1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * page->flags PG_locked (lock_page) * (see hugetlbfs below) 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) 28 * mapping->i_mmap_rwsem 29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * folio_lock_memcg move_lock (in block_dirty_folio) 36 * i_pages lock (widely used) 37 * lruvec->lru_lock (in folio_lruvec_lock_irq) 38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 40 * sb_lock (within inode_lock in fs/fs-writeback.c) 41 * i_pages lock (widely used, in set_page_dirty, 42 * in arch-dependent flush_dcache_mmap_lock, 43 * within bdi.wb->list_lock in __sync_single_inode) 44 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 47 * pte map lock 48 * 49 * * hugetlbfs PageHuge() pages take locks in this order: 50 * mapping->i_mmap_rwsem 51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 52 * page->flags PG_locked (lock_page) 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/swapops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 77 #include <asm/tlbflush.h> 78 79 #define CREATE_TRACE_POINTS 80 #include <trace/events/tlb.h> 81 #include <trace/events/migrate.h> 82 83 #include "internal.h" 84 85 static struct kmem_cache *anon_vma_cachep; 86 static struct kmem_cache *anon_vma_chain_cachep; 87 88 static inline struct anon_vma *anon_vma_alloc(void) 89 { 90 struct anon_vma *anon_vma; 91 92 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 93 if (anon_vma) { 94 atomic_set(&anon_vma->refcount, 1); 95 anon_vma->degree = 1; /* Reference for first vma */ 96 anon_vma->parent = anon_vma; 97 /* 98 * Initialise the anon_vma root to point to itself. If called 99 * from fork, the root will be reset to the parents anon_vma. 100 */ 101 anon_vma->root = anon_vma; 102 } 103 104 return anon_vma; 105 } 106 107 static inline void anon_vma_free(struct anon_vma *anon_vma) 108 { 109 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 110 111 /* 112 * Synchronize against folio_lock_anon_vma_read() such that 113 * we can safely hold the lock without the anon_vma getting 114 * freed. 115 * 116 * Relies on the full mb implied by the atomic_dec_and_test() from 117 * put_anon_vma() against the acquire barrier implied by 118 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 119 * 120 * folio_lock_anon_vma_read() VS put_anon_vma() 121 * down_read_trylock() atomic_dec_and_test() 122 * LOCK MB 123 * atomic_read() rwsem_is_locked() 124 * 125 * LOCK should suffice since the actual taking of the lock must 126 * happen _before_ what follows. 127 */ 128 might_sleep(); 129 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 130 anon_vma_lock_write(anon_vma); 131 anon_vma_unlock_write(anon_vma); 132 } 133 134 kmem_cache_free(anon_vma_cachep, anon_vma); 135 } 136 137 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 138 { 139 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 140 } 141 142 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 143 { 144 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 145 } 146 147 static void anon_vma_chain_link(struct vm_area_struct *vma, 148 struct anon_vma_chain *avc, 149 struct anon_vma *anon_vma) 150 { 151 avc->vma = vma; 152 avc->anon_vma = anon_vma; 153 list_add(&avc->same_vma, &vma->anon_vma_chain); 154 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 155 } 156 157 /** 158 * __anon_vma_prepare - attach an anon_vma to a memory region 159 * @vma: the memory region in question 160 * 161 * This makes sure the memory mapping described by 'vma' has 162 * an 'anon_vma' attached to it, so that we can associate the 163 * anonymous pages mapped into it with that anon_vma. 164 * 165 * The common case will be that we already have one, which 166 * is handled inline by anon_vma_prepare(). But if 167 * not we either need to find an adjacent mapping that we 168 * can re-use the anon_vma from (very common when the only 169 * reason for splitting a vma has been mprotect()), or we 170 * allocate a new one. 171 * 172 * Anon-vma allocations are very subtle, because we may have 173 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 174 * and that may actually touch the rwsem even in the newly 175 * allocated vma (it depends on RCU to make sure that the 176 * anon_vma isn't actually destroyed). 177 * 178 * As a result, we need to do proper anon_vma locking even 179 * for the new allocation. At the same time, we do not want 180 * to do any locking for the common case of already having 181 * an anon_vma. 182 * 183 * This must be called with the mmap_lock held for reading. 184 */ 185 int __anon_vma_prepare(struct vm_area_struct *vma) 186 { 187 struct mm_struct *mm = vma->vm_mm; 188 struct anon_vma *anon_vma, *allocated; 189 struct anon_vma_chain *avc; 190 191 might_sleep(); 192 193 avc = anon_vma_chain_alloc(GFP_KERNEL); 194 if (!avc) 195 goto out_enomem; 196 197 anon_vma = find_mergeable_anon_vma(vma); 198 allocated = NULL; 199 if (!anon_vma) { 200 anon_vma = anon_vma_alloc(); 201 if (unlikely(!anon_vma)) 202 goto out_enomem_free_avc; 203 allocated = anon_vma; 204 } 205 206 anon_vma_lock_write(anon_vma); 207 /* page_table_lock to protect against threads */ 208 spin_lock(&mm->page_table_lock); 209 if (likely(!vma->anon_vma)) { 210 vma->anon_vma = anon_vma; 211 anon_vma_chain_link(vma, avc, anon_vma); 212 /* vma reference or self-parent link for new root */ 213 anon_vma->degree++; 214 allocated = NULL; 215 avc = NULL; 216 } 217 spin_unlock(&mm->page_table_lock); 218 anon_vma_unlock_write(anon_vma); 219 220 if (unlikely(allocated)) 221 put_anon_vma(allocated); 222 if (unlikely(avc)) 223 anon_vma_chain_free(avc); 224 225 return 0; 226 227 out_enomem_free_avc: 228 anon_vma_chain_free(avc); 229 out_enomem: 230 return -ENOMEM; 231 } 232 233 /* 234 * This is a useful helper function for locking the anon_vma root as 235 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 236 * have the same vma. 237 * 238 * Such anon_vma's should have the same root, so you'd expect to see 239 * just a single mutex_lock for the whole traversal. 240 */ 241 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 242 { 243 struct anon_vma *new_root = anon_vma->root; 244 if (new_root != root) { 245 if (WARN_ON_ONCE(root)) 246 up_write(&root->rwsem); 247 root = new_root; 248 down_write(&root->rwsem); 249 } 250 return root; 251 } 252 253 static inline void unlock_anon_vma_root(struct anon_vma *root) 254 { 255 if (root) 256 up_write(&root->rwsem); 257 } 258 259 /* 260 * Attach the anon_vmas from src to dst. 261 * Returns 0 on success, -ENOMEM on failure. 262 * 263 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and 264 * anon_vma_fork(). The first three want an exact copy of src, while the last 265 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent 266 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, 267 * we can identify this case by checking (!dst->anon_vma && src->anon_vma). 268 * 269 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 270 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 271 * This prevents degradation of anon_vma hierarchy to endless linear chain in 272 * case of constantly forking task. On the other hand, an anon_vma with more 273 * than one child isn't reused even if there was no alive vma, thus rmap 274 * walker has a good chance of avoiding scanning the whole hierarchy when it 275 * searches where page is mapped. 276 */ 277 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 278 { 279 struct anon_vma_chain *avc, *pavc; 280 struct anon_vma *root = NULL; 281 282 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 283 struct anon_vma *anon_vma; 284 285 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 286 if (unlikely(!avc)) { 287 unlock_anon_vma_root(root); 288 root = NULL; 289 avc = anon_vma_chain_alloc(GFP_KERNEL); 290 if (!avc) 291 goto enomem_failure; 292 } 293 anon_vma = pavc->anon_vma; 294 root = lock_anon_vma_root(root, anon_vma); 295 anon_vma_chain_link(dst, avc, anon_vma); 296 297 /* 298 * Reuse existing anon_vma if its degree lower than two, 299 * that means it has no vma and only one anon_vma child. 300 * 301 * Do not chose parent anon_vma, otherwise first child 302 * will always reuse it. Root anon_vma is never reused: 303 * it has self-parent reference and at least one child. 304 */ 305 if (!dst->anon_vma && src->anon_vma && 306 anon_vma != src->anon_vma && anon_vma->degree < 2) 307 dst->anon_vma = anon_vma; 308 } 309 if (dst->anon_vma) 310 dst->anon_vma->degree++; 311 unlock_anon_vma_root(root); 312 return 0; 313 314 enomem_failure: 315 /* 316 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 317 * decremented in unlink_anon_vmas(). 318 * We can safely do this because callers of anon_vma_clone() don't care 319 * about dst->anon_vma if anon_vma_clone() failed. 320 */ 321 dst->anon_vma = NULL; 322 unlink_anon_vmas(dst); 323 return -ENOMEM; 324 } 325 326 /* 327 * Attach vma to its own anon_vma, as well as to the anon_vmas that 328 * the corresponding VMA in the parent process is attached to. 329 * Returns 0 on success, non-zero on failure. 330 */ 331 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 332 { 333 struct anon_vma_chain *avc; 334 struct anon_vma *anon_vma; 335 int error; 336 337 /* Don't bother if the parent process has no anon_vma here. */ 338 if (!pvma->anon_vma) 339 return 0; 340 341 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 342 vma->anon_vma = NULL; 343 344 /* 345 * First, attach the new VMA to the parent VMA's anon_vmas, 346 * so rmap can find non-COWed pages in child processes. 