1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * mapping->i_mmap_rwsem 27 * anon_vma->rwsem 28 * mm->page_table_lock or pte_lock 29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 30 * swap_lock (in swap_duplicate, swap_info_get) 31 * mmlist_lock (in mmput, drain_mmlist and others) 32 * mapping->private_lock (in __set_page_dirty_buffers) 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within bdi.wb->list_lock in __sync_single_inode) 39 * 40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 41 * ->tasklist_lock 42 * pte map lock 43 */ 44 45 #include <linux/mm.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/slab.h> 50 #include <linux/init.h> 51 #include <linux/ksm.h> 52 #include <linux/rmap.h> 53 #include <linux/rcupdate.h> 54 #include <linux/export.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/migrate.h> 58 #include <linux/hugetlb.h> 59 #include <linux/backing-dev.h> 60 61 #include <asm/tlbflush.h> 62 63 #include "internal.h" 64 65 static struct kmem_cache *anon_vma_cachep; 66 static struct kmem_cache *anon_vma_chain_cachep; 67 68 static inline struct anon_vma *anon_vma_alloc(void) 69 { 70 struct anon_vma *anon_vma; 71 72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 73 if (anon_vma) { 74 atomic_set(&anon_vma->refcount, 1); 75 anon_vma->degree = 1; /* Reference for first vma */ 76 anon_vma->parent = anon_vma; 77 /* 78 * Initialise the anon_vma root to point to itself. If called 79 * from fork, the root will be reset to the parents anon_vma. 80 */ 81 anon_vma->root = anon_vma; 82 } 83 84 return anon_vma; 85 } 86 87 static inline void anon_vma_free(struct anon_vma *anon_vma) 88 { 89 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 90 91 /* 92 * Synchronize against page_lock_anon_vma_read() such that 93 * we can safely hold the lock without the anon_vma getting 94 * freed. 95 * 96 * Relies on the full mb implied by the atomic_dec_and_test() from 97 * put_anon_vma() against the acquire barrier implied by 98 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 99 * 100 * page_lock_anon_vma_read() VS put_anon_vma() 101 * down_read_trylock() atomic_dec_and_test() 102 * LOCK MB 103 * atomic_read() rwsem_is_locked() 104 * 105 * LOCK should suffice since the actual taking of the lock must 106 * happen _before_ what follows. 107 */ 108 might_sleep(); 109 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 110 anon_vma_lock_write(anon_vma); 111 anon_vma_unlock_write(anon_vma); 112 } 113 114 kmem_cache_free(anon_vma_cachep, anon_vma); 115 } 116 117 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 118 { 119 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 120 } 121 122 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 123 { 124 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 125 } 126 127 static void anon_vma_chain_link(struct vm_area_struct *vma, 128 struct anon_vma_chain *avc, 129 struct anon_vma *anon_vma) 130 { 131 avc->vma = vma; 132 avc->anon_vma = anon_vma; 133 list_add(&avc->same_vma, &vma->anon_vma_chain); 134 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 135 } 136 137 /** 138 * anon_vma_prepare - attach an anon_vma to a memory region 139 * @vma: the memory region in question 140 * 141 * This makes sure the memory mapping described by 'vma' has 142 * an 'anon_vma' attached to it, so that we can associate the 143 * anonymous pages mapped into it with that anon_vma. 144 * 145 * The common case will be that we already have one, but if 146 * not we either need to find an adjacent mapping that we 147 * can re-use the anon_vma from (very common when the only 148 * reason for splitting a vma has been mprotect()), or we 149 * allocate a new one. 150 * 151 * Anon-vma allocations are very subtle, because we may have 152 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 153 * and that may actually touch the spinlock even in the newly 154 * allocated vma (it depends on RCU to make sure that the 155 * anon_vma isn't actually destroyed). 156 * 157 * As a result, we need to do proper anon_vma locking even 158 * for the new allocation. At the same time, we do not want 159 * to do any locking for the common case of already having 160 * an anon_vma. 161 * 162 * This must be called with the mmap_sem held for reading. 163 */ 164 int anon_vma_prepare(struct vm_area_struct *vma) 165 { 166 struct anon_vma *anon_vma = vma->anon_vma; 167 struct anon_vma_chain *avc; 168 169 might_sleep(); 170 if (unlikely(!anon_vma)) { 171 struct mm_struct *mm = vma->vm_mm; 172 struct anon_vma *allocated; 173 174 avc = anon_vma_chain_alloc(GFP_KERNEL); 175 if (!avc) 176 goto out_enomem; 177 178 anon_vma = find_mergeable_anon_vma(vma); 179 allocated = NULL; 180 if (!anon_vma) { 181 anon_vma = anon_vma_alloc(); 182 if (unlikely(!anon_vma)) 183 goto out_enomem_free_avc; 184 allocated = anon_vma; 185 } 186 187 anon_vma_lock_write(anon_vma); 188 /* page_table_lock to protect against threads */ 189 spin_lock(&mm->page_table_lock); 190 if (likely(!vma->anon_vma)) { 191 vma->anon_vma = anon_vma; 192 anon_vma_chain_link(vma, avc, anon_vma); 193 /* vma reference or self-parent link for new root */ 194 anon_vma->degree++; 195 allocated = NULL; 196 avc = NULL; 197 } 198 spin_unlock(&mm->page_table_lock); 199 anon_vma_unlock_write(anon_vma); 200 201 if (unlikely(allocated)) 202 put_anon_vma(allocated); 203 if (unlikely(avc)) 204 anon_vma_chain_free(avc); 205 } 206 return 0; 207 208 out_enomem_free_avc: 209 anon_vma_chain_free(avc); 210 out_enomem: 211 return -ENOMEM; 212 } 213 214 /* 215 * This is a useful helper function for locking the anon_vma root as 216 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 217 * have the same vma. 218 * 219 * Such anon_vma's should have the same root, so you'd expect to see 220 * just a single mutex_lock for the whole traversal. 221 */ 222 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 223 { 224 struct anon_vma *new_root = anon_vma->root; 225 if (new_root != root) { 226 if (WARN_ON_ONCE(root)) 227 up_write(&root->rwsem); 228 root = new_root; 229 down_write(&root->rwsem); 230 } 231 return root; 232 } 233 234 static inline void unlock_anon_vma_root(struct anon_vma *root) 235 { 236 if (root) 237 up_write(&root->rwsem); 238 } 239 240 /* 241 * Attach the anon_vmas from src to dst. 242 * Returns 0 on success, -ENOMEM on failure. 243 * 244 * If dst->anon_vma is NULL this function tries to find and reuse existing 245 * anon_vma which has no vmas and only one child anon_vma. This prevents 246 * degradation of anon_vma hierarchy to endless linear chain in case of 247 * constantly forking task. On the other hand, an anon_vma with more than one 248 * child isn't reused even if there was no alive vma, thus rmap walker has a 249 * good chance of avoiding scanning the whole hierarchy when it searches where 250 * page is mapped. 