1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * mapping->i_mmap_mutex 27 * anon_vma->rwsem 28 * mm->page_table_lock or pte_lock 29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 30 * swap_lock (in swap_duplicate, swap_info_get) 31 * mmlist_lock (in mmput, drain_mmlist and others) 32 * mapping->private_lock (in __set_page_dirty_buffers) 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within bdi.wb->list_lock in __sync_single_inode) 39 * 40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 41 * ->tasklist_lock 42 * pte map lock 43 */ 44 45 #include <linux/mm.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/slab.h> 50 #include <linux/init.h> 51 #include <linux/ksm.h> 52 #include <linux/rmap.h> 53 #include <linux/rcupdate.h> 54 #include <linux/export.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/migrate.h> 58 #include <linux/hugetlb.h> 59 #include <linux/backing-dev.h> 60 61 #include <asm/tlbflush.h> 62 63 #include "internal.h" 64 65 static struct kmem_cache *anon_vma_cachep; 66 static struct kmem_cache *anon_vma_chain_cachep; 67 68 static inline struct anon_vma *anon_vma_alloc(void) 69 { 70 struct anon_vma *anon_vma; 71 72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 73 if (anon_vma) { 74 atomic_set(&anon_vma->refcount, 1); 75 /* 76 * Initialise the anon_vma root to point to itself. If called 77 * from fork, the root will be reset to the parents anon_vma. 78 */ 79 anon_vma->root = anon_vma; 80 } 81 82 return anon_vma; 83 } 84 85 static inline void anon_vma_free(struct anon_vma *anon_vma) 86 { 87 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 88 89 /* 90 * Synchronize against page_lock_anon_vma_read() such that 91 * we can safely hold the lock without the anon_vma getting 92 * freed. 93 * 94 * Relies on the full mb implied by the atomic_dec_and_test() from 95 * put_anon_vma() against the acquire barrier implied by 96 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 97 * 98 * page_lock_anon_vma_read() VS put_anon_vma() 99 * down_read_trylock() atomic_dec_and_test() 100 * LOCK MB 101 * atomic_read() rwsem_is_locked() 102 * 103 * LOCK should suffice since the actual taking of the lock must 104 * happen _before_ what follows. 105 */ 106 might_sleep(); 107 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 108 anon_vma_lock_write(anon_vma); 109 anon_vma_unlock_write(anon_vma); 110 } 111 112 kmem_cache_free(anon_vma_cachep, anon_vma); 113 } 114 115 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 116 { 117 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 118 } 119 120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 121 { 122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 123 } 124 125 static void anon_vma_chain_link(struct vm_area_struct *vma, 126 struct anon_vma_chain *avc, 127 struct anon_vma *anon_vma) 128 { 129 avc->vma = vma; 130 avc->anon_vma = anon_vma; 131 list_add(&avc->same_vma, &vma->anon_vma_chain); 132 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 133 } 134 135 /** 136 * anon_vma_prepare - attach an anon_vma to a memory region 137 * @vma: the memory region in question 138 * 139 * This makes sure the memory mapping described by 'vma' has 140 * an 'anon_vma' attached to it, so that we can associate the 141 * anonymous pages mapped into it with that anon_vma. 142 * 143 * The common case will be that we already have one, but if 144 * not we either need to find an adjacent mapping that we 145 * can re-use the anon_vma from (very common when the only 146 * reason for splitting a vma has been mprotect()), or we 147 * allocate a new one. 148 * 149 * Anon-vma allocations are very subtle, because we may have 150 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 151 * and that may actually touch the spinlock even in the newly 152 * allocated vma (it depends on RCU to make sure that the 153 * anon_vma isn't actually destroyed). 154 * 155 * As a result, we need to do proper anon_vma locking even 156 * for the new allocation. At the same time, we do not want 157 * to do any locking for the common case of already having 158 * an anon_vma. 159 * 160 * This must be called with the mmap_sem held for reading. 161 */ 162 int anon_vma_prepare(struct vm_area_struct *vma) 163 { 164 struct anon_vma *anon_vma = vma->anon_vma; 165 struct anon_vma_chain *avc; 166 167 might_sleep(); 168 if (unlikely(!anon_vma)) { 169 struct mm_struct *mm = vma->vm_mm; 170 struct anon_vma *allocated; 171 172 avc = anon_vma_chain_alloc(GFP_KERNEL); 173 if (!avc) 174 goto out_enomem; 175 176 anon_vma = find_mergeable_anon_vma(vma); 177 allocated = NULL; 178 if (!anon_vma) { 179 anon_vma = anon_vma_alloc(); 180 if (unlikely(!anon_vma)) 181 goto out_enomem_free_avc; 182 allocated = anon_vma; 183 } 184 185 anon_vma_lock_write(anon_vma); 186 /* page_table_lock to protect against threads */ 187 spin_lock(&mm->page_table_lock); 188 if (likely(!vma->anon_vma)) { 189 vma->anon_vma = anon_vma; 190 anon_vma_chain_link(vma, avc, anon_vma); 191 allocated = NULL; 192 avc = NULL; 193 } 194 spin_unlock(&mm->page_table_lock); 195 anon_vma_unlock_write(anon_vma); 196 197 if (unlikely(allocated)) 198 put_anon_vma(allocated); 199 if (unlikely(avc)) 200 anon_vma_chain_free(avc); 201 } 202 return 0; 203 204 out_enomem_free_avc: 205 anon_vma_chain_free(avc); 206 out_enomem: 207 return -ENOMEM; 208 } 209 210 /* 211 * This is a useful helper function for locking the anon_vma root as 212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 213 * have the same vma. 214 * 215 * Such anon_vma's should have the same root, so you'd expect to see 216 * just a single mutex_lock for the whole traversal. 217 */ 218 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 219 { 220 struct anon_vma *new_root = anon_vma->root; 221 if (new_root != root) { 222 if (WARN_ON_ONCE(root)) 223 up_write(&root->rwsem); 224 root = new_root; 225 down_write(&root->rwsem); 226 } 227 return root; 228 } 229 230 static inline void unlock_anon_vma_root(struct anon_vma *root) 231 { 232 if (root) 233 up_write(&root->rwsem); 234 } 235 236 /* 237 * Attach the anon_vmas from src to dst. 238 * Returns 0 on success, -ENOMEM on failure. 