xref: /openbmc/linux/mm/rmap.c (revision 2f0754f2)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       page->flags PG_locked (lock_page)   * (see hugetlbfs below)
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28  *           mapping->i_mmap_rwsem
29  *             hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30  *             anon_vma->rwsem
31  *               mm->page_table_lock or pte_lock
32  *                 swap_lock (in swap_duplicate, swap_info_get)
33  *                   mmlist_lock (in mmput, drain_mmlist and others)
34  *                   mapping->private_lock (in __set_page_dirty_buffers)
35  *                     lock_page_memcg move_lock (in __set_page_dirty_buffers)
36  *                       i_pages lock (widely used)
37  *                         lruvec->lru_lock (in folio_lruvec_lock_irq)
38  *                   inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39  *                   bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40  *                     sb_lock (within inode_lock in fs/fs-writeback.c)
41  *                     i_pages lock (widely used, in set_page_dirty,
42  *                               in arch-dependent flush_dcache_mmap_lock,
43  *                               within bdi.wb->list_lock in __sync_single_inode)
44  *
45  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
46  *   ->tasklist_lock
47  *     pte map lock
48  *
49  * * hugetlbfs PageHuge() pages take locks in this order:
50  *         mapping->i_mmap_rwsem
51  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52  *             page->flags PG_locked (lock_page)
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 
77 #include <asm/tlbflush.h>
78 
79 #include <trace/events/tlb.h>
80 
81 #include "internal.h"
82 
83 static struct kmem_cache *anon_vma_cachep;
84 static struct kmem_cache *anon_vma_chain_cachep;
85 
86 static inline struct anon_vma *anon_vma_alloc(void)
87 {
88 	struct anon_vma *anon_vma;
89 
90 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
91 	if (anon_vma) {
92 		atomic_set(&anon_vma->refcount, 1);
93 		anon_vma->degree = 1;	/* Reference for first vma */
94 		anon_vma->parent = anon_vma;
95 		/*
96 		 * Initialise the anon_vma root to point to itself. If called
97 		 * from fork, the root will be reset to the parents anon_vma.
98 		 */
99 		anon_vma->root = anon_vma;
100 	}
101 
102 	return anon_vma;
103 }
104 
105 static inline void anon_vma_free(struct anon_vma *anon_vma)
106 {
107 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
108 
109 	/*
110 	 * Synchronize against page_lock_anon_vma_read() such that
111 	 * we can safely hold the lock without the anon_vma getting
112 	 * freed.
113 	 *
114 	 * Relies on the full mb implied by the atomic_dec_and_test() from
115 	 * put_anon_vma() against the acquire barrier implied by
116 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
117 	 *
118 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
119 	 *   down_read_trylock()		  atomic_dec_and_test()
120 	 *   LOCK				  MB
121 	 *   atomic_read()			  rwsem_is_locked()
122 	 *
123 	 * LOCK should suffice since the actual taking of the lock must
124 	 * happen _before_ what follows.
125 	 */
126 	might_sleep();
127 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
128 		anon_vma_lock_write(anon_vma);
129 		anon_vma_unlock_write(anon_vma);
130 	}
131 
132 	kmem_cache_free(anon_vma_cachep, anon_vma);
133 }
134 
135 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
136 {
137 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
138 }
139 
140 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
141 {
142 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
143 }
144 
145 static void anon_vma_chain_link(struct vm_area_struct *vma,
146 				struct anon_vma_chain *avc,
147 				struct anon_vma *anon_vma)
148 {
149 	avc->vma = vma;
150 	avc->anon_vma = anon_vma;
151 	list_add(&avc->same_vma, &vma->anon_vma_chain);
152 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
153 }
154 
155 /**
156  * __anon_vma_prepare - attach an anon_vma to a memory region
157  * @vma: the memory region in question
158  *
159  * This makes sure the memory mapping described by 'vma' has
160  * an 'anon_vma' attached to it, so that we can associate the
161  * anonymous pages mapped into it with that anon_vma.
162  *
163  * The common case will be that we already have one, which
164  * is handled inline by anon_vma_prepare(). But if
165  * not we either need to find an adjacent mapping that we
166  * can re-use the anon_vma from (very common when the only
167  * reason for splitting a vma has been mprotect()), or we
168  * allocate a new one.
169  *
170  * Anon-vma allocations are very subtle, because we may have
171  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
172  * and that may actually touch the rwsem even in the newly
173  * allocated vma (it depends on RCU to make sure that the
174  * anon_vma isn't actually destroyed).
175  *
176  * As a result, we need to do proper anon_vma locking even
177  * for the new allocation. At the same time, we do not want
178  * to do any locking for the common case of already having
179  * an anon_vma.
180  *
181  * This must be called with the mmap_lock held for reading.
182  */
183 int __anon_vma_prepare(struct vm_area_struct *vma)
184 {
185 	struct mm_struct *mm = vma->vm_mm;
186 	struct anon_vma *anon_vma, *allocated;
187 	struct anon_vma_chain *avc;
188 
189 	might_sleep();
190 
191 	avc = anon_vma_chain_alloc(GFP_KERNEL);
192 	if (!avc)
193 		goto out_enomem;
194 
195 	anon_vma = find_mergeable_anon_vma(vma);
196 	allocated = NULL;
197 	if (!anon_vma) {
198 		anon_vma = anon_vma_alloc();
199 		if (unlikely(!anon_vma))
200 			goto out_enomem_free_avc;
201 		allocated = anon_vma;
202 	}
203 
204 	anon_vma_lock_write(anon_vma);
205 	/* page_table_lock to protect against threads */
206 	spin_lock(&mm->page_table_lock);
207 	if (likely(!vma->anon_vma)) {
208 		vma->anon_vma = anon_vma;
209 		anon_vma_chain_link(vma, avc, anon_vma);
210 		/* vma reference or self-parent link for new root */
211 		anon_vma->degree++;
212 		allocated = NULL;
213 		avc = NULL;
214 	}
215 	spin_unlock(&mm->page_table_lock);
216 	anon_vma_unlock_write(anon_vma);
217 
218 	if (unlikely(allocated))
219 		put_anon_vma(allocated);
220 	if (unlikely(avc))
221 		anon_vma_chain_free(avc);
222 
223 	return 0;
224 
225  out_enomem_free_avc:
226 	anon_vma_chain_free(avc);
227  out_enomem:
228 	return -ENOMEM;
229 }
230 
231 /*
232  * This is a useful helper function for locking the anon_vma root as
233  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
234  * have the same vma.
235  *
236  * Such anon_vma's should have the same root, so you'd expect to see
237  * just a single mutex_lock for the whole traversal.
238  */
239 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
240 {
241 	struct anon_vma *new_root = anon_vma->root;
242 	if (new_root != root) {
243 		if (WARN_ON_ONCE(root))
244 			up_write(&root->rwsem);
245 		root = new_root;
246 		down_write(&root->rwsem);
247 	}
248 	return root;
249 }
250 
251 static inline void unlock_anon_vma_root(struct anon_vma *root)
252 {
253 	if (root)
254 		up_write(&root->rwsem);
255 }
256 
257 /*
258  * Attach the anon_vmas from src to dst.
259  * Returns 0 on success, -ENOMEM on failure.
260  *
261  * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
262  * anon_vma_fork(). The first three want an exact copy of src, while the last
263  * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
264  * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
265  * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
266  *
267  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
268  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
269  * This prevents degradation of anon_vma hierarchy to endless linear chain in
270  * case of constantly forking task. On the other hand, an anon_vma with more
271  * than one child isn't reused even if there was no alive vma, thus rmap
272  * walker has a good chance of avoiding scanning the whole hierarchy when it
273  * searches where page is mapped.
274  */
275 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
276 {
277 	struct anon_vma_chain *avc, *pavc;
278 	struct anon_vma *root = NULL;
279 
280 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
281 		struct anon_vma *anon_vma;
282 
283 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
284 		if (unlikely(!avc)) {
285 			unlock_anon_vma_root(root);
286 			root = NULL;
287 			avc = anon_vma_chain_alloc(GFP_KERNEL);
288 			if (!avc)
289 				goto enomem_failure;
290 		}
291 		anon_vma = pavc->anon_vma;
292 		root = lock_anon_vma_root(root, anon_vma);
293 		anon_vma_chain_link(dst, avc, anon_vma);
294 
295 		/*
296 		 * Reuse existing anon_vma if its degree lower than two,
297 		 * that means it has no vma and only one anon_vma child.
298 		 *
299 		 * Do not chose parent anon_vma, otherwise first child
300 		 * will always reuse it. Root anon_vma is never reused:
301 		 * it has self-parent reference and at least one child.