251 */ 252 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 253 { 254 struct anon_vma_chain *avc, *pavc; 255 struct anon_vma *root = NULL; 256 257 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 258 struct anon_vma *anon_vma; 259 260 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 261 if (unlikely(!avc)) { 262 unlock_anon_vma_root(root); 263 root = NULL; 264 avc = anon_vma_chain_alloc(GFP_KERNEL); 265 if (!avc) 266 goto enomem_failure; 267 } 268 anon_vma = pavc->anon_vma; 269 root = lock_anon_vma_root(root, anon_vma); 270 anon_vma_chain_link(dst, avc, anon_vma); 271 272 /* 273 * Reuse existing anon_vma if its degree lower than two, 274 * that means it has no vma and only one anon_vma child. 275 * 276 * Do not chose parent anon_vma, otherwise first child 277 * will always reuse it. Root anon_vma is never reused: 278 * it has self-parent reference and at least one child. 279 */ 280 if (!dst->anon_vma && anon_vma != src->anon_vma && 281 anon_vma->degree < 2) 282 dst->anon_vma = anon_vma; 283 } 284 if (dst->anon_vma) 285 dst->anon_vma->degree++; 286 unlock_anon_vma_root(root); 287 return 0; 288 289 enomem_failure: 290 unlink_anon_vmas(dst); 291 return -ENOMEM; 292 } 293 294 /* 295 * Attach vma to its own anon_vma, as well as to the anon_vmas that 296 * the corresponding VMA in the parent process is attached to. 297 * Returns 0 on success, non-zero on failure. 298 */ 299 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 300 { 301 struct anon_vma_chain *avc; 302 struct anon_vma *anon_vma; 303 int error; 304 305 /* Don't bother if the parent process has no anon_vma here. */ 306 if (!pvma->anon_vma) 307 return 0; 308 309 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 310 vma->anon_vma = NULL; 311 312 /* 313 * First, attach the new VMA to the parent VMA's anon_vmas, 314 * so rmap can find non-COWed pages in child processes. 315 */ 316 error = anon_vma_clone(vma, pvma); 317 if (error) 318 return error; 319 320 /* An existing anon_vma has been reused, all done then. */ 321 if (vma->anon_vma) 322 return 0; 323 324 /* Then add our own anon_vma. */ 325 anon_vma = anon_vma_alloc(); 326 if (!anon_vma) 327 goto out_error; 328 avc = anon_vma_chain_alloc(GFP_KERNEL); 329 if (!avc) 330 goto out_error_free_anon_vma; 331 332 /* 333 * The root anon_vma's spinlock is the lock actually used when we 334 * lock any of the anon_vmas in this anon_vma tree. 335 */ 336 anon_vma->root = pvma->anon_vma->root; 337 anon_vma->parent = pvma->anon_vma; 338 /* 339 * With refcounts, an anon_vma can stay around longer than the 340 * process it belongs to. The root anon_vma needs to be pinned until 341 * this anon_vma is freed, because the lock lives in the root. 342 */ 343 get_anon_vma(anon_vma->root); 344 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 345 vma->anon_vma = anon_vma; 346 anon_vma_lock_write(anon_vma); 347 anon_vma_chain_link(vma, avc, anon_vma); 348 anon_vma->parent->degree++; 349 anon_vma_unlock_write(anon_vma); 350 351 return 0; 352 353 out_error_free_anon_vma: 354 put_anon_vma(anon_vma); 355 out_error: 356 unlink_anon_vmas(vma); 357 return -ENOMEM; 358 } 359 360 void unlink_anon_vmas(struct vm_area_struct *vma) 361 { 362 struct anon_vma_chain *avc, *next; 363 struct anon_vma *root = NULL; 364 365 /* 366 * Unlink each anon_vma chained to the VMA. This list is ordered 367 * from newest to oldest, ensuring the root anon_vma gets freed last. 368 */ 369 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 370 struct anon_vma *anon_vma = avc->anon_vma; 371 372 root = lock_anon_vma_root(root, anon_vma); 373 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 374 375 /* 376 * Leave empty anon_vmas on the list - we'll need 377 * to free them outside the lock. 378 */ 379 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) { 380 anon_vma->parent->degree--; 381 continue; 382 } 383 384 list_del(&avc->same_vma); 385 anon_vma_chain_free(avc); 386 } 387 if (vma->anon_vma) 388 vma->anon_vma->degree--; 389 unlock_anon_vma_root(root); 390 391 /* 392 * Iterate the list once more, it now only contains empty and unlinked 393 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 394 * needing to write-acquire the anon_vma->root->rwsem. 395 */ 396 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 397 struct anon_vma *anon_vma = avc->anon_vma; 398 399 BUG_ON(anon_vma->degree); 400 put_anon_vma(anon_vma); 401 402 list_del(&avc->same_vma); 403 anon_vma_chain_free(avc); 404 } 405 } 406 407 static void anon_vma_ctor(void *data) 408 { 409 struct anon_vma *anon_vma = data; 410 411 init_rwsem(&anon_vma->rwsem); 412 atomic_set(&anon_vma->refcount, 0); 413 anon_vma->rb_root = RB_ROOT; 414 } 415 416 void __init anon_vma_init(void) 417 { 418 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 419 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 420 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 421 } 422 423 /* 424 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 425 * 426 * Since there is no serialization what so ever against page_remove_rmap() 427 * the best this function can do is return a locked anon_vma that might 428 * have been relevant to this page. 429 * 430 * The page might have been remapped to a different anon_vma or the anon_vma 431 * returned may already be freed (and even reused). 432 * 433 * In case it was remapped to a different anon_vma, the new anon_vma will be a 434 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 435 * ensure that any anon_vma obtained from the page will still be valid for as 436 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 437 * 438 * All users of this function must be very careful when walking the anon_vma 439 * chain and verify that the page in question is indeed mapped in it 440 * [ something equivalent to page_mapped_in_vma() ]. 441 * 442 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 443 * that the anon_vma pointer from page->mapping is valid if there is a 444 * mapcount, we can dereference the anon_vma after observing those. 445 */ 446 struct anon_vma *page_get_anon_vma(struct page *page) 447 { 448 struct anon_vma *anon_vma = NULL; 449 unsigned long anon_mapping; 450 451 rcu_read_lock(); 452 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 453 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 454 goto out; 455 if (!page_mapped(page)) 456 goto out; 457 458 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 459 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 460 anon_vma = NULL; 461 goto out; 462 } 463 464 /* 465 * If this page is still mapped, then its anon_vma cannot have been 466 * freed. But if it has been unmapped, we have no security against the 467 * anon_vma structure being freed and reused (for another anon_vma: 468 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 469 * above cannot corrupt). 