239 */ 240 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 241 { 242 struct anon_vma_chain *avc, *pavc; 243 struct anon_vma *root = NULL; 244 245 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 246 struct anon_vma *anon_vma; 247 248 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 249 if (unlikely(!avc)) { 250 unlock_anon_vma_root(root); 251 root = NULL; 252 avc = anon_vma_chain_alloc(GFP_KERNEL); 253 if (!avc) 254 goto enomem_failure; 255 } 256 anon_vma = pavc->anon_vma; 257 root = lock_anon_vma_root(root, anon_vma); 258 anon_vma_chain_link(dst, avc, anon_vma); 259 } 260 unlock_anon_vma_root(root); 261 return 0; 262 263 enomem_failure: 264 unlink_anon_vmas(dst); 265 return -ENOMEM; 266 } 267 268 /* 269 * Attach vma to its own anon_vma, as well as to the anon_vmas that 270 * the corresponding VMA in the parent process is attached to. 271 * Returns 0 on success, non-zero on failure. 272 */ 273 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 274 { 275 struct anon_vma_chain *avc; 276 struct anon_vma *anon_vma; 277 278 /* Don't bother if the parent process has no anon_vma here. */ 279 if (!pvma->anon_vma) 280 return 0; 281 282 /* 283 * First, attach the new VMA to the parent VMA's anon_vmas, 284 * so rmap can find non-COWed pages in child processes. 285 */ 286 if (anon_vma_clone(vma, pvma)) 287 return -ENOMEM; 288 289 /* Then add our own anon_vma. */ 290 anon_vma = anon_vma_alloc(); 291 if (!anon_vma) 292 goto out_error; 293 avc = anon_vma_chain_alloc(GFP_KERNEL); 294 if (!avc) 295 goto out_error_free_anon_vma; 296 297 /* 298 * The root anon_vma's spinlock is the lock actually used when we 299 * lock any of the anon_vmas in this anon_vma tree. 300 */ 301 anon_vma->root = pvma->anon_vma->root; 302 /* 303 * With refcounts, an anon_vma can stay around longer than the 304 * process it belongs to. The root anon_vma needs to be pinned until 305 * this anon_vma is freed, because the lock lives in the root. 306 */ 307 get_anon_vma(anon_vma->root); 308 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 309 vma->anon_vma = anon_vma; 310 anon_vma_lock_write(anon_vma); 311 anon_vma_chain_link(vma, avc, anon_vma); 312 anon_vma_unlock_write(anon_vma); 313 314 return 0; 315 316 out_error_free_anon_vma: 317 put_anon_vma(anon_vma); 318 out_error: 319 unlink_anon_vmas(vma); 320 return -ENOMEM; 321 } 322 323 void unlink_anon_vmas(struct vm_area_struct *vma) 324 { 325 struct anon_vma_chain *avc, *next; 326 struct anon_vma *root = NULL; 327 328 /* 329 * Unlink each anon_vma chained to the VMA. This list is ordered 330 * from newest to oldest, ensuring the root anon_vma gets freed last. 331 */ 332 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 333 struct anon_vma *anon_vma = avc->anon_vma; 334 335 root = lock_anon_vma_root(root, anon_vma); 336 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 337 338 /* 339 * Leave empty anon_vmas on the list - we'll need 340 * to free them outside the lock. 341 */ 342 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) 343 continue; 344 345 list_del(&avc->same_vma); 346 anon_vma_chain_free(avc); 347 } 348 unlock_anon_vma_root(root); 349 350 /* 351 * Iterate the list once more, it now only contains empty and unlinked 352 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 353 * needing to write-acquire the anon_vma->root->rwsem. 354 */ 355 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 356 struct anon_vma *anon_vma = avc->anon_vma; 357 358 put_anon_vma(anon_vma); 359 360 list_del(&avc->same_vma); 361 anon_vma_chain_free(avc); 362 } 363 } 364 365 static void anon_vma_ctor(void *data) 366 { 367 struct anon_vma *anon_vma = data; 368 369 init_rwsem(&anon_vma->rwsem); 370 atomic_set(&anon_vma->refcount, 0); 371 anon_vma->rb_root = RB_ROOT; 372 } 373 374 void __init anon_vma_init(void) 375 { 376 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 377 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 378 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 379 } 380 381 /* 382 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 383 * 384 * Since there is no serialization what so ever against page_remove_rmap() 385 * the best this function can do is return a locked anon_vma that might 386 * have been relevant to this page. 387 * 388 * The page might have been remapped to a different anon_vma or the anon_vma 389 * returned may already be freed (and even reused). 390 * 391 * In case it was remapped to a different anon_vma, the new anon_vma will be a 392 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 393 * ensure that any anon_vma obtained from the page will still be valid for as 394 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 395 * 396 * All users of this function must be very careful when walking the anon_vma 397 * chain and verify that the page in question is indeed mapped in it 398 * [ something equivalent to page_mapped_in_vma() ]. 399 * 400 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 401 * that the anon_vma pointer from page->mapping is valid if there is a 402 * mapcount, we can dereference the anon_vma after observing those. 403 */ 404 struct anon_vma *page_get_anon_vma(struct page *page) 405 { 406 struct anon_vma *anon_vma = NULL; 407 unsigned long anon_mapping; 408 409 rcu_read_lock(); 410 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 411 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 412 goto out; 413 if (!page_mapped(page)) 414 goto out; 415 416 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 417 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 418 anon_vma = NULL; 419 goto out; 420 } 421 422 /* 423 * If this page is still mapped, then its anon_vma cannot have been 424 * freed. But if it has been unmapped, we have no security against the 425 * anon_vma structure being freed and reused (for another anon_vma: 426 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 427 * above cannot corrupt). 428 */ 429 if (!page_mapped(page)) { 430 rcu_read_unlock(); 431 put_anon_vma(anon_vma); 432 return NULL; 433 } 434 out: 435 rcu_read_unlock(); 436 437 return anon_vma; 438 } 439 440 /* 441 * Similar to page_get_anon_vma() except it locks the anon_vma. 442 * 443 * Its a little more complex as it tries to keep the fast path to a single 444 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 445 * reference like with page_get_anon_vma() and then block on the mutex. 446 */ 447 struct anon_vma *page_lock_anon_vma_read(struct page *page) 448 { 449 struct anon_vma *anon_vma = NULL; 450 struct anon_vma *root_anon_vma; 451 unsigned long anon_mapping; 452 453 rcu_read_lock(); 454 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 455 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 456 goto out; 457 if (!page_mapped(page)) 458 goto out; 459 460 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 461 root_anon_vma = ACCESS_ONCE(anon_vma->root); 462 if (down_read_trylock(&root_anon_vma->rwsem)) { 463 /* 464 * If the page is still mapped, then this anon_vma is still 465 * its anon_vma, and holding the mutex ensures that it will 466 * not go away, see anon_vma_free(). 