue;
1345 		}
1346 
1347 		/* Unexpected PMD-mapped THP? */
1348 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1349 
1350 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1351 		address = pvmw.address;
1352 
1353 
1354 		if (!(flags & TTU_IGNORE_ACCESS)) {
1355 			if (ptep_clear_flush_young_notify(vma, address,
1356 						pvmw.pte)) {
1357 				ret = SWAP_FAIL;
1358 				page_vma_mapped_walk_done(&pvmw);
1359 				break;
1360 			}
1361 		}
1362 
1363 		/* Nuke the page table entry. */
1364 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1365 		if (should_defer_flush(mm, flags)) {
1366 			/*
1367 			 * We clear the PTE but do not flush so potentially
1368 			 * a remote CPU could still be writing to the page.
1369 			 * If the entry was previously clean then the
1370 			 * architecture must guarantee that a clear->dirty
1371 			 * transition on a cached TLB entry is written through
1372 			 * and traps if the PTE is unmapped.
1373 			 */
1374 			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1375 
1376 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1377 		} else {
1378 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1379 		}
1380 
1381 		/* Move the dirty bit to the page. Now the pte is gone. */
1382 		if (pte_dirty(pteval))
1383 			set_page_dirty(page);
1384 
1385 		/* Update high watermark before we lower rss */
1386 		update_hiwater_rss(mm);
1387 
1388 		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1389 			if (PageHuge(page)) {
1390 				int nr = 1 << compound_order(page);
1391 				hugetlb_count_sub(nr, mm);
1392 			} else {
1393 				dec_mm_counter(mm, mm_counter(page));
1394 			}
1395 
1396 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1397 			set_pte_at(mm, address, pvmw.pte, pteval);
1398 		} else if (pte_unused(pteval)) {
1399 			/*
1400 			 * The guest indicated that the page content is of no
1401 			 * interest anymore. Simply discard the pte, vmscan
1402 			 * will take care of the rest.
1403 			 */
1404 			dec_mm_counter(mm, mm_counter(page));
1405 		} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1406 				(flags & TTU_MIGRATION)) {
1407 			swp_entry_t entry;
1408 			pte_t swp_pte;
1409 			/*
1410 			 * Store the pfn of the page in a special migration
1411 			 * pte. do_swap_page() will wait until the migration
1412 			 * pte is removed and then restart fault handling.
1413 			 */
1414 			entry = make_migration_entry(subpage,
1415 					pte_write(pteval));
1416 			swp_pte = swp_entry_to_pte(entry);
1417 			if (pte_soft_dirty(pteval))
1418 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1419 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1420 		} else if (PageAnon(page)) {
1421 			swp_entry_t entry = { .val = page_private(subpage) };
1422 			pte_t swp_pte;
1423 			/*
1424 			 * Store the swap location in the pte.
1425 			 * See handle_pte_fault() ...
1426 			 */
1427 			VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1428 
1429 			if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1430 				/* It's a freeable page by MADV_FREE */
1431 				dec_mm_counter(mm, MM_ANONPAGES);
1432 				rp->lazyfreed++;
1433 				goto discard;
1434 			}
1435 
1436 			if (swap_duplicate(entry) < 0) {
1437 				set_pte_at(mm, address, pvmw.pte, pteval);
1438 				ret = SWAP_FAIL;
1439 				page_vma_mapped_walk_done(&pvmw);
1440 				break;
1441 			}
1442 			if (list_empty(&mm->mmlist)) {
1443 				spin_lock(&mmlist_lock);
1444 				if (list_empty(&mm->mmlist))
1445 					list_add(&mm->mmlist, &init_mm.mmlist);
1446 				spin_unlock(&mmlist_lock);
1447 			}
1448 			dec_mm_counter(mm, MM_ANONPAGES);
1449 			inc_mm_counter(mm, MM_SWAPENTS);
1450 			swp_pte = swp_entry_to_pte(entry);
1451 			if (pte_soft_dirty(pteval))
1452 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1453 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1454 		} else
1455 			dec_mm_counter(mm, mm_counter_file(page));
1456 discard:
1457 		page_remove_rmap(subpage, PageHuge(page));
1458 		put_page(page);
1459 		mmu_notifier_invalidate_page(mm, address);
1460 	}
1461 	return ret;
1462 }
1463 
1464 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1465 {
1466 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1467 
1468 	if (!maybe_stack)
1469 		return false;
1470 
1471 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1472 						VM_STACK_INCOMPLETE_SETUP)
1473 		return true;
1474 
1475 	return false;
1476 }
1477 
1478 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1479 {
1480 	return is_vma_temporary_stack(vma);
1481 }
1482 
1483 static int page_mapcount_is_zero(struct page *page)
1484 {
1485 	return !total_mapcount(page);
1486 }
1487 
1488 /**
1489  * try_to_unmap - try to remove all page table mappings to a page
1490  * @page: the page to get unmapped
1491  * @flags: action and flags
1492  *
1493  * Tries to remove all the page table entries which are mapping this
1494  * page, used in the pageout path.  Caller must hold the page lock.