470 */ 471 if (!page_mapped(page)) { 472 rcu_read_unlock(); 473 put_anon_vma(anon_vma); 474 return NULL; 475 } 476 out: 477 rcu_read_unlock(); 478 479 return anon_vma; 480 } 481 482 /* 483 * Similar to page_get_anon_vma() except it locks the anon_vma. 484 * 485 * Its a little more complex as it tries to keep the fast path to a single 486 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 487 * reference like with page_get_anon_vma() and then block on the mutex. 488 */ 489 struct anon_vma *page_lock_anon_vma_read(struct page *page) 490 { 491 struct anon_vma *anon_vma = NULL; 492 struct anon_vma *root_anon_vma; 493 unsigned long anon_mapping; 494 495 rcu_read_lock(); 496 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 497 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 498 goto out; 499 if (!page_mapped(page)) 500 goto out; 501 502 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 503 root_anon_vma = ACCESS_ONCE(anon_vma->root); 504 if (down_read_trylock(&root_anon_vma->rwsem)) { 505 /* 506 * If the page is still mapped, then this anon_vma is still 507 * its anon_vma, and holding the mutex ensures that it will 508 * not go away, see anon_vma_free(). 509 */ 510 if (!page_mapped(page)) { 511 up_read(&root_anon_vma->rwsem); 512 anon_vma = NULL; 513 } 514 goto out; 515 } 516 517 /* trylock failed, we got to sleep */ 518 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 519 anon_vma = NULL; 520 goto out; 521 } 522 523 if (!page_mapped(page)) { 524 rcu_read_unlock(); 525 put_anon_vma(anon_vma); 526 return NULL; 527 } 528 529 /* we pinned the anon_vma, its safe to sleep */ 530 rcu_read_unlock(); 531 anon_vma_lock_read(anon_vma); 532 533 if (atomic_dec_and_test(&anon_vma->refcount)) { 534 /* 535 * Oops, we held the last refcount, release the lock 536 * and bail -- can't simply use put_anon_vma() because 537 * we'll deadlock on the anon_vma_lock_write() recursion. 538 */ 539 anon_vma_unlock_read(anon_vma); 540 __put_anon_vma(anon_vma); 541 anon_vma = NULL; 542 } 543 544 return anon_vma; 545 546 out: 547 rcu_read_unlock(); 548 return anon_vma; 549 } 550 551 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 552 { 553 anon_vma_unlock_read(anon_vma); 554 } 555 556 /* 557 * At what user virtual address is page expected in @vma? 558 */ 559 static inline unsigned long 560 __vma_address(struct page *page, struct vm_area_struct *vma) 561 { 562 pgoff_t pgoff = page_to_pgoff(page); 563 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 564 } 565 566 inline unsigned long 567 vma_address(struct page *page, struct vm_area_struct *vma) 568 { 569 unsigned long address = __vma_address(page, vma); 570 571 /* page should be within @vma mapping range */ 572 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 573 574 return address; 575 } 576 577 /* 578 * At what user virtual address is page expected in vma? 579 * Caller should check the page is actually part of the vma. 580 */ 581 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 582 { 583 unsigned long address; 584 if (PageAnon(page)) { 585 struct anon_vma *page__anon_vma = page_anon_vma(page); 586 /* 587 * Note: swapoff's unuse_vma() is more efficient with this 588 * check, and needs it to match anon_vma when KSM is active. 589 */ 590 if (!vma->anon_vma || !page__anon_vma || 591 vma->anon_vma->root != page__anon_vma->root) 592 return -EFAULT; 593 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 594 if (!vma->vm_file || 595 vma->vm_file->f_mapping != page->mapping) 596 return -EFAULT; 597 } else 598 return -EFAULT; 599 address = __vma_address(page, vma); 600 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 601 return -EFAULT; 602 return address; 603 } 604 605 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 606 { 607 pgd_t *pgd; 608 pud_t *pud; 609 pmd_t *pmd = NULL; 610 pmd_t pmde; 611 612 pgd = pgd_offset(mm, address); 613 if (!pgd_present(*pgd)) 614 goto out; 615 616 pud = pud_offset(pgd, address); 617 if (!pud_present(*pud)) 618 goto out; 619 620 pmd = pmd_offset(pud, address); 621 /* 622 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at() 623 * without holding anon_vma lock for write. So when looking for a 624 * genuine pmde (in which to find pte), test present and !THP together. 625 */ 626 pmde = *pmd; 627 barrier(); 628 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 629 pmd = NULL; 630 out: 631 return pmd; 632 } 633 634 /* 635 * Check that @page is mapped at @address into @mm. 636 * 637 * If @sync is false, page_check_address may perform a racy check to avoid 638 * the page table lock when the pte is not present (helpful when reclaiming 639 * highly shared pages). 640 * 641 * On success returns with pte mapped and locked. 642 */ 643 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 644 unsigned long address, spinlock_t **ptlp, int sync) 645 { 646 pmd_t *pmd; 647 pte_t *pte; 648 spinlock_t *ptl; 649 650 if (unlikely(PageHuge(page))) { 651 /* when pud is not present, pte will be NULL */ 652 pte = huge_pte_offset(mm, address); 653 if (!pte) 654 return NULL; 655 656 ptl = huge_pte_lockptr(page_hstate(page), mm, pte); 657 goto check; 658 } 659 660 pmd = mm_find_pmd(mm, address); 661 if (!pmd) 662 return NULL; 663 664 pte = pte_offset_map(pmd, address); 665 /* Make a quick check before getting the lock */ 666 if (!sync && !pte_present(*pte)) { 667 pte_unmap(pte); 668 return NULL; 669 } 670 671 ptl = pte_lockptr(mm, pmd); 672 check: 673 spin_lock(ptl); 674 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 675 *ptlp = ptl; 676 return pte; 677 } 678 pte_unmap_unlock(pte, ptl); 679 return NULL; 680 } 681 682 /** 683 * page_mapped_in_vma - check whether a page is really mapped in a VMA 684 * @page: the page to test 685 * @vma: the VMA to test 686 * 687 * Returns 1 if the page is mapped into the page tables of the VMA, 0 688 * if the page is not mapped into the page tables of this VMA. Only 689 * valid for normal file or anonymous VMAs. 690 */ 691 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 692 { 693 unsigned long address; 694 pte_t *pte; 695 spinlock_t *ptl; 696 697 address = __vma_address(page, vma); 698 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 699 return 0; 700 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 701 if (!pte) /* the page is not in this mm */ 702 return 0; 703 pte_unmap_unlock(pte, ptl); 704 705 return 1; 706 } 707 708 struct page_referenced_arg { 709 int mapcount; 710 int referenced; 711 unsigned long vm_flags; 712 struct mem_cgroup *memcg; 713 }; 714 /* 715 * arg: page_referenced_arg will be passed 716 */ 717 static int page_referenced_one(struct page *page, struct vm_area_struct *vma, 718 unsigned long address, void *arg) 719 { 720 struct mm_struct *mm = vma->vm_mm; 721 spinlock_t *ptl; 722 int referenced = 0; 723 struct page_referenced_arg *pra = arg; 724 725 if (unlikely(PageTransHuge(page))) { 726 pmd_t *pmd; 727 728 /* 729 * rmap might return false positives; we must filter 730 * these out using page_check_address_pmd(). 