467 */ 468 if (!page_mapped(page)) { 469 up_read(&root_anon_vma->rwsem); 470 anon_vma = NULL; 471 } 472 goto out; 473 } 474 475 /* trylock failed, we got to sleep */ 476 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 477 anon_vma = NULL; 478 goto out; 479 } 480 481 if (!page_mapped(page)) { 482 rcu_read_unlock(); 483 put_anon_vma(anon_vma); 484 return NULL; 485 } 486 487 /* we pinned the anon_vma, its safe to sleep */ 488 rcu_read_unlock(); 489 anon_vma_lock_read(anon_vma); 490 491 if (atomic_dec_and_test(&anon_vma->refcount)) { 492 /* 493 * Oops, we held the last refcount, release the lock 494 * and bail -- can't simply use put_anon_vma() because 495 * we'll deadlock on the anon_vma_lock_write() recursion. 496 */ 497 anon_vma_unlock_read(anon_vma); 498 __put_anon_vma(anon_vma); 499 anon_vma = NULL; 500 } 501 502 return anon_vma; 503 504 out: 505 rcu_read_unlock(); 506 return anon_vma; 507 } 508 509 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 510 { 511 anon_vma_unlock_read(anon_vma); 512 } 513 514 /* 515 * At what user virtual address is page expected in @vma? 516 */ 517 static inline unsigned long 518 __vma_address(struct page *page, struct vm_area_struct *vma) 519 { 520 pgoff_t pgoff = page_to_pgoff(page); 521 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 522 } 523 524 inline unsigned long 525 vma_address(struct page *page, struct vm_area_struct *vma) 526 { 527 unsigned long address = __vma_address(page, vma); 528 529 /* page should be within @vma mapping range */ 530 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 531 532 return address; 533 } 534 535 /* 536 * At what user virtual address is page expected in vma? 537 * Caller should check the page is actually part of the vma. 538 */ 539 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 540 { 541 unsigned long address; 542 if (PageAnon(page)) { 543 struct anon_vma *page__anon_vma = page_anon_vma(page); 544 /* 545 * Note: swapoff's unuse_vma() is more efficient with this 546 * check, and needs it to match anon_vma when KSM is active. 547 */ 548 if (!vma->anon_vma || !page__anon_vma || 549 vma->anon_vma->root != page__anon_vma->root) 550 return -EFAULT; 551 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 552 if (!vma->vm_file || 553 vma->vm_file->f_mapping != page->mapping) 554 return -EFAULT; 555 } else 556 return -EFAULT; 557 address = __vma_address(page, vma); 558 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 559 return -EFAULT; 560 return address; 561 } 562 563 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 564 { 565 pgd_t *pgd; 566 pud_t *pud; 567 pmd_t *pmd = NULL; 568 pmd_t pmde; 569 570 pgd = pgd_offset(mm, address); 571 if (!pgd_present(*pgd)) 572 goto out; 573 574 pud = pud_offset(pgd, address); 575 if (!pud_present(*pud)) 576 goto out; 577 578 pmd = pmd_offset(pud, address); 579 /* 580 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at() 581 * without holding anon_vma lock for write. So when looking for a 582 * genuine pmde (in which to find pte), test present and !THP together. 583 */ 584 pmde = ACCESS_ONCE(*pmd); 585 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 586 pmd = NULL; 587 out: 588 return pmd; 589 } 590 591 /* 592 * Check that @page is mapped at @address into @mm. 593 * 594 * If @sync is false, page_check_address may perform a racy check to avoid 595 * the page table lock when the pte is not present (helpful when reclaiming 596 * highly shared pages). 597 * 598 * On success returns with pte mapped and locked. 599 */ 600 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 601 unsigned long address, spinlock_t **ptlp, int sync) 602 { 603 pmd_t *pmd; 604 pte_t *pte; 605 spinlock_t *ptl; 606 607 if (unlikely(PageHuge(page))) { 608 /* when pud is not present, pte will be NULL */ 609 pte = huge_pte_offset(mm, address); 610 if (!pte) 611 return NULL; 612 613 ptl = huge_pte_lockptr(page_hstate(page), mm, pte); 614 goto check; 615 } 616 617 pmd = mm_find_pmd(mm, address); 618 if (!pmd) 619 return NULL; 620 621 pte = pte_offset_map(pmd, address); 622 /* Make a quick check before getting the lock */ 623 if (!sync && !pte_present(*pte)) { 624 pte_unmap(pte); 625 return NULL; 626 } 627 628 ptl = pte_lockptr(mm, pmd); 629 check: 630 spin_lock(ptl); 631 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 632 *ptlp = ptl; 633 return pte; 634 } 635 pte_unmap_unlock(pte, ptl); 636 return NULL; 637 } 638 639 /** 640 * page_mapped_in_vma - check whether a page is really mapped in a VMA 641 * @page: the page to test 642 * @vma: the VMA to test 643 * 644 * Returns 1 if the page is mapped into the page tables of the VMA, 0 645 * if the page is not mapped into the page tables of this VMA. Only 646 * valid for normal file or anonymous VMAs. 647 */ 648 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 649 { 650 unsigned long address; 651 pte_t *pte; 652 spinlock_t *ptl; 653 654 address = __vma_address(page, vma); 655 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 656 return 0; 657 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 658 if (!pte) /* the page is not in this mm */ 659 return 0; 660 pte_unmap_unlock(pte, ptl); 661 662 return 1; 663 } 664 665 struct page_referenced_arg { 666 int mapcount; 667 int referenced; 668 unsigned long vm_flags; 669 struct mem_cgroup *memcg; 670 }; 671 /* 672 * arg: page_referenced_arg will be passed 673 */ 674 static int page_referenced_one(struct page *page, struct vm_area_struct *vma, 675 unsigned long address, void *arg) 676 { 677 struct mm_struct *mm = vma->vm_mm; 678 spinlock_t *ptl; 679 int referenced = 0; 680 struct page_referenced_arg *pra = arg; 681 682 if (unlikely(PageTransHuge(page))) { 683 pmd_t *pmd; 684 685 /* 686 * rmap might return false positives; we must filter 687 * these out using page_check_address_pmd(). 688 */ 689 pmd = page_check_address_pmd(page, mm, address, 690 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl); 691 if (!pmd) 692 return SWAP_AGAIN; 693 694 if (vma->vm_flags & VM_LOCKED) { 695 spin_unlock(ptl); 696 pra->vm_flags |= VM_LOCKED; 697 return SWAP_FAIL; /* To break the loop */ 698 } 699 700 /* go ahead even if the pmd is pmd_trans_splitting() */ 701 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 702 referenced++; 703 spin_unlock(ptl); 704 } else { 705 pte_t *pte; 706 707 /* 708 * rmap might return false positives; we must filter 709 * these out using page_check_address(). 