xref: /openbmc/linux/mm/rmap.c (revision 4e1a33b1)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27  *         mapping->i_mmap_rwsem
28  *           anon_vma->rwsem
29  *             mm->page_table_lock or pte_lock
30  *               zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31  *               swap_lock (in swap_duplicate, swap_info_get)
32  *                 mmlist_lock (in mmput, drain_mmlist and others)
33  *                 mapping->private_lock (in __set_page_dirty_buffers)
34  *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35  *                     mapping->tree_lock (widely used)
36  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
39  *                   mapping->tree_lock (widely used, in set_page_dirty,
40  *                             in arch-dependent flush_dcache_mmap_lock,
41  *                             within bdi.wb->list_lock in __sync_single_inode)
42  *
43  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
44  *   ->tasklist_lock
45  *     pte map lock
46  */
47 
48 #include <linux/mm.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/slab.h>
53 #include <linux/init.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/rcupdate.h>
57 #include <linux/export.h>
58 #include <linux/memcontrol.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/backing-dev.h>
63 #include <linux/page_idle.h>
64 
65 #include <asm/tlbflush.h>
66 
67 #include <trace/events/tlb.h>
68 
69 #include "internal.h"
70 
71 static struct kmem_cache *anon_vma_cachep;
72 static struct kmem_cache *anon_vma_chain_cachep;
73 
74 static inline struct anon_vma *anon_vma_alloc(void)
75 {
76 	struct anon_vma *anon_vma;
77 
78 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
79 	if (anon_vma) {
80 		atomic_set(&anon_vma->refcount, 1);
81 		anon_vma->degree = 1;	/* Reference for first vma */
82 		anon_vma->parent = anon_vma;
83 		/*
84 		 * Initialise the anon_vma root to point to itself. If called
85 		 * from fork, the root will be reset to the parents anon_vma.
86 		 */
87 		anon_vma->root = anon_vma;
88 	}
89 
90 	return anon_vma;
91 }
92 
93 static inline void anon_vma_free(struct anon_vma *anon_vma)
94 {
95 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
96 
97 	/*
98 	 * Synchronize against page_lock_anon_vma_read() such that
99 	 * we can safely hold the lock without the anon_vma getting
100 	 * freed.
101 	 *
102 	 * Relies on the full mb implied by the atomic_dec_and_test() from
103 	 * put_anon_vma() against the acquire barrier implied by
104 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
105 	 *
106 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
107 	 *   down_read_trylock()		  atomic_dec_and_test()
108 	 *   LOCK				  MB
109 	 *   atomic_read()			  rwsem_is_locked()
110 	 *
111 	 * LOCK should suffice since the actual taking of the lock must
112 	 * happen _before_ what follows.
113 	 */
114 	might_sleep();
115 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
116 		anon_vma_lock_write(anon_vma);
117 		anon_vma_unlock_write(anon_vma);
118 	}
119 
120 	kmem_cache_free(anon_vma_cachep, anon_vma);
121 }
122 
123 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
124 {
125 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
126 }
127 
128 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
129 {
130 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
131 }
132 
133 static void anon_vma_chain_link(struct vm_area_struct *vma,
134 				struct anon_vma_chain *avc,
135 				struct anon_vma *anon_vma)
136 {
137 	avc->vma = vma;
138 	avc->anon_vma = anon_vma;
139 	list_add(&avc->same_vma, &vma->anon_vma_chain);
140 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
141 }
142 
143 /**
144  * __anon_vma_prepare - attach an anon_vma to a memory region
145  * @vma: the memory region in question
146  *
147  * This makes sure the memory mapping described by 'vma' has
148  * an 'anon_vma' attached to it, so that we can associate the
149  * anonymous pages mapped into it with that anon_vma.
150  *
151  * The common case will be that we already have one, which
152  * is handled inline by anon_vma_prepare(). But if
153  * not we either need to find an adjacent mapping that we
154  * can re-use the anon_vma from (very common when the only
155  * reason for splitting a vma has been mprotect()), or we
156  * allocate a new one.
157  *
158  * Anon-vma allocations are very subtle, because we may have
159  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
160  * and that may actually touch the spinlock even in the newly
161  * allocated vma (it depends on RCU to make sure that the
162  * anon_vma isn't actually destroyed).
163  *
164  * As a result, we need to do proper anon_vma locking even
165  * for the new allocation. At the same time, we do not want
166  * to do any locking for the common case of already having
167  * an anon_vma.
168  *
169  * This must be called with the mmap_sem held for reading.
170  */
171 int __anon_vma_prepare(struct vm_area_struct *vma)
172 {
173 	struct mm_struct *mm = vma->vm_mm;
174 	struct anon_vma *anon_vma, *allocated;
175 	struct anon_vma_chain *avc;
176 
177 	might_sleep();
178 
179 	avc = anon_vma_chain_alloc(GFP_KERNEL);
180 	if (!avc)
181 		goto out_enomem;
182 
183 	anon_vma = find_mergeable_anon_vma(vma);
184 	allocated = NULL;
185 	if (!anon_vma) {
186 		anon_vma = anon_vma_alloc();
187 		if (unlikely(!anon_vma))
188 			goto out_enomem_free_avc;
189 		allocated = anon_vma;
190 	}
191 
192 	anon_vma_lock_write(anon_vma);
193 	/* page_table_lock to protect against threads */
194 	spin_lock(&mm->page_table_lock);
195 	if (likely(!vma->anon_vma)) {
196 		vma->anon_vma = anon_vma;
197 		anon_vma_chain_link(vma, avc, anon_vma);
198 		/* vma reference or self-parent link for new root */
199 		anon_vma->degree++;
200 		allocated = NULL;
201 		avc = NULL;
202 	}
203 	spin_unlock(&mm->page_table_lock);
204 	anon_vma_unlock_write(anon_vma);
205 
206 	if (unlikely(allocated))
207 		put_anon_vma(allocated);
208 	if (unlikely(avc))
209 		anon_vma_chain_free(avc);
210 
211 	return 0;
212 
213  out_enomem_free_avc:
214 	anon_vma_chain_free(avc);
215  out_enomem:
216 	return -ENOMEM;
217 }
218 
219 /*
220  * This is a useful helper function for locking the anon_vma root as
221  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
222  * have the same vma.
223  *
224  * Such anon_vma's should have the same root, so you'd expect to see
225  * just a single mutex_lock for the whole traversal.
226  */
227 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
228 {
229 	struct anon_vma *new_root = anon_vma->root;
230 	if (new_root != root) {
231 		if (WARN_ON_ONCE(root))
232 			up_write(&root->rwsem);
233 		root = new_root;
234 		down_write(&root->rwsem);
235 	}
236 	return root;
237 }
238 
239 static inline void unlock_anon_vma_root(struct anon_vma *root)
240 {
241 	if (root)
242 		up_write(&root->rwsem);
243 }
244 
245 /*
246  * Attach the anon_vmas from src to dst.
247  * Returns 0 on success, -ENOMEM on failure.