731 */ 732 pmd = page_check_address_pmd(page, mm, address, 733 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl); 734 if (!pmd) 735 return SWAP_AGAIN; 736 737 if (vma->vm_flags & VM_LOCKED) { 738 spin_unlock(ptl); 739 pra->vm_flags |= VM_LOCKED; 740 return SWAP_FAIL; /* To break the loop */ 741 } 742 743 /* go ahead even if the pmd is pmd_trans_splitting() */ 744 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 745 referenced++; 746 spin_unlock(ptl); 747 } else { 748 pte_t *pte; 749 750 /* 751 * rmap might return false positives; we must filter 752 * these out using page_check_address(). 753 */ 754 pte = page_check_address(page, mm, address, &ptl, 0); 755 if (!pte) 756 return SWAP_AGAIN; 757 758 if (vma->vm_flags & VM_LOCKED) { 759 pte_unmap_unlock(pte, ptl); 760 pra->vm_flags |= VM_LOCKED; 761 return SWAP_FAIL; /* To break the loop */ 762 } 763 764 if (ptep_clear_flush_young_notify(vma, address, pte)) { 765 /* 766 * Don't treat a reference through a sequentially read 767 * mapping as such. If the page has been used in 768 * another mapping, we will catch it; if this other 769 * mapping is already gone, the unmap path will have 770 * set PG_referenced or activated the page. 771 */ 772 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 773 referenced++; 774 } 775 pte_unmap_unlock(pte, ptl); 776 } 777 778 if (referenced) { 779 pra->referenced++; 780 pra->vm_flags |= vma->vm_flags; 781 } 782 783 pra->mapcount--; 784 if (!pra->mapcount) 785 return SWAP_SUCCESS; /* To break the loop */ 786 787 return SWAP_AGAIN; 788 } 789 790 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 791 { 792 struct page_referenced_arg *pra = arg; 793 struct mem_cgroup *memcg = pra->memcg; 794 795 if (!mm_match_cgroup(vma->vm_mm, memcg)) 796 return true; 797 798 return false; 799 } 800 801 /** 802 * page_referenced - test if the page was referenced 803 * @page: the page to test 804 * @is_locked: caller holds lock on the page 805 * @memcg: target memory cgroup 806 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 807 * 808 * Quick test_and_clear_referenced for all mappings to a page, 809 * returns the number of ptes which referenced the page. 810 */ 811 int page_referenced(struct page *page, 812 int is_locked, 813 struct mem_cgroup *memcg, 814 unsigned long *vm_flags) 815 { 816 int ret; 817 int we_locked = 0; 818 struct page_referenced_arg pra = { 819 .mapcount = page_mapcount(page), 820 .memcg = memcg, 821 }; 822 struct rmap_walk_control rwc = { 823 .rmap_one = page_referenced_one, 824 .arg = (void *)&pra, 825 .anon_lock = page_lock_anon_vma_read, 826 }; 827 828 *vm_flags = 0; 829 if (!page_mapped(page)) 830 return 0; 831 832 if (!page_rmapping(page)) 833 return 0; 834 835 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 836 we_locked = trylock_page(page); 837 if (!we_locked) 838 return 1; 839 } 840 841 /* 842 * If we are reclaiming on behalf of a cgroup, skip 843 * counting on behalf of references from different 844 * cgroups 845 */ 846 if (memcg) { 847 rwc.invalid_vma = invalid_page_referenced_vma; 848 } 849 850 ret = rmap_walk(page, &rwc); 851 *vm_flags = pra.vm_flags; 852 853 if (we_locked) 854 unlock_page(page); 855 856 return pra.referenced; 857 } 858 859 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 860 unsigned long address, void *arg) 861 { 862 struct mm_struct *mm = vma->vm_mm; 863 pte_t *pte; 864 spinlock_t *ptl; 865 int ret = 0; 866 int *cleaned = arg; 867 868 pte = page_check_address(page, mm, address, &ptl, 1); 869 if (!pte) 870 goto out; 871 872 if (pte_dirty(*pte) || pte_write(*pte)) { 873 pte_t entry; 874 875 flush_cache_page(vma, address, pte_pfn(*pte)); 876 entry = ptep_clear_flush(vma, address, pte); 877 entry = pte_wrprotect(entry); 878 entry = pte_mkclean(entry); 879 set_pte_at(mm, address, pte, entry); 880 ret = 1; 881 } 882 883 pte_unmap_unlock(pte, ptl); 884 885 if (ret) { 886 mmu_notifier_invalidate_page(mm, address); 887 (*cleaned)++; 888 } 889 out: 890 return SWAP_AGAIN; 891 } 892 893 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 894 { 895 if (vma->vm_flags & VM_SHARED) 896 return false; 897 898 return true; 899 } 900 901 int page_mkclean(struct page *page) 902 { 903 int cleaned = 0; 904 struct address_space *mapping; 905 struct rmap_walk_control rwc = { 906 .arg = (void *)&cleaned, 907 .rmap_one = page_mkclean_one, 908 .invalid_vma = invalid_mkclean_vma, 909 }; 910 911 BUG_ON(!PageLocked(page)); 912 913 if (!page_mapped(page)) 914 return 0; 915 916 mapping = page_mapping(page); 917 if (!mapping) 918 return 0; 919 920 rmap_walk(page, &rwc); 921 922 return cleaned; 923 } 924 EXPORT_SYMBOL_GPL(page_mkclean); 925 926 /** 927 * page_move_anon_rmap - move a page to our anon_vma 928 * @page: the page to move to our anon_vma 929 * @vma: the vma the page belongs to 930 * @address: the user virtual address mapped 931 * 932 * When a page belongs exclusively to one process after a COW event, 933 * that page can be moved into the anon_vma that belongs to just that 934 * process, so the rmap code will not search the parent or sibling 935 * processes. 936 */ 937 void page_move_anon_rmap(struct page *page, 938 struct vm_area_struct *vma, unsigned long address) 939 { 940 struct anon_vma *anon_vma = vma->anon_vma; 941 942 VM_BUG_ON_PAGE(!PageLocked(page), page); 943 VM_BUG_ON_VMA(!anon_vma, vma); 944 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page); 945 946 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 947 page->mapping = (struct address_space *) anon_vma; 948 } 949 950 /** 951 * __page_set_anon_rmap - set up new anonymous rmap 952 * @page: Page to add to rmap 953 * @vma: VM area to add page to. 954 * @address: User virtual address of the mapping 955 * @exclusive: the page is exclusively owned by the current process 956 */ 957 static void __page_set_anon_rmap(struct page *page, 958 struct vm_area_struct *vma, unsigned long address, int exclusive) 959 { 960 struct anon_vma *anon_vma = vma->anon_vma; 961 962 BUG_ON(!anon_vma); 963 964 if (PageAnon(page)) 965 return; 966 967 /* 968 * If the page isn't exclusively mapped into this vma, 969 * we must use the _oldest_ possible anon_vma for the 970 * page mapping! 