710 */ 711 pte = page_check_address(page, mm, address, &ptl, 0); 712 if (!pte) 713 return SWAP_AGAIN; 714 715 if (vma->vm_flags & VM_LOCKED) { 716 pte_unmap_unlock(pte, ptl); 717 pra->vm_flags |= VM_LOCKED; 718 return SWAP_FAIL; /* To break the loop */ 719 } 720 721 if (ptep_clear_flush_young_notify(vma, address, pte)) { 722 /* 723 * Don't treat a reference through a sequentially read 724 * mapping as such. If the page has been used in 725 * another mapping, we will catch it; if this other 726 * mapping is already gone, the unmap path will have 727 * set PG_referenced or activated the page. 728 */ 729 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 730 referenced++; 731 } 732 pte_unmap_unlock(pte, ptl); 733 } 734 735 if (referenced) { 736 pra->referenced++; 737 pra->vm_flags |= vma->vm_flags; 738 } 739 740 pra->mapcount--; 741 if (!pra->mapcount) 742 return SWAP_SUCCESS; /* To break the loop */ 743 744 return SWAP_AGAIN; 745 } 746 747 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 748 { 749 struct page_referenced_arg *pra = arg; 750 struct mem_cgroup *memcg = pra->memcg; 751 752 if (!mm_match_cgroup(vma->vm_mm, memcg)) 753 return true; 754 755 return false; 756 } 757 758 /** 759 * page_referenced - test if the page was referenced 760 * @page: the page to test 761 * @is_locked: caller holds lock on the page 762 * @memcg: target memory cgroup 763 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 764 * 765 * Quick test_and_clear_referenced for all mappings to a page, 766 * returns the number of ptes which referenced the page. 767 */ 768 int page_referenced(struct page *page, 769 int is_locked, 770 struct mem_cgroup *memcg, 771 unsigned long *vm_flags) 772 { 773 int ret; 774 int we_locked = 0; 775 struct page_referenced_arg pra = { 776 .mapcount = page_mapcount(page), 777 .memcg = memcg, 778 }; 779 struct rmap_walk_control rwc = { 780 .rmap_one = page_referenced_one, 781 .arg = (void *)&pra, 782 .anon_lock = page_lock_anon_vma_read, 783 }; 784 785 *vm_flags = 0; 786 if (!page_mapped(page)) 787 return 0; 788 789 if (!page_rmapping(page)) 790 return 0; 791 792 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 793 we_locked = trylock_page(page); 794 if (!we_locked) 795 return 1; 796 } 797 798 /* 799 * If we are reclaiming on behalf of a cgroup, skip 800 * counting on behalf of references from different 801 * cgroups 802 */ 803 if (memcg) { 804 rwc.invalid_vma = invalid_page_referenced_vma; 805 } 806 807 ret = rmap_walk(page, &rwc); 808 *vm_flags = pra.vm_flags; 809 810 if (we_locked) 811 unlock_page(page); 812 813 return pra.referenced; 814 } 815 816 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 817 unsigned long address, void *arg) 818 { 819 struct mm_struct *mm = vma->vm_mm; 820 pte_t *pte; 821 spinlock_t *ptl; 822 int ret = 0; 823 int *cleaned = arg; 824 825 pte = page_check_address(page, mm, address, &ptl, 1); 826 if (!pte) 827 goto out; 828 829 if (pte_dirty(*pte) || pte_write(*pte)) { 830 pte_t entry; 831 832 flush_cache_page(vma, address, pte_pfn(*pte)); 833 entry = ptep_clear_flush(vma, address, pte); 834 entry = pte_wrprotect(entry); 835 entry = pte_mkclean(entry); 836 set_pte_at(mm, address, pte, entry); 837 ret = 1; 838 } 839 840 pte_unmap_unlock(pte, ptl); 841 842 if (ret) { 843 mmu_notifier_invalidate_page(mm, address); 844 (*cleaned)++; 845 } 846 out: 847 return SWAP_AGAIN; 848 } 849 850 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 851 { 852 if (vma->vm_flags & VM_SHARED) 853 return false; 854 855 return true; 856 } 857 858 int page_mkclean(struct page *page) 859 { 860 int cleaned = 0; 861 struct address_space *mapping; 862 struct rmap_walk_control rwc = { 863 .arg = (void *)&cleaned, 864 .rmap_one = page_mkclean_one, 865 .invalid_vma = invalid_mkclean_vma, 866 }; 867 868 BUG_ON(!PageLocked(page)); 869 870 if (!page_mapped(page)) 871 return 0; 872 873 mapping = page_mapping(page); 874 if (!mapping) 875 return 0; 876 877 rmap_walk(page, &rwc); 878 879 return cleaned; 880 } 881 EXPORT_SYMBOL_GPL(page_mkclean); 882 883 /** 884 * page_move_anon_rmap - move a page to our anon_vma 885 * @page: the page to move to our anon_vma 886 * @vma: the vma the page belongs to 887 * @address: the user virtual address mapped 888 * 889 * When a page belongs exclusively to one process after a COW event, 890 * that page can be moved into the anon_vma that belongs to just that 891 * process, so the rmap code will not search the parent or sibling 892 * processes. 893 */ 894 void page_move_anon_rmap(struct page *page, 895 struct vm_area_struct *vma, unsigned long address) 896 { 897 struct anon_vma *anon_vma = vma->anon_vma; 898 899 VM_BUG_ON_PAGE(!PageLocked(page), page); 900 VM_BUG_ON_VMA(!anon_vma, vma); 901 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page); 902 903 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 904 page->mapping = (struct address_space *) anon_vma; 905 } 906 907 /** 908 * __page_set_anon_rmap - set up new anonymous rmap 909 * @page: Page to add to rmap 910 * @vma: VM area to add page to. 911 * @address: User virtual address of the mapping 912 * @exclusive: the page is exclusively owned by the current process 913 */ 914 static void __page_set_anon_rmap(struct page *page, 915 struct vm_area_struct *vma, unsigned long address, int exclusive) 916 { 917 struct anon_vma *anon_vma = vma->anon_vma; 918 919 BUG_ON(!anon_vma); 920 921 if (PageAnon(page)) 922 return; 923 924 /* 925 * If the page isn't exclusively mapped into this vma, 926 * we must use the _oldest_ possible anon_vma for the 927 * page mapping! 928 */ 929 if (!exclusive) 930 anon_vma = anon_vma->root; 931 932 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 933 page->mapping = (struct address_space *) anon_vma; 934 page->index = linear_page_index(vma, address); 935 } 936 937 /** 938 * __page_check_anon_rmap - sanity check anonymous rmap addition 939 * @page: the page to add the mapping to 940 * @vma: the vm area in which the mapping is added 941 * @address: the user virtual address mapped 942 */ 943 static void __page_check_anon_rmap(struct page *page, 944 struct vm_area_struct *vma, unsigned long address) 945 { 946 #ifdef CONFIG_DEBUG_VM 947 /* 948 * The page's anon-rmap details (mapping and index) are guaranteed to 949 * be set up correctly at this point. 950 * 951 * We have exclusion against page_add_anon_rmap because the caller 952 * always holds the page locked, except if called from page_dup_rmap, 953 * in which case the page is already known to be setup. 