347 */ 348 error = anon_vma_clone(vma, pvma); 349 if (error) 350 return error; 351 352 /* An existing anon_vma has been reused, all done then. */ 353 if (vma->anon_vma) 354 return 0; 355 356 /* Then add our own anon_vma. */ 357 anon_vma = anon_vma_alloc(); 358 if (!anon_vma) 359 goto out_error; 360 avc = anon_vma_chain_alloc(GFP_KERNEL); 361 if (!avc) 362 goto out_error_free_anon_vma; 363 364 /* 365 * The root anon_vma's rwsem is the lock actually used when we 366 * lock any of the anon_vmas in this anon_vma tree. 367 */ 368 anon_vma->root = pvma->anon_vma->root; 369 anon_vma->parent = pvma->anon_vma; 370 /* 371 * With refcounts, an anon_vma can stay around longer than the 372 * process it belongs to. The root anon_vma needs to be pinned until 373 * this anon_vma is freed, because the lock lives in the root. 374 */ 375 get_anon_vma(anon_vma->root); 376 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 377 vma->anon_vma = anon_vma; 378 anon_vma_lock_write(anon_vma); 379 anon_vma_chain_link(vma, avc, anon_vma); 380 anon_vma->parent->degree++; 381 anon_vma_unlock_write(anon_vma); 382 383 return 0; 384 385 out_error_free_anon_vma: 386 put_anon_vma(anon_vma); 387 out_error: 388 unlink_anon_vmas(vma); 389 return -ENOMEM; 390 } 391 392 void unlink_anon_vmas(struct vm_area_struct *vma) 393 { 394 struct anon_vma_chain *avc, *next; 395 struct anon_vma *root = NULL; 396 397 /* 398 * Unlink each anon_vma chained to the VMA. This list is ordered 399 * from newest to oldest, ensuring the root anon_vma gets freed last. 400 */ 401 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 402 struct anon_vma *anon_vma = avc->anon_vma; 403 404 root = lock_anon_vma_root(root, anon_vma); 405 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 406 407 /* 408 * Leave empty anon_vmas on the list - we'll need 409 * to free them outside the lock. 410 */ 411 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 412 anon_vma->parent->degree--; 413 continue; 414 } 415 416 list_del(&avc->same_vma); 417 anon_vma_chain_free(avc); 418 } 419 if (vma->anon_vma) { 420 vma->anon_vma->degree--; 421 422 /* 423 * vma would still be needed after unlink, and anon_vma will be prepared 424 * when handle fault. 425 */ 426 vma->anon_vma = NULL; 427 } 428 unlock_anon_vma_root(root); 429 430 /* 431 * Iterate the list once more, it now only contains empty and unlinked 432 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 433 * needing to write-acquire the anon_vma->root->rwsem. 434 */ 435 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 436 struct anon_vma *anon_vma = avc->anon_vma; 437 438 VM_WARN_ON(anon_vma->degree); 439 put_anon_vma(anon_vma); 440 441 list_del(&avc->same_vma); 442 anon_vma_chain_free(avc); 443 } 444 } 445 446 static void anon_vma_ctor(void *data) 447 { 448 struct anon_vma *anon_vma = data; 449 450 init_rwsem(&anon_vma->rwsem); 451 atomic_set(&anon_vma->refcount, 0); 452 anon_vma->rb_root = RB_ROOT_CACHED; 453 } 454 455 void __init anon_vma_init(void) 456 { 457 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 458 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 459 anon_vma_ctor); 460 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 461 SLAB_PANIC|SLAB_ACCOUNT); 462 } 463 464 /* 465 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 466 * 467 * Since there is no serialization what so ever against page_remove_rmap() 468 * the best this function can do is return a refcount increased anon_vma 469 * that might have been relevant to this page. 470 * 471 * The page might have been remapped to a different anon_vma or the anon_vma 472 * returned may already be freed (and even reused). 473 * 474 * In case it was remapped to a different anon_vma, the new anon_vma will be a 475 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 476 * ensure that any anon_vma obtained from the page will still be valid for as 477 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 478 * 479 * All users of this function must be very careful when walking the anon_vma 480 * chain and verify that the page in question is indeed mapped in it 481 * [ something equivalent to page_mapped_in_vma() ]. 482 * 483 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 484 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 485 * if there is a mapcount, we can dereference the anon_vma after observing 486 * those. 487 */ 488 struct anon_vma *page_get_anon_vma(struct page *page) 489 { 490 struct anon_vma *anon_vma = NULL; 491 unsigned long anon_mapping; 492 493 rcu_read_lock(); 494 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 495 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 496 goto out; 497 if (!page_mapped(page)) 498 goto out; 499 500 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 501 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 502 anon_vma = NULL; 503 goto out; 504 } 505 506 /* 507 * If this page is still mapped, then its anon_vma cannot have been 508 * freed. But if it has been unmapped, we have no security against the 509 * anon_vma structure being freed and reused (for another anon_vma: 510 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 511 * above cannot corrupt). 512 */ 513 if (!page_mapped(page)) { 514 rcu_read_unlock(); 515 put_anon_vma(anon_vma); 516 return NULL; 517 } 518 out: 519 rcu_read_unlock(); 520 521 return anon_vma; 522 } 523 524 /* 525 * Similar to page_get_anon_vma() except it locks the anon_vma. 526 * 527 * Its a little more complex as it tries to keep the fast path to a single 528 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 529 * reference like with page_get_anon_vma() and then block on the mutex. 530 */ 531 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio) 532 { 533 struct anon_vma *anon_vma = NULL; 534 struct anon_vma *root_anon_vma; 535 unsigned long anon_mapping; 536 537 rcu_read_lock(); 538 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 539 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 540 goto out; 541 if (!folio_mapped(folio)) 542 goto out; 543 544 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 545 root_anon_vma = READ_ONCE(anon_vma->root); 546 if (down_read_trylock(&root_anon_vma->rwsem)) { 547 /* 548 * If the folio is still mapped, then this anon_vma is still 549 * its anon_vma, and holding the mutex ensures that it will 550 * not go away, see anon_vma_free(). 551 */ 552 if (!folio_mapped(folio)) { 553 up_read(&root_anon_vma->rwsem); 554 anon_vma = NULL; 555 } 556 goto out; 557 } 558 559 /* trylock failed, we got to sleep */ 560 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 561 anon_vma = NULL; 562 goto out; 563 } 564 565 if (!folio_mapped(folio)) { 566 rcu_read_unlock(); 567 put_anon_vma(anon_vma); 568 return NULL; 569 } 570 571 /* we pinned the anon_vma, its safe to sleep */ 572 rcu_read_unlock(); 573 anon_vma_lock_read(anon_vma); 574 575 if (atomic_dec_and_test(&anon_vma->refcount)) { 576 /* 577 * Oops, we held the last refcount, release the lock 578 * and bail -- can't simply use put_anon_vma() because 579 * we'll deadlock on the anon_vma_lock_write() recursion. 580 */ 581 anon_vma_unlock_read(anon_vma); 582 __put_anon_vma(anon_vma); 583 anon_vma = NULL; 584 } 585 586 return anon_vma; 587 588 out: 589 rcu_read_unlock(); 590 return anon_vma; 591 } 592 593 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 594 { 595 anon_vma_unlock_read(anon_vma); 596 } 597 598 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 599 /* 600 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 601 * important if a PTE was dirty when it was unmapped that it's flushed 602 * before any IO is initiated on the page to prevent lost writes. Similarly, 603 * it must be flushed before freeing to prevent data leakage. 604 */ 605 void try_to_unmap_flush(void) 606 { 607 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 608 609 if (!tlb_ubc->flush_required) 610 return; 611 612 arch_tlbbatch_flush(&tlb_ubc->arch); 613 tlb_ubc->flush_required = false; 614 tlb_ubc->writable = false; 615 } 616 617 /* Flush iff there are potentially writable TLB entries that can race with IO */ 618 void try_to_unmap_flush_dirty(void) 619 { 620 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 621 622 if (tlb_ubc->writable) 623 try_to_unmap_flush(); 624 } 625 626 /* 627 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 628 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 629 */ 630 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 631 #define TLB_FLUSH_BATCH_PENDING_MASK \ 632 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 633 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 634 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 635 636 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 637 { 638 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 639 int batch, nbatch; 640 641 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 642 tlb_ubc->flush_required = true; 643 644 /* 645 * Ensure compiler does not re-order the setting of tlb_flush_batched 646 * before the PTE is cleared. 