302 		 */
303 		if (!dst->anon_vma && src->anon_vma &&
304 		    anon_vma != src->anon_vma && anon_vma->degree < 2)
305 			dst->anon_vma = anon_vma;
306 	}
307 	if (dst->anon_vma)
308 		dst->anon_vma->degree++;
309 	unlock_anon_vma_root(root);
310 	return 0;
311 
312  enomem_failure:
313 	/*
314 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
315 	 * decremented in unlink_anon_vmas().
316 	 * We can safely do this because callers of anon_vma_clone() don't care
317 	 * about dst->anon_vma if anon_vma_clone() failed.
318 	 */
319 	dst->anon_vma = NULL;
320 	unlink_anon_vmas(dst);
321 	return -ENOMEM;
322 }
323 
324 /*
325  * Attach vma to its own anon_vma, as well as to the anon_vmas that
326  * the corresponding VMA in the parent process is attached to.
327  * Returns 0 on success, non-zero on failure.
328  */
329 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
330 {
331 	struct anon_vma_chain *avc;
332 	struct anon_vma *anon_vma;
333 	int error;
334 
335 	/* Don't bother if the parent process has no anon_vma here. */
336 	if (!pvma->anon_vma)
337 		return 0;
338 
339 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
340 	vma->anon_vma = NULL;
341 
342 	/*
343 	 * First, attach the new VMA to the parent VMA's anon_vmas,
344 	 * so rmap can find non-COWed pages in child processes.
345 	 */
346 	error = anon_vma_clone(vma, pvma);
347 	if (error)
348 		return error;
349 
350 	/* An existing anon_vma has been reused, all done then. */
351 	if (vma->anon_vma)
352 		return 0;
353 
354 	/* Then add our own anon_vma. */
355 	anon_vma = anon_vma_alloc();
356 	if (!anon_vma)
357 		goto out_error;
358 	avc = anon_vma_chain_alloc(GFP_KERNEL);
359 	if (!avc)
360 		goto out_error_free_anon_vma;
361 
362 	/*
363 	 * The root anon_vma's rwsem is the lock actually used when we
364 	 * lock any of the anon_vmas in this anon_vma tree.
365 	 */
366 	anon_vma->root = pvma->anon_vma->root;
367 	anon_vma->parent = pvma->anon_vma;
368 	/*
369 	 * With refcounts, an anon_vma can stay around longer than the
370 	 * process it belongs to. The root anon_vma needs to be pinned until
371 	 * this anon_vma is freed, because the lock lives in the root.
372 	 */
373 	get_anon_vma(anon_vma->root);
374 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
375 	vma->anon_vma = anon_vma;
376 	anon_vma_lock_write(anon_vma);
377 	anon_vma_chain_link(vma, avc, anon_vma);
378 	anon_vma->parent->degree++;
379 	anon_vma_unlock_write(anon_vma);
380 
381 	return 0;
382 
383  out_error_free_anon_vma:
384 	put_anon_vma(anon_vma);
385  out_error:
386 	unlink_anon_vmas(vma);
387 	return -ENOMEM;
388 }
389 
390 void unlink_anon_vmas(struct vm_area_struct *vma)
391 {
392 	struct anon_vma_chain *avc, *next;
393 	struct anon_vma *root = NULL;
394 
395 	/*
396 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
397 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
398 	 */
399 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
400 		struct anon_vma *anon_vma = avc->anon_vma;
401 
402 		root = lock_anon_vma_root(root, anon_vma);
403 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
404 
405 		/*
406 		 * Leave empty anon_vmas on the list - we'll need
407 		 * to free them outside the lock.
408 		 */
409 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
410 			anon_vma->parent->degree--;
411 			continue;
412 		}
413 
414 		list_del(&avc->same_vma);
415 		anon_vma_chain_free(avc);
416 	}
417 	if (vma->anon_vma) {
418 		vma->anon_vma->degree--;
419 
420 		/*
421 		 * vma would still be needed after unlink, and anon_vma will be prepared
422 		 * when handle fault.
423 		 */
424 		vma->anon_vma = NULL;
425 	}
426 	unlock_anon_vma_root(root);
427 
428 	/*
429 	 * Iterate the list once more, it now only contains empty and unlinked
430 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
431 	 * needing to write-acquire the anon_vma->root->rwsem.
432 	 */
433 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
434 		struct anon_vma *anon_vma = avc->anon_vma;
435 
436 		VM_WARN_ON(anon_vma->degree);
437 		put_anon_vma(anon_vma);
438 
439 		list_del(&avc->same_vma);
440 		anon_vma_chain_free(avc);
441 	}
442 }
443 
444 static void anon_vma_ctor(void *data)
445 {
446 	struct anon_vma *anon_vma = data;
447 
448 	init_rwsem(&anon_vma->rwsem);
449 	atomic_set(&anon_vma->refcount, 0);
450 	anon_vma->rb_root = RB_ROOT_CACHED;
451 }
452 
453 void __init anon_vma_init(void)
454 {
455 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
456 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
457 			anon_vma_ctor);
458 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
459 			SLAB_PANIC|SLAB_ACCOUNT);
460 }
461 
462 /*
463  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
464  *
465  * Since there is no serialization what so ever against page_remove_rmap()
466  * the best this function can do is return a refcount increased anon_vma
467  * that might have been relevant to this page.
468  *
469  * The page might have been remapped to a different anon_vma or the anon_vma
470  * returned may already be freed (and even reused).
471  *
472  * In case it was remapped to a different anon_vma, the new anon_vma will be a
473  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
474  * ensure that any anon_vma obtained from the page will still be valid for as
475  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
476  *
477  * All users of this function must be very careful when walking the anon_vma
478  * chain and verify that the page in question is indeed mapped in it
479  * [ something equivalent to page_mapped_in_vma() ].
480  *
481  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
482  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
483  * if there is a mapcount, we can dereference the anon_vma after observing
484  * those.
485  */
486 struct anon_vma *page_get_anon_vma(struct page *page)
487 {
488 	struct anon_vma *anon_vma = NULL;
489 	unsigned long anon_mapping;
490 
491 	rcu_read_lock();
492 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
493 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
494 		goto out;
495 	if (!page_mapped(page))
496 		goto out;
497 
498 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
499 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
500 		anon_vma = NULL;
501 		goto out;
502 	}
503 
504 	/*
505 	 * If this page is still mapped, then its anon_vma cannot have been
506 	 * freed.  But if it has been unmapped, we have no security against the
507 	 * anon_vma structure being freed and reused (for another anon_vma:
508 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
509 	 * above cannot corrupt).
510 	 */
511 	if (!page_mapped(page)) {
512 		rcu_read_unlock();
513 		put_anon_vma(anon_vma);
514 		return NULL;
515 	}
516 out:
517 	rcu_read_unlock();
518 
519 	return anon_vma;
520 }
521 
522 /*
523  * Similar to page_get_anon_vma() except it locks the anon_vma.
524  *
525  * Its a little more complex as it tries to keep the fast path to a single
526  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
527  * reference like with page_get_anon_vma() and then block on the mutex.
528  */
529 struct anon_vma *page_lock_anon_vma_read(struct page *page)
530 {
531 	struct anon_vma *anon_vma = NULL;
532 	struct anon_vma *root_anon_vma;
533 	unsigned long anon_mapping;
534 
535 	rcu_read_lock();
536 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
537 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
538 		goto out;
539 	if (!page_mapped(page))
540 		goto out;
541 
542 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
543 	root_anon_vma = READ_ONCE(anon_vma->root);
544 	if (down_read_trylock(&root_anon_vma->rwsem)) {
545 		/*
546 		 * If the page is still mapped, then this anon_vma is still
547 		 * its anon_vma, and holding the mutex ensures that it will
548 		 * not go away, see anon_vma_free().
549 		 */
550 		if (!page_mapped(page)) {
551 			up_read(&root_anon_vma->rwsem);
552 			anon_vma = NULL;
553 		}
554 		goto out;
555 	}
556 
557 	/* trylock failed, we got to sleep */
558 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
559 		anon_vma = NULL;
560 		goto out;
561 	}
562 
563 	if (!page_mapped(page)) {
564 		rcu_read_unlock();
565 		put_anon_vma(anon_vma);
566 		return NULL;
567 	}
568 
569 	/* we pinned the anon_vma, its safe to sleep */
570 	rcu_read_unlock();
571 	anon_vma_lock_read(anon_vma);
572 
573 	if (atomic_dec_and_test(&anon_vma->refcount)) {
574 		/*
575 		 * Oops, we held the last refcount, release the lock
576 		 * and bail -- can't simply use put_anon_vma() because
577 		 * we'll deadlock on the anon_vma_lock_write() recursion.