248  *
249  * If dst->anon_vma is NULL this function tries to find and reuse existing
250  * anon_vma which has no vmas and only one child anon_vma. This prevents
251  * degradation of anon_vma hierarchy to endless linear chain in case of
252  * constantly forking task. On the other hand, an anon_vma with more than one
253  * child isn't reused even if there was no alive vma, thus rmap walker has a
254  * good chance of avoiding scanning the whole hierarchy when it searches where
255  * page is mapped.
256  */
257 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
258 {
259 	struct anon_vma_chain *avc, *pavc;
260 	struct anon_vma *root = NULL;
261 
262 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
263 		struct anon_vma *anon_vma;
264 
265 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
266 		if (unlikely(!avc)) {
267 			unlock_anon_vma_root(root);
268 			root = NULL;
269 			avc = anon_vma_chain_alloc(GFP_KERNEL);
270 			if (!avc)
271 				goto enomem_failure;
272 		}
273 		anon_vma = pavc->anon_vma;
274 		root = lock_anon_vma_root(root, anon_vma);
275 		anon_vma_chain_link(dst, avc, anon_vma);
276 
277 		/*
278 		 * Reuse existing anon_vma if its degree lower than two,
279 		 * that means it has no vma and only one anon_vma child.
280 		 *
281 		 * Do not chose parent anon_vma, otherwise first child
282 		 * will always reuse it. Root anon_vma is never reused:
283 		 * it has self-parent reference and at least one child.
284 		 */
285 		if (!dst->anon_vma && anon_vma != src->anon_vma &&
286 				anon_vma->degree < 2)
287 			dst->anon_vma = anon_vma;
288 	}
289 	if (dst->anon_vma)
290 		dst->anon_vma->degree++;
291 	unlock_anon_vma_root(root);
292 	return 0;
293 
294  enomem_failure:
295 	/*
296 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
297 	 * decremented in unlink_anon_vmas().
298 	 * We can safely do this because callers of anon_vma_clone() don't care
299 	 * about dst->anon_vma if anon_vma_clone() failed.
300 	 */
301 	dst->anon_vma = NULL;
302 	unlink_anon_vmas(dst);
303 	return -ENOMEM;
304 }
305 
306 /*
307  * Attach vma to its own anon_vma, as well as to the anon_vmas that
308  * the corresponding VMA in the parent process is attached to.
309  * Returns 0 on success, non-zero on failure.
310  */
311 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
312 {
313 	struct anon_vma_chain *avc;
314 	struct anon_vma *anon_vma;
315 	int error;
316 
317 	/* Don't bother if the parent process has no anon_vma here. */
318 	if (!pvma->anon_vma)
319 		return 0;
320 
321 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
322 	vma->anon_vma = NULL;
323 
324 	/*
325 	 * First, attach the new VMA to the parent VMA's anon_vmas,
326 	 * so rmap can find non-COWed pages in child processes.
327 	 */
328 	error = anon_vma_clone(vma, pvma);
329 	if (error)
330 		return error;
331 
332 	/* An existing anon_vma has been reused, all done then. */
333 	if (vma->anon_vma)
334 		return 0;
335 
336 	/* Then add our own anon_vma. */
337 	anon_vma = anon_vma_alloc();
338 	if (!anon_vma)
339 		goto out_error;
340 	avc = anon_vma_chain_alloc(GFP_KERNEL);
341 	if (!avc)
342 		goto out_error_free_anon_vma;
343 
344 	/*
345 	 * The root anon_vma's spinlock is the lock actually used when we
346 	 * lock any of the anon_vmas in this anon_vma tree.
347 	 */
348 	anon_vma->root = pvma->anon_vma->root;
349 	anon_vma->parent = pvma->anon_vma;
350 	/*
351 	 * With refcounts, an anon_vma can stay around longer than the
352 	 * process it belongs to. The root anon_vma needs to be pinned until
353 	 * this anon_vma is freed, because the lock lives in the root.
354 	 */
355 	get_anon_vma(anon_vma->root);
356 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
357 	vma->anon_vma = anon_vma;
358 	anon_vma_lock_write(anon_vma);
359 	anon_vma_chain_link(vma, avc, anon_vma);
360 	anon_vma->parent->degree++;
361 	anon_vma_unlock_write(anon_vma);
362 
363 	return 0;
364 
365  out_error_free_anon_vma:
366 	put_anon_vma(anon_vma);
367  out_error:
368 	unlink_anon_vmas(vma);
369 	return -ENOMEM;
370 }
371 
372 void unlink_anon_vmas(struct vm_area_struct *vma)
373 {
374 	struct anon_vma_chain *avc, *next;
375 	struct anon_vma *root = NULL;
376 
377 	/*
378 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
379 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
380 	 */
381 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
382 		struct anon_vma *anon_vma = avc->anon_vma;
383 
384 		root = lock_anon_vma_root(root, anon_vma);
385 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
386 
387 		/*
388 		 * Leave empty anon_vmas on the list - we'll need
389 		 * to free them outside the lock.
390 		 */
391 		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
392 			anon_vma->parent->degree--;
393 			continue;
394 		}
395 
396 		list_del(&avc->same_vma);
397 		anon_vma_chain_free(avc);
398 	}
399 	if (vma->anon_vma)
400 		vma->anon_vma->degree--;
401 	unlock_anon_vma_root(root);
402 
403 	/*
404 	 * Iterate the list once more, it now only contains empty and unlinked
405 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
406 	 * needing to write-acquire the anon_vma->root->rwsem.
407 	 */
408 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
409 		struct anon_vma *anon_vma = avc->anon_vma;
410 
411 		VM_WARN_ON(anon_vma->degree);
412 		put_anon_vma(anon_vma);
413 
414 		list_del(&avc->same_vma);
415 		anon_vma_chain_free(avc);
416 	}
417 }
418 
419 static void anon_vma_ctor(void *data)
420 {
421 	struct anon_vma *anon_vma = data;
422 
423 	init_rwsem(&anon_vma->rwsem);
424 	atomic_set(&anon_vma->refcount, 0);
425 	anon_vma->rb_root = RB_ROOT;
426 }
427 
428 void __init anon_vma_init(void)
429 {
430 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
431 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
432 			anon_vma_ctor);
433 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
434 			SLAB_PANIC|SLAB_ACCOUNT);
435 }
436 
437 /*
438  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
439  *
440  * Since there is no serialization what so ever against page_remove_rmap()
441  * the best this function can do is return a locked anon_vma that might
442  * have been relevant to this page.
443  *
444  * The page might have been remapped to a different anon_vma or the anon_vma
445  * returned may already be freed (and even reused).
446  *
447  * In case it was remapped to a different anon_vma, the new anon_vma will be a
448  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
449  * ensure that any anon_vma obtained from the page will still be valid for as
450  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
451  *
452  * All users of this function must be very careful when walking the anon_vma
453  * chain and verify that the page in question is indeed mapped in it
454  * [ something equivalent to page_mapped_in_vma() ].