647 */ 648 barrier(); 649 batch = atomic_read(&mm->tlb_flush_batched); 650 retry: 651 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 652 /* 653 * Prevent `pending' from catching up with `flushed' because of 654 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 655 * `pending' becomes large. 656 */ 657 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1); 658 if (nbatch != batch) { 659 batch = nbatch; 660 goto retry; 661 } 662 } else { 663 atomic_inc(&mm->tlb_flush_batched); 664 } 665 666 /* 667 * If the PTE was dirty then it's best to assume it's writable. The 668 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 669 * before the page is queued for IO. 670 */ 671 if (writable) 672 tlb_ubc->writable = true; 673 } 674 675 /* 676 * Returns true if the TLB flush should be deferred to the end of a batch of 677 * unmap operations to reduce IPIs. 678 */ 679 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 680 { 681 bool should_defer = false; 682 683 if (!(flags & TTU_BATCH_FLUSH)) 684 return false; 685 686 /* If remote CPUs need to be flushed then defer batch the flush */ 687 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 688 should_defer = true; 689 put_cpu(); 690 691 return should_defer; 692 } 693 694 /* 695 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 696 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 697 * operation such as mprotect or munmap to race between reclaim unmapping 698 * the page and flushing the page. If this race occurs, it potentially allows 699 * access to data via a stale TLB entry. Tracking all mm's that have TLB 700 * batching in flight would be expensive during reclaim so instead track 701 * whether TLB batching occurred in the past and if so then do a flush here 702 * if required. This will cost one additional flush per reclaim cycle paid 703 * by the first operation at risk such as mprotect and mumap. 704 * 705 * This must be called under the PTL so that an access to tlb_flush_batched 706 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 707 * via the PTL. 708 */ 709 void flush_tlb_batched_pending(struct mm_struct *mm) 710 { 711 int batch = atomic_read(&mm->tlb_flush_batched); 712 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 713 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 714 715 if (pending != flushed) { 716 flush_tlb_mm(mm); 717 /* 718 * If the new TLB flushing is pending during flushing, leave 719 * mm->tlb_flush_batched as is, to avoid losing flushing. 720 */ 721 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 722 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 723 } 724 } 725 #else 726 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 727 { 728 } 729 730 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 731 { 732 return false; 733 } 734 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 735 736 /* 737 * At what user virtual address is page expected in vma? 738 * Caller should check the page is actually part of the vma. 739 */ 740 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 741 { 742 struct folio *folio = page_folio(page); 743 if (folio_test_anon(folio)) { 744 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 745 /* 746 * Note: swapoff's unuse_vma() is more efficient with this 747 * check, and needs it to match anon_vma when KSM is active. 748 */ 749 if (!vma->anon_vma || !page__anon_vma || 750 vma->anon_vma->root != page__anon_vma->root) 751 return -EFAULT; 752 } else if (!vma->vm_file) { 753 return -EFAULT; 754 } else if (vma->vm_file->f_mapping != folio->mapping) { 755 return -EFAULT; 756 } 757 758 return vma_address(page, vma); 759 } 760 761 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 762 { 763 pgd_t *pgd; 764 p4d_t *p4d; 765 pud_t *pud; 766 pmd_t *pmd = NULL; 767 pmd_t pmde; 768 769 pgd = pgd_offset(mm, address); 770 if (!pgd_present(*pgd)) 771 goto out; 772 773 p4d = p4d_offset(pgd, address); 774 if (!p4d_present(*p4d)) 775 goto out; 776 777 pud = pud_offset(p4d, address); 778 if (!pud_present(*pud)) 779 goto out; 780 781 pmd = pmd_offset(pud, address); 782 /* 783 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 784 * without holding anon_vma lock for write. So when looking for a 785 * genuine pmde (in which to find pte), test present and !THP together. 786 */ 787 pmde = *pmd; 788 barrier(); 789 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 790 pmd = NULL; 791 out: 792 return pmd; 793 } 794 795 struct folio_referenced_arg { 796 int mapcount; 797 int referenced; 798 unsigned long vm_flags; 799 struct mem_cgroup *memcg; 800 }; 801 /* 802 * arg: folio_referenced_arg will be passed 803 */ 804 static bool folio_referenced_one(struct folio *folio, 805 struct vm_area_struct *vma, unsigned long address, void *arg) 806 { 807 struct folio_referenced_arg *pra = arg; 808 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 809 int referenced = 0; 810 811 while (page_vma_mapped_walk(&pvmw)) { 812 address = pvmw.address; 813 814 if ((vma->vm_flags & VM_LOCKED) && 815 (!folio_test_large(folio) || !pvmw.pte)) { 816 /* Restore the mlock which got missed */ 817 mlock_vma_folio(folio, vma, !pvmw.pte); 818 page_vma_mapped_walk_done(&pvmw); 819 pra->vm_flags |= VM_LOCKED; 820 return false; /* To break the loop */ 821 } 822 823 if (pvmw.pte) { 824 if (ptep_clear_flush_young_notify(vma, address, 825 pvmw.pte)) { 826 /* 827 * Don't treat a reference through 828 * a sequentially read mapping as such. 829 * If the folio has been used in another mapping, 830 * we will catch it; if this other mapping is 831 * already gone, the unmap path will have set 832 * the referenced flag or activated the folio. 833 */ 834 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 835 referenced++; 836 } 837 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 838 if (pmdp_clear_flush_young_notify(vma, address, 839 pvmw.pmd)) 840 referenced++; 841 } else { 842 /* unexpected pmd-mapped folio? */ 843 WARN_ON_ONCE(1); 844 } 845 846 pra->mapcount--; 847 } 848 849 if (referenced) 850 folio_clear_idle(folio); 851 if (folio_test_clear_young(folio)) 852 referenced++; 853 854 if (referenced) { 855 pra->referenced++; 856 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 857 } 858 859 if (!pra->mapcount) 860 return false; /* To break the loop */ 861 862 return true; 863 } 864 865 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 866 { 867 struct folio_referenced_arg *pra = arg; 868 struct mem_cgroup *memcg = pra->memcg; 869 870 if (!mm_match_cgroup(vma->vm_mm, memcg)) 871 return true; 872 873 return false; 874 } 875 876 /** 877 * folio_referenced() - Test if the folio was referenced. 878 * @folio: The folio to test. 879 * @is_locked: Caller holds lock on the folio. 880 * @memcg: target memory cgroup 881 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 882 * 883 * Quick test_and_clear_referenced for all mappings of a folio, 884 * 885 * Return: The number of mappings which referenced the folio. 886 */ 887 int folio_referenced(struct folio *folio, int is_locked, 888 struct mem_cgroup *memcg, unsigned long *vm_flags) 889 { 890 int we_locked = 0; 891 struct folio_referenced_arg pra = { 892 .mapcount = folio_mapcount(folio), 893 .memcg = memcg, 894 }; 895 struct rmap_walk_control rwc = { 896 .rmap_one = folio_referenced_one, 897 .arg = (void *)&pra, 898 .anon_lock = folio_lock_anon_vma_read, 899 }; 900 901 *vm_flags = 0; 902 if (!pra.mapcount) 903 return 0; 904 905 if (!folio_raw_mapping(folio)) 906 return 0; 907 908 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 909 we_locked = folio_trylock(folio); 910 if (!we_locked) 911 return 1; 912 } 913 914 /* 915 * If we are reclaiming on behalf of a cgroup, skip 916 * counting on behalf of references from different 917 * cgroups 918 */ 919 if (memcg) { 920 rwc.invalid_vma = invalid_folio_referenced_vma; 921 } 922 923 rmap_walk(folio, &rwc); 924 *vm_flags = pra.vm_flags; 925 926 if (we_locked) 927 folio_unlock(folio); 928 929 return pra.referenced; 930 } 931 932 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 933 { 934 int cleaned = 0; 935 struct vm_area_struct *vma = pvmw->vma; 936 struct mmu_notifier_range range; 937 unsigned long address = pvmw->address; 938 939 /* 940 * We have to assume the worse case ie pmd for invalidation. Note that 941 * the folio can not be freed from this function. 