578 		 */
579 		anon_vma_unlock_read(anon_vma);
580 		__put_anon_vma(anon_vma);
581 		anon_vma = NULL;
582 	}
583 
584 	return anon_vma;
585 
586 out:
587 	rcu_read_unlock();
588 	return anon_vma;
589 }
590 
591 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
592 {
593 	anon_vma_unlock_read(anon_vma);
594 }
595 
596 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
597 /*
598  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
599  * important if a PTE was dirty when it was unmapped that it's flushed
600  * before any IO is initiated on the page to prevent lost writes. Similarly,
601  * it must be flushed before freeing to prevent data leakage.
602  */
603 void try_to_unmap_flush(void)
604 {
605 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
606 
607 	if (!tlb_ubc->flush_required)
608 		return;
609 
610 	arch_tlbbatch_flush(&tlb_ubc->arch);
611 	tlb_ubc->flush_required = false;
612 	tlb_ubc->writable = false;
613 }
614 
615 /* Flush iff there are potentially writable TLB entries that can race with IO */
616 void try_to_unmap_flush_dirty(void)
617 {
618 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
619 
620 	if (tlb_ubc->writable)
621 		try_to_unmap_flush();
622 }
623 
624 /*
625  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
626  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
627  */
628 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
629 #define TLB_FLUSH_BATCH_PENDING_MASK			\
630 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
631 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
632 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
633 
634 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
635 {
636 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
637 	int batch, nbatch;
638 
639 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
640 	tlb_ubc->flush_required = true;
641 
642 	/*
643 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
644 	 * before the PTE is cleared.
645 	 */
646 	barrier();
647 	batch = atomic_read(&mm->tlb_flush_batched);
648 retry:
649 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
650 		/*
651 		 * Prevent `pending' from catching up with `flushed' because of
652 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
653 		 * `pending' becomes large.
654 		 */
655 		nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
656 		if (nbatch != batch) {
657 			batch = nbatch;
658 			goto retry;
659 		}
660 	} else {
661 		atomic_inc(&mm->tlb_flush_batched);
662 	}
663 
664 	/*
665 	 * If the PTE was dirty then it's best to assume it's writable. The
666 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
667 	 * before the page is queued for IO.
668 	 */
669 	if (writable)
670 		tlb_ubc->writable = true;
671 }
672 
673 /*
674  * Returns true if the TLB flush should be deferred to the end of a batch of
675  * unmap operations to reduce IPIs.
676  */
677 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
678 {
679 	bool should_defer = false;
680 
681 	if (!(flags & TTU_BATCH_FLUSH))
682 		return false;
683 
684 	/* If remote CPUs need to be flushed then defer batch the flush */
685 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
686 		should_defer = true;
687 	put_cpu();
688 
689 	return should_defer;
690 }
691 
692 /*
693  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
694  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
695  * operation such as mprotect or munmap to race between reclaim unmapping
696  * the page and flushing the page. If this race occurs, it potentially allows
697  * access to data via a stale TLB entry. Tracking all mm's that have TLB
698  * batching in flight would be expensive during reclaim so instead track
699  * whether TLB batching occurred in the past and if so then do a flush here
700  * if required. This will cost one additional flush per reclaim cycle paid
701  * by the first operation at risk such as mprotect and mumap.
702  *
703  * This must be called under the PTL so that an access to tlb_flush_batched
704  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
705  * via the PTL.
706  */
707 void flush_tlb_batched_pending(struct mm_struct *mm)
708 {
709 	int batch = atomic_read(&mm->tlb_flush_batched);
710 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
711 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
712 
713 	if (pending != flushed) {
714 		flush_tlb_mm(mm);
715 		/*
716 		 * If the new TLB flushing is pending during flushing, leave
717 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
718 		 */
719 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
720 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
721 	}
722 }
723 #else
724 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
725 {
726 }
727 
728 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
729 {
730 	return false;
731 }
732 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
733 
734 /*
735  * At what user virtual address is page expected in vma?
736  * Caller should check the page is actually part of the vma.
737  */
738 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
739 {
740 	if (PageAnon(page)) {
741 		struct anon_vma *page__anon_vma = page_anon_vma(page);
742 		/*
743 		 * Note: swapoff's unuse_vma() is more efficient with this
744 		 * check, and needs it to match anon_vma when KSM is active.
745 		 */
746 		if (!vma->anon_vma || !page__anon_vma ||
747 		    vma->anon_vma->root != page__anon_vma->root)
748 			return -EFAULT;
749 	} else if (!vma->vm_file) {
750 		return -EFAULT;
751 	} else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
752 		return -EFAULT;
753 	}
754 
755 	return vma_address(page, vma);
756 }
757 
758 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
759 {
760 	pgd_t *pgd;
761 	p4d_t *p4d;
762 	pud_t *pud;
763 	pmd_t *pmd = NULL;
764 	pmd_t pmde;
765 
766 	pgd = pgd_offset(mm, address);
767 	if (!pgd_present(*pgd))
768 		goto out;
769 
770 	p4d = p4d_offset(pgd, address);
771 	if (!p4d_present(*p4d))
772 		goto out;
773 
774 	pud = pud_offset(p4d, address);
775 	if (!pud_present(*pud))
776 		goto out;
777 
778 	pmd = pmd_offset(pud, address);
779 	/*
780 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
781 	 * without holding anon_vma lock for write.  So when looking for a
782 	 * genuine pmde (in which to find pte), test present and !THP together.
783 	 */
784 	pmde = *pmd;
785 	barrier();
786 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
787 		pmd = NULL;
788 out:
789 	return pmd;
790 }
791 
792 struct page_referenced_arg {
793 	int mapcount;
794 	int referenced;
795 	unsigned long vm_flags;
796 	struct mem_cgroup *memcg;
797 };
798 /*
799  * arg: page_referenced_arg will be passed
800  */
801 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
802 			unsigned long address, void *arg)
803 {
804 	struct page_referenced_arg *pra = arg;
805 	struct page_vma_mapped_walk pvmw = {
806 		.page = page,
807 		.vma = vma,
808 		.address = address,
809 	};
810 	int referenced = 0;
811 
812 	while (page_vma_mapped_walk(&pvmw)) {
813 		address = pvmw.address;
814 
815 		if (vma->vm_flags & VM_LOCKED) {
816 			page_vma_mapped_walk_done(&pvmw);
817 			pra->vm_flags |= VM_LOCKED;
818 			return false; /* To break the loop */
819 		}
820 
821 		if (pvmw.pte) {
822 			if (ptep_clear_flush_young_notify(vma, address,
823 						pvmw.pte)) {
824 				/*
825 				 * Don't treat a reference through
826 				 * a sequentially read mapping as such.
827 				 * If the page has been used in another mapping,
828 				 * we will catch it; if this other mapping is
829 				 * already gone, the unmap path will have set
830 				 * PG_referenced or activated the page.
831 				 */
832 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
833 					referenced++;
834 			}
835 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
836 			if (pmdp_clear_flush_young_notify(vma, address,
837 						pvmw.pmd))
838 				referenced++;
839 		} else {
840 			/* unexpected pmd-mapped page? */
841 			WARN_ON_ONCE(1);
842 		}
843 
844 		pra->mapcount--;
845 	}
846 
847 	if (referenced)
848 		clear_page_idle(page);
849 	if (test_and_clear_page_young(page))
850 		referenced++;
851 
852 	if (referenced) {
853 		pra->referenced++;
854 		pra->vm_flags |= vma->vm_flags;
855 	}
856 
857 	if (!pra->mapcount)
858 		return false; /* To break the loop */
859 
860 	return true;
861 }
862 
863 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
864 {
865 	struct page_referenced_arg *pra = arg;
866 	struct mem_cgroup *memcg = pra->memcg;
867 
868 	if (!mm_match_cgroup(vma->vm_mm, memcg))
869 		return true;
870 
871 	return false;
872 }
873 
874 /**
875  * page_referenced - test if the page was referenced
876  * @page: the page to test
877  * @is_locked: caller holds lock on the page
878  * @memcg: target memory cgroup
879  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
880  *
881  * Quick test_and_clear_referenced for all mappings to a page,
882  * returns the number of ptes which referenced the page.