971 */ 972 if (!exclusive) 973 anon_vma = anon_vma->root; 974 975 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 976 page->mapping = (struct address_space *) anon_vma; 977 page->index = linear_page_index(vma, address); 978 } 979 980 /** 981 * __page_check_anon_rmap - sanity check anonymous rmap addition 982 * @page: the page to add the mapping to 983 * @vma: the vm area in which the mapping is added 984 * @address: the user virtual address mapped 985 */ 986 static void __page_check_anon_rmap(struct page *page, 987 struct vm_area_struct *vma, unsigned long address) 988 { 989 #ifdef CONFIG_DEBUG_VM 990 /* 991 * The page's anon-rmap details (mapping and index) are guaranteed to 992 * be set up correctly at this point. 993 * 994 * We have exclusion against page_add_anon_rmap because the caller 995 * always holds the page locked, except if called from page_dup_rmap, 996 * in which case the page is already known to be setup. 997 * 998 * We have exclusion against page_add_new_anon_rmap because those pages 999 * are initially only visible via the pagetables, and the pte is locked 1000 * over the call to page_add_new_anon_rmap. 1001 */ 1002 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1003 BUG_ON(page->index != linear_page_index(vma, address)); 1004 #endif 1005 } 1006 1007 /** 1008 * page_add_anon_rmap - add pte mapping to an anonymous page 1009 * @page: the page to add the mapping to 1010 * @vma: the vm area in which the mapping is added 1011 * @address: the user virtual address mapped 1012 * 1013 * The caller needs to hold the pte lock, and the page must be locked in 1014 * the anon_vma case: to serialize mapping,index checking after setting, 1015 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1016 * (but PageKsm is never downgraded to PageAnon). 1017 */ 1018 void page_add_anon_rmap(struct page *page, 1019 struct vm_area_struct *vma, unsigned long address) 1020 { 1021 do_page_add_anon_rmap(page, vma, address, 0); 1022 } 1023 1024 /* 1025 * Special version of the above for do_swap_page, which often runs 1026 * into pages that are exclusively owned by the current process. 1027 * Everybody else should continue to use page_add_anon_rmap above. 1028 */ 1029 void do_page_add_anon_rmap(struct page *page, 1030 struct vm_area_struct *vma, unsigned long address, int exclusive) 1031 { 1032 int first = atomic_inc_and_test(&page->_mapcount); 1033 if (first) { 1034 /* 1035 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1036 * these counters are not modified in interrupt context, and 1037 * pte lock(a spinlock) is held, which implies preemption 1038 * disabled. 1039 */ 1040 if (PageTransHuge(page)) 1041 __inc_zone_page_state(page, 1042 NR_ANON_TRANSPARENT_HUGEPAGES); 1043 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1044 hpage_nr_pages(page)); 1045 } 1046 if (unlikely(PageKsm(page))) 1047 return; 1048 1049 VM_BUG_ON_PAGE(!PageLocked(page), page); 1050 /* address might be in next vma when migration races vma_adjust */ 1051 if (first) 1052 __page_set_anon_rmap(page, vma, address, exclusive); 1053 else 1054 __page_check_anon_rmap(page, vma, address); 1055 } 1056 1057 /** 1058 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1059 * @page: the page to add the mapping to 1060 * @vma: the vm area in which the mapping is added 1061 * @address: the user virtual address mapped 1062 * 1063 * Same as page_add_anon_rmap but must only be called on *new* pages. 1064 * This means the inc-and-test can be bypassed. 1065 * Page does not have to be locked. 1066 */ 1067 void page_add_new_anon_rmap(struct page *page, 1068 struct vm_area_struct *vma, unsigned long address) 1069 { 1070 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1071 SetPageSwapBacked(page); 1072 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1073 if (PageTransHuge(page)) 1074 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1075 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1076 hpage_nr_pages(page)); 1077 __page_set_anon_rmap(page, vma, address, 1); 1078 } 1079 1080 /** 1081 * page_add_file_rmap - add pte mapping to a file page 1082 * @page: the page to add the mapping to 1083 * 1084 * The caller needs to hold the pte lock. 1085 */ 1086 void page_add_file_rmap(struct page *page) 1087 { 1088 struct mem_cgroup *memcg; 1089 unsigned long flags; 1090 bool locked; 1091 1092 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags); 1093 if (atomic_inc_and_test(&page->_mapcount)) { 1094 __inc_zone_page_state(page, NR_FILE_MAPPED); 1095 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); 1096 } 1097 mem_cgroup_end_page_stat(memcg, &locked, &flags); 1098 } 1099 1100 static void page_remove_file_rmap(struct page *page) 1101 { 1102 struct mem_cgroup *memcg; 1103 unsigned long flags; 1104 bool locked; 1105 1106 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags); 1107 1108 /* page still mapped by someone else? */ 1109 if (!atomic_add_negative(-1, &page->_mapcount)) 1110 goto out; 1111 1112 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1113 if (unlikely(PageHuge(page))) 1114 goto out; 1115 1116 /* 1117 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1118 * these counters are not modified in interrupt context, and 1119 * pte lock(a spinlock) is held, which implies preemption disabled. 1120 */ 1121 __dec_zone_page_state(page, NR_FILE_MAPPED); 1122 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); 1123 1124 if (unlikely(PageMlocked(page))) 1125 clear_page_mlock(page); 1126 out: 1127 mem_cgroup_end_page_stat(memcg, &locked, &flags); 1128 } 1129 1130 /** 1131 * page_remove_rmap - take down pte mapping from a page 1132 * @page: page to remove mapping from 1133 * 1134 * The caller needs to hold the pte lock. 1135 */ 1136 void page_remove_rmap(struct page *page) 1137 { 1138 if (!PageAnon(page)) { 1139 page_remove_file_rmap(page); 1140 return; 1141 } 1142 1143 /* page still mapped by someone else? */ 1144 if (!atomic_add_negative(-1, &page->_mapcount)) 1145 return; 1146 1147 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1148 if (unlikely(PageHuge(page))) 1149 return; 1150 1151 /* 1152 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1153 * these counters are not modified in interrupt context, and 1154 * pte lock(a spinlock) is held, which implies preemption disabled. 1155 */ 1156 if (PageTransHuge(page)) 1157 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1158 1159 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1160 -hpage_nr_pages(page)); 1161 1162 if (unlikely(PageMlocked(page))) 1163 clear_page_mlock(page); 1164 1165 /* 1166 * It would be tidy to reset the PageAnon mapping here, 1167 * but that might overwrite a racing page_add_anon_rmap 1168 * which increments mapcount after us but sets mapping 1169 * before us: so leave the reset to free_hot_cold_page, 1170 * and remember that it's only reliable while mapped. 1171 * Leaving it set also helps swapoff to reinstate ptes 1172 * faster for those pages still in swapcache. 