942 */ 943 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 944 0, vma, vma->vm_mm, address, 945 vma_address_end(pvmw)); 946 mmu_notifier_invalidate_range_start(&range); 947 948 while (page_vma_mapped_walk(pvmw)) { 949 int ret = 0; 950 951 address = pvmw->address; 952 if (pvmw->pte) { 953 pte_t entry; 954 pte_t *pte = pvmw->pte; 955 956 if (!pte_dirty(*pte) && !pte_write(*pte)) 957 continue; 958 959 flush_cache_page(vma, address, pte_pfn(*pte)); 960 entry = ptep_clear_flush(vma, address, pte); 961 entry = pte_wrprotect(entry); 962 entry = pte_mkclean(entry); 963 set_pte_at(vma->vm_mm, address, pte, entry); 964 ret = 1; 965 } else { 966 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 967 pmd_t *pmd = pvmw->pmd; 968 pmd_t entry; 969 970 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 971 continue; 972 973 flush_cache_range(vma, address, 974 address + HPAGE_PMD_SIZE); 975 entry = pmdp_invalidate(vma, address, pmd); 976 entry = pmd_wrprotect(entry); 977 entry = pmd_mkclean(entry); 978 set_pmd_at(vma->vm_mm, address, pmd, entry); 979 ret = 1; 980 #else 981 /* unexpected pmd-mapped folio? */ 982 WARN_ON_ONCE(1); 983 #endif 984 } 985 986 /* 987 * No need to call mmu_notifier_invalidate_range() as we are 988 * downgrading page table protection not changing it to point 989 * to a new page. 990 * 991 * See Documentation/vm/mmu_notifier.rst 992 */ 993 if (ret) 994 cleaned++; 995 } 996 997 mmu_notifier_invalidate_range_end(&range); 998 999 return cleaned; 1000 } 1001 1002 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1003 unsigned long address, void *arg) 1004 { 1005 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1006 int *cleaned = arg; 1007 1008 *cleaned += page_vma_mkclean_one(&pvmw); 1009 1010 return true; 1011 } 1012 1013 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1014 { 1015 if (vma->vm_flags & VM_SHARED) 1016 return false; 1017 1018 return true; 1019 } 1020 1021 int folio_mkclean(struct folio *folio) 1022 { 1023 int cleaned = 0; 1024 struct address_space *mapping; 1025 struct rmap_walk_control rwc = { 1026 .arg = (void *)&cleaned, 1027 .rmap_one = page_mkclean_one, 1028 .invalid_vma = invalid_mkclean_vma, 1029 }; 1030 1031 BUG_ON(!folio_test_locked(folio)); 1032 1033 if (!folio_mapped(folio)) 1034 return 0; 1035 1036 mapping = folio_mapping(folio); 1037 if (!mapping) 1038 return 0; 1039 1040 rmap_walk(folio, &rwc); 1041 1042 return cleaned; 1043 } 1044 EXPORT_SYMBOL_GPL(folio_mkclean); 1045 1046 /** 1047 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1048 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1049 * within the @vma of shared mappings. And since clean PTEs 1050 * should also be readonly, write protects them too. 1051 * @pfn: start pfn. 1052 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1053 * @pgoff: page offset that the @pfn mapped with. 1054 * @vma: vma that @pfn mapped within. 1055 * 1056 * Returns the number of cleaned PTEs (including PMDs). 1057 */ 1058 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1059 struct vm_area_struct *vma) 1060 { 1061 struct page_vma_mapped_walk pvmw = { 1062 .pfn = pfn, 1063 .nr_pages = nr_pages, 1064 .pgoff = pgoff, 1065 .vma = vma, 1066 .flags = PVMW_SYNC, 1067 }; 1068 1069 if (invalid_mkclean_vma(vma, NULL)) 1070 return 0; 1071 1072 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); 1073 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1074 1075 return page_vma_mkclean_one(&pvmw); 1076 } 1077 1078 /** 1079 * page_move_anon_rmap - move a page to our anon_vma 1080 * @page: the page to move to our anon_vma 1081 * @vma: the vma the page belongs to 1082 * 1083 * When a page belongs exclusively to one process after a COW event, 1084 * that page can be moved into the anon_vma that belongs to just that 1085 * process, so the rmap code will not search the parent or sibling 1086 * processes. 1087 */ 1088 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1089 { 1090 struct anon_vma *anon_vma = vma->anon_vma; 1091 1092 page = compound_head(page); 1093 1094 VM_BUG_ON_PAGE(!PageLocked(page), page); 1095 VM_BUG_ON_VMA(!anon_vma, vma); 1096 1097 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1098 /* 1099 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1100 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1101 * folio_test_anon()) will not see one without the other. 1102 */ 1103 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1104 } 1105 1106 /** 1107 * __page_set_anon_rmap - set up new anonymous rmap 1108 * @page: Page or Hugepage to add to rmap 1109 * @vma: VM area to add page to. 1110 * @address: User virtual address of the mapping 1111 * @exclusive: the page is exclusively owned by the current process 1112 */ 1113 static void __page_set_anon_rmap(struct page *page, 1114 struct vm_area_struct *vma, unsigned long address, int exclusive) 1115 { 1116 struct anon_vma *anon_vma = vma->anon_vma; 1117 1118 BUG_ON(!anon_vma); 1119 1120 if (PageAnon(page)) 1121 return; 1122 1123 /* 1124 * If the page isn't exclusively mapped into this vma, 1125 * we must use the _oldest_ possible anon_vma for the 1126 * page mapping! 1127 */ 1128 if (!exclusive) 1129 anon_vma = anon_vma->root; 1130 1131 /* 1132 * page_idle does a lockless/optimistic rmap scan on page->mapping. 1133 * Make sure the compiler doesn't split the stores of anon_vma and 1134 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1135 * could mistake the mapping for a struct address_space and crash. 1136 */ 1137 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1138 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1139 page->index = linear_page_index(vma, address); 1140 } 1141 1142 /** 1143 * __page_check_anon_rmap - sanity check anonymous rmap addition 1144 * @page: the page to add the mapping to 1145 * @vma: the vm area in which the mapping is added 1146 * @address: the user virtual address mapped 1147 */ 1148 static void __page_check_anon_rmap(struct page *page, 1149 struct vm_area_struct *vma, unsigned long address) 1150 { 1151 struct folio *folio = page_folio(page); 1152 /* 1153 * The page's anon-rmap details (mapping and index) are guaranteed to 1154 * be set up correctly at this point. 1155 * 1156 * We have exclusion against page_add_anon_rmap because the caller 1157 * always holds the page locked. 1158 * 1159 * We have exclusion against page_add_new_anon_rmap because those pages 1160 * are initially only visible via the pagetables, and the pte is locked 1161 * over the call to page_add_new_anon_rmap. 1162 */ 1163 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1164 folio); 1165 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1166 page); 1167 } 1168 1169 /** 1170 * page_add_anon_rmap - add pte mapping to an anonymous page 1171 * @page: the page to add the mapping to 1172 * @vma: the vm area in which the mapping is added 1173 * @address: the user virtual address mapped 1174 * @compound: charge the page as compound or small page 1175 * 1176 * The caller needs to hold the pte lock, and the page must be locked in 1177 * the anon_vma case: to serialize mapping,index checking after setting, 1178 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1179 * (but PageKsm is never downgraded to PageAnon). 1180 */ 1181 void page_add_anon_rmap(struct page *page, 1182 struct vm_area_struct *vma, unsigned long address, bool compound) 1183 { 1184 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); 1185 } 1186 1187 /* 1188 * Special version of the above for do_swap_page, which often runs 1189 * into pages that are exclusively owned by the current process. 1190 * Everybody else should continue to use page_add_anon_rmap above. 1191 */ 1192 void do_page_add_anon_rmap(struct page *page, 1193 struct vm_area_struct *vma, unsigned long address, int flags) 1194 { 1195 bool compound = flags & RMAP_COMPOUND; 1196 bool first; 1197 1198 if (unlikely(PageKsm(page))) 1199 lock_page_memcg(page); 1200 else 1201 VM_BUG_ON_PAGE(!PageLocked(page), page); 1202 1203 if (compound) { 1204 atomic_t *mapcount; 1205 VM_BUG_ON_PAGE(!PageLocked(page), page); 1206 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1207 mapcount = compound_mapcount_ptr(page); 1208 first = atomic_inc_and_test(mapcount); 1209 } else { 1210 first = atomic_inc_and_test(&page->_mapcount); 1211 } 1212 1213 if (first) { 1214 int nr = compound ? thp_nr_pages(page) : 1; 1215 /* 1216 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1217 * these counters are not modified in interrupt context, and 1218 * pte lock(a spinlock) is held, which implies preemption 1219 * disabled. 1220 */ 1221 if (compound) 1222 __mod_lruvec_page_state(page, NR_ANON_THPS, nr); 1223 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1224 } 1225 1226 if (unlikely(PageKsm(page))) 1227 unlock_page_memcg(page); 1228 1229 /* address might be in next vma when migration races vma_adjust */ 1230 else if (first) 1231 __page_set_anon_rmap(page, vma, address, 1232 flags & RMAP_EXCLUSIVE); 1233 else 1234 __page_check_anon_rmap(page, vma, address); 1235 1236 mlock_vma_page(page, vma, compound); 1237 } 1238 1239 /** 1240 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1241 * @page: the page to add the mapping to 1242 * @vma: the vm area in which the mapping is added 1243 * @address: the user virtual address mapped 1244 * @compound: charge the page as compound or small page 1245 * 1246 * Same as page_add_anon_rmap but must only be called on *new* pages. 1247 * This means the inc-and-test can be bypassed. 1248 * Page does not have to be locked. 