883  */
884 int page_referenced(struct page *page,
885 		    int is_locked,
886 		    struct mem_cgroup *memcg,
887 		    unsigned long *vm_flags)
888 {
889 	int we_locked = 0;
890 	struct page_referenced_arg pra = {
891 		.mapcount = total_mapcount(page),
892 		.memcg = memcg,
893 	};
894 	struct rmap_walk_control rwc = {
895 		.rmap_one = page_referenced_one,
896 		.arg = (void *)&pra,
897 		.anon_lock = page_lock_anon_vma_read,
898 	};
899 
900 	*vm_flags = 0;
901 	if (!pra.mapcount)
902 		return 0;
903 
904 	if (!page_rmapping(page))
905 		return 0;
906 
907 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
908 		we_locked = trylock_page(page);
909 		if (!we_locked)
910 			return 1;
911 	}
912 
913 	/*
914 	 * If we are reclaiming on behalf of a cgroup, skip
915 	 * counting on behalf of references from different
916 	 * cgroups
917 	 */
918 	if (memcg) {
919 		rwc.invalid_vma = invalid_page_referenced_vma;
920 	}
921 
922 	rmap_walk(page, &rwc);
923 	*vm_flags = pra.vm_flags;
924 
925 	if (we_locked)
926 		unlock_page(page);
927 
928 	return pra.referenced;
929 }
930 
931 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
932 			    unsigned long address, void *arg)
933 {
934 	struct page_vma_mapped_walk pvmw = {
935 		.page = page,
936 		.vma = vma,
937 		.address = address,
938 		.flags = PVMW_SYNC,
939 	};
940 	struct mmu_notifier_range range;
941 	int *cleaned = arg;
942 
943 	/*
944 	 * We have to assume the worse case ie pmd for invalidation. Note that
945 	 * the page can not be free from this function.
946 	 */
947 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
948 				0, vma, vma->vm_mm, address,
949 				vma_address_end(page, vma));
950 	mmu_notifier_invalidate_range_start(&range);
951 
952 	while (page_vma_mapped_walk(&pvmw)) {
953 		int ret = 0;
954 
955 		address = pvmw.address;
956 		if (pvmw.pte) {
957 			pte_t entry;
958 			pte_t *pte = pvmw.pte;
959 
960 			if (!pte_dirty(*pte) && !pte_write(*pte))
961 				continue;
962 
963 			flush_cache_page(vma, address, pte_pfn(*pte));
964 			entry = ptep_clear_flush(vma, address, pte);
965 			entry = pte_wrprotect(entry);
966 			entry = pte_mkclean(entry);
967 			set_pte_at(vma->vm_mm, address, pte, entry);
968 			ret = 1;
969 		} else {
970 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
971 			pmd_t *pmd = pvmw.pmd;
972 			pmd_t entry;
973 
974 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
975 				continue;
976 
977 			flush_cache_page(vma, address, page_to_pfn(page));
978 			entry = pmdp_invalidate(vma, address, pmd);
979 			entry = pmd_wrprotect(entry);
980 			entry = pmd_mkclean(entry);
981 			set_pmd_at(vma->vm_mm, address, pmd, entry);
982 			ret = 1;
983 #else
984 			/* unexpected pmd-mapped page? */
985 			WARN_ON_ONCE(1);
986 #endif
987 		}
988 
989 		/*
990 		 * No need to call mmu_notifier_invalidate_range() as we are
991 		 * downgrading page table protection not changing it to point
992 		 * to a new page.
993 		 *
994 		 * See Documentation/vm/mmu_notifier.rst
995 		 */
996 		if (ret)
997 			(*cleaned)++;
998 	}
999 
1000 	mmu_notifier_invalidate_range_end(&range);
1001 
1002 	return true;
1003 }
1004 
1005 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1006 {
1007 	if (vma->vm_flags & VM_SHARED)
1008 		return false;
1009 
1010 	return true;
1011 }
1012 
1013 int folio_mkclean(struct folio *folio)
1014 {
1015 	int cleaned = 0;
1016 	struct address_space *mapping;
1017 	struct rmap_walk_control rwc = {
1018 		.arg = (void *)&cleaned,
1019 		.rmap_one = page_mkclean_one,
1020 		.invalid_vma = invalid_mkclean_vma,
1021 	};
1022 
1023 	BUG_ON(!folio_test_locked(folio));
1024 
1025 	if (!folio_mapped(folio))
1026 		return 0;
1027 
1028 	mapping = folio_mapping(folio);
1029 	if (!mapping)
1030 		return 0;
1031 
1032 	rmap_walk(&folio->page, &rwc);
1033 
1034 	return cleaned;
1035 }
1036 EXPORT_SYMBOL_GPL(folio_mkclean);
1037 
1038 /**
1039  * page_move_anon_rmap - move a page to our anon_vma
1040  * @page:	the page to move to our anon_vma
1041  * @vma:	the vma the page belongs to
1042  *
1043  * When a page belongs exclusively to one process after a COW event,
1044  * that page can be moved into the anon_vma that belongs to just that
1045  * process, so the rmap code will not search the parent or sibling
1046  * processes.
1047  */
1048 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1049 {
1050 	struct anon_vma *anon_vma = vma->anon_vma;
1051 
1052 	page = compound_head(page);
1053 
1054 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1055 	VM_BUG_ON_VMA(!anon_vma, vma);
1056 
1057 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1058 	/*
1059 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1060 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1061 	 * PageAnon()) will not see one without the other.
1062 	 */
1063 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1064 }
1065 
1066 /**
1067  * __page_set_anon_rmap - set up new anonymous rmap
1068  * @page:	Page or Hugepage to add to rmap
1069  * @vma:	VM area to add page to.
1070  * @address:	User virtual address of the mapping
1071  * @exclusive:	the page is exclusively owned by the current process
1072  */
1073 static void __page_set_anon_rmap(struct page *page,
1074 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1075 {
1076 	struct anon_vma *anon_vma = vma->anon_vma;
1077 
1078 	BUG_ON(!anon_vma);
1079 
1080 	if (PageAnon(page))
1081 		return;
1082 
1083 	/*
1084 	 * If the page isn't exclusively mapped into this vma,
1085 	 * we must use the _oldest_ possible anon_vma for the
1086 	 * page mapping!
1087 	 */
1088 	if (!exclusive)
1089 		anon_vma = anon_vma->root;
1090 
1091 	/*
1092 	 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1093 	 * Make sure the compiler doesn't split the stores of anon_vma and
1094 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1095 	 * could mistake the mapping for a struct address_space and crash.
1096 	 */
1097 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1098 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1099 	page->index = linear_page_index(vma, address);
1100 }
1101 
1102 /**
1103  * __page_check_anon_rmap - sanity check anonymous rmap addition
1104  * @page:	the page to add the mapping to
1105  * @vma:	the vm area in which the mapping is added
1106  * @address:	the user virtual address mapped
1107  */
1108 static void __page_check_anon_rmap(struct page *page,
1109 	struct vm_area_struct *vma, unsigned long address)
1110 {
1111 	/*
1112 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1113 	 * be set up correctly at this point.
1114 	 *
1115 	 * We have exclusion against page_add_anon_rmap because the caller
1116 	 * always holds the page locked.
1117 	 *
1118 	 * We have exclusion against page_add_new_anon_rmap because those pages
1119 	 * are initially only visible via the pagetables, and the pte is locked
1120 	 * over the call to page_add_new_anon_rmap.
1121 	 */
1122 	VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1123 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1124 		       page);
1125 }
1126 
1127 /**
1128  * page_add_anon_rmap - add pte mapping to an anonymous page
1129  * @page:	the page to add the mapping to
1130  * @vma:	the vm area in which the mapping is added
1131  * @address:	the user virtual address mapped
1132  * @compound:	charge the page as compound or small page
1133  *
1134  * The caller needs to hold the pte lock, and the page must be locked in
1135  * the anon_vma case: to serialize mapping,index checking after setting,
1136  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1137  * (but PageKsm is never downgraded to PageAnon).
1138  */
1139 void page_add_anon_rmap(struct page *page,
1140 	struct vm_area_struct *vma, unsigned long address, bool compound)
1141 {
1142 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1143 }
1144 
1145 /*
1146  * Special version of the above for do_swap_page, which often runs
1147  * into pages that are exclusively owned by the current process.
1148  * Everybody else should continue to use page_add_anon_rmap above.
1149  */
1150 void do_page_add_anon_rmap(struct page *page,
1151 	struct vm_area_struct *vma, unsigned long address, int flags)
1152 {
1153 	bool compound = flags & RMAP_COMPOUND;
1154 	bool first;
1155 
1156 	if (unlikely(PageKsm(page)))
1157 		lock_page_memcg(page);
1158 	else
1159 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1160 
1161 	if (compound) {
1162 		atomic_t *mapcount;
1163 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1164 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1165 		mapcount = compound_mapcount_ptr(page);
1166 		first = atomic_inc_and_test(mapcount);
1167 	} else {
1168 		first = atomic_inc_and_test(&page->_mapcount);
1169 	}
1170 
1171 	if (first) {
1172 		int nr = compound ? thp_nr_pages(page) : 1;
1173 		/*
1174 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1175 		 * these counters are not modified in interrupt context, and
1176 		 * pte lock(a spinlock) is held, which implies preemption
1177 		 * disabled.