1173 */ 1174 } 1175 1176 /* 1177 * @arg: enum ttu_flags will be passed to this argument 1178 */ 1179 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1180 unsigned long address, void *arg) 1181 { 1182 struct mm_struct *mm = vma->vm_mm; 1183 pte_t *pte; 1184 pte_t pteval; 1185 spinlock_t *ptl; 1186 int ret = SWAP_AGAIN; 1187 enum ttu_flags flags = (enum ttu_flags)arg; 1188 1189 pte = page_check_address(page, mm, address, &ptl, 0); 1190 if (!pte) 1191 goto out; 1192 1193 /* 1194 * If the page is mlock()d, we cannot swap it out. 1195 * If it's recently referenced (perhaps page_referenced 1196 * skipped over this mm) then we should reactivate it. 1197 */ 1198 if (!(flags & TTU_IGNORE_MLOCK)) { 1199 if (vma->vm_flags & VM_LOCKED) 1200 goto out_mlock; 1201 1202 if (flags & TTU_MUNLOCK) 1203 goto out_unmap; 1204 } 1205 if (!(flags & TTU_IGNORE_ACCESS)) { 1206 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1207 ret = SWAP_FAIL; 1208 goto out_unmap; 1209 } 1210 } 1211 1212 /* Nuke the page table entry. */ 1213 flush_cache_page(vma, address, page_to_pfn(page)); 1214 pteval = ptep_clear_flush(vma, address, pte); 1215 1216 /* Move the dirty bit to the physical page now the pte is gone. */ 1217 if (pte_dirty(pteval)) 1218 set_page_dirty(page); 1219 1220 /* Update high watermark before we lower rss */ 1221 update_hiwater_rss(mm); 1222 1223 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1224 if (!PageHuge(page)) { 1225 if (PageAnon(page)) 1226 dec_mm_counter(mm, MM_ANONPAGES); 1227 else 1228 dec_mm_counter(mm, MM_FILEPAGES); 1229 } 1230 set_pte_at(mm, address, pte, 1231 swp_entry_to_pte(make_hwpoison_entry(page))); 1232 } else if (pte_unused(pteval)) { 1233 /* 1234 * The guest indicated that the page content is of no 1235 * interest anymore. Simply discard the pte, vmscan 1236 * will take care of the rest. 1237 */ 1238 if (PageAnon(page)) 1239 dec_mm_counter(mm, MM_ANONPAGES); 1240 else 1241 dec_mm_counter(mm, MM_FILEPAGES); 1242 } else if (PageAnon(page)) { 1243 swp_entry_t entry = { .val = page_private(page) }; 1244 pte_t swp_pte; 1245 1246 if (PageSwapCache(page)) { 1247 /* 1248 * Store the swap location in the pte. 1249 * See handle_pte_fault() ... 1250 */ 1251 if (swap_duplicate(entry) < 0) { 1252 set_pte_at(mm, address, pte, pteval); 1253 ret = SWAP_FAIL; 1254 goto out_unmap; 1255 } 1256 if (list_empty(&mm->mmlist)) { 1257 spin_lock(&mmlist_lock); 1258 if (list_empty(&mm->mmlist)) 1259 list_add(&mm->mmlist, &init_mm.mmlist); 1260 spin_unlock(&mmlist_lock); 1261 } 1262 dec_mm_counter(mm, MM_ANONPAGES); 1263 inc_mm_counter(mm, MM_SWAPENTS); 1264 } else if (IS_ENABLED(CONFIG_MIGRATION)) { 1265 /* 1266 * Store the pfn of the page in a special migration 1267 * pte. do_swap_page() will wait until the migration 1268 * pte is removed and then restart fault handling. 1269 */ 1270 BUG_ON(!(flags & TTU_MIGRATION)); 1271 entry = make_migration_entry(page, pte_write(pteval)); 1272 } 1273 swp_pte = swp_entry_to_pte(entry); 1274 if (pte_soft_dirty(pteval)) 1275 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1276 set_pte_at(mm, address, pte, swp_pte); 1277 BUG_ON(pte_file(*pte)); 1278 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1279 (flags & TTU_MIGRATION)) { 1280 /* Establish migration entry for a file page */ 1281 swp_entry_t entry; 1282 entry = make_migration_entry(page, pte_write(pteval)); 1283 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1284 } else 1285 dec_mm_counter(mm, MM_FILEPAGES); 1286 1287 page_remove_rmap(page); 1288 page_cache_release(page); 1289 1290 out_unmap: 1291 pte_unmap_unlock(pte, ptl); 1292 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK)) 1293 mmu_notifier_invalidate_page(mm, address); 1294 out: 1295 return ret; 1296 1297 out_mlock: 1298 pte_unmap_unlock(pte, ptl); 1299 1300 1301 /* 1302 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1303 * unstable result and race. Plus, We can't wait here because 1304 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem. 1305 * if trylock failed, the page remain in evictable lru and later 1306 * vmscan could retry to move the page to unevictable lru if the 1307 * page is actually mlocked. 1308 */ 1309 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1310 if (vma->vm_flags & VM_LOCKED) { 1311 mlock_vma_page(page); 1312 ret = SWAP_MLOCK; 1313 } 1314 up_read(&vma->vm_mm->mmap_sem); 1315 } 1316 return ret; 1317 } 1318 1319 /* 1320 * objrmap doesn't work for nonlinear VMAs because the assumption that 1321 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1322 * Consequently, given a particular page and its ->index, we cannot locate the 1323 * ptes which are mapping that page without an exhaustive linear search. 1324 * 1325 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1326 * maps the file to which the target page belongs. The ->vm_private_data field 1327 * holds the current cursor into that scan. Successive searches will circulate 1328 * around the vma's virtual address space. 1329 * 1330 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1331 * more scanning pressure is placed against them as well. Eventually pages 1332 * will become fully unmapped and are eligible for eviction. 1333 * 1334 * For very sparsely populated VMAs this is a little inefficient - chances are 1335 * there there won't be many ptes located within the scan cluster. In this case 1336 * maybe we could scan further - to the end of the pte page, perhaps. 1337 * 1338 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1339 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1340 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1341 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1342 */ 1343 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1344 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1345 1346 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1347 struct vm_area_struct *vma, struct page *check_page) 1348 { 1349 struct mm_struct *mm = vma->vm_mm; 1350 pmd_t *pmd; 1351 pte_t *pte; 1352 pte_t pteval; 1353 spinlock_t *ptl; 1354 struct page *page; 1355 unsigned long address; 1356 unsigned long mmun_start; /* For mmu_notifiers */ 1357 unsigned long mmun_end; /* For mmu_notifiers */ 1358 unsigned long end; 1359 int ret = SWAP_AGAIN; 1360 int locked_vma = 0; 1361 1362 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1363 end = address + CLUSTER_SIZE; 1364 if (address < vma->vm_start) 1365 address = vma->vm_start; 1366 if (end > vma->vm_end) 1367 end = vma->vm_end; 1368 1369 pmd = mm_find_pmd(mm, address); 1370 if (!pmd) 1371 return ret; 1372 1373 mmun_start = address; 1374 mmun_end = end; 1375 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1376 1377 /* 1378 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1379 * keep the sem while scanning the cluster for mlocking pages. 