954 * 955 * We have exclusion against page_add_new_anon_rmap because those pages 956 * are initially only visible via the pagetables, and the pte is locked 957 * over the call to page_add_new_anon_rmap. 958 */ 959 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 960 BUG_ON(page->index != linear_page_index(vma, address)); 961 #endif 962 } 963 964 /** 965 * page_add_anon_rmap - add pte mapping to an anonymous page 966 * @page: the page to add the mapping to 967 * @vma: the vm area in which the mapping is added 968 * @address: the user virtual address mapped 969 * 970 * The caller needs to hold the pte lock, and the page must be locked in 971 * the anon_vma case: to serialize mapping,index checking after setting, 972 * and to ensure that PageAnon is not being upgraded racily to PageKsm 973 * (but PageKsm is never downgraded to PageAnon). 974 */ 975 void page_add_anon_rmap(struct page *page, 976 struct vm_area_struct *vma, unsigned long address) 977 { 978 do_page_add_anon_rmap(page, vma, address, 0); 979 } 980 981 /* 982 * Special version of the above for do_swap_page, which often runs 983 * into pages that are exclusively owned by the current process. 984 * Everybody else should continue to use page_add_anon_rmap above. 985 */ 986 void do_page_add_anon_rmap(struct page *page, 987 struct vm_area_struct *vma, unsigned long address, int exclusive) 988 { 989 int first = atomic_inc_and_test(&page->_mapcount); 990 if (first) { 991 /* 992 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 993 * these counters are not modified in interrupt context, and 994 * pte lock(a spinlock) is held, which implies preemption 995 * disabled. 996 */ 997 if (PageTransHuge(page)) 998 __inc_zone_page_state(page, 999 NR_ANON_TRANSPARENT_HUGEPAGES); 1000 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1001 hpage_nr_pages(page)); 1002 } 1003 if (unlikely(PageKsm(page))) 1004 return; 1005 1006 VM_BUG_ON_PAGE(!PageLocked(page), page); 1007 /* address might be in next vma when migration races vma_adjust */ 1008 if (first) 1009 __page_set_anon_rmap(page, vma, address, exclusive); 1010 else 1011 __page_check_anon_rmap(page, vma, address); 1012 } 1013 1014 /** 1015 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1016 * @page: the page to add the mapping to 1017 * @vma: the vm area in which the mapping is added 1018 * @address: the user virtual address mapped 1019 * 1020 * Same as page_add_anon_rmap but must only be called on *new* pages. 1021 * This means the inc-and-test can be bypassed. 1022 * Page does not have to be locked. 1023 */ 1024 void page_add_new_anon_rmap(struct page *page, 1025 struct vm_area_struct *vma, unsigned long address) 1026 { 1027 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1028 SetPageSwapBacked(page); 1029 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1030 if (PageTransHuge(page)) 1031 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1032 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1033 hpage_nr_pages(page)); 1034 __page_set_anon_rmap(page, vma, address, 1); 1035 } 1036 1037 /** 1038 * page_add_file_rmap - add pte mapping to a file page 1039 * @page: the page to add the mapping to 1040 * 1041 * The caller needs to hold the pte lock. 1042 */ 1043 void page_add_file_rmap(struct page *page) 1044 { 1045 bool locked; 1046 unsigned long flags; 1047 1048 mem_cgroup_begin_update_page_stat(page, &locked, &flags); 1049 if (atomic_inc_and_test(&page->_mapcount)) { 1050 __inc_zone_page_state(page, NR_FILE_MAPPED); 1051 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); 1052 } 1053 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1054 } 1055 1056 /** 1057 * page_remove_rmap - take down pte mapping from a page 1058 * @page: page to remove mapping from 1059 * 1060 * The caller needs to hold the pte lock. 1061 */ 1062 void page_remove_rmap(struct page *page) 1063 { 1064 bool anon = PageAnon(page); 1065 bool locked; 1066 unsigned long flags; 1067 1068 /* 1069 * The anon case has no mem_cgroup page_stat to update; but may 1070 * uncharge_page() below, where the lock ordering can deadlock if 1071 * we hold the lock against page_stat move: so avoid it on anon. 1072 */ 1073 if (!anon) 1074 mem_cgroup_begin_update_page_stat(page, &locked, &flags); 1075 1076 /* page still mapped by someone else? */ 1077 if (!atomic_add_negative(-1, &page->_mapcount)) 1078 goto out; 1079 1080 /* 1081 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 1082 * and not charged by memcg for now. 1083 * 1084 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1085 * these counters are not modified in interrupt context, and 1086 * these counters are not modified in interrupt context, and 1087 * pte lock(a spinlock) is held, which implies preemption disabled. 1088 */ 1089 if (unlikely(PageHuge(page))) 1090 goto out; 1091 if (anon) { 1092 if (PageTransHuge(page)) 1093 __dec_zone_page_state(page, 1094 NR_ANON_TRANSPARENT_HUGEPAGES); 1095 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1096 -hpage_nr_pages(page)); 1097 } else { 1098 __dec_zone_page_state(page, NR_FILE_MAPPED); 1099 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); 1100 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1101 } 1102 if (unlikely(PageMlocked(page))) 1103 clear_page_mlock(page); 1104 /* 1105 * It would be tidy to reset the PageAnon mapping here, 1106 * but that might overwrite a racing page_add_anon_rmap 1107 * which increments mapcount after us but sets mapping 1108 * before us: so leave the reset to free_hot_cold_page, 1109 * and remember that it's only reliable while mapped. 1110 * Leaving it set also helps swapoff to reinstate ptes 1111 * faster for those pages still in swapcache. 1112 */ 1113 return; 1114 out: 1115 if (!anon) 1116 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1117 } 1118 1119 /* 1120 * @arg: enum ttu_flags will be passed to this argument 1121 */ 1122 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1123 unsigned long address, void *arg) 1124 { 1125 struct mm_struct *mm = vma->vm_mm; 1126 pte_t *pte; 1127 pte_t pteval; 1128 spinlock_t *ptl; 1129 int ret = SWAP_AGAIN; 1130 enum ttu_flags flags = (enum ttu_flags)arg; 1131 1132 pte = page_check_address(page, mm, address, &ptl, 0); 1133 if (!pte) 1134 goto out; 1135 1136 /* 1137 * If the page is mlock()d, we cannot swap it out. 1138 * If it's recently referenced (perhaps page_referenced 1139 * skipped over this mm) then we should reactivate it. 1140 */ 1141 if (!