1178 		 */
1179 		if (compound)
1180 			__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1181 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1182 	}
1183 
1184 	if (unlikely(PageKsm(page))) {
1185 		unlock_page_memcg(page);
1186 		return;
1187 	}
1188 
1189 	/* address might be in next vma when migration races vma_adjust */
1190 	if (first)
1191 		__page_set_anon_rmap(page, vma, address,
1192 				flags & RMAP_EXCLUSIVE);
1193 	else
1194 		__page_check_anon_rmap(page, vma, address);
1195 }
1196 
1197 /**
1198  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1199  * @page:	the page to add the mapping to
1200  * @vma:	the vm area in which the mapping is added
1201  * @address:	the user virtual address mapped
1202  * @compound:	charge the page as compound or small page
1203  *
1204  * Same as page_add_anon_rmap but must only be called on *new* pages.
1205  * This means the inc-and-test can be bypassed.
1206  * Page does not have to be locked.
1207  */
1208 void page_add_new_anon_rmap(struct page *page,
1209 	struct vm_area_struct *vma, unsigned long address, bool compound)
1210 {
1211 	int nr = compound ? thp_nr_pages(page) : 1;
1212 
1213 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1214 	__SetPageSwapBacked(page);
1215 	if (compound) {
1216 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1217 		/* increment count (starts at -1) */
1218 		atomic_set(compound_mapcount_ptr(page), 0);
1219 		if (hpage_pincount_available(page))
1220 			atomic_set(compound_pincount_ptr(page), 0);
1221 
1222 		__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1223 	} else {
1224 		/* Anon THP always mapped first with PMD */
1225 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1226 		/* increment count (starts at -1) */
1227 		atomic_set(&page->_mapcount, 0);
1228 	}
1229 	__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1230 	__page_set_anon_rmap(page, vma, address, 1);
1231 }
1232 
1233 /**
1234  * page_add_file_rmap - add pte mapping to a file page
1235  * @page: the page to add the mapping to
1236  * @compound: charge the page as compound or small page
1237  *
1238  * The caller needs to hold the pte lock.
1239  */
1240 void page_add_file_rmap(struct page *page, bool compound)
1241 {
1242 	int i, nr = 1;
1243 
1244 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1245 	lock_page_memcg(page);
1246 	if (compound && PageTransHuge(page)) {
1247 		int nr_pages = thp_nr_pages(page);
1248 
1249 		for (i = 0, nr = 0; i < nr_pages; i++) {
1250 			if (atomic_inc_and_test(&page[i]._mapcount))
1251 				nr++;
1252 		}
1253 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1254 			goto out;
1255 		if (PageSwapBacked(page))
1256 			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1257 						nr_pages);
1258 		else
1259 			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1260 						nr_pages);
1261 	} else {
1262 		if (PageTransCompound(page) && page_mapping(page)) {
1263 			struct page *head = compound_head(page);
1264 
1265 			VM_WARN_ON_ONCE(!PageLocked(page));
1266 
1267 			SetPageDoubleMap(head);
1268 			if (PageMlocked(page))
1269 				clear_page_mlock(head);
1270 		}
1271 		if (!atomic_inc_and_test(&page->_mapcount))
1272 			goto out;
1273 	}
1274 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1275 out:
1276 	unlock_page_memcg(page);
1277 }
1278 
1279 static void page_remove_file_rmap(struct page *page, bool compound)
1280 {
1281 	int i, nr = 1;
1282 
1283 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1284 
1285 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1286 	if (unlikely(PageHuge(page))) {
1287 		/* hugetlb pages are always mapped with pmds */
1288 		atomic_dec(compound_mapcount_ptr(page));
1289 		return;
1290 	}
1291 
1292 	/* page still mapped by someone else? */
1293 	if (compound && PageTransHuge(page)) {
1294 		int nr_pages = thp_nr_pages(page);
1295 
1296 		for (i = 0, nr = 0; i < nr_pages; i++) {
1297 			if (atomic_add_negative(-1, &page[i]._mapcount))
1298 				nr++;
1299 		}
1300 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1301 			return;
1302 		if (PageSwapBacked(page))
1303 			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1304 						-nr_pages);
1305 		else
1306 			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1307 						-nr_pages);
1308 	} else {
1309 		if (!atomic_add_negative(-1, &page->_mapcount))
1310 			return;
1311 	}
1312 
1313 	/*
1314 	 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1315 	 * these counters are not modified in interrupt context, and
1316 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1317 	 */
1318 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1319 
1320 	if (unlikely(PageMlocked(page)))
1321 		clear_page_mlock(page);
1322 }
1323 
1324 static void page_remove_anon_compound_rmap(struct page *page)
1325 {
1326 	int i, nr;
1327 
1328 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1329 		return;
1330 
1331 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1332 	if (unlikely(PageHuge(page)))
1333 		return;
1334 
1335 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1336 		return;
1337 
1338 	__mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1339 
1340 	if (TestClearPageDoubleMap(page)) {
1341 		/*
1342 		 * Subpages can be mapped with PTEs too. Check how many of
1343 		 * them are still mapped.
1344 		 */
1345 		for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1346 			if (atomic_add_negative(-1, &page[i]._mapcount))
1347 				nr++;
1348 		}
1349 
1350 		/*
1351 		 * Queue the page for deferred split if at least one small
1352 		 * page of the compound page is unmapped, but at least one
1353 		 * small page is still mapped.
1354 		 */
1355 		if (nr && nr < thp_nr_pages(page))
1356 			deferred_split_huge_page(page);
1357 	} else {
1358 		nr = thp_nr_pages(page);
1359 	}
1360 
1361 	if (unlikely(PageMlocked(page)))
1362 		clear_page_mlock(page);
1363 
1364 	if (nr)
1365 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1366 }
1367 
1368 /**
1369  * page_remove_rmap - take down pte mapping from a page
1370  * @page:	page to remove mapping from
1371  * @compound:	uncharge the page as compound or small page
1372  *
1373  * The caller needs to hold the pte lock.
1374  */
1375 void page_remove_rmap(struct page *page, bool compound)
1376 {
1377 	lock_page_memcg(page);
1378 
1379 	if (!PageAnon(page)) {
1380 		page_remove_file_rmap(page, compound);
1381 		goto out;
1382 	}
1383 
1384 	if (compound) {
1385 		page_remove_anon_compound_rmap(page);
1386 		goto out;
1387 	}
1388 
1389 	/* page still mapped by someone else? */
1390 	if (!atomic_add_negative(-1, &page->_mapcount))
1391 		goto out;
1392 
1393 	/*
1394 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1395 	 * these counters are not modified in interrupt context, and
1396 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1397 	 */
1398 	__dec_lruvec_page_state(page, NR_ANON_MAPPED);
1399 
1400 	if (unlikely(PageMlocked(page)))
1401 		clear_page_mlock(page);
1402 
1403 	if (PageTransCompound(page))
1404 		deferred_split_huge_page(compound_head(page));
1405 
1406 	/*
1407 	 * It would be tidy to reset the PageAnon mapping here,
1408 	 * but that might overwrite a racing page_add_anon_rmap
1409 	 * which increments mapcount after us but sets mapping
1410 	 * before us: so leave the reset to free_unref_page,
1411 	 * and remember that it's only reliable while mapped.
1412 	 * Leaving it set also helps swapoff to reinstate ptes
1413 	 * faster for those pages still in swapcache.
1414 	 */
1415 out:
1416 	unlock_page_memcg(page);
1417 }
1418 
1419 /*
1420  * @arg: enum ttu_flags will be passed to this argument
1421  */
1422 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1423 		     unsigned long address, void *arg)
1424 {
1425 	struct mm_struct *mm = vma->vm_mm;
1426 	struct page_vma_mapped_walk pvmw = {
1427 		.page = page,
1428 		.vma = vma,
1429 		.address = address,
1430 	};
1431 	pte_t pteval;
1432 	struct page *subpage;
1433 	bool ret = true;
1434 	struct mmu_notifier_range range;
1435 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1436 
1437 	/*
1438 	 * When racing against e.g. zap_pte_range() on another cpu,
1439 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1440 	 * try_to_unmap() may return before page_mapped() has become false,
1441 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1442 	 */
1443 	if (flags & TTU_SYNC)
1444 		pvmw.flags = PVMW_SYNC;
1445 
1446 	if (flags & TTU_SPLIT_HUGE_PMD)
1447 		split_huge_pmd_address(vma, address, false, page);
1448 
1449 	/*
1450 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1451 	 * For hugetlb, it could be much worse if we need to do pud
1452 	 * invalidation in the case of pmd sharing.