1249 */ 1250 void page_add_new_anon_rmap(struct page *page, 1251 struct vm_area_struct *vma, unsigned long address, bool compound) 1252 { 1253 int nr = compound ? thp_nr_pages(page) : 1; 1254 1255 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1256 __SetPageSwapBacked(page); 1257 if (compound) { 1258 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1259 /* increment count (starts at -1) */ 1260 atomic_set(compound_mapcount_ptr(page), 0); 1261 atomic_set(compound_pincount_ptr(page), 0); 1262 1263 __mod_lruvec_page_state(page, NR_ANON_THPS, nr); 1264 } else { 1265 /* Anon THP always mapped first with PMD */ 1266 VM_BUG_ON_PAGE(PageTransCompound(page), page); 1267 /* increment count (starts at -1) */ 1268 atomic_set(&page->_mapcount, 0); 1269 } 1270 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1271 __page_set_anon_rmap(page, vma, address, 1); 1272 } 1273 1274 /** 1275 * page_add_file_rmap - add pte mapping to a file page 1276 * @page: the page to add the mapping to 1277 * @vma: the vm area in which the mapping is added 1278 * @compound: charge the page as compound or small page 1279 * 1280 * The caller needs to hold the pte lock. 1281 */ 1282 void page_add_file_rmap(struct page *page, 1283 struct vm_area_struct *vma, bool compound) 1284 { 1285 int i, nr = 0; 1286 1287 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1288 lock_page_memcg(page); 1289 if (compound && PageTransHuge(page)) { 1290 int nr_pages = thp_nr_pages(page); 1291 1292 for (i = 0; i < nr_pages; i++) { 1293 if (atomic_inc_and_test(&page[i]._mapcount)) 1294 nr++; 1295 } 1296 if (!atomic_inc_and_test(compound_mapcount_ptr(page))) 1297 goto out; 1298 1299 /* 1300 * It is racy to ClearPageDoubleMap in page_remove_file_rmap(); 1301 * but page lock is held by all page_add_file_rmap() compound 1302 * callers, and SetPageDoubleMap below warns if !PageLocked: 1303 * so here is a place that DoubleMap can be safely cleared. 1304 */ 1305 VM_WARN_ON_ONCE(!PageLocked(page)); 1306 if (nr == nr_pages && PageDoubleMap(page)) 1307 ClearPageDoubleMap(page); 1308 1309 if (PageSwapBacked(page)) 1310 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, 1311 nr_pages); 1312 else 1313 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, 1314 nr_pages); 1315 } else { 1316 if (PageTransCompound(page) && page_mapping(page)) { 1317 VM_WARN_ON_ONCE(!PageLocked(page)); 1318 SetPageDoubleMap(compound_head(page)); 1319 } 1320 if (atomic_inc_and_test(&page->_mapcount)) 1321 nr++; 1322 } 1323 out: 1324 if (nr) 1325 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); 1326 unlock_page_memcg(page); 1327 1328 mlock_vma_page(page, vma, compound); 1329 } 1330 1331 static void page_remove_file_rmap(struct page *page, bool compound) 1332 { 1333 int i, nr = 0; 1334 1335 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1336 1337 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1338 if (unlikely(PageHuge(page))) { 1339 /* hugetlb pages are always mapped with pmds */ 1340 atomic_dec(compound_mapcount_ptr(page)); 1341 return; 1342 } 1343 1344 /* page still mapped by someone else? */ 1345 if (compound && PageTransHuge(page)) { 1346 int nr_pages = thp_nr_pages(page); 1347 1348 for (i = 0; i < nr_pages; i++) { 1349 if (atomic_add_negative(-1, &page[i]._mapcount)) 1350 nr++; 1351 } 1352 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1353 goto out; 1354 if (PageSwapBacked(page)) 1355 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, 1356 -nr_pages); 1357 else 1358 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, 1359 -nr_pages); 1360 } else { 1361 if (atomic_add_negative(-1, &page->_mapcount)) 1362 nr++; 1363 } 1364 out: 1365 if (nr) 1366 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); 1367 } 1368 1369 static void page_remove_anon_compound_rmap(struct page *page) 1370 { 1371 int i, nr; 1372 1373 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1374 return; 1375 1376 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1377 if (unlikely(PageHuge(page))) 1378 return; 1379 1380 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1381 return; 1382 1383 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page)); 1384 1385 if (TestClearPageDoubleMap(page)) { 1386 /* 1387 * Subpages can be mapped with PTEs too. Check how many of 1388 * them are still mapped. 1389 */ 1390 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) { 1391 if (atomic_add_negative(-1, &page[i]._mapcount)) 1392 nr++; 1393 } 1394 1395 /* 1396 * Queue the page for deferred split if at least one small 1397 * page of the compound page is unmapped, but at least one 1398 * small page is still mapped. 1399 */ 1400 if (nr && nr < thp_nr_pages(page)) 1401 deferred_split_huge_page(page); 1402 } else { 1403 nr = thp_nr_pages(page); 1404 } 1405 1406 if (nr) 1407 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr); 1408 } 1409 1410 /** 1411 * page_remove_rmap - take down pte mapping from a page 1412 * @page: page to remove mapping from 1413 * @vma: the vm area from which the mapping is removed 1414 * @compound: uncharge the page as compound or small page 1415 * 1416 * The caller needs to hold the pte lock. 1417 */ 1418 void page_remove_rmap(struct page *page, 1419 struct vm_area_struct *vma, bool compound) 1420 { 1421 lock_page_memcg(page); 1422 1423 if (!PageAnon(page)) { 1424 page_remove_file_rmap(page, compound); 1425 goto out; 1426 } 1427 1428 if (compound) { 1429 page_remove_anon_compound_rmap(page); 1430 goto out; 1431 } 1432 1433 /* page still mapped by someone else? */ 1434 if (!atomic_add_negative(-1, &page->_mapcount)) 1435 goto out; 1436 1437 /* 1438 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1439 * these counters are not modified in interrupt context, and 1440 * pte lock(a spinlock) is held, which implies preemption disabled. 1441 */ 1442 __dec_lruvec_page_state(page, NR_ANON_MAPPED); 1443 1444 if (PageTransCompound(page)) 1445 deferred_split_huge_page(compound_head(page)); 1446 1447 /* 1448 * It would be tidy to reset the PageAnon mapping here, 1449 * but that might overwrite a racing page_add_anon_rmap 1450 * which increments mapcount after us but sets mapping 1451 * before us: so leave the reset to free_unref_page, 1452 * and remember that it's only reliable while mapped. 1453 * Leaving it set also helps swapoff to reinstate ptes 1454 * faster for those pages still in swapcache. 1455 */ 1456 out: 1457 unlock_page_memcg(page); 1458 1459 munlock_vma_page(page, vma, compound); 1460 } 1461 1462 /* 1463 * @arg: enum ttu_flags will be passed to this argument 1464 */ 1465 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1466 unsigned long address, void *arg) 1467 { 1468 struct mm_struct *mm = vma->vm_mm; 1469 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1470 pte_t pteval; 1471 struct page *subpage; 1472 bool ret = true; 1473 struct mmu_notifier_range range; 1474 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1475 1476 /* 1477 * When racing against e.g. zap_pte_range() on another cpu, 1478 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1479 * try_to_unmap() may return before page_mapped() has become false, 1480 * if page table locking is skipped: use TTU_SYNC to wait for that. 1481 */ 1482 if (flags & TTU_SYNC) 1483 pvmw.flags = PVMW_SYNC; 1484 1485 if (flags & TTU_SPLIT_HUGE_PMD) 1486 split_huge_pmd_address(vma, address, false, folio); 1487 1488 /* 1489 * For THP, we have to assume the worse case ie pmd for invalidation. 1490 * For hugetlb, it could be much worse if we need to do pud 1491 * invalidation in the case of pmd sharing. 1492 * 1493 * Note that the folio can not be freed in this function as call of 1494 * try_to_unmap() must hold a reference on the folio. 1495 */ 1496 range.end = vma_address_end(&pvmw); 1497 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1498 address, range.end); 1499 if (folio_test_hugetlb(folio)) { 1500 /* 1501 * If sharing is possible, start and end will be adjusted 1502 * accordingly. 1503 */ 1504 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1505 &range.end); 1506 } 1507 mmu_notifier_invalidate_range_start(&range); 1508 1509 while (page_vma_mapped_walk(&pvmw)) { 1510 /* Unexpected PMD-mapped THP? */ 1511 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1512 1513 /* 1514 * If the folio is in an mlock()d vma, we must not swap it out. 1515 */ 1516 if (!(flags & TTU_IGNORE_MLOCK) && 1517 (vma->vm_flags & VM_LOCKED)) { 1518 /* Restore the mlock which got missed */ 1519 mlock_vma_folio(folio, vma, false); 1520 page_vma_mapped_walk_done(&pvmw); 1521 ret = false; 1522 break; 1523 } 1524 1525 subpage = folio_page(folio, 1526 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1527 address = pvmw.address; 1528 1529 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) { 1530 /* 1531 * To call huge_pmd_unshare, i_mmap_rwsem must be 1532 * held in write mode. Caller needs to explicitly 1533 * do this outside rmap routines. 1534 */ 1535 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1536 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { 1537 /* 1538 * huge_pmd_unshare unmapped an entire PMD 1539 * page. There is no way of knowing exactly 1540 * which PMDs may be cached for this mm, so 1541 * we must flush them all. start/end were 1542 * already adjusted above to cover this range. 1543 */ 1544 flush_cache_range(vma, range.start, range.end); 1545 flush_tlb_range(vma, range.start, range.end); 1546 mmu_notifier_invalidate_range(mm, range.start, 1547 range.end); 1548 1549 /* 1550 * The ref count of the PMD page was dropped 1551 * which is part of the way map counting 1552 * is done for shared PMDs. Return 'true' 1553 * here. When there is no other sharing, 1554 * huge_pmd_unshare returns false and we will 1555 * unmap the actual page and drop map count 1556 * to zero. 1557 */ 1558 page_vma_mapped_walk_done(&pvmw); 1559 break; 1560 } 1561 } 1562 1563 /* Nuke the page table entry. */ 1564 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1565 if (should_defer_flush(mm, flags)) { 1566 /* 1567 * We clear the PTE but do not flush so potentially 1568 * a remote CPU could still be writing to the folio. 