(flags & TTU_IGNORE_MLOCK)) { 1142 if (vma->vm_flags & VM_LOCKED) 1143 goto out_mlock; 1144 1145 if (flags & TTU_MUNLOCK) 1146 goto out_unmap; 1147 } 1148 if (!(flags & TTU_IGNORE_ACCESS)) { 1149 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1150 ret = SWAP_FAIL; 1151 goto out_unmap; 1152 } 1153 } 1154 1155 /* Nuke the page table entry. */ 1156 flush_cache_page(vma, address, page_to_pfn(page)); 1157 pteval = ptep_clear_flush(vma, address, pte); 1158 1159 /* Move the dirty bit to the physical page now the pte is gone. */ 1160 if (pte_dirty(pteval)) 1161 set_page_dirty(page); 1162 1163 /* Update high watermark before we lower rss */ 1164 update_hiwater_rss(mm); 1165 1166 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1167 if (!PageHuge(page)) { 1168 if (PageAnon(page)) 1169 dec_mm_counter(mm, MM_ANONPAGES); 1170 else 1171 dec_mm_counter(mm, MM_FILEPAGES); 1172 } 1173 set_pte_at(mm, address, pte, 1174 swp_entry_to_pte(make_hwpoison_entry(page))); 1175 } else if (pte_unused(pteval)) { 1176 /* 1177 * The guest indicated that the page content is of no 1178 * interest anymore. Simply discard the pte, vmscan 1179 * will take care of the rest. 1180 */ 1181 if (PageAnon(page)) 1182 dec_mm_counter(mm, MM_ANONPAGES); 1183 else 1184 dec_mm_counter(mm, MM_FILEPAGES); 1185 } else if (PageAnon(page)) { 1186 swp_entry_t entry = { .val = page_private(page) }; 1187 pte_t swp_pte; 1188 1189 if (PageSwapCache(page)) { 1190 /* 1191 * Store the swap location in the pte. 1192 * See handle_pte_fault() ... 1193 */ 1194 if (swap_duplicate(entry) < 0) { 1195 set_pte_at(mm, address, pte, pteval); 1196 ret = SWAP_FAIL; 1197 goto out_unmap; 1198 } 1199 if (list_empty(&mm->mmlist)) { 1200 spin_lock(&mmlist_lock); 1201 if (list_empty(&mm->mmlist)) 1202 list_add(&mm->mmlist, &init_mm.mmlist); 1203 spin_unlock(&mmlist_lock); 1204 } 1205 dec_mm_counter(mm, MM_ANONPAGES); 1206 inc_mm_counter(mm, MM_SWAPENTS); 1207 } else if (IS_ENABLED(CONFIG_MIGRATION)) { 1208 /* 1209 * Store the pfn of the page in a special migration 1210 * pte. do_swap_page() will wait until the migration 1211 * pte is removed and then restart fault handling. 1212 */ 1213 BUG_ON(!(flags & TTU_MIGRATION)); 1214 entry = make_migration_entry(page, pte_write(pteval)); 1215 } 1216 swp_pte = swp_entry_to_pte(entry); 1217 if (pte_soft_dirty(pteval)) 1218 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1219 set_pte_at(mm, address, pte, swp_pte); 1220 BUG_ON(pte_file(*pte)); 1221 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1222 (flags & TTU_MIGRATION)) { 1223 /* Establish migration entry for a file page */ 1224 swp_entry_t entry; 1225 entry = make_migration_entry(page, pte_write(pteval)); 1226 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1227 } else 1228 dec_mm_counter(mm, MM_FILEPAGES); 1229 1230 page_remove_rmap(page); 1231 page_cache_release(page); 1232 1233 out_unmap: 1234 pte_unmap_unlock(pte, ptl); 1235 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK)) 1236 mmu_notifier_invalidate_page(mm, address); 1237 out: 1238 return ret; 1239 1240 out_mlock: 1241 pte_unmap_unlock(pte, ptl); 1242 1243 1244 /* 1245 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1246 * unstable result and race. Plus, We can't wait here because 1247 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex. 1248 * if trylock failed, the page remain in evictable lru and later 1249 * vmscan could retry to move the page to unevictable lru if the 1250 * page is actually mlocked. 1251 */ 1252 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1253 if (vma->vm_flags & VM_LOCKED) { 1254 mlock_vma_page(page); 1255 ret = SWAP_MLOCK; 1256 } 1257 up_read(&vma->vm_mm->mmap_sem); 1258 } 1259 return ret; 1260 } 1261 1262 /* 1263 * objrmap doesn't work for nonlinear VMAs because the assumption that 1264 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1265 * Consequently, given a particular page and its ->index, we cannot locate the 1266 * ptes which are mapping that page without an exhaustive linear search. 1267 * 1268 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1269 * maps the file to which the target page belongs. The ->vm_private_data field 1270 * holds the current cursor into that scan. Successive searches will circulate 1271 * around the vma's virtual address space. 1272 * 1273 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1274 * more scanning pressure is placed against them as well. Eventually pages 1275 * will become fully unmapped and are eligible for eviction. 1276 * 1277 * For very sparsely populated VMAs this is a little inefficient - chances are 1278 * there there won't be many ptes located within the scan cluster. In this case 1279 * maybe we could scan further - to the end of the pte page, perhaps. 1280 * 1281 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1282 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1283 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1284 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1285 */ 1286 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1287 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1288 1289 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1290 struct vm_area_struct *vma, struct page *check_page) 1291 { 1292 struct mm_struct *mm = vma->vm_mm; 1293 pmd_t *pmd; 1294 pte_t *pte; 1295 pte_t pteval; 1296 spinlock_t *ptl; 1297 struct page *page; 1298 unsigned long address; 1299 unsigned long mmun_start; /* For mmu_notifiers */ 1300 unsigned long mmun_end; /* For mmu_notifiers */ 1301 unsigned long end; 1302 int ret = SWAP_AGAIN; 1303 int locked_vma = 0; 1304 1305 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1306 end = address + CLUSTER_SIZE; 1307 if (address < vma->vm_start) 1308 address = vma->vm_start; 1309 if (end > vma->vm_end) 1310 end = vma->vm_end; 1311 1312 pmd = mm_find_pmd(mm, address); 1313 if (!pmd) 1314 return ret; 1315 1316 mmun_start = address; 1317 mmun_end = end; 1318 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1319 1320 /* 1321 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1322 * keep the sem while scanning the cluster for mlocking pages. 