455  *
456  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
457  * that the anon_vma pointer from page->mapping is valid if there is a
458  * mapcount, we can dereference the anon_vma after observing those.
459  */
460 struct anon_vma *page_get_anon_vma(struct page *page)
461 {
462 	struct anon_vma *anon_vma = NULL;
463 	unsigned long anon_mapping;
464 
465 	rcu_read_lock();
466 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
467 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
468 		goto out;
469 	if (!page_mapped(page))
470 		goto out;
471 
472 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
473 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
474 		anon_vma = NULL;
475 		goto out;
476 	}
477 
478 	/*
479 	 * If this page is still mapped, then its anon_vma cannot have been
480 	 * freed.  But if it has been unmapped, we have no security against the
481 	 * anon_vma structure being freed and reused (for another anon_vma:
482 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
483 	 * above cannot corrupt).
484 	 */
485 	if (!page_mapped(page)) {
486 		rcu_read_unlock();
487 		put_anon_vma(anon_vma);
488 		return NULL;
489 	}
490 out:
491 	rcu_read_unlock();
492 
493 	return anon_vma;
494 }
495 
496 /*
497  * Similar to page_get_anon_vma() except it locks the anon_vma.
498  *
499  * Its a little more complex as it tries to keep the fast path to a single
500  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
501  * reference like with page_get_anon_vma() and then block on the mutex.
502  */
503 struct anon_vma *page_lock_anon_vma_read(struct page *page)
504 {
505 	struct anon_vma *anon_vma = NULL;
506 	struct anon_vma *root_anon_vma;
507 	unsigned long anon_mapping;
508 
509 	rcu_read_lock();
510 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
511 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
512 		goto out;
513 	if (!page_mapped(page))
514 		goto out;
515 
516 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
517 	root_anon_vma = READ_ONCE(anon_vma->root);
518 	if (down_read_trylock(&root_anon_vma->rwsem)) {
519 		/*
520 		 * If the page is still mapped, then this anon_vma is still
521 		 * its anon_vma, and holding the mutex ensures that it will
522 		 * not go away, see anon_vma_free().
523 		 */
524 		if (!page_mapped(page)) {
525 			up_read(&root_anon_vma->rwsem);
526 			anon_vma = NULL;
527 		}
528 		goto out;
529 	}
530 
531 	/* trylock failed, we got to sleep */
532 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
533 		anon_vma = NULL;
534 		goto out;
535 	}
536 
537 	if (!page_mapped(page)) {
538 		rcu_read_unlock();
539 		put_anon_vma(anon_vma);
540 		return NULL;
541 	}
542 
543 	/* we pinned the anon_vma, its safe to sleep */
544 	rcu_read_unlock();
545 	anon_vma_lock_read(anon_vma);
546 
547 	if (atomic_dec_and_test(&anon_vma->refcount)) {
548 		/*
549 		 * Oops, we held the last refcount, release the lock
550 		 * and bail -- can't simply use put_anon_vma() because
551 		 * we'll deadlock on the anon_vma_lock_write() recursion.
552 		 */
553 		anon_vma_unlock_read(anon_vma);
554 		__put_anon_vma(anon_vma);
555 		anon_vma = NULL;
556 	}
557 
558 	return anon_vma;
559 
560 out:
561 	rcu_read_unlock();
562 	return anon_vma;
563 }
564 
565 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
566 {
567 	anon_vma_unlock_read(anon_vma);
568 }
569 
570 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
571 /*
572  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
573  * important if a PTE was dirty when it was unmapped that it's flushed
574  * before any IO is initiated on the page to prevent lost writes. Similarly,
575  * it must be flushed before freeing to prevent data leakage.
576  */
577 void try_to_unmap_flush(void)
578 {
579 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
580 	int cpu;
581 
582 	if (!tlb_ubc->flush_required)
583 		return;
584 
585 	cpu = get_cpu();
586 
587 	if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
588 		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
589 		local_flush_tlb();
590 		trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
591 	}
592 
593 	if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
594 		flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
595 	cpumask_clear(&tlb_ubc->cpumask);
596 	tlb_ubc->flush_required = false;
597 	tlb_ubc->writable = false;
598 	put_cpu();
599 }
600 
601 /* Flush iff there are potentially writable TLB entries that can race with IO */
602 void try_to_unmap_flush_dirty(void)
603 {
604 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
605 
606 	if (tlb_ubc->writable)
607 		try_to_unmap_flush();
608 }
609 
610 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
611 {
612 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
613 
614 	cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
615 	tlb_ubc->flush_required = true;
616 
617 	/*
618 	 * If the PTE was dirty then it's best to assume it's writable. The
619 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
620 	 * before the page is queued for IO.
621 	 */
622 	if (writable)
623 		tlb_ubc->writable = true;
624 }
625 
626 /*
627  * Returns true if the TLB flush should be deferred to the end of a batch of
628  * unmap operations to reduce IPIs.
629  */
630 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
631 {
632 	bool should_defer = false;
633 
634 	if (!(flags & TTU_BATCH_FLUSH))
635 		return false;
636 
637 	/* If remote CPUs need to be flushed then defer batch the flush */
638 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
639 		should_defer = true;
640 	put_cpu();
641 
642 	return should_defer;
643 }
644 #else
645 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
646 {
647 }
648 
649 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
650 {
651 	return false;
652 }
653 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
654 
655 /*
656  * At what user virtual address is page expected in vma?
657  * Caller should check the page is actually part of the vma.
658  */
659 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
660 {
661 	unsigned long address;
662 	if (PageAnon(page)) {
663 		struct anon_vma *page__anon_vma = page_anon_vma(page);
664 		/*
665 		 * Note: swapoff's unuse_vma() is more efficient with this
666 		 * check, and needs it to match anon_vma when KSM is active.
667 		 */
668 		if (!vma->anon_vma || !page__anon_vma ||
669 		    vma->anon_vma->root != page__anon_vma->root)
670 			return -EFAULT;
671 	} else if (page->mapping) {
672 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
673 			return -EFAULT;
674 	} else
675 		return -EFAULT;
676 	address = __vma_address(page, vma);
677 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
678 		return -EFAULT;
679 	return address;
680 }
681 
682 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
683 {
684 	pgd_t *pgd;
685 	pud_t *pud;
686 	pmd_t *pmd = NULL;
687 	pmd_t pmde;
688 
689 	pgd = pgd_offset(mm, address);
690 	if (!pgd_present(*pgd))
691 		goto out;
692 
693 	pud = pud_offset(pgd, address);
694 	if (!pud_present(*pud))
695 		goto out;
696 
697 	pmd = pmd_offset(pud, address);
698 	/*
699 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
700 	 * without holding anon_vma lock for write.  So when looking for a
701 	 * genuine pmde (in which to find pte), test present and !THP together.