1569 * If the entry was previously clean then the 1570 * architecture must guarantee that a clear->dirty 1571 * transition on a cached TLB entry is written through 1572 * and traps if the PTE is unmapped. 1573 */ 1574 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1575 1576 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1577 } else { 1578 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1579 } 1580 1581 /* Set the dirty flag on the folio now the pte is gone. */ 1582 if (pte_dirty(pteval)) 1583 folio_mark_dirty(folio); 1584 1585 /* Update high watermark before we lower rss */ 1586 update_hiwater_rss(mm); 1587 1588 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) { 1589 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1590 if (folio_test_hugetlb(folio)) { 1591 hugetlb_count_sub(folio_nr_pages(folio), mm); 1592 set_huge_swap_pte_at(mm, address, 1593 pvmw.pte, pteval, 1594 vma_mmu_pagesize(vma)); 1595 } else { 1596 dec_mm_counter(mm, mm_counter(&folio->page)); 1597 set_pte_at(mm, address, pvmw.pte, pteval); 1598 } 1599 1600 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1601 /* 1602 * The guest indicated that the page content is of no 1603 * interest anymore. Simply discard the pte, vmscan 1604 * will take care of the rest. 1605 * A future reference will then fault in a new zero 1606 * page. When userfaultfd is active, we must not drop 1607 * this page though, as its main user (postcopy 1608 * migration) will not expect userfaults on already 1609 * copied pages. 1610 */ 1611 dec_mm_counter(mm, mm_counter(&folio->page)); 1612 /* We have to invalidate as we cleared the pte */ 1613 mmu_notifier_invalidate_range(mm, address, 1614 address + PAGE_SIZE); 1615 } else if (folio_test_anon(folio)) { 1616 swp_entry_t entry = { .val = page_private(subpage) }; 1617 pte_t swp_pte; 1618 /* 1619 * Store the swap location in the pte. 1620 * See handle_pte_fault() ... 1621 */ 1622 if (unlikely(folio_test_swapbacked(folio) != 1623 folio_test_swapcache(folio))) { 1624 WARN_ON_ONCE(1); 1625 ret = false; 1626 /* We have to invalidate as we cleared the pte */ 1627 mmu_notifier_invalidate_range(mm, address, 1628 address + PAGE_SIZE); 1629 page_vma_mapped_walk_done(&pvmw); 1630 break; 1631 } 1632 1633 /* MADV_FREE page check */ 1634 if (!folio_test_swapbacked(folio)) { 1635 int ref_count, map_count; 1636 1637 /* 1638 * Synchronize with gup_pte_range(): 1639 * - clear PTE; barrier; read refcount 1640 * - inc refcount; barrier; read PTE 1641 */ 1642 smp_mb(); 1643 1644 ref_count = folio_ref_count(folio); 1645 map_count = folio_mapcount(folio); 1646 1647 /* 1648 * Order reads for page refcount and dirty flag 1649 * (see comments in __remove_mapping()). 1650 */ 1651 smp_rmb(); 1652 1653 /* 1654 * The only page refs must be one from isolation 1655 * plus the rmap(s) (dropped by discard:). 1656 */ 1657 if (ref_count == 1 + map_count && 1658 !folio_test_dirty(folio)) { 1659 /* Invalidate as we cleared the pte */ 1660 mmu_notifier_invalidate_range(mm, 1661 address, address + PAGE_SIZE); 1662 dec_mm_counter(mm, MM_ANONPAGES); 1663 goto discard; 1664 } 1665 1666 /* 1667 * If the folio was redirtied, it cannot be 1668 * discarded. Remap the page to page table. 1669 */ 1670 set_pte_at(mm, address, pvmw.pte, pteval); 1671 folio_set_swapbacked(folio); 1672 ret = false; 1673 page_vma_mapped_walk_done(&pvmw); 1674 break; 1675 } 1676 1677 if (swap_duplicate(entry) < 0) { 1678 set_pte_at(mm, address, pvmw.pte, pteval); 1679 ret = false; 1680 page_vma_mapped_walk_done(&pvmw); 1681 break; 1682 } 1683 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1684 set_pte_at(mm, address, pvmw.pte, pteval); 1685 ret = false; 1686 page_vma_mapped_walk_done(&pvmw); 1687 break; 1688 } 1689 if (list_empty(&mm->mmlist)) { 1690 spin_lock(&mmlist_lock); 1691 if (list_empty(&mm->mmlist)) 1692 list_add(&mm->mmlist, &init_mm.mmlist); 1693 spin_unlock(&mmlist_lock); 1694 } 1695 dec_mm_counter(mm, MM_ANONPAGES); 1696 inc_mm_counter(mm, MM_SWAPENTS); 1697 swp_pte = swp_entry_to_pte(entry); 1698 if (pte_soft_dirty(pteval)) 1699 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1700 if (pte_uffd_wp(pteval)) 1701 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1702 set_pte_at(mm, address, pvmw.pte, swp_pte); 1703 /* Invalidate as we cleared the pte */ 1704 mmu_notifier_invalidate_range(mm, address, 1705 address + PAGE_SIZE); 1706 } else { 1707 /* 1708 * This is a locked file-backed folio, 1709 * so it cannot be removed from the page 1710 * cache and replaced by a new folio before 1711 * mmu_notifier_invalidate_range_end, so no 1712 * concurrent thread might update its page table 1713 * to point at a new folio while a device is 1714 * still using this folio. 1715 * 1716 * See Documentation/vm/mmu_notifier.rst 1717 */ 1718 dec_mm_counter(mm, mm_counter_file(&folio->page)); 1719 } 1720 discard: 1721 /* 1722 * No need to call mmu_notifier_invalidate_range() it has be 1723 * done above for all cases requiring it to happen under page 1724 * table lock before mmu_notifier_invalidate_range_end() 1725 * 1726 * See Documentation/vm/mmu_notifier.rst 1727 */ 1728 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 1729 if (vma->vm_flags & VM_LOCKED) 1730 mlock_page_drain_local(); 1731 folio_put(folio); 1732 } 1733 1734 mmu_notifier_invalidate_range_end(&range); 1735 1736 return ret; 1737 } 1738 1739 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1740 { 1741 return vma_is_temporary_stack(vma); 1742 } 1743 1744 static int page_not_mapped(struct folio *folio) 1745 { 1746 return !folio_mapped(folio); 1747 } 1748 1749 /** 1750 * try_to_unmap - Try to remove all page table mappings to a folio. 1751 * @folio: The folio to unmap. 1752 * @flags: action and flags 1753 * 1754 * Tries to remove all the page table entries which are mapping this 1755 * folio. It is the caller's responsibility to check if the folio is 1756 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1757 * 1758 * Context: Caller must hold the folio lock. 1759 */ 1760 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1761 { 1762 struct rmap_walk_control rwc = { 1763 .rmap_one = try_to_unmap_one, 1764 .arg = (void *)flags, 1765 .done = page_not_mapped, 1766 .anon_lock = folio_lock_anon_vma_read, 1767 }; 1768 1769 if (flags & TTU_RMAP_LOCKED) 1770 rmap_walk_locked(folio, &rwc); 1771 else 1772 rmap_walk(folio, &rwc); 1773 } 1774 1775 /* 1776 * @arg: enum ttu_flags will be passed to this argument. 1777 * 1778 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1779 * containing migration entries. 1780 */ 1781 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 1782 unsigned long address, void *arg) 1783 { 1784 struct mm_struct *mm = vma->vm_mm; 1785 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1786 pte_t pteval; 1787 struct page *subpage; 1788 bool ret = true; 1789 struct mmu_notifier_range range; 1790 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1791 1792 /* 1793 * When racing against e.g. zap_pte_range() on another cpu, 1794 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1795 * try_to_migrate() may return before page_mapped() has become false, 1796 * if page table locking is skipped: use TTU_SYNC to wait for that. 1797 */ 1798 if (flags & TTU_SYNC) 1799 pvmw.flags = PVMW_SYNC; 1800 1801 /* 1802 * unmap_page() in mm/huge_memory.c is the only user of migration with 1803 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1804 */ 1805 if (flags & TTU_SPLIT_HUGE_PMD) 1806 split_huge_pmd_address(vma, address, true, folio); 1807 1808 /* 1809 * For THP, we have to assume the worse case ie pmd for invalidation. 1810 * For hugetlb, it could be much worse if we need to do pud 1811 * invalidation in the case of pmd sharing. 1812 * 1813 * Note that the page can not be free in this function as call of 1814 * try_to_unmap() must hold a reference on the page. 1815 */ 1816 range.end = vma_address_end(&pvmw); 1817 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1818 address, range.end); 1819 if (folio_test_hugetlb(folio)) { 1820 /* 1821 * If sharing is possible, start and end will be adjusted 1822 * accordingly. 1823 */ 1824 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1825 &range.end); 1826 } 1827 mmu_notifier_invalidate_range_start(&range); 1828 1829 while (page_vma_mapped_walk(&pvmw)) { 1830 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1831 /* PMD-mapped THP migration entry */ 1832 if (!pvmw.pte) { 1833 subpage = folio_page(folio, 1834 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 1835 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 1836 !folio_test_pmd_mappable(folio), folio); 1837 1838 set_pmd_migration_entry(&pvmw, subpage); 1839 continue; 1840 } 1841 #endif 1842 1843 /* Unexpected PMD-mapped THP? */ 1844 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1845 1846 subpage = folio_page(folio, 1847 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1848 address = pvmw.address; 1849 1850 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) { 1851 /* 1852 * To call huge_pmd_unshare, i_mmap_rwsem must be 1853 * held in write mode. Caller needs to explicitly 1854 * do this outside rmap routines. 1855 */ 1856 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1857 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { 1858 /* 1859 * huge_pmd_unshare unmapped an entire PMD 1860 * page. There is no way of knowing exactly 1861 * which PMDs may be cached for this mm, so 1862 * we must flush them all. start/end were 1863 * already adjusted above to cover this range. 