1453 	 *
1454 	 * Note that the page can not be free in this function as call of
1455 	 * try_to_unmap() must hold a reference on the page.
1456 	 */
1457 	range.end = PageKsm(page) ?
1458 			address + PAGE_SIZE : vma_address_end(page, vma);
1459 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1460 				address, range.end);
1461 	if (PageHuge(page)) {
1462 		/*
1463 		 * If sharing is possible, start and end will be adjusted
1464 		 * accordingly.
1465 		 */
1466 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1467 						     &range.end);
1468 	}
1469 	mmu_notifier_invalidate_range_start(&range);
1470 
1471 	while (page_vma_mapped_walk(&pvmw)) {
1472 		/*
1473 		 * If the page is mlock()d, we cannot swap it out.
1474 		 */
1475 		if (!(flags & TTU_IGNORE_MLOCK) &&
1476 		    (vma->vm_flags & VM_LOCKED)) {
1477 			/*
1478 			 * PTE-mapped THP are never marked as mlocked: so do
1479 			 * not set it on a DoubleMap THP, nor on an Anon THP
1480 			 * (which may still be PTE-mapped after DoubleMap was
1481 			 * cleared).  But stop unmapping even in those cases.
1482 			 */
1483 			if (!PageTransCompound(page) || (PageHead(page) &&
1484 			     !PageDoubleMap(page) && !PageAnon(page)))
1485 				mlock_vma_page(page);
1486 			page_vma_mapped_walk_done(&pvmw);
1487 			ret = false;
1488 			break;
1489 		}
1490 
1491 		/* Unexpected PMD-mapped THP? */
1492 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1493 
1494 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1495 		address = pvmw.address;
1496 
1497 		if (PageHuge(page) && !PageAnon(page)) {
1498 			/*
1499 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1500 			 * held in write mode.  Caller needs to explicitly
1501 			 * do this outside rmap routines.
1502 			 */
1503 			VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1504 			if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1505 				/*
1506 				 * huge_pmd_unshare unmapped an entire PMD
1507 				 * page.  There is no way of knowing exactly
1508 				 * which PMDs may be cached for this mm, so
1509 				 * we must flush them all.  start/end were
1510 				 * already adjusted above to cover this range.
1511 				 */
1512 				flush_cache_range(vma, range.start, range.end);
1513 				flush_tlb_range(vma, range.start, range.end);
1514 				mmu_notifier_invalidate_range(mm, range.start,
1515 							      range.end);
1516 
1517 				/*
1518 				 * The ref count of the PMD page was dropped
1519 				 * which is part of the way map counting
1520 				 * is done for shared PMDs.  Return 'true'
1521 				 * here.  When there is no other sharing,
1522 				 * huge_pmd_unshare returns false and we will
1523 				 * unmap the actual page and drop map count
1524 				 * to zero.
1525 				 */
1526 				page_vma_mapped_walk_done(&pvmw);
1527 				break;
1528 			}
1529 		}
1530 
1531 		/* Nuke the page table entry. */
1532 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1533 		if (should_defer_flush(mm, flags)) {
1534 			/*
1535 			 * We clear the PTE but do not flush so potentially
1536 			 * a remote CPU could still be writing to the page.
1537 			 * If the entry was previously clean then the
1538 			 * architecture must guarantee that a clear->dirty
1539 			 * transition on a cached TLB entry is written through
1540 			 * and traps if the PTE is unmapped.
1541 			 */
1542 			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1543 
1544 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1545 		} else {
1546 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1547 		}
1548 
1549 		/* Move the dirty bit to the page. Now the pte is gone. */
1550 		if (pte_dirty(pteval))
1551 			set_page_dirty(page);
1552 
1553 		/* Update high watermark before we lower rss */
1554 		update_hiwater_rss(mm);
1555 
1556 		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1557 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1558 			if (PageHuge(page)) {
1559 				hugetlb_count_sub(compound_nr(page), mm);
1560 				set_huge_swap_pte_at(mm, address,
1561 						     pvmw.pte, pteval,
1562 						     vma_mmu_pagesize(vma));
1563 			} else {
1564 				dec_mm_counter(mm, mm_counter(page));
1565 				set_pte_at(mm, address, pvmw.pte, pteval);
1566 			}
1567 
1568 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1569 			/*
1570 			 * The guest indicated that the page content is of no
1571 			 * interest anymore. Simply discard the pte, vmscan
1572 			 * will take care of the rest.
1573 			 * A future reference will then fault in a new zero
1574 			 * page. When userfaultfd is active, we must not drop
1575 			 * this page though, as its main user (postcopy
1576 			 * migration) will not expect userfaults on already
1577 			 * copied pages.
1578 			 */
1579 			dec_mm_counter(mm, mm_counter(page));
1580 			/* We have to invalidate as we cleared the pte */
1581 			mmu_notifier_invalidate_range(mm, address,
1582 						      address + PAGE_SIZE);
1583 		} else if (PageAnon(page)) {
1584 			swp_entry_t entry = { .val = page_private(subpage) };
1585 			pte_t swp_pte;
1586 			/*
1587 			 * Store the swap location in the pte.
1588 			 * See handle_pte_fault() ...
1589 			 */
1590 			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1591 				WARN_ON_ONCE(1);
1592 				ret = false;
1593 				/* We have to invalidate as we cleared the pte */
1594 				mmu_notifier_invalidate_range(mm, address,
1595 							address + PAGE_SIZE);
1596 				page_vma_mapped_walk_done(&pvmw);
1597 				break;
1598 			}
1599 
1600 			/* MADV_FREE page check */
1601 			if (!PageSwapBacked(page)) {
1602 				if (!PageDirty(page)) {
1603 					/* Invalidate as we cleared the pte */
1604 					mmu_notifier_invalidate_range(mm,
1605 						address, address + PAGE_SIZE);
1606 					dec_mm_counter(mm, MM_ANONPAGES);
1607 					goto discard;
1608 				}
1609 
1610 				/*
1611 				 * If the page was redirtied, it cannot be
1612 				 * discarded. Remap the page to page table.
1613 				 */
1614 				set_pte_at(mm, address, pvmw.pte, pteval);
1615 				SetPageSwapBacked(page);
1616 				ret = false;
1617 				page_vma_mapped_walk_done(&pvmw);
1618 				break;
1619 			}
1620 
1621 			if (swap_duplicate(entry) < 0) {
1622 				set_pte_at(mm, address, pvmw.pte, pteval);
1623 				ret = false;
1624 				page_vma_mapped_walk_done(&pvmw);
1625 				break;
1626 			}
1627 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1628 				set_pte_at(mm, address, pvmw.pte, pteval);
1629 				ret = false;
1630 				page_vma_mapped_walk_done(&pvmw);
1631 				break;
1632 			}
1633 			if (list_empty(&mm->mmlist)) {
1634 				spin_lock(&mmlist_lock);
1635 				if (list_empty(&mm->mmlist))
1636 					list_add(&mm->mmlist, &init_mm.mmlist);
1637 				spin_unlock(&mmlist_lock);
1638 			}
1639 			dec_mm_counter(mm, MM_ANONPAGES);
1640 			inc_mm_counter(mm, MM_SWAPENTS);
1641 			swp_pte = swp_entry_to_pte(entry);
1642 			if (pte_soft_dirty(pteval))
1643 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1644 			if (pte_uffd_wp(pteval))
1645 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1646 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1647 			/* Invalidate as we cleared the pte */
1648 			mmu_notifier_invalidate_range(mm, address,
1649 						      address + PAGE_SIZE);
1650 		} else {
1651 			/*
1652 			 * This is a locked file-backed page, thus it cannot
1653 			 * be removed from the page cache and replaced by a new
1654 			 * page before mmu_notifier_invalidate_range_end, so no
1655 			 * concurrent thread might update its page table to
1656 			 * point at new page while a device still is using this
1657 			 * page.