702 	 */
703 	pmde = *pmd;
704 	barrier();
705 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
706 		pmd = NULL;
707 out:
708 	return pmd;
709 }
710 
711 struct page_referenced_arg {
712 	int mapcount;
713 	int referenced;
714 	unsigned long vm_flags;
715 	struct mem_cgroup *memcg;
716 };
717 /*
718  * arg: page_referenced_arg will be passed
719  */
720 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
721 			unsigned long address, void *arg)
722 {
723 	struct page_referenced_arg *pra = arg;
724 	struct page_vma_mapped_walk pvmw = {
725 		.page = page,
726 		.vma = vma,
727 		.address = address,
728 	};
729 	int referenced = 0;
730 
731 	while (page_vma_mapped_walk(&pvmw)) {
732 		address = pvmw.address;
733 
734 		if (vma->vm_flags & VM_LOCKED) {
735 			page_vma_mapped_walk_done(&pvmw);
736 			pra->vm_flags |= VM_LOCKED;
737 			return SWAP_FAIL; /* To break the loop */
738 		}
739 
740 		if (pvmw.pte) {
741 			if (ptep_clear_flush_young_notify(vma, address,
742 						pvmw.pte)) {
743 				/*
744 				 * Don't treat a reference through
745 				 * a sequentially read mapping as such.
746 				 * If the page has been used in another mapping,
747 				 * we will catch it; if this other mapping is
748 				 * already gone, the unmap path will have set
749 				 * PG_referenced or activated the page.
750 				 */
751 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
752 					referenced++;
753 			}
754 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
755 			if (pmdp_clear_flush_young_notify(vma, address,
756 						pvmw.pmd))
757 				referenced++;
758 		} else {
759 			/* unexpected pmd-mapped page? */
760 			WARN_ON_ONCE(1);
761 		}
762 
763 		pra->mapcount--;
764 	}
765 
766 	if (referenced)
767 		clear_page_idle(page);
768 	if (test_and_clear_page_young(page))
769 		referenced++;
770 
771 	if (referenced) {
772 		pra->referenced++;
773 		pra->vm_flags |= vma->vm_flags;
774 	}
775 
776 	if (!pra->mapcount)
777 		return SWAP_SUCCESS; /* To break the loop */
778 
779 	return SWAP_AGAIN;
780 }
781 
782 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
783 {
784 	struct page_referenced_arg *pra = arg;
785 	struct mem_cgroup *memcg = pra->memcg;
786 
787 	if (!mm_match_cgroup(vma->vm_mm, memcg))
788 		return true;
789 
790 	return false;
791 }
792 
793 /**
794  * page_referenced - test if the page was referenced
795  * @page: the page to test
796  * @is_locked: caller holds lock on the page
797  * @memcg: target memory cgroup
798  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
799  *
800  * Quick test_and_clear_referenced for all mappings to a page,
801  * returns the number of ptes which referenced the page.
802  */
803 int page_referenced(struct page *page,
804 		    int is_locked,
805 		    struct mem_cgroup *memcg,
806 		    unsigned long *vm_flags)
807 {
808 	int ret;
809 	int we_locked = 0;
810 	struct page_referenced_arg pra = {
811 		.mapcount = total_mapcount(page),
812 		.memcg = memcg,
813 	};
814 	struct rmap_walk_control rwc = {
815 		.rmap_one = page_referenced_one,
816 		.arg = (void *)&pra,
817 		.anon_lock = page_lock_anon_vma_read,
818 	};
819 
820 	*vm_flags = 0;
821 	if (!page_mapped(page))
822 		return 0;
823 
824 	if (!page_rmapping(page))
825 		return 0;
826 
827 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
828 		we_locked = trylock_page(page);
829 		if (!we_locked)
830 			return 1;
831 	}
832 
833 	/*
834 	 * If we are reclaiming on behalf of a cgroup, skip
835 	 * counting on behalf of references from different
836 	 * cgroups
837 	 */
838 	if (memcg) {
839 		rwc.invalid_vma = invalid_page_referenced_vma;
840 	}
841 
842 	ret = rmap_walk(page, &rwc);
843 	*vm_flags = pra.vm_flags;
844 
845 	if (we_locked)
846 		unlock_page(page);
847 
848 	return pra.referenced;
849 }
850 
851 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
852 			    unsigned long address, void *arg)
853 {
854 	struct page_vma_mapped_walk pvmw = {
855 		.page = page,
856 		.vma = vma,
857 		.address = address,
858 		.flags = PVMW_SYNC,
859 	};
860 	int *cleaned = arg;
861 
862 	while (page_vma_mapped_walk(&pvmw)) {
863 		int ret = 0;
864 		address = pvmw.address;
865 		if (pvmw.pte) {
866 			pte_t entry;
867 			pte_t *pte = pvmw.pte;
868 
869 			if (!pte_dirty(*pte) && !pte_write(*pte))
870 				continue;
871 
872 			flush_cache_page(vma, address, pte_pfn(*pte));
873 			entry = ptep_clear_flush(vma, address, pte);
874 			entry = pte_wrprotect(entry);
875 			entry = pte_mkclean(entry);
876 			set_pte_at(vma->vm_mm, address, pte, entry);
877 			ret = 1;
878 		} else {
879 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
880 			pmd_t *pmd = pvmw.pmd;
881 			pmd_t entry;
882 
883 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
884 				continue;
885 
886 			flush_cache_page(vma, address, page_to_pfn(page));
887 			entry = pmdp_huge_clear_flush(vma, address, pmd);
888 			entry = pmd_wrprotect(entry);
889 			entry = pmd_mkclean(entry);
890 			set_pmd_at(vma->vm_mm, address, pmd, entry);
891 			ret = 1;
892 #else
893 			/* unexpected pmd-mapped page? */
894 			WARN_ON_ONCE(1);
895 #endif
896 		}
897 
898 		if (ret) {
899 			mmu_notifier_invalidate_page(vma->vm_mm, address);
900 			(*cleaned)++;
901 		}
902 	}
903 
904 	return SWAP_AGAIN;
905 }
906 
907 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
908 {
909 	if (vma->vm_flags & VM_SHARED)
910 		return false;
911 
912 	return true;
913 }
914 
915 int page_mkclean(struct page *page)
916 {
917 	int cleaned = 0;
918 	struct address_space *mapping;
919 	struct rmap_walk_control rwc = {
920 		.arg = (void *)&cleaned,
921 		.rmap_one = page_mkclean_one,
922 		.invalid_vma = invalid_mkclean_vma,
923 	};
924 
925 	BUG_ON(!PageLocked(page));
926 
927 	if (!page_mapped(page))
928 		return 0;
929 
930 	mapping = page_mapping(page);
931 	if (!mapping)
932 		return 0;
933 
934 	rmap_walk(page, &rwc);
935 
936 	return cleaned;
937 }
938 EXPORT_SYMBOL_GPL(page_mkclean);
939 
940 /**
941  * page_move_anon_rmap - move a page to our anon_vma
942  * @page:	the page to move to our anon_vma
943  * @vma:	the vma the page belongs to
944  *
945  * When a page belongs exclusively to one process after a COW event,
946  * that page can be moved into the anon_vma that belongs to just that
947  * process, so the rmap code will not search the parent or sibling
948  * processes.