1864 */ 1865 flush_cache_range(vma, range.start, range.end); 1866 flush_tlb_range(vma, range.start, range.end); 1867 mmu_notifier_invalidate_range(mm, range.start, 1868 range.end); 1869 1870 /* 1871 * The ref count of the PMD page was dropped 1872 * which is part of the way map counting 1873 * is done for shared PMDs. Return 'true' 1874 * here. When there is no other sharing, 1875 * huge_pmd_unshare returns false and we will 1876 * unmap the actual page and drop map count 1877 * to zero. 1878 */ 1879 page_vma_mapped_walk_done(&pvmw); 1880 break; 1881 } 1882 } 1883 1884 /* Nuke the page table entry. */ 1885 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1886 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1887 1888 /* Set the dirty flag on the folio now the pte is gone. */ 1889 if (pte_dirty(pteval)) 1890 folio_mark_dirty(folio); 1891 1892 /* Update high watermark before we lower rss */ 1893 update_hiwater_rss(mm); 1894 1895 if (folio_is_zone_device(folio)) { 1896 unsigned long pfn = folio_pfn(folio); 1897 swp_entry_t entry; 1898 pte_t swp_pte; 1899 1900 /* 1901 * Store the pfn of the page in a special migration 1902 * pte. do_swap_page() will wait until the migration 1903 * pte is removed and then restart fault handling. 1904 */ 1905 entry = pte_to_swp_entry(pteval); 1906 if (is_writable_device_private_entry(entry)) 1907 entry = make_writable_migration_entry(pfn); 1908 else 1909 entry = make_readable_migration_entry(pfn); 1910 swp_pte = swp_entry_to_pte(entry); 1911 1912 /* 1913 * pteval maps a zone device page and is therefore 1914 * a swap pte. 1915 */ 1916 if (pte_swp_soft_dirty(pteval)) 1917 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1918 if (pte_swp_uffd_wp(pteval)) 1919 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1920 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 1921 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 1922 compound_order(&folio->page)); 1923 /* 1924 * No need to invalidate here it will synchronize on 1925 * against the special swap migration pte. 1926 * 1927 * The assignment to subpage above was computed from a 1928 * swap PTE which results in an invalid pointer. 1929 * Since only PAGE_SIZE pages can currently be 1930 * migrated, just set it to page. This will need to be 1931 * changed when hugepage migrations to device private 1932 * memory are supported. 1933 */ 1934 subpage = &folio->page; 1935 } else if (PageHWPoison(subpage)) { 1936 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1937 if (folio_test_hugetlb(folio)) { 1938 hugetlb_count_sub(folio_nr_pages(folio), mm); 1939 set_huge_swap_pte_at(mm, address, 1940 pvmw.pte, pteval, 1941 vma_mmu_pagesize(vma)); 1942 } else { 1943 dec_mm_counter(mm, mm_counter(&folio->page)); 1944 set_pte_at(mm, address, pvmw.pte, pteval); 1945 } 1946 1947 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1948 /* 1949 * The guest indicated that the page content is of no 1950 * interest anymore. Simply discard the pte, vmscan 1951 * will take care of the rest. 1952 * A future reference will then fault in a new zero 1953 * page. When userfaultfd is active, we must not drop 1954 * this page though, as its main user (postcopy 1955 * migration) will not expect userfaults on already 1956 * copied pages. 1957 */ 1958 dec_mm_counter(mm, mm_counter(&folio->page)); 1959 /* We have to invalidate as we cleared the pte */ 1960 mmu_notifier_invalidate_range(mm, address, 1961 address + PAGE_SIZE); 1962 } else { 1963 swp_entry_t entry; 1964 pte_t swp_pte; 1965 1966 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1967 set_pte_at(mm, address, pvmw.pte, pteval); 1968 ret = false; 1969 page_vma_mapped_walk_done(&pvmw); 1970 break; 1971 } 1972 1973 /* 1974 * Store the pfn of the page in a special migration 1975 * pte. do_swap_page() will wait until the migration 1976 * pte is removed and then restart fault handling. 1977 */ 1978 if (pte_write(pteval)) 1979 entry = make_writable_migration_entry( 1980 page_to_pfn(subpage)); 1981 else 1982 entry = make_readable_migration_entry( 1983 page_to_pfn(subpage)); 1984 1985 swp_pte = swp_entry_to_pte(entry); 1986 if (pte_soft_dirty(pteval)) 1987 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1988 if (pte_uffd_wp(pteval)) 1989 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1990 set_pte_at(mm, address, pvmw.pte, swp_pte); 1991 trace_set_migration_pte(address, pte_val(swp_pte), 1992 compound_order(&folio->page)); 1993 /* 1994 * No need to invalidate here it will synchronize on 1995 * against the special swap migration pte. 1996 */ 1997 } 1998 1999 /* 2000 * No need to call mmu_notifier_invalidate_range() it has be 2001 * done above for all cases requiring it to happen under page 2002 * table lock before mmu_notifier_invalidate_range_end() 2003 * 2004 * See Documentation/vm/mmu_notifier.rst 2005 */ 2006 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 2007 if (vma->vm_flags & VM_LOCKED) 2008 mlock_page_drain_local(); 2009 folio_put(folio); 2010 } 2011 2012 mmu_notifier_invalidate_range_end(&range); 2013 2014 return ret; 2015 } 2016 2017 /** 2018 * try_to_migrate - try to replace all page table mappings with swap entries 2019 * @folio: the folio to replace page table entries for 2020 * @flags: action and flags 2021 * 2022 * Tries to remove all the page table entries which are mapping this folio and 2023 * replace them with special swap entries. Caller must hold the folio lock. 2024 */ 2025 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2026 { 2027 struct rmap_walk_control rwc = { 2028 .rmap_one = try_to_migrate_one, 2029 .arg = (void *)flags, 2030 .done = page_not_mapped, 2031 .anon_lock = folio_lock_anon_vma_read, 2032 }; 2033 2034 /* 2035 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2036 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags. 2037 */ 2038 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2039 TTU_SYNC))) 2040 return; 2041 2042 if (folio_is_zone_device(folio) && !folio_is_device_private(folio)) 2043 return; 2044 2045 /* 2046 * During exec, a temporary VMA is setup and later moved. 2047 * The VMA is moved under the anon_vma lock but not the 2048 * page tables leading to a race where migration cannot 2049 * find the migration ptes. Rather than increasing the 2050 * locking requirements of exec(), migration skips 2051 * temporary VMAs until after exec() completes. 2052 */ 2053 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2054 rwc.invalid_vma = invalid_migration_vma; 2055 2056 if (flags & TTU_RMAP_LOCKED) 2057 rmap_walk_locked(folio, &rwc); 2058 else 2059 rmap_walk(folio, &rwc); 2060 } 2061 2062 #ifdef CONFIG_DEVICE_PRIVATE 2063 struct make_exclusive_args { 2064 struct mm_struct *mm; 2065 unsigned long address; 2066 void *owner; 2067 bool valid; 2068 }; 2069 2070 static bool page_make_device_exclusive_one(struct folio *folio, 2071 struct vm_area_struct *vma, unsigned long address, void *priv) 2072 { 2073 struct mm_struct *mm = vma->vm_mm; 2074 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2075 struct make_exclusive_args *args = priv; 2076 pte_t pteval; 2077 struct page *subpage; 2078 bool ret = true; 2079 struct mmu_notifier_range range; 2080 swp_entry_t entry; 2081 pte_t swp_pte; 2082 2083 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, 2084 vma->vm_mm, address, min(vma->vm_end, 2085 address + folio_size(folio)), 2086 args->owner); 2087 mmu_notifier_invalidate_range_start(&range); 2088 2089 while (page_vma_mapped_walk(&pvmw)) { 2090 /* Unexpected PMD-mapped THP? */ 2091 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2092 2093 if (!pte_present(*pvmw.pte)) { 2094 ret = false; 2095 page_vma_mapped_walk_done(&pvmw); 2096 break; 2097 } 2098 2099 subpage = folio_page(folio, 2100 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 2101 address = pvmw.address; 2102 2103 /* Nuke the page table entry. */ 2104 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 2105 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2106 2107 /* Set the dirty flag on the folio now the pte is gone. */ 2108 if (pte_dirty(pteval)) 2109 folio_mark_dirty(folio); 2110 2111 /* 2112 * Check that our target page is still mapped at the expected 2113 * address. 2114 */ 2115 if (args->mm == mm && args->address == address && 2116 pte_write(pteval)) 2117 args->valid = true; 2118 2119 /* 2120 * Store the pfn of the page in a special migration 2121 * pte. do_swap_page() will wait until the migration 2122 * pte is removed and then restart fault handling. 2123 */ 2124 if (pte_write(pteval)) 2125 entry = make_writable_device_exclusive_entry( 2126 page_to_pfn(subpage)); 2127 else 2128 entry = make_readable_device_exclusive_entry( 2129 page_to_pfn(subpage)); 2130 swp_pte = swp_entry_to_pte(entry); 2131 if (pte_soft_dirty(pteval)) 2132 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2133 if (pte_uffd_wp(pteval)) 2134 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2135 2136 set_pte_at(mm, address, pvmw.pte, swp_pte); 2137 2138 /* 2139 * There is a reference on the page for the swap entry which has 2140 * been removed, so shouldn't take another. 