1658 			 *
1659 			 * See Documentation/vm/mmu_notifier.rst
1660 			 */
1661 			dec_mm_counter(mm, mm_counter_file(page));
1662 		}
1663 discard:
1664 		/*
1665 		 * No need to call mmu_notifier_invalidate_range() it has be
1666 		 * done above for all cases requiring it to happen under page
1667 		 * table lock before mmu_notifier_invalidate_range_end()
1668 		 *
1669 		 * See Documentation/vm/mmu_notifier.rst
1670 		 */
1671 		page_remove_rmap(subpage, PageHuge(page));
1672 		put_page(page);
1673 	}
1674 
1675 	mmu_notifier_invalidate_range_end(&range);
1676 
1677 	return ret;
1678 }
1679 
1680 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1681 {
1682 	return vma_is_temporary_stack(vma);
1683 }
1684 
1685 static int page_not_mapped(struct page *page)
1686 {
1687 	return !page_mapped(page);
1688 }
1689 
1690 /**
1691  * try_to_unmap - try to remove all page table mappings to a page
1692  * @page: the page to get unmapped
1693  * @flags: action and flags
1694  *
1695  * Tries to remove all the page table entries which are mapping this
1696  * page, used in the pageout path.  Caller must hold the page lock.
1697  *
1698  * It is the caller's responsibility to check if the page is still
1699  * mapped when needed (use TTU_SYNC to prevent accounting races).
1700  */
1701 void try_to_unmap(struct page *page, enum ttu_flags flags)
1702 {
1703 	struct rmap_walk_control rwc = {
1704 		.rmap_one = try_to_unmap_one,
1705 		.arg = (void *)flags,
1706 		.done = page_not_mapped,
1707 		.anon_lock = page_lock_anon_vma_read,
1708 	};
1709 
1710 	if (flags & TTU_RMAP_LOCKED)
1711 		rmap_walk_locked(page, &rwc);
1712 	else
1713 		rmap_walk(page, &rwc);
1714 }
1715 
1716 /*
1717  * @arg: enum ttu_flags will be passed to this argument.
1718  *
1719  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1720  * containing migration entries.
1721  */
1722 static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma,
1723 		     unsigned long address, void *arg)
1724 {
1725 	struct mm_struct *mm = vma->vm_mm;
1726 	struct page_vma_mapped_walk pvmw = {
1727 		.page = page,
1728 		.vma = vma,
1729 		.address = address,
1730 	};
1731 	pte_t pteval;
1732 	struct page *subpage;
1733 	bool ret = true;
1734 	struct mmu_notifier_range range;
1735 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1736 
1737 	/*
1738 	 * When racing against e.g. zap_pte_range() on another cpu,
1739 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1740 	 * try_to_migrate() may return before page_mapped() has become false,
1741 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1742 	 */
1743 	if (flags & TTU_SYNC)
1744 		pvmw.flags = PVMW_SYNC;
1745 
1746 	/*
1747 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1748 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1749 	 */
1750 	if (flags & TTU_SPLIT_HUGE_PMD)
1751 		split_huge_pmd_address(vma, address, true, page);
1752 
1753 	/*
1754 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1755 	 * For hugetlb, it could be much worse if we need to do pud
1756 	 * invalidation in the case of pmd sharing.
1757 	 *
1758 	 * Note that the page can not be free in this function as call of
1759 	 * try_to_unmap() must hold a reference on the page.
1760 	 */
1761 	range.end = PageKsm(page) ?
1762 			address + PAGE_SIZE : vma_address_end(page, vma);
1763 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1764 				address, range.end);
1765 	if (PageHuge(page)) {
1766 		/*
1767 		 * If sharing is possible, start and end will be adjusted
1768 		 * accordingly.
1769 		 */
1770 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1771 						     &range.end);
1772 	}
1773 	mmu_notifier_invalidate_range_start(&range);
1774 
1775 	while (page_vma_mapped_walk(&pvmw)) {
1776 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1777 		/* PMD-mapped THP migration entry */
1778 		if (!pvmw.pte) {
1779 			VM_BUG_ON_PAGE(PageHuge(page) ||
1780 				       !PageTransCompound(page), page);
1781 
1782 			set_pmd_migration_entry(&pvmw, page);
1783 			continue;
1784 		}
1785 #endif
1786 
1787 		/* Unexpected PMD-mapped THP? */
1788 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1789 
1790 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1791 		address = pvmw.address;
1792 
1793 		if (PageHuge(page) && !PageAnon(page)) {
1794 			/*
1795 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1796 			 * held in write mode.  Caller needs to explicitly
1797 			 * do this outside rmap routines.
1798 			 */
1799 			VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1800 			if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1801 				/*
1802 				 * huge_pmd_unshare unmapped an entire PMD
1803 				 * page.  There is no way of knowing exactly
1804 				 * which PMDs may be cached for this mm, so
1805 				 * we must flush them all.  start/end were
1806 				 * already adjusted above to cover this range.
1807 				 */
1808 				flush_cache_range(vma, range.start, range.end);
1809 				flush_tlb_range(vma, range.start, range.end);
1810 				mmu_notifier_invalidate_range(mm, range.start,
1811 							      range.end);
1812 
1813 				/*
1814 				 * The ref count of the PMD page was dropped
1815 				 * which is part of the way map counting
1816 				 * is done for shared PMDs.  Return 'true'
1817 				 * here.  When there is no other sharing,
1818 				 * huge_pmd_unshare returns false and we will
1819 				 * unmap the actual page and drop map count
1820 				 * to zero.
1821 				 */
1822 				page_vma_mapped_walk_done(&pvmw);
1823 				break;
1824 			}
1825 		}
1826 
1827 		/* Nuke the page table entry. */
1828 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1829 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
1830 
1831 		/* Move the dirty bit to the page. Now the pte is gone. */
1832 		if (pte_dirty(pteval))
1833 			set_page_dirty(page);
1834 
1835 		/* Update high watermark before we lower rss */
1836 		update_hiwater_rss(mm);
1837 
1838 		if (is_zone_device_page(page)) {
1839 			unsigned long pfn = page_to_pfn(page);
1840 			swp_entry_t entry;
1841 			pte_t swp_pte;
1842 
1843 			/*
1844 			 * Store the pfn of the page in a special migration
1845 			 * pte. do_swap_page() will wait until the migration
1846 			 * pte is removed and then restart fault handling.
1847 			 */
1848 			entry = pte_to_swp_entry(pteval);
1849 			if (is_writable_device_private_entry(entry))
1850 				entry = make_writable_migration_entry(pfn);
1851 			else
1852 				entry = make_readable_migration_entry(pfn);
1853 			swp_pte = swp_entry_to_pte(entry);
1854 
1855 			/*
1856 			 * pteval maps a zone device page and is therefore
1857 			 * a swap pte.
1858 			 */
1859 			if (pte_swp_soft_dirty(pteval))
1860 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1861 			if (pte_swp_uffd_wp(pteval))
1862 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1863 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1864 			/*
1865 			 * No need to invalidate here it will synchronize on
1866 			 * against the special swap migration pte.
1867 			 *
1868 			 * The assignment to subpage above was computed from a
1869 			 * swap PTE which results in an invalid pointer.
1870 			 * Since only PAGE_SIZE pages can currently be
1871 			 * migrated, just set it to page. This will need to be
1872 			 * changed when hugepage migrations to device private
1873 			 * memory are supported.
1874 			 */
1875 			subpage = page;
1876 		} else if (PageHWPoison(page)) {
1877 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1878 			if (PageHuge(page)) {
1879 				hugetlb_count_sub(compound_nr(page), mm);
1880 				set_huge_swap_pte_at(mm, address,
1881 						     pvmw.pte, pteval,
1882 						     vma_mmu_pagesize(vma));
1883 			} else {
1884 				dec_mm_counter(mm, mm_counter(page));
1885 				set_pte_at(mm, address, pvmw.pte, pteval);
1886 			}
1887 
1888 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1889 			/*
1890 			 * The guest indicated that the page content is of no
1891 			 * interest anymore. Simply discard the pte, vmscan
1892 			 * will take care of the rest.
1893 			 * A future reference will then fault in a new zero
1894 			 * page. When userfaultfd is active, we must not drop
1895 			 * this page though, as its main user (postcopy
1896 			 * migration) will not expect userfaults on already
1897 			 * copied pages.
1898 			 */
1899 			dec_mm_counter(mm, mm_counter(page));
1900 			/* We have to invalidate as we cleared the pte */
1901 			mmu_notifier_invalidate_range(mm, address,
1902 						      address + PAGE_SIZE);
1903 		} else {
1904 			swp_entry_t entry;
1905 			pte_t swp_pte;
1906 
1907 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1908 				set_pte_at(mm, address, pvmw.pte, pteval);
1909 				ret = false;
1910 				page_vma_mapped_walk_done(&pvmw);
1911 				break;
1912 			}
1913 
1914 			/*
1915 			 * Store the pfn of the page in a special migration
1916 			 * pte. do_swap_page() will wait until the migration
1917 			 * pte is removed and then restart fault handling.