949  */
950 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
951 {
952 	struct anon_vma *anon_vma = vma->anon_vma;
953 
954 	page = compound_head(page);
955 
956 	VM_BUG_ON_PAGE(!PageLocked(page), page);
957 	VM_BUG_ON_VMA(!anon_vma, vma);
958 
959 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
960 	/*
961 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
962 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
963 	 * PageAnon()) will not see one without the other.
964 	 */
965 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
966 }
967 
968 /**
969  * __page_set_anon_rmap - set up new anonymous rmap
970  * @page:	Page to add to rmap
971  * @vma:	VM area to add page to.
972  * @address:	User virtual address of the mapping
973  * @exclusive:	the page is exclusively owned by the current process
974  */
975 static void __page_set_anon_rmap(struct page *page,
976 	struct vm_area_struct *vma, unsigned long address, int exclusive)
977 {
978 	struct anon_vma *anon_vma = vma->anon_vma;
979 
980 	BUG_ON(!anon_vma);
981 
982 	if (PageAnon(page))
983 		return;
984 
985 	/*
986 	 * If the page isn't exclusively mapped into this vma,
987 	 * we must use the _oldest_ possible anon_vma for the
988 	 * page mapping!
989 	 */
990 	if (!exclusive)
991 		anon_vma = anon_vma->root;
992 
993 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
994 	page->mapping = (struct address_space *) anon_vma;
995 	page->index = linear_page_index(vma, address);
996 }
997 
998 /**
999  * __page_check_anon_rmap - sanity check anonymous rmap addition
1000  * @page:	the page to add the mapping to
1001  * @vma:	the vm area in which the mapping is added
1002  * @address:	the user virtual address mapped
1003  */
1004 static void __page_check_anon_rmap(struct page *page,
1005 	struct vm_area_struct *vma, unsigned long address)
1006 {
1007 #ifdef CONFIG_DEBUG_VM
1008 	/*
1009 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1010 	 * be set up correctly at this point.
1011 	 *
1012 	 * We have exclusion against page_add_anon_rmap because the caller
1013 	 * always holds the page locked, except if called from page_dup_rmap,
1014 	 * in which case the page is already known to be setup.
1015 	 *
1016 	 * We have exclusion against page_add_new_anon_rmap because those pages
1017 	 * are initially only visible via the pagetables, and the pte is locked
1018 	 * over the call to page_add_new_anon_rmap.
1019 	 */
1020 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1021 	BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1022 #endif
1023 }
1024 
1025 /**
1026  * page_add_anon_rmap - add pte mapping to an anonymous page
1027  * @page:	the page to add the mapping to
1028  * @vma:	the vm area in which the mapping is added
1029  * @address:	the user virtual address mapped
1030  * @compound:	charge the page as compound or small page
1031  *
1032  * The caller needs to hold the pte lock, and the page must be locked in
1033  * the anon_vma case: to serialize mapping,index checking after setting,
1034  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1035  * (but PageKsm is never downgraded to PageAnon).
1036  */
1037 void page_add_anon_rmap(struct page *page,
1038 	struct vm_area_struct *vma, unsigned long address, bool compound)
1039 {
1040 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1041 }
1042 
1043 /*
1044  * Special version of the above for do_swap_page, which often runs
1045  * into pages that are exclusively owned by the current process.
1046  * Everybody else should continue to use page_add_anon_rmap above.
1047  */
1048 void do_page_add_anon_rmap(struct page *page,
1049 	struct vm_area_struct *vma, unsigned long address, int flags)
1050 {
1051 	bool compound = flags & RMAP_COMPOUND;
1052 	bool first;
1053 
1054 	if (compound) {
1055 		atomic_t *mapcount;
1056 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1057 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1058 		mapcount = compound_mapcount_ptr(page);
1059 		first = atomic_inc_and_test(mapcount);
1060 	} else {
1061 		first = atomic_inc_and_test(&page->_mapcount);
1062 	}
1063 
1064 	if (first) {
1065 		int nr = compound ? hpage_nr_pages(page) : 1;
1066 		/*
1067 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1068 		 * these counters are not modified in interrupt context, and
1069 		 * pte lock(a spinlock) is held, which implies preemption
1070 		 * disabled.
1071 		 */
1072 		if (compound)
1073 			__inc_node_page_state(page, NR_ANON_THPS);
1074 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1075 	}
1076 	if (unlikely(PageKsm(page)))
1077 		return;
1078 
1079 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1080 
1081 	/* address might be in next vma when migration races vma_adjust */
1082 	if (first)
1083 		__page_set_anon_rmap(page, vma, address,
1084 				flags & RMAP_EXCLUSIVE);
1085 	else
1086 		__page_check_anon_rmap(page, vma, address);
1087 }
1088 
1089 /**
1090  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1091  * @page:	the page to add the mapping to
1092  * @vma:	the vm area in which the mapping is added
1093  * @address:	the user virtual address mapped
1094  * @compound:	charge the page as compound or small page
1095  *
1096  * Same as page_add_anon_rmap but must only be called on *new* pages.
1097  * This means the inc-and-test can be bypassed.
1098  * Page does not have to be locked.
1099  */
1100 void page_add_new_anon_rmap(struct page *page,
1101 	struct vm_area_struct *vma, unsigned long address, bool compound)
1102 {
1103 	int nr = compound ? hpage_nr_pages(page) : 1;
1104 
1105 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1106 	__SetPageSwapBacked(page);
1107 	if (compound) {
1108 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1109 		/* increment count (starts at -1) */
1110 		atomic_set(compound_mapcount_ptr(page), 0);
1111 		__inc_node_page_state(page, NR_ANON_THPS);
1112 	} else {
1113 		/* Anon THP always mapped first with PMD */
1114 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1115 		/* increment count (starts at -1) */
1116 		atomic_set(&page->_mapcount, 0);
1117 	}
1118 	__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1119 	__page_set_anon_rmap(page, vma, address, 1);
1120 }
1121 
1122 /**
1123  * page_add_file_rmap - add pte mapping to a file page
1124  * @page: the page to add the mapping to
1125  *
1126  * The caller needs to hold the pte lock.