1495  * Return values are:
1496  *
1497  * SWAP_SUCCESS	- we succeeded in removing all mappings
1498  * SWAP_AGAIN	- we missed a mapping, try again later
1499  * SWAP_FAIL	- the page is unswappable
1500  * SWAP_MLOCK	- page is mlocked.
1501  */
1502 int try_to_unmap(struct page *page, enum ttu_flags flags)
1503 {
1504 	int ret;
1505 	struct rmap_private rp = {
1506 		.flags = flags,
1507 		.lazyfreed = 0,
1508 	};
1509 
1510 	struct rmap_walk_control rwc = {
1511 		.rmap_one = try_to_unmap_one,
1512 		.arg = &rp,
1513 		.done = page_mapcount_is_zero,
1514 		.anon_lock = page_lock_anon_vma_read,
1515 	};
1516 
1517 	/*
1518 	 * During exec, a temporary VMA is setup and later moved.
1519 	 * The VMA is moved under the anon_vma lock but not the
1520 	 * page tables leading to a race where migration cannot
1521 	 * find the migration ptes. Rather than increasing the
1522 	 * locking requirements of exec(), migration skips
1523 	 * temporary VMAs until after exec() completes.
1524 	 */
1525 	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1526 		rwc.invalid_vma = invalid_migration_vma;
1527 
1528 	if (flags & TTU_RMAP_LOCKED)
1529 		ret = rmap_walk_locked(page, &rwc);
1530 	else
1531 		ret = rmap_walk(page, &rwc);
1532 
1533 	if (ret != SWAP_MLOCK && !page_mapcount(page)) {
1534 		ret = SWAP_SUCCESS;
1535 		if (rp.lazyfreed && !PageDirty(page))
1536 			ret = SWAP_LZFREE;
1537 	}
1538 	return ret;
1539 }
1540 
1541 static int page_not_mapped(struct page *page)
1542 {
1543 	return !page_mapped(page);
1544 };
1545 
1546 /**
1547  * try_to_munlock - try to munlock a page
1548  * @page: the page to be munlocked
1549  *
1550  * Called from munlock code.  Checks all of the VMAs mapping the page
1551  * to make sure nobody else has this page mlocked. The page will be
1552  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1553  *
1554  * Return values are:
1555  *
1556  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1557  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1558  * SWAP_FAIL	- page cannot be located at present
1559  * SWAP_MLOCK	- page is now mlocked.
1560  */
1561 int try_to_munlock(struct page *page)
1562 {
1563 	int ret;
1564 	struct rmap_private rp = {
1565 		.flags = TTU_MUNLOCK,
1566 		.lazyfreed = 0,
1567 	};
1568 
1569 	struct rmap_walk_control rwc = {
1570 		.rmap_one = try_to_unmap_one,
1571 		.arg = &rp,
1572 		.done = page_not_mapped,
1573 		.anon_lock = page_lock_anon_vma_read,
1574 
1575 	};
1576 
1577 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1578 
1579 	ret = rmap_walk(page, &rwc);
1580 	return ret;
1581 }
1582 
1583 void __put_anon_vma(struct anon_vma *anon_vma)
1584 {
1585 	struct anon_vma *root = anon_vma->root;
1586 
1587 	anon_vma_free(anon_vma);
1588 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1589 		anon_vma_free(root);
1590 }
1591 
1592 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1593 					struct rmap_walk_control *rwc)
1594 {
1595 	struct anon_vma *anon_vma;
1596 
1597 	if (rwc->anon_lock)
1598 		return rwc->anon_lock(page);
1599 
1600 	/*
1601 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1602 	 * because that depends on page_mapped(); but not all its usages
1603 	 * are holding mmap_sem. Users without mmap_sem are required to
1604 	 * take a reference count to prevent the anon_vma disappearing
1605 	 */
1606 	anon_vma = page_anon_vma(page);
1607 	if (!anon_vma)
1608 		return NULL;
1609 
1610 	anon_vma_lock_read(anon_vma);
1611 	return anon_vma;
1612 }
1613 
1614 /*
1615  * rmap_walk_anon - do something to anonymous page using the object-based
1616  * rmap method
1617  * @page: the page to be handled
1618  * @rwc: control variable according to each walk type
1619  *
1620  * Find all the mappings of a page using the mapping pointer and the vma chains
1621  * contained in the anon_vma struct it points to.
1622  *
1623  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1624  * where the page was found will be held for write.  So, we won't recheck
1625  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1626  * LOCKED.