2141 */ 2142 page_remove_rmap(subpage, vma, false); 2143 } 2144 2145 mmu_notifier_invalidate_range_end(&range); 2146 2147 return ret; 2148 } 2149 2150 /** 2151 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2152 * @folio: The folio to replace page table entries for. 2153 * @mm: The mm_struct where the folio is expected to be mapped. 2154 * @address: Address where the folio is expected to be mapped. 2155 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2156 * 2157 * Tries to remove all the page table entries which are mapping this 2158 * folio and replace them with special device exclusive swap entries to 2159 * grant a device exclusive access to the folio. 2160 * 2161 * Context: Caller must hold the folio lock. 2162 * Return: false if the page is still mapped, or if it could not be unmapped 2163 * from the expected address. Otherwise returns true (success). 2164 */ 2165 static bool folio_make_device_exclusive(struct folio *folio, 2166 struct mm_struct *mm, unsigned long address, void *owner) 2167 { 2168 struct make_exclusive_args args = { 2169 .mm = mm, 2170 .address = address, 2171 .owner = owner, 2172 .valid = false, 2173 }; 2174 struct rmap_walk_control rwc = { 2175 .rmap_one = page_make_device_exclusive_one, 2176 .done = page_not_mapped, 2177 .anon_lock = folio_lock_anon_vma_read, 2178 .arg = &args, 2179 }; 2180 2181 /* 2182 * Restrict to anonymous folios for now to avoid potential writeback 2183 * issues. 2184 */ 2185 if (!folio_test_anon(folio)) 2186 return false; 2187 2188 rmap_walk(folio, &rwc); 2189 2190 return args.valid && !folio_mapcount(folio); 2191 } 2192 2193 /** 2194 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2195 * @mm: mm_struct of assoicated target process 2196 * @start: start of the region to mark for exclusive device access 2197 * @end: end address of region 2198 * @pages: returns the pages which were successfully marked for exclusive access 2199 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2200 * 2201 * Returns: number of pages found in the range by GUP. A page is marked for 2202 * exclusive access only if the page pointer is non-NULL. 2203 * 2204 * This function finds ptes mapping page(s) to the given address range, locks 2205 * them and replaces mappings with special swap entries preventing userspace CPU 2206 * access. On fault these entries are replaced with the original mapping after 2207 * calling MMU notifiers. 2208 * 2209 * A driver using this to program access from a device must use a mmu notifier 2210 * critical section to hold a device specific lock during programming. Once 2211 * programming is complete it should drop the page lock and reference after 2212 * which point CPU access to the page will revoke the exclusive access. 2213 */ 2214 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2215 unsigned long end, struct page **pages, 2216 void *owner) 2217 { 2218 long npages = (end - start) >> PAGE_SHIFT; 2219 long i; 2220 2221 npages = get_user_pages_remote(mm, start, npages, 2222 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2223 pages, NULL, NULL); 2224 if (npages < 0) 2225 return npages; 2226 2227 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2228 struct folio *folio = page_folio(pages[i]); 2229 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2230 folio_put(folio); 2231 pages[i] = NULL; 2232 continue; 2233 } 2234 2235 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2236 folio_unlock(folio); 2237 folio_put(folio); 2238 pages[i] = NULL; 2239 } 2240 } 2241 2242 return npages; 2243 } 2244 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2245 #endif 2246 2247 void __put_anon_vma(struct anon_vma *anon_vma) 2248 { 2249 struct anon_vma *root = anon_vma->root; 2250 2251 anon_vma_free(anon_vma); 2252 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2253 anon_vma_free(root); 2254 } 2255 2256 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2257 const struct rmap_walk_control *rwc) 2258 { 2259 struct anon_vma *anon_vma; 2260 2261 if (rwc->anon_lock) 2262 return rwc->anon_lock(folio); 2263 2264 /* 2265 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2266 * because that depends on page_mapped(); but not all its usages 2267 * are holding mmap_lock. Users without mmap_lock are required to 2268 * take a reference count to prevent the anon_vma disappearing 2269 */ 2270 anon_vma = folio_anon_vma(folio); 2271 if (!anon_vma) 2272 return NULL; 2273 2274 anon_vma_lock_read(anon_vma); 2275 return anon_vma; 2276 } 2277 2278 /* 2279 * rmap_walk_anon - do something to anonymous page using the object-based 2280 * rmap method 2281 * @page: the page to be handled 2282 * @rwc: control variable according to each walk type 2283 * 2284 * Find all the mappings of a page using the mapping pointer and the vma chains 2285 * contained in the anon_vma struct it points to. 2286 */ 2287 static void rmap_walk_anon(struct folio *folio, 2288 const struct rmap_walk_control *rwc, bool locked) 2289 { 2290 struct anon_vma *anon_vma; 2291 pgoff_t pgoff_start, pgoff_end; 2292 struct anon_vma_chain *avc; 2293 2294 if (locked) { 2295 anon_vma = folio_anon_vma(folio); 2296 /* anon_vma disappear under us? */ 2297 VM_BUG_ON_FOLIO(!anon_vma, folio); 2298 } else { 2299 anon_vma = rmap_walk_anon_lock(folio, rwc); 2300 } 2301 if (!anon_vma) 2302 return; 2303 2304 pgoff_start = folio_pgoff(folio); 2305 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2306 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2307 pgoff_start, pgoff_end) { 2308 struct vm_area_struct *vma = avc->vma; 2309 unsigned long address = vma_address(&folio->page, vma); 2310 2311 VM_BUG_ON_VMA(address == -EFAULT, vma); 2312 cond_resched(); 2313 2314 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2315 continue; 2316 2317 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2318 break; 2319 if (rwc->done && rwc->done(folio)) 2320 break; 2321 } 2322 2323 if (!locked) 2324 anon_vma_unlock_read(anon_vma); 2325 } 2326 2327 /* 2328 * rmap_walk_file - do something to file page using the object-based rmap method 2329 * @page: the page to be handled 2330 * @rwc: control variable according to each walk type 2331 * 2332 * Find all the mappings of a page using the mapping pointer and the vma chains 2333 * contained in the address_space struct it points to. 2334 */ 2335 static void rmap_walk_file(struct folio *folio, 2336 const struct rmap_walk_control *rwc, bool locked) 2337 { 2338 struct address_space *mapping = folio_mapping(folio); 2339 pgoff_t pgoff_start, pgoff_end; 2340 struct vm_area_struct *vma; 2341 2342 /* 2343 * The page lock not only makes sure that page->mapping cannot 2344 * suddenly be NULLified by truncation, it makes sure that the 2345 * structure at mapping cannot be freed and reused yet, 2346 * so we can safely take mapping->i_mmap_rwsem. 2347 */ 2348 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2349 2350 if (!mapping) 2351 return; 2352 2353 pgoff_start = folio_pgoff(folio); 2354 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2355 if (!locked) 2356 i_mmap_lock_read(mapping); 2357 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2358 pgoff_start, pgoff_end) { 2359 unsigned long address = vma_address(&folio->page, vma); 2360 2361 VM_BUG_ON_VMA(address == -EFAULT, vma); 2362 cond_resched(); 2363 2364 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2365 continue; 2366 2367 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2368 goto done; 2369 if (rwc->done && rwc->done(folio)) 2370 goto done; 2371 } 2372 2373 done: 2374 if (!locked) 2375 i_mmap_unlock_read(mapping); 2376 } 2377 2378 void rmap_walk(struct folio *folio, const struct rmap_walk_control *rwc) 2379 { 2380 if (unlikely(folio_test_ksm(folio))) 2381 rmap_walk_ksm(folio, rwc); 2382 else if (folio_test_anon(folio)) 2383 rmap_walk_anon(folio, rwc, false); 2384 else 2385 rmap_walk_file(folio, rwc, false); 2386 } 2387 2388 /* Like rmap_walk, but caller holds relevant rmap lock */ 2389 void rmap_walk_locked(struct folio *folio, const struct rmap_walk_control *rwc) 2390 { 2391 /* no ksm support for now */ 2392 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2393 if (folio_test_anon(folio)) 2394 rmap_walk_anon(folio, rwc, true); 2395 else 2396 rmap_walk_file(folio, rwc, true); 2397 } 2398 2399 #ifdef CONFIG_HUGETLB_PAGE 2400 /* 2401 * The following two functions are for anonymous (private mapped) hugepages. 2402 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2403 * and no lru code, because we handle hugepages differently from common pages. 2404 */ 2405 void hugepage_add_anon_rmap(struct page *page, 2406 struct vm_area_struct *vma, unsigned long address) 2407 { 2408 struct anon_vma *anon_vma = vma->anon_vma; 2409 int first; 2410 2411 BUG_ON(!PageLocked(page)); 2412 BUG_ON(!anon_vma); 2413 /* address might be in next vma when migration races vma_adjust */ 2414 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 2415 if (first) 2416 __page_set_anon_rmap(page, vma, address, 0); 2417 } 2418 2419 void hugepage_add_new_anon_rmap(struct page *page, 2420 struct vm_area_struct *vma, unsigned long address) 2421 { 2422 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2423 atomic_set(compound_mapcount_ptr(page), 0); 2424 atomic_set(compound_pincount_ptr(page), 0); 2425 2426 __page_set_anon_rmap(page, vma, address, 1); 2427 } 2428 #endif /* CONFIG_HUGETLB_PAGE */ 2429