1127  */
1128 void page_add_file_rmap(struct page *page, bool compound)
1129 {
1130 	int i, nr = 1;
1131 
1132 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1133 	lock_page_memcg(page);
1134 	if (compound && PageTransHuge(page)) {
1135 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1136 			if (atomic_inc_and_test(&page[i]._mapcount))
1137 				nr++;
1138 		}
1139 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1140 			goto out;
1141 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1142 		__inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1143 	} else {
1144 		if (PageTransCompound(page) && page_mapping(page)) {
1145 			VM_WARN_ON_ONCE(!PageLocked(page));
1146 
1147 			SetPageDoubleMap(compound_head(page));
1148 			if (PageMlocked(page))
1149 				clear_page_mlock(compound_head(page));
1150 		}
1151 		if (!atomic_inc_and_test(&page->_mapcount))
1152 			goto out;
1153 	}
1154 	__mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr);
1155 	mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1156 out:
1157 	unlock_page_memcg(page);
1158 }
1159 
1160 static void page_remove_file_rmap(struct page *page, bool compound)
1161 {
1162 	int i, nr = 1;
1163 
1164 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1165 	lock_page_memcg(page);
1166 
1167 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1168 	if (unlikely(PageHuge(page))) {
1169 		/* hugetlb pages are always mapped with pmds */
1170 		atomic_dec(compound_mapcount_ptr(page));
1171 		goto out;
1172 	}
1173 
1174 	/* page still mapped by someone else? */
1175 	if (compound && PageTransHuge(page)) {
1176 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1177 			if (atomic_add_negative(-1, &page[i]._mapcount))
1178 				nr++;
1179 		}
1180 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1181 			goto out;
1182 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1183 		__dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1184 	} else {
1185 		if (!atomic_add_negative(-1, &page->_mapcount))
1186 			goto out;
1187 	}
1188 
1189 	/*
1190 	 * We use the irq-unsafe __{inc|mod}_zone_page_state because
1191 	 * these counters are not modified in interrupt context, and
1192 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1193 	 */
1194 	__mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr);
1195 	mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1196 
1197 	if (unlikely(PageMlocked(page)))
1198 		clear_page_mlock(page);
1199 out:
1200 	unlock_page_memcg(page);
1201 }
1202 
1203 static void page_remove_anon_compound_rmap(struct page *page)
1204 {
1205 	int i, nr;
1206 
1207 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1208 		return;
1209 
1210 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1211 	if (unlikely(PageHuge(page)))
1212 		return;
1213 
1214 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1215 		return;
1216 
1217 	__dec_node_page_state(page, NR_ANON_THPS);
1218 
1219 	if (TestClearPageDoubleMap(page)) {
1220 		/*
1221 		 * Subpages can be mapped with PTEs too. Check how many of
1222 		 * themi are still mapped.
1223 		 */
1224 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1225 			if (atomic_add_negative(-1, &page[i]._mapcount))
1226 				nr++;
1227 		}
1228 	} else {
1229 		nr = HPAGE_PMD_NR;
1230 	}
1231 
1232 	if (unlikely(PageMlocked(page)))
1233 		clear_page_mlock(page);
1234 
1235 	if (nr) {
1236 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1237 		deferred_split_huge_page(page);
1238 	}
1239 }
1240 
1241 /**
1242  * page_remove_rmap - take down pte mapping from a page
1243  * @page:	page to remove mapping from
1244  * @compound:	uncharge the page as compound or small page
1245  *
1246  * The caller needs to hold the pte lock.
1247  */
1248 void page_remove_rmap(struct page *page, bool compound)
1249 {
1250 	if (!PageAnon(page))
1251 		return page_remove_file_rmap(page, compound);
1252 
1253 	if (compound)
1254 		return page_remove_anon_compound_rmap(page);
1255 
1256 	/* page still mapped by someone else? */
1257 	if (!atomic_add_negative(-1, &page->_mapcount))
1258 		return;
1259 
1260 	/*
1261 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1262 	 * these counters are not modified in interrupt context, and
1263 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1264 	 */
1265 	__dec_node_page_state(page, NR_ANON_MAPPED);
1266 
1267 	if (unlikely(PageMlocked(page)))
1268 		clear_page_mlock(page);
1269 
1270 	if (PageTransCompound(page))
1271 		deferred_split_huge_page(compound_head(page));
1272 
1273 	/*
1274 	 * It would be tidy to reset the PageAnon mapping here,
1275 	 * but that might overwrite a racing page_add_anon_rmap
1276 	 * which increments mapcount after us but sets mapping
1277 	 * before us: so leave the reset to free_hot_cold_page,
1278 	 * and remember that it's only reliable while mapped.
1279 	 * Leaving it set also helps swapoff to reinstate ptes
1280 	 * faster for those pages still in swapcache.
1281 	 */
1282 }
1283 
1284 struct rmap_private {
1285 	enum ttu_flags flags;
1286 	int lazyfreed;
1287 };
1288 
1289 /*
1290  * @arg: enum ttu_flags will be passed to this argument
1291  */
1292 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1293 		     unsigned long address, void *arg)
1294 {
1295 	struct mm_struct *mm = vma->vm_mm;
1296 	struct page_vma_mapped_walk pvmw = {
1297 		.page = page,
1298 		.vma = vma,
1299 		.address = address,
1300 	};
1301 	pte_t pteval;
1302 	struct page *subpage;
1303 	int ret = SWAP_AGAIN;
1304 	struct rmap_private *rp = arg;
1305 	enum ttu_flags flags = rp->flags;
1306 
1307 	/* munlock has nothing to gain from examining un-locked vmas */
1308 	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1309 		return SWAP_AGAIN;
1310 
1311 	if (flags & TTU_SPLIT_HUGE_PMD) {
1312 		split_huge_pmd_address(vma, address,
1313 				flags & TTU_MIGRATION, page);
1314 	}
1315 
1316 	while (page_vma_mapped_walk(&pvmw)) {
1317 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1318 		address = pvmw.address;
1319 
1320 		/* Unexpected PMD-mapped THP? */
1321 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1322 
1323 		/*
1324 		 * If the page is mlock()d, we cannot swap it out.
1325 		 * If it's recently referenced (perhaps page_referenced
1326 		 * skipped over this mm) then we should reactivate it.
1327 		 */
1328 		if (!(flags & TTU_IGNORE_MLOCK)) {
1329 			if (vma->vm_flags & VM_LOCKED) {
1330 				/* PTE-mapped THP are never mlocked */
1331 				if (!PageTransCompound(page)) {
1332 					/*
1333 					 * Holding pte lock, we do *not* need
1334 					 * mmap_sem here
1335 					 */
1336 					mlock_vma_page(page);
1337 				}
1338 				ret = SWAP_MLOCK;
1339 				page_vma_mapped_walk_done(&pvmw);
1340 				break;
1341 			}
1342 			if (flags & TTU_MUNLOCK)
1343 				continue;
1344 		}
1345 
1346 		if (!(flags & TTU_IGNORE_ACCESS)) {
1347 			if (ptep_clear_flush_young_notify(vma, address,
1348 						pvmw.pte)) {
1349 				ret = SWAP_FAIL;
1350 				page_vma_mapped_walk_done(&pvmw);
1351 				break;
1352 			}
1353 		}
1354 
1355 		/* Nuke the page table entry. */
1356 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1357 		if (should_defer_flush(mm, flags)) {
1358 			/*
1359 			 * We clear the PTE but do not flush so potentially
1360 			 * a remote CPU could still be writing to the page.
1361 			 * If the entry was previously clean then the
1362 			 * architecture must guarantee that a clear->dirty
1363 			 * transition on a cached TLB entry is written through
1364 			 * and traps if the PTE is unmapped.