1323 */ 1324 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1325 locked_vma = (vma->vm_flags & VM_LOCKED); 1326 if (!locked_vma) 1327 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1328 } 1329 1330 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1331 1332 /* Update high watermark before we lower rss */ 1333 update_hiwater_rss(mm); 1334 1335 for (; address < end; pte++, address += PAGE_SIZE) { 1336 if (!pte_present(*pte)) 1337 continue; 1338 page = vm_normal_page(vma, address, *pte); 1339 BUG_ON(!page || PageAnon(page)); 1340 1341 if (locked_vma) { 1342 if (page == check_page) { 1343 /* we know we have check_page locked */ 1344 mlock_vma_page(page); 1345 ret = SWAP_MLOCK; 1346 } else if (trylock_page(page)) { 1347 /* 1348 * If we can lock the page, perform mlock. 1349 * Otherwise leave the page alone, it will be 1350 * eventually encountered again later. 1351 */ 1352 mlock_vma_page(page); 1353 unlock_page(page); 1354 } 1355 continue; /* don't unmap */ 1356 } 1357 1358 /* 1359 * No need for _notify because we're within an 1360 * mmu_notifier_invalidate_range_ {start|end} scope. 1361 */ 1362 if (ptep_clear_flush_young(vma, address, pte)) 1363 continue; 1364 1365 /* Nuke the page table entry. */ 1366 flush_cache_page(vma, address, pte_pfn(*pte)); 1367 pteval = ptep_clear_flush(vma, address, pte); 1368 1369 /* If nonlinear, store the file page offset in the pte. */ 1370 if (page->index != linear_page_index(vma, address)) { 1371 pte_t ptfile = pgoff_to_pte(page->index); 1372 if (pte_soft_dirty(pteval)) 1373 ptfile = pte_file_mksoft_dirty(ptfile); 1374 set_pte_at(mm, address, pte, ptfile); 1375 } 1376 1377 /* Move the dirty bit to the physical page now the pte is gone. */ 1378 if (pte_dirty(pteval)) 1379 set_page_dirty(page); 1380 1381 page_remove_rmap(page); 1382 page_cache_release(page); 1383 dec_mm_counter(mm, MM_FILEPAGES); 1384 (*mapcount)--; 1385 } 1386 pte_unmap_unlock(pte - 1, ptl); 1387 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1388 if (locked_vma) 1389 up_read(&vma->vm_mm->mmap_sem); 1390 return ret; 1391 } 1392 1393 static int try_to_unmap_nonlinear(struct page *page, 1394 struct address_space *mapping, void *arg) 1395 { 1396 struct vm_area_struct *vma; 1397 int ret = SWAP_AGAIN; 1398 unsigned long cursor; 1399 unsigned long max_nl_cursor = 0; 1400 unsigned long max_nl_size = 0; 1401 unsigned int mapcount; 1402 1403 list_for_each_entry(vma, 1404 &mapping->i_mmap_nonlinear, shared.nonlinear) { 1405 1406 cursor = (unsigned long) vma->vm_private_data; 1407 if (cursor > max_nl_cursor) 1408 max_nl_cursor = cursor; 1409 cursor = vma->vm_end - vma->vm_start; 1410 if (cursor > max_nl_size) 1411 max_nl_size = cursor; 1412 } 1413 1414 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1415 return SWAP_FAIL; 1416 } 1417 1418 /* 1419 * We don't try to search for this page in the nonlinear vmas, 1420 * and page_referenced wouldn't have found it anyway. Instead 1421 * just walk the nonlinear vmas trying to age and unmap some. 1422 * The mapcount of the page we came in with is irrelevant, 1423 * but even so use it as a guide to how hard we should try? 1424 */ 1425 mapcount = page_mapcount(page); 1426 if (!mapcount) 1427 return ret; 1428 1429 cond_resched(); 1430 1431 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1432 if (max_nl_cursor == 0) 1433 max_nl_cursor = CLUSTER_SIZE; 1434 1435 do { 1436 list_for_each_entry(vma, 1437 &mapping->i_mmap_nonlinear, shared.nonlinear) { 1438 1439 cursor = (unsigned long) vma->vm_private_data; 1440 while (cursor < max_nl_cursor && 1441 cursor < vma->vm_end - vma->vm_start) { 1442 if (try_to_unmap_cluster(cursor, &mapcount, 1443 vma, page) == SWAP_MLOCK) 1444 ret = SWAP_MLOCK; 1445 cursor += CLUSTER_SIZE; 1446 vma->vm_private_data = (void *) cursor; 1447 if ((int)mapcount <= 0) 1448 return ret; 1449 } 1450 vma->vm_private_data = (void *) max_nl_cursor; 1451 } 1452 cond_resched(); 1453 max_nl_cursor += CLUSTER_SIZE; 1454 } while (max_nl_cursor <= max_nl_size); 1455 1456 /* 1457 * Don't loop forever (perhaps all the remaining pages are 1458 * in locked vmas). Reset cursor on all unreserved nonlinear 1459 * vmas, now forgetting on which ones it had fallen behind. 1460 */ 1461 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear) 1462 vma->vm_private_data = NULL; 1463 1464 return ret; 1465 } 1466 1467 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1468 { 1469 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1470 1471 if (!maybe_stack) 1472 return false; 1473 1474 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1475 VM_STACK_INCOMPLETE_SETUP) 1476 return true; 1477 1478 return false; 1479 } 1480 1481 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1482 { 1483 return is_vma_temporary_stack(vma); 1484 } 1485 1486 static int page_not_mapped(struct page *page) 1487 { 1488 return !page_mapped(page); 1489 }; 1490 1491 /** 1492 * try_to_unmap - try to remove all page table mappings to a page 1493 * @page: the page to get unmapped 1494 * @flags: action and flags 1495 * 1496 * Tries to remove all the page table entries which are mapping this 1497 * page, used in the pageout path. Caller must hold the page lock. 1498 * Return values are: 1499 * 1500 * SWAP_SUCCESS - we succeeded in removing all mappings 1501 * SWAP_AGAIN - we missed a mapping, try again later 1502 * SWAP_FAIL - the page is unswappable 1503 * SWAP_MLOCK - page is mlocked. 1504 */ 1505 int try_to_unmap(struct page *page, enum ttu_flags flags) 1506 { 1507 int ret; 1508 struct rmap_walk_control rwc = { 1509 .rmap_one = try_to_unmap_one, 1510 .arg = (void *)flags, 1511 .done = page_not_mapped, 1512 .file_nonlinear = try_to_unmap_nonlinear, 1513 .anon_lock = page_lock_anon_vma_read, 1514 }; 1515 1516 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page); 1517 1518 /* 1519 * During exec, a temporary VMA is setup and later moved. 1520 * The VMA is moved under the anon_vma lock but not the 1521 * page tables leading to a race where migration cannot 1522 * find the migration ptes. Rather than increasing the 1523 * locking requirements of exec(), migration skips 1524 * temporary VMAs until after exec() completes. 1525 */ 1526 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) 1527 rwc.invalid_vma = invalid_migration_vma; 1528 1529 ret = rmap_walk(page, &rwc); 1530 1531 if (ret != SWAP_MLOCK && !page_mapped(page)) 1532 ret = SWAP_SUCCESS; 1533 return ret; 1534 } 1535 1536 /** 1537 * try_to_munlock - try to munlock a page 1538 * @page: the page to be munlocked 1539 * 1540 * Called from munlock code. Checks all of the VMAs mapping the page 1541 * to make sure nobody else has this page mlocked. The page will be 1542 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1543 * 1544 * Return values are: 1545 * 1546 * SWAP_AGAIN - no vma is holding page mlocked, or, 1547 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1548 * SWAP_FAIL - page cannot be located at present 1549 * SWAP_MLOCK - page is now mlocked. 