1380 */ 1381 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1382 locked_vma = (vma->vm_flags & VM_LOCKED); 1383 if (!locked_vma) 1384 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1385 } 1386 1387 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1388 1389 /* Update high watermark before we lower rss */ 1390 update_hiwater_rss(mm); 1391 1392 for (; address < end; pte++, address += PAGE_SIZE) { 1393 if (!pte_present(*pte)) 1394 continue; 1395 page = vm_normal_page(vma, address, *pte); 1396 BUG_ON(!page || PageAnon(page)); 1397 1398 if (locked_vma) { 1399 if (page == check_page) { 1400 /* we know we have check_page locked */ 1401 mlock_vma_page(page); 1402 ret = SWAP_MLOCK; 1403 } else if (trylock_page(page)) { 1404 /* 1405 * If we can lock the page, perform mlock. 1406 * Otherwise leave the page alone, it will be 1407 * eventually encountered again later. 1408 */ 1409 mlock_vma_page(page); 1410 unlock_page(page); 1411 } 1412 continue; /* don't unmap */ 1413 } 1414 1415 /* 1416 * No need for _notify because we're within an 1417 * mmu_notifier_invalidate_range_ {start|end} scope. 1418 */ 1419 if (ptep_clear_flush_young(vma, address, pte)) 1420 continue; 1421 1422 /* Nuke the page table entry. */ 1423 flush_cache_page(vma, address, pte_pfn(*pte)); 1424 pteval = ptep_clear_flush_notify(vma, address, pte); 1425 1426 /* If nonlinear, store the file page offset in the pte. */ 1427 if (page->index != linear_page_index(vma, address)) { 1428 pte_t ptfile = pgoff_to_pte(page->index); 1429 if (pte_soft_dirty(pteval)) 1430 ptfile = pte_file_mksoft_dirty(ptfile); 1431 set_pte_at(mm, address, pte, ptfile); 1432 } 1433 1434 /* Move the dirty bit to the physical page now the pte is gone. */ 1435 if (pte_dirty(pteval)) 1436 set_page_dirty(page); 1437 1438 page_remove_rmap(page); 1439 page_cache_release(page); 1440 dec_mm_counter(mm, MM_FILEPAGES); 1441 (*mapcount)--; 1442 } 1443 pte_unmap_unlock(pte - 1, ptl); 1444 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1445 if (locked_vma) 1446 up_read(&vma->vm_mm->mmap_sem); 1447 return ret; 1448 } 1449 1450 static int try_to_unmap_nonlinear(struct page *page, 1451 struct address_space *mapping, void *arg) 1452 { 1453 struct vm_area_struct *vma; 1454 int ret = SWAP_AGAIN; 1455 unsigned long cursor; 1456 unsigned long max_nl_cursor = 0; 1457 unsigned long max_nl_size = 0; 1458 unsigned int mapcount; 1459 1460 list_for_each_entry(vma, 1461 &mapping->i_mmap_nonlinear, shared.nonlinear) { 1462 1463 cursor = (unsigned long) vma->vm_private_data; 1464 if (cursor > max_nl_cursor) 1465 max_nl_cursor = cursor; 1466 cursor = vma->vm_end - vma->vm_start; 1467 if (cursor > max_nl_size) 1468 max_nl_size = cursor; 1469 } 1470 1471 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1472 return SWAP_FAIL; 1473 } 1474 1475 /* 1476 * We don't try to search for this page in the nonlinear vmas, 1477 * and page_referenced wouldn't have found it anyway. Instead 1478 * just walk the nonlinear vmas trying to age and unmap some. 1479 * The mapcount of the page we came in with is irrelevant, 1480 * but even so use it as a guide to how hard we should try? 1481 */ 1482 mapcount = page_mapcount(page); 1483 if (!mapcount) 1484 return ret; 1485 1486 cond_resched(); 1487 1488 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1489 if (max_nl_cursor == 0) 1490 max_nl_cursor = CLUSTER_SIZE; 1491 1492 do { 1493 list_for_each_entry(vma, 1494 &mapping->i_mmap_nonlinear, shared.nonlinear) { 1495 1496 cursor = (unsigned long) vma->vm_private_data; 1497 while (cursor < max_nl_cursor && 1498 cursor < vma->vm_end - vma->vm_start) { 1499 if (try_to_unmap_cluster(cursor, &mapcount, 1500 vma, page) == SWAP_MLOCK) 1501 ret = SWAP_MLOCK; 1502 cursor += CLUSTER_SIZE; 1503 vma->vm_private_data = (void *) cursor; 1504 if ((int)mapcount <= 0) 1505 return ret; 1506 } 1507 vma->vm_private_data = (void *) max_nl_cursor; 1508 } 1509 cond_resched(); 1510 max_nl_cursor += CLUSTER_SIZE; 1511 } while (max_nl_cursor <= max_nl_size); 1512 1513 /* 1514 * Don't loop forever (perhaps all the remaining pages are 1515 * in locked vmas). Reset cursor on all unreserved nonlinear 1516 * vmas, now forgetting on which ones it had fallen behind. 1517 */ 1518 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear) 1519 vma->vm_private_data = NULL; 1520 1521 return ret; 1522 } 1523 1524 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1525 { 1526 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1527 1528 if (!maybe_stack) 1529 return false; 1530 1531 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1532 VM_STACK_INCOMPLETE_SETUP) 1533 return true; 1534 1535 return false; 1536 } 1537 1538 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1539 { 1540 return is_vma_temporary_stack(vma); 1541 } 1542 1543 static int page_not_mapped(struct page *page) 1544 { 1545 return !page_mapped(page); 1546 }; 1547 1548 /** 1549 * try_to_unmap - try to remove all page table mappings to a page 1550 * @page: the page to get unmapped 1551 * @flags: action and flags 1552 * 1553 * Tries to remove all the page table entries which are mapping this 1554 * page, used in the pageout path. Caller must hold the page lock. 1555 * Return values are: 1556 * 1557 * SWAP_SUCCESS - we succeeded in removing all mappings 1558 * SWAP_AGAIN - we missed a mapping, try again later 1559 * SWAP_FAIL - the page is unswappable 1560 * SWAP_MLOCK - page is mlocked. 1561 */ 1562 int try_to_unmap(struct page *page, enum ttu_flags flags) 1563 { 1564 int ret; 1565 struct rmap_walk_control rwc = { 1566 .rmap_one = try_to_unmap_one, 1567 .arg = (void *)flags, 1568 .done = page_not_mapped, 1569 .file_nonlinear = try_to_unmap_nonlinear, 1570 .anon_lock = page_lock_anon_vma_read, 1571 }; 1572 1573 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page); 1574 1575 /* 1576 * During exec, a temporary VMA is setup and later moved. 1577 * The VMA is moved under the anon_vma lock but not the 1578 * page tables leading to a race where migration cannot 1579 * find the migration ptes. Rather than increasing the 1580 * locking requirements of exec(), migration skips 1581 * temporary VMAs until after exec() completes. 1582 */ 1583 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) 1584 rwc.invalid_vma = invalid_migration_vma; 1585 1586 ret = rmap_walk(page, &rwc); 1587 1588 if (ret != SWAP_MLOCK && !page_mapped(page)) 1589 ret = SWAP_SUCCESS; 1590 return ret; 1591 } 1592 1593 /** 1594 * try_to_munlock - try to munlock a page 1595 * @page: the page to be munlocked 1596 * 1597 * Called from munlock code. Checks all of the VMAs mapping the page 1598 * to make sure nobody else has this page mlocked. The page will be 1599 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1600 * 1601 * Return values are: 1602 * 1603 * SWAP_AGAIN - no vma is holding page mlocked, or, 1604 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1605 * SWAP_FAIL - page cannot be located at present 1606 * SWAP_MLOCK - page is now mlocked. 