1365 			 */
1366 			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1367 
1368 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1369 		} else {
1370 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1371 		}
1372 
1373 		/* Move the dirty bit to the page. Now the pte is gone. */
1374 		if (pte_dirty(pteval))
1375 			set_page_dirty(page);
1376 
1377 		/* Update high watermark before we lower rss */
1378 		update_hiwater_rss(mm);
1379 
1380 		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1381 			if (PageHuge(page)) {
1382 				int nr = 1 << compound_order(page);
1383 				hugetlb_count_sub(nr, mm);
1384 			} else {
1385 				dec_mm_counter(mm, mm_counter(page));
1386 			}
1387 
1388 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1389 			set_pte_at(mm, address, pvmw.pte, pteval);
1390 		} else if (pte_unused(pteval)) {
1391 			/*
1392 			 * The guest indicated that the page content is of no
1393 			 * interest anymore. Simply discard the pte, vmscan
1394 			 * will take care of the rest.
1395 			 */
1396 			dec_mm_counter(mm, mm_counter(page));
1397 		} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1398 				(flags & TTU_MIGRATION)) {
1399 			swp_entry_t entry;
1400 			pte_t swp_pte;
1401 			/*
1402 			 * Store the pfn of the page in a special migration
1403 			 * pte. do_swap_page() will wait until the migration
1404 			 * pte is removed and then restart fault handling.
1405 			 */
1406 			entry = make_migration_entry(subpage,
1407 					pte_write(pteval));
1408 			swp_pte = swp_entry_to_pte(entry);
1409 			if (pte_soft_dirty(pteval))
1410 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1411 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1412 		} else if (PageAnon(page)) {
1413 			swp_entry_t entry = { .val = page_private(subpage) };
1414 			pte_t swp_pte;
1415 			/*
1416 			 * Store the swap location in the pte.
1417 			 * See handle_pte_fault() ...
1418 			 */
1419 			VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1420 
1421 			if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1422 				/* It's a freeable page by MADV_FREE */
1423 				dec_mm_counter(mm, MM_ANONPAGES);
1424 				rp->lazyfreed++;
1425 				goto discard;
1426 			}
1427 
1428 			if (swap_duplicate(entry) < 0) {
1429 				set_pte_at(mm, address, pvmw.pte, pteval);
1430 				ret = SWAP_FAIL;
1431 				page_vma_mapped_walk_done(&pvmw);
1432 				break;
1433 			}
1434 			if (list_empty(&mm->mmlist)) {
1435 				spin_lock(&mmlist_lock);
1436 				if (list_empty(&mm->mmlist))
1437 					list_add(&mm->mmlist, &init_mm.mmlist);
1438 				spin_unlock(&mmlist_lock);
1439 			}
1440 			dec_mm_counter(mm, MM_ANONPAGES);
1441 			inc_mm_counter(mm, MM_SWAPENTS);
1442 			swp_pte = swp_entry_to_pte(entry);
1443 			if (pte_soft_dirty(pteval))
1444 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1445 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1446 		} else
1447 			dec_mm_counter(mm, mm_counter_file(page));
1448 discard:
1449 		page_remove_rmap(subpage, PageHuge(page));
1450 		put_page(page);
1451 		mmu_notifier_invalidate_page(mm, address);
1452 	}
1453 	return ret;
1454 }
1455 
1456 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1457 {
1458 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1459 
1460 	if (!maybe_stack)
1461 		return false;
1462 
1463 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1464 						VM_STACK_INCOMPLETE_SETUP)
1465 		return true;
1466 
1467 	return false;
1468 }
1469 
1470 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1471 {
1472 	return is_vma_temporary_stack(vma);
1473 }
1474 
1475 static int page_mapcount_is_zero(struct page *page)
1476 {
1477 	return !total_mapcount(page);
1478 }
1479 
1480 /**
1481  * try_to_unmap - try to remove all page table mappings to a page
1482  * @page: the page to get unmapped
1483  * @flags: action and flags
1484  *
1485  * Tries to remove all the page table entries which are mapping this
1486  * page, used in the pageout path.  Caller must hold the page lock.
1487  * Return values are:
1488  *
1489  * SWAP_SUCCESS	- we succeeded in removing all mappings
1490  * SWAP_AGAIN	- we missed a mapping, try again later
1491  * SWAP_FAIL	- the page is unswappable
1492  * SWAP_MLOCK	- page is mlocked.
1493  */
1494 int try_to_unmap(struct page *page, enum ttu_flags flags)
1495 {
1496 	int ret;
1497 	struct rmap_private rp = {
1498 		.flags = flags,
1499 		.lazyfreed = 0,
1500 	};
1501 
1502 	struct rmap_walk_control rwc = {
1503 		.rmap_one = try_to_unmap_one,
1504 		.arg = &rp,
1505 		.done = page_mapcount_is_zero,
1506 		.anon_lock = page_lock_anon_vma_read,
1507 	};
1508 
1509 	/*
1510 	 * During exec, a temporary VMA is setup and later moved.
1511 	 * The VMA is moved under the anon_vma lock but not the
1512 	 * page tables leading to a race where migration cannot
1513 	 * find the migration ptes. Rather than increasing the
1514 	 * locking requirements of exec(), migration skips
1515 	 * temporary VMAs until after exec() completes.
1516 	 */
1517 	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1518 		rwc.invalid_vma = invalid_migration_vma;
1519 
1520 	if (flags & TTU_RMAP_LOCKED)
1521 		ret = rmap_walk_locked(page, &rwc);
1522 	else
1523 		ret = rmap_walk(page, &rwc);
1524 
1525 	if (ret != SWAP_MLOCK && !page_mapcount(page)) {
1526 		ret = SWAP_SUCCESS;
1527 		if (rp.lazyfreed && !PageDirty(page))
1528 			ret = SWAP_LZFREE;
1529 	}
1530 	return ret;
1531 }
1532 
1533 static int page_not_mapped(struct page *page)
1534 {
1535 	return !page_mapped(page);
1536 };
1537 
1538 /**
1539  * try_to_munlock - try to munlock a page
1540  * @page: the page to be munlocked
1541  *
1542  * Called from munlock code.  Checks all of the VMAs mapping the page
1543  * to make sure nobody else has this page mlocked. The page will be
1544  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1545  *
1546  * Return values are:
1547  *
1548  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1549  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1550  * SWAP_FAIL	- page cannot be located at present
1551  * SWAP_MLOCK	- page is now mlocked.