1627  */
1628 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1629 		bool locked)
1630 {
1631 	struct anon_vma *anon_vma;
1632 	pgoff_t pgoff_start, pgoff_end;
1633 	struct anon_vma_chain *avc;
1634 	int ret = SWAP_AGAIN;
1635 
1636 	if (locked) {
1637 		anon_vma = page_anon_vma(page);
1638 		/* anon_vma disappear under us? */
1639 		VM_BUG_ON_PAGE(!anon_vma, page);
1640 	} else {
1641 		anon_vma = rmap_walk_anon_lock(page, rwc);
1642 	}
1643 	if (!anon_vma)
1644 		return ret;
1645 
1646 	pgoff_start = page_to_pgoff(page);
1647 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1648 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1649 			pgoff_start, pgoff_end) {
1650 		struct vm_area_struct *vma = avc->vma;
1651 		unsigned long address = vma_address(page, vma);
1652 
1653 		cond_resched();
1654 
1655 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1656 			continue;
1657 
1658 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1659 		if (ret != SWAP_AGAIN)
1660 			break;
1661 		if (rwc->done && rwc->done(page))
1662 			break;
1663 	}
1664 
1665 	if (!locked)
1666 		anon_vma_unlock_read(anon_vma);
1667 	return ret;
1668 }
1669 
1670 /*
1671  * rmap_walk_file - do something to file page using the object-based rmap method
1672  * @page: the page to be handled
1673  * @rwc: control variable according to each walk type
1674  *
1675  * Find all the mappings of a page using the mapping pointer and the vma chains
1676  * contained in the address_space struct it points to.
1677  *
1678  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1679  * where the page was found will be held for write.  So, we won't recheck
1680  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1681  * LOCKED.
1682  */
1683 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1684 		bool locked)
1685 {
1686 	struct address_space *mapping = page_mapping(page);
1687 	pgoff_t pgoff_start, pgoff_end;
1688 	struct vm_area_struct *vma;
1689 	int ret = SWAP_AGAIN;
1690 
1691 	/*
1692 	 * The page lock not only makes sure that page->mapping cannot
1693 	 * suddenly be NULLified by truncation, it makes sure that the
1694 	 * structure at mapping cannot be freed and reused yet,
1695 	 * so we can safely take mapping->i_mmap_rwsem.
1696 	 */
1697 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1698 
1699 	if (!mapping)
1700 		return ret;
1701 
1702 	pgoff_start = page_to_pgoff(page);
1703 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1704 	if (!locked)
1705 		i_mmap_lock_read(mapping);
1706 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
1707 			pgoff_start, pgoff_end) {
1708 		unsigned long address = vma_address(page, vma);
1709 
1710 		cond_resched();
1711 
1712 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1713 			continue;
1714 
1715 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1716 		if (ret != SWAP_AGAIN)
1717 			goto done;
1718 		if (rwc->done && rwc->done(page))
1719 			goto done;
1720 	}
1721 
1722 done:
1723 	if (!locked)
1724 		i_mmap_unlock_read(mapping);
1725 	return ret;
1726 }
1727 
1728 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1729 {
1730 	if (unlikely(PageKsm(page)))
1731 		return rmap_walk_ksm(page, rwc);
1732 	else if (PageAnon(page))
1733 		return rmap_walk_anon(page, rwc, false);
1734 	else
1735 		return rmap_walk_file(page, rwc, false);
1736 }
1737 
1738 /* Like rmap_walk, but caller holds relevant rmap lock */
1739 int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1740 {
1741 	/* no ksm support for now */
1742 	VM_BUG_ON_PAGE(PageKsm(page), page);
1743 	if (PageAnon(page))
1744 		return rmap_walk_anon(page, rwc, true);
1745 	else
1746 		return rmap_walk_file(page, rwc, true);
1747 }
1748 
1749 #ifdef CONFIG_HUGETLB_PAGE
1750 /*
1751  * The following three functions are for anonymous (private mapped) hugepages.
1752  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1753  * and no lru code, because we handle hugepages differently from common pages.
1754  */
1755 static void __hugepage_set_anon_rmap(struct page *page,
1756 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1757 {
1758 	struct anon_vma *anon_vma = vma->anon_vma;
1759 
1760 	BUG_ON(!anon_vma);
1761 
1762 	if (PageAnon(page))
1763 		return;
1764 	if (!exclusive)
1765 		anon_vma = anon_vma->root;
1766 
1767 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1768 	page->mapping = (struct address_space *) anon_vma;
1769 	page->index = linear_page_index(vma, address);
1770 }
1771 
1772 void hugepage_add_anon_rmap(struct page *page,
1773 			    struct vm_area_struct *vma, unsigned long address)
1774 {
1775 	struct anon_vma *anon_vma = vma->anon_vma;
1776 	int first;
1777 
1778 	BUG_ON(!PageLocked(page));
1779 	BUG_ON(!anon_vma);
1780 	/* address might be in next vma when migration races vma_adjust */
1781 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1782 	if (first)
1783 		__hugepage_set_anon_rmap(page, vma, address, 0);
1784 }
1785 
1786 void hugepage_add_new_anon_rmap(struct page *page,
1787 			struct vm_area_struct *vma, unsigned long address)
1788 {
1789 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1790 	atomic_set(compound_mapcount_ptr(page), 0);
1791 	__hugepage_set_anon_rmap(page, vma, address, 1);
1792 }
1793 #endif /* CONFIG_HUGETLB_PAGE */
1794