1607 */ 1608 int try_to_munlock(struct page *page) 1609 { 1610 int ret; 1611 struct rmap_walk_control rwc = { 1612 .rmap_one = try_to_unmap_one, 1613 .arg = (void *)TTU_MUNLOCK, 1614 .done = page_not_mapped, 1615 /* 1616 * We don't bother to try to find the munlocked page in 1617 * nonlinears. It's costly. Instead, later, page reclaim logic 1618 * may call try_to_unmap() and recover PG_mlocked lazily. 1619 */ 1620 .file_nonlinear = NULL, 1621 .anon_lock = page_lock_anon_vma_read, 1622 1623 }; 1624 1625 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 1626 1627 ret = rmap_walk(page, &rwc); 1628 return ret; 1629 } 1630 1631 void __put_anon_vma(struct anon_vma *anon_vma) 1632 { 1633 struct anon_vma *root = anon_vma->root; 1634 1635 anon_vma_free(anon_vma); 1636 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1637 anon_vma_free(root); 1638 } 1639 1640 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 1641 struct rmap_walk_control *rwc) 1642 { 1643 struct anon_vma *anon_vma; 1644 1645 if (rwc->anon_lock) 1646 return rwc->anon_lock(page); 1647 1648 /* 1649 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1650 * because that depends on page_mapped(); but not all its usages 1651 * are holding mmap_sem. Users without mmap_sem are required to 1652 * take a reference count to prevent the anon_vma disappearing 1653 */ 1654 anon_vma = page_anon_vma(page); 1655 if (!anon_vma) 1656 return NULL; 1657 1658 anon_vma_lock_read(anon_vma); 1659 return anon_vma; 1660 } 1661 1662 /* 1663 * rmap_walk_anon - do something to anonymous page using the object-based 1664 * rmap method 1665 * @page: the page to be handled 1666 * @rwc: control variable according to each walk type 1667 * 1668 * Find all the mappings of a page using the mapping pointer and the vma chains 1669 * contained in the anon_vma struct it points to. 1670 * 1671 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1672 * where the page was found will be held for write. So, we won't recheck 1673 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1674 * LOCKED. 1675 */ 1676 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc) 1677 { 1678 struct anon_vma *anon_vma; 1679 pgoff_t pgoff; 1680 struct anon_vma_chain *avc; 1681 int ret = SWAP_AGAIN; 1682 1683 anon_vma = rmap_walk_anon_lock(page, rwc); 1684 if (!anon_vma) 1685 return ret; 1686 1687 pgoff = page_to_pgoff(page); 1688 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1689 struct vm_area_struct *vma = avc->vma; 1690 unsigned long address = vma_address(page, vma); 1691 1692 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1693 continue; 1694 1695 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1696 if (ret != SWAP_AGAIN) 1697 break; 1698 if (rwc->done && rwc->done(page)) 1699 break; 1700 } 1701 anon_vma_unlock_read(anon_vma); 1702 return ret; 1703 } 1704 1705 /* 1706 * rmap_walk_file - do something to file page using the object-based rmap method 1707 * @page: the page to be handled 1708 * @rwc: control variable according to each walk type 1709 * 1710 * Find all the mappings of a page using the mapping pointer and the vma chains 1711 * contained in the address_space struct it points to. 1712 * 1713 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1714 * where the page was found will be held for write. So, we won't recheck 1715 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1716 * LOCKED. 1717 */ 1718 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc) 1719 { 1720 struct address_space *mapping = page->mapping; 1721 pgoff_t pgoff; 1722 struct vm_area_struct *vma; 1723 int ret = SWAP_AGAIN; 1724 1725 /* 1726 * The page lock not only makes sure that page->mapping cannot 1727 * suddenly be NULLified by truncation, it makes sure that the 1728 * structure at mapping cannot be freed and reused yet, 1729 * so we can safely take mapping->i_mmap_rwsem. 1730 */ 1731 VM_BUG_ON_PAGE(!PageLocked(page), page); 1732 1733 if (!mapping) 1734 return ret; 1735 1736 pgoff = page_to_pgoff(page); 1737 i_mmap_lock_read(mapping); 1738 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1739 unsigned long address = vma_address(page, vma); 1740 1741 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1742 continue; 1743 1744 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1745 if (ret != SWAP_AGAIN) 1746 goto done; 1747 if (rwc->done && rwc->done(page)) 1748 goto done; 1749 } 1750 1751 if (!rwc->file_nonlinear) 1752 goto done; 1753 1754 if (list_empty(&mapping->i_mmap_nonlinear)) 1755 goto done; 1756 1757 ret = rwc->file_nonlinear(page, mapping, rwc->arg); 1758 done: 1759 i_mmap_unlock_read(mapping); 1760 return ret; 1761 } 1762 1763 int rmap_walk(struct page *page, struct rmap_walk_control *rwc) 1764 { 1765 if (unlikely(PageKsm(page))) 1766 return rmap_walk_ksm(page, rwc); 1767 else if (PageAnon(page)) 1768 return rmap_walk_anon(page, rwc); 1769 else 1770 return rmap_walk_file(page, rwc); 1771 } 1772 1773 #ifdef CONFIG_HUGETLB_PAGE 1774 /* 1775 * The following three functions are for anonymous (private mapped) hugepages. 1776 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1777 * and no lru code, because we handle hugepages differently from common pages. 1778 */ 1779 static void __hugepage_set_anon_rmap(struct page *page, 1780 struct vm_area_struct *vma, unsigned long address, int exclusive) 1781 { 1782 struct anon_vma *anon_vma = vma->anon_vma; 1783 1784 BUG_ON(!anon_vma); 1785 1786 if (PageAnon(page)) 1787 return; 1788 if (!exclusive) 1789 anon_vma = anon_vma->root; 1790 1791 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1792 page->mapping = (struct address_space *) anon_vma; 1793 page->index = linear_page_index(vma, address); 1794 } 1795 1796 void hugepage_add_anon_rmap(struct page *page, 1797 struct vm_area_struct *vma, unsigned long address) 1798 { 1799 struct anon_vma *anon_vma = vma->anon_vma; 1800 int first; 1801 1802 BUG_ON(!PageLocked(page)); 1803 BUG_ON(!anon_vma); 1804 /* address might be in next vma when migration races vma_adjust */ 1805 first = atomic_inc_and_test(&page->_mapcount); 1806 if (first) 1807 __hugepage_set_anon_rmap(page, vma, address, 0); 1808 } 1809 1810 void hugepage_add_new_anon_rmap(struct page *page, 1811 struct vm_area_struct *vma, unsigned long address) 1812 { 1813 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1814 atomic_set(&page->_mapcount, 0); 1815 __hugepage_set_anon_rmap(page, vma, address, 1); 1816 } 1817 #endif /* CONFIG_HUGETLB_PAGE */ 1818