1552  */
1553 int try_to_munlock(struct page *page)
1554 {
1555 	int ret;
1556 	struct rmap_private rp = {
1557 		.flags = TTU_MUNLOCK,
1558 		.lazyfreed = 0,
1559 	};
1560 
1561 	struct rmap_walk_control rwc = {
1562 		.rmap_one = try_to_unmap_one,
1563 		.arg = &rp,
1564 		.done = page_not_mapped,
1565 		.anon_lock = page_lock_anon_vma_read,
1566 
1567 	};
1568 
1569 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1570 
1571 	ret = rmap_walk(page, &rwc);
1572 	return ret;
1573 }
1574 
1575 void __put_anon_vma(struct anon_vma *anon_vma)
1576 {
1577 	struct anon_vma *root = anon_vma->root;
1578 
1579 	anon_vma_free(anon_vma);
1580 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1581 		anon_vma_free(root);
1582 }
1583 
1584 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1585 					struct rmap_walk_control *rwc)
1586 {
1587 	struct anon_vma *anon_vma;
1588 
1589 	if (rwc->anon_lock)
1590 		return rwc->anon_lock(page);
1591 
1592 	/*
1593 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1594 	 * because that depends on page_mapped(); but not all its usages
1595 	 * are holding mmap_sem. Users without mmap_sem are required to
1596 	 * take a reference count to prevent the anon_vma disappearing
1597 	 */
1598 	anon_vma = page_anon_vma(page);
1599 	if (!anon_vma)
1600 		return NULL;
1601 
1602 	anon_vma_lock_read(anon_vma);
1603 	return anon_vma;
1604 }
1605 
1606 /*
1607  * rmap_walk_anon - do something to anonymous page using the object-based
1608  * rmap method
1609  * @page: the page to be handled
1610  * @rwc: control variable according to each walk type
1611  *
1612  * Find all the mappings of a page using the mapping pointer and the vma chains
1613  * contained in the anon_vma struct it points to.
1614  *
1615  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1616  * where the page was found will be held for write.  So, we won't recheck
1617  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1618  * LOCKED.
1619  */
1620 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1621 		bool locked)
1622 {
1623 	struct anon_vma *anon_vma;
1624 	pgoff_t pgoff_start, pgoff_end;
1625 	struct anon_vma_chain *avc;
1626 	int ret = SWAP_AGAIN;
1627 
1628 	if (locked) {
1629 		anon_vma = page_anon_vma(page);
1630 		/* anon_vma disappear under us? */
1631 		VM_BUG_ON_PAGE(!anon_vma, page);
1632 	} else {
1633 		anon_vma = rmap_walk_anon_lock(page, rwc);
1634 	}
1635 	if (!anon_vma)
1636 		return ret;
1637 
1638 	pgoff_start = page_to_pgoff(page);
1639 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1640 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1641 			pgoff_start, pgoff_end) {
1642 		struct vm_area_struct *vma = avc->vma;
1643 		unsigned long address = vma_address(page, vma);
1644 
1645 		cond_resched();
1646 
1647 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1648 			continue;
1649 
1650 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1651 		if (ret != SWAP_AGAIN)
1652 			break;
1653 		if (rwc->done && rwc->done(page))
1654 			break;
1655 	}
1656 
1657 	if (!locked)
1658 		anon_vma_unlock_read(anon_vma);
1659 	return ret;
1660 }
1661 
1662 /*
1663  * rmap_walk_file - do something to file page using the object-based rmap method
1664  * @page: the page to be handled
1665  * @rwc: control variable according to each walk type
1666  *
1667  * Find all the mappings of a page using the mapping pointer and the vma chains
1668  * contained in the address_space struct it points to.
1669  *
1670  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1671  * where the page was found will be held for write.  So, we won't recheck
1672  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1673  * LOCKED.
1674  */
1675 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1676 		bool locked)
1677 {
1678 	struct address_space *mapping = page_mapping(page);
1679 	pgoff_t pgoff_start, pgoff_end;
1680 	struct vm_area_struct *vma;
1681 	int ret = SWAP_AGAIN;
1682 
1683 	/*
1684 	 * The page lock not only makes sure that page->mapping cannot
1685 	 * suddenly be NULLified by truncation, it makes sure that the
1686 	 * structure at mapping cannot be freed and reused yet,
1687 	 * so we can safely take mapping->i_mmap_rwsem.
1688 	 */
1689 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1690 
1691 	if (!mapping)
1692 		return ret;
1693 
1694 	pgoff_start = page_to_pgoff(page);
1695 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1696 	if (!locked)
1697 		i_mmap_lock_read(mapping);
1698 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
1699 			pgoff_start, pgoff_end) {
1700 		unsigned long address = vma_address(page, vma);
1701 
1702 		cond_resched();
1703 
1704 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1705 			continue;
1706 
1707 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1708 		if (ret != SWAP_AGAIN)
1709 			goto done;
1710 		if (rwc->done && rwc->done(page))
1711 			goto done;
1712 	}
1713 
1714 done:
1715 	if (!locked)
1716 		i_mmap_unlock_read(mapping);
1717 	return ret;
1718 }
1719 
1720 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1721 {
1722 	if (unlikely(PageKsm(page)))
1723 		return rmap_walk_ksm(page, rwc);
1724 	else if (PageAnon(page))
1725 		return rmap_walk_anon(page, rwc, false);
1726 	else
1727 		return rmap_walk_file(page, rwc, false);
1728 }
1729 
1730 /* Like rmap_walk, but caller holds relevant rmap lock */
1731 int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1732 {
1733 	/* no ksm support for now */
1734 	VM_BUG_ON_PAGE(PageKsm(page), page);
1735 	if (PageAnon(page))
1736 		return rmap_walk_anon(page, rwc, true);
1737 	else
1738 		return rmap_walk_file(page, rwc, true);
1739 }
1740 
1741 #ifdef CONFIG_HUGETLB_PAGE
1742 /*
1743  * The following three functions are for anonymous (private mapped) hugepages.
1744  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1745  * and no lru code, because we handle hugepages differently from common pages.
1746  */
1747 static void __hugepage_set_anon_rmap(struct page *page,
1748 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1749 {
1750 	struct anon_vma *anon_vma = vma->anon_vma;
1751 
1752 	BUG_ON(!anon_vma);
1753 
1754 	if (PageAnon(page))
1755 		return;
1756 	if (!exclusive)
1757 		anon_vma = anon_vma->root;
1758 
1759 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1760 	page->mapping = (struct address_space *) anon_vma;
1761 	page->index = linear_page_index(vma, address);
1762 }
1763 
1764 void hugepage_add_anon_rmap(struct page *page,
1765 			    struct vm_area_struct *vma, unsigned long address)
1766 {
1767 	struct anon_vma *anon_vma = vma->anon_vma;
1768 	int first;
1769 
1770 	BUG_ON(!PageLocked(page));
1771 	BUG_ON(!anon_vma);
1772 	/* address might be in next vma when migration races vma_adjust */
1773 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1774 	if (first)
1775 		__hugepage_set_anon_rmap(page, vma, address, 0);
1776 }
1777 
1778 void hugepage_add_new_anon_rmap(struct page *page,
1779 			struct vm_area_struct *vma, unsigned long address)
1780 {
1781 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1782 	atomic_set(compound_mapcount_ptr(page), 0);
1783 	__hugepage_set_anon_rmap(page, vma, address, 1);
1784 }
1785 #endif /* CONFIG_HUGETLB_PAGE */
1786