1550 */ 1551 int try_to_munlock(struct page *page) 1552 { 1553 int ret; 1554 struct rmap_walk_control rwc = { 1555 .rmap_one = try_to_unmap_one, 1556 .arg = (void *)TTU_MUNLOCK, 1557 .done = page_not_mapped, 1558 /* 1559 * We don't bother to try to find the munlocked page in 1560 * nonlinears. It's costly. Instead, later, page reclaim logic 1561 * may call try_to_unmap() and recover PG_mlocked lazily. 1562 */ 1563 .file_nonlinear = NULL, 1564 .anon_lock = page_lock_anon_vma_read, 1565 1566 }; 1567 1568 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 1569 1570 ret = rmap_walk(page, &rwc); 1571 return ret; 1572 } 1573 1574 void __put_anon_vma(struct anon_vma *anon_vma) 1575 { 1576 struct anon_vma *root = anon_vma->root; 1577 1578 anon_vma_free(anon_vma); 1579 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1580 anon_vma_free(root); 1581 } 1582 1583 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 1584 struct rmap_walk_control *rwc) 1585 { 1586 struct anon_vma *anon_vma; 1587 1588 if (rwc->anon_lock) 1589 return rwc->anon_lock(page); 1590 1591 /* 1592 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1593 * because that depends on page_mapped(); but not all its usages 1594 * are holding mmap_sem. Users without mmap_sem are required to 1595 * take a reference count to prevent the anon_vma disappearing 1596 */ 1597 anon_vma = page_anon_vma(page); 1598 if (!anon_vma) 1599 return NULL; 1600 1601 anon_vma_lock_read(anon_vma); 1602 return anon_vma; 1603 } 1604 1605 /* 1606 * rmap_walk_anon - do something to anonymous page using the object-based 1607 * rmap method 1608 * @page: the page to be handled 1609 * @rwc: control variable according to each walk type 1610 * 1611 * Find all the mappings of a page using the mapping pointer and the vma chains 1612 * contained in the anon_vma struct it points to. 1613 * 1614 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1615 * where the page was found will be held for write. So, we won't recheck 1616 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1617 * LOCKED. 1618 */ 1619 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc) 1620 { 1621 struct anon_vma *anon_vma; 1622 pgoff_t pgoff = page_to_pgoff(page); 1623 struct anon_vma_chain *avc; 1624 int ret = SWAP_AGAIN; 1625 1626 anon_vma = rmap_walk_anon_lock(page, rwc); 1627 if (!anon_vma) 1628 return ret; 1629 1630 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1631 struct vm_area_struct *vma = avc->vma; 1632 unsigned long address = vma_address(page, vma); 1633 1634 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1635 continue; 1636 1637 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1638 if (ret != SWAP_AGAIN) 1639 break; 1640 if (rwc->done && rwc->done(page)) 1641 break; 1642 } 1643 anon_vma_unlock_read(anon_vma); 1644 return ret; 1645 } 1646 1647 /* 1648 * rmap_walk_file - do something to file page using the object-based rmap method 1649 * @page: the page to be handled 1650 * @rwc: control variable according to each walk type 1651 * 1652 * Find all the mappings of a page using the mapping pointer and the vma chains 1653 * contained in the address_space struct it points to. 1654 * 1655 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1656 * where the page was found will be held for write. So, we won't recheck 1657 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1658 * LOCKED. 1659 */ 1660 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc) 1661 { 1662 struct address_space *mapping = page->mapping; 1663 pgoff_t pgoff = page_to_pgoff(page); 1664 struct vm_area_struct *vma; 1665 int ret = SWAP_AGAIN; 1666 1667 /* 1668 * The page lock not only makes sure that page->mapping cannot 1669 * suddenly be NULLified by truncation, it makes sure that the 1670 * structure at mapping cannot be freed and reused yet, 1671 * so we can safely take mapping->i_mmap_mutex. 1672 */ 1673 VM_BUG_ON_PAGE(!PageLocked(page), page); 1674 1675 if (!mapping) 1676 return ret; 1677 mutex_lock(&mapping->i_mmap_mutex); 1678 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1679 unsigned long address = vma_address(page, vma); 1680 1681 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1682 continue; 1683 1684 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1685 if (ret != SWAP_AGAIN) 1686 goto done; 1687 if (rwc->done && rwc->done(page)) 1688 goto done; 1689 } 1690 1691 if (!rwc->file_nonlinear) 1692 goto done; 1693 1694 if (list_empty(&mapping->i_mmap_nonlinear)) 1695 goto done; 1696 1697 ret = rwc->file_nonlinear(page, mapping, rwc->arg); 1698 1699 done: 1700 mutex_unlock(&mapping->i_mmap_mutex); 1701 return ret; 1702 } 1703 1704 int rmap_walk(struct page *page, struct rmap_walk_control *rwc) 1705 { 1706 if (unlikely(PageKsm(page))) 1707 return rmap_walk_ksm(page, rwc); 1708 else if (PageAnon(page)) 1709 return rmap_walk_anon(page, rwc); 1710 else 1711 return rmap_walk_file(page, rwc); 1712 } 1713 1714 #ifdef CONFIG_HUGETLB_PAGE 1715 /* 1716 * The following three functions are for anonymous (private mapped) hugepages. 1717 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1718 * and no lru code, because we handle hugepages differently from common pages. 1719 */ 1720 static void __hugepage_set_anon_rmap(struct page *page, 1721 struct vm_area_struct *vma, unsigned long address, int exclusive) 1722 { 1723 struct anon_vma *anon_vma = vma->anon_vma; 1724 1725 BUG_ON(!anon_vma); 1726 1727 if (PageAnon(page)) 1728 return; 1729 if (!exclusive) 1730 anon_vma = anon_vma->root; 1731 1732 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1733 page->mapping = (struct address_space *) anon_vma; 1734 page->index = linear_page_index(vma, address); 1735 } 1736 1737 void hugepage_add_anon_rmap(struct page *page, 1738 struct vm_area_struct *vma, unsigned long address) 1739 { 1740 struct anon_vma *anon_vma = vma->anon_vma; 1741 int first; 1742 1743 BUG_ON(!PageLocked(page)); 1744 BUG_ON(!anon_vma); 1745 /* address might be in next vma when migration races vma_adjust */ 1746 first = atomic_inc_and_test(&page->_mapcount); 1747 if (first) 1748 __hugepage_set_anon_rmap(page, vma, address, 0); 1749 } 1750 1751 void hugepage_add_new_anon_rmap(struct page *page, 1752 struct vm_area_struct *vma, unsigned long address) 1753 { 1754 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1755 atomic_set(&page->_mapcount, 0); 1756 __hugepage_set_anon_rmap(page, vma, address, 1); 1757 } 1758 #endif /* CONFIG_HUGETLB_PAGE */ 1759