1918 			 */
1919 			if (pte_write(pteval))
1920 				entry = make_writable_migration_entry(
1921 							page_to_pfn(subpage));
1922 			else
1923 				entry = make_readable_migration_entry(
1924 							page_to_pfn(subpage));
1925 
1926 			swp_pte = swp_entry_to_pte(entry);
1927 			if (pte_soft_dirty(pteval))
1928 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1929 			if (pte_uffd_wp(pteval))
1930 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1931 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1932 			/*
1933 			 * No need to invalidate here it will synchronize on
1934 			 * against the special swap migration pte.
1935 			 */
1936 		}
1937 
1938 		/*
1939 		 * No need to call mmu_notifier_invalidate_range() it has be
1940 		 * done above for all cases requiring it to happen under page
1941 		 * table lock before mmu_notifier_invalidate_range_end()
1942 		 *
1943 		 * See Documentation/vm/mmu_notifier.rst
1944 		 */
1945 		page_remove_rmap(subpage, PageHuge(page));
1946 		put_page(page);
1947 	}
1948 
1949 	mmu_notifier_invalidate_range_end(&range);
1950 
1951 	return ret;
1952 }
1953 
1954 /**
1955  * try_to_migrate - try to replace all page table mappings with swap entries
1956  * @page: the page to replace page table entries for
1957  * @flags: action and flags
1958  *
1959  * Tries to remove all the page table entries which are mapping this page and
1960  * replace them with special swap entries. Caller must hold the page lock.
1961  */
1962 void try_to_migrate(struct page *page, enum ttu_flags flags)
1963 {
1964 	struct rmap_walk_control rwc = {
1965 		.rmap_one = try_to_migrate_one,
1966 		.arg = (void *)flags,
1967 		.done = page_not_mapped,
1968 		.anon_lock = page_lock_anon_vma_read,
1969 	};
1970 
1971 	/*
1972 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1973 	 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1974 	 */
1975 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1976 					TTU_SYNC)))
1977 		return;
1978 
1979 	if (is_zone_device_page(page) && !is_device_private_page(page))
1980 		return;
1981 
1982 	/*
1983 	 * During exec, a temporary VMA is setup and later moved.
1984 	 * The VMA is moved under the anon_vma lock but not the
1985 	 * page tables leading to a race where migration cannot
1986 	 * find the migration ptes. Rather than increasing the
1987 	 * locking requirements of exec(), migration skips
1988 	 * temporary VMAs until after exec() completes.
1989 	 */
1990 	if (!PageKsm(page) && PageAnon(page))
1991 		rwc.invalid_vma = invalid_migration_vma;
1992 
1993 	if (flags & TTU_RMAP_LOCKED)
1994 		rmap_walk_locked(page, &rwc);
1995 	else
1996 		rmap_walk(page, &rwc);
1997 }
1998 
1999 /*
2000  * Walks the vma's mapping a page and mlocks the page if any locked vma's are
2001  * found. Once one is found the page is locked and the scan can be terminated.
2002  */
2003 static bool page_mlock_one(struct page *page, struct vm_area_struct *vma,
2004 				 unsigned long address, void *unused)
2005 {
2006 	struct page_vma_mapped_walk pvmw = {
2007 		.page = page,
2008 		.vma = vma,
2009 		.address = address,
2010 	};
2011 
2012 	/* An un-locked vma doesn't have any pages to lock, continue the scan */
2013 	if (!(vma->vm_flags & VM_LOCKED))
2014 		return true;
2015 
2016 	while (page_vma_mapped_walk(&pvmw)) {
2017 		/*
2018 		 * Need to recheck under the ptl to serialise with
2019 		 * __munlock_pagevec_fill() after VM_LOCKED is cleared in
2020 		 * munlock_vma_pages_range().
2021 		 */
2022 		if (vma->vm_flags & VM_LOCKED) {
2023 			/*
2024 			 * PTE-mapped THP are never marked as mlocked; but
2025 			 * this function is never called on a DoubleMap THP,
2026 			 * nor on an Anon THP (which may still be PTE-mapped
2027 			 * after DoubleMap was cleared).
2028 			 */
2029 			mlock_vma_page(page);
2030 			/*
2031 			 * No need to scan further once the page is marked
2032 			 * as mlocked.
2033 			 */
2034 			page_vma_mapped_walk_done(&pvmw);
2035 			return false;
2036 		}
2037 	}
2038 
2039 	return true;
2040 }
2041 
2042 /**
2043  * page_mlock - try to mlock a page
2044  * @page: the page to be mlocked
2045  *
2046  * Called from munlock code. Checks all of the VMAs mapping the page and mlocks
2047  * the page if any are found. The page will be returned with PG_mlocked cleared
2048  * if it is not mapped by any locked vmas.
2049  */
2050 void page_mlock(struct page *page)
2051 {
2052 	struct rmap_walk_control rwc = {
2053 		.rmap_one = page_mlock_one,
2054 		.done = page_not_mapped,
2055 		.anon_lock = page_lock_anon_vma_read,
2056 
2057 	};
2058 
2059 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
2060 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
2061 
2062 	/* Anon THP are only marked as mlocked when singly mapped */
2063 	if (PageTransCompound(page) && PageAnon(page))
2064 		return;
2065 
2066 	rmap_walk(page, &rwc);
2067 }
2068 
2069 #ifdef CONFIG_DEVICE_PRIVATE
2070 struct make_exclusive_args {
2071 	struct mm_struct *mm;
2072 	unsigned long address;
2073 	void *owner;
2074 	bool valid;
2075 };
2076 
2077 static bool page_make_device_exclusive_one(struct page *page,
2078 		struct vm_area_struct *vma, unsigned long address, void *priv)
2079 {
2080 	struct mm_struct *mm = vma->vm_mm;
2081 	struct page_vma_mapped_walk pvmw = {
2082 		.page = page,
2083 		.vma = vma,
2084 		.address = address,
2085 	};
2086 	struct make_exclusive_args *args = priv;
2087 	pte_t pteval;
2088 	struct page *subpage;
2089 	bool ret = true;
2090 	struct mmu_notifier_range range;
2091 	swp_entry_t entry;
2092 	pte_t swp_pte;
2093 
2094 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2095 				      vma->vm_mm, address, min(vma->vm_end,
2096 				      address + page_size(page)), args->owner);
2097 	mmu_notifier_invalidate_range_start(&range);
2098 
2099 	while (page_vma_mapped_walk(&pvmw)) {
2100 		/* Unexpected PMD-mapped THP? */
2101 		VM_BUG_ON_PAGE(!pvmw.pte, page);
2102 
2103 		if (!pte_present(*pvmw.pte)) {
2104 			ret = false;
2105 			page_vma_mapped_walk_done(&pvmw);
2106 			break;
2107 		}
2108 
2109 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
2110 		address = pvmw.address;
2111 
2112 		/* Nuke the page table entry. */
2113 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2114 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2115 
2116 		/* Move the dirty bit to the page. Now the pte is gone. */
2117 		if (pte_dirty(pteval))
2118 			set_page_dirty(page);
2119 
2120 		/*
2121 		 * Check that our target page is still mapped at the expected
2122 		 * address.
2123 		 */
2124 		if (args->mm == mm && args->address == address &&
2125 		    pte_write(pteval))
2126 			args->valid = true;
2127 
2128 		/*
2129 		 * Store the pfn of the page in a special migration
2130 		 * pte. do_swap_page() will wait until the migration
2131 		 * pte is removed and then restart fault handling.
2132 		 */
2133 		if (pte_write(pteval))
2134 			entry = make_writable_device_exclusive_entry(
2135 							page_to_pfn(subpage));
2136 		else
2137 			entry = make_readable_device_exclusive_entry(
2138 							page_to_pfn(subpage));
2139 		swp_pte = swp_entry_to_pte(entry);
2140 		if (pte_soft_dirty(pteval))
2141 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2142 		if (pte_uffd_wp(pteval))
2143 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2144 
2145 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2146 
2147 		/*
2148 		 * There is a reference on the page for the swap entry which has
2149 		 * been removed, so shouldn't take another.
2150 		 */
2151 		page_remove_rmap(subpage, false);
2152 	}
2153 
2154 	mmu_notifier_invalidate_range_end(&range);
2155 
2156 	return ret;
2157 }
2158 
2159 /**
2160  * page_make_device_exclusive - mark the page exclusively owned by a device
2161  * @page: the page to replace page table entries for
2162  * @mm: the mm_struct where the page is expected to be mapped
2163  * @address: address where the page is expected to be mapped
2164  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2165  *
2166  * Tries to remove all the page table entries which are mapping this page and
2167  * replace them with special device exclusive swap entries to grant a device
2168  * exclusive access to the page. Caller must hold the page lock.
2169  *
2170  * Returns false if the page is still mapped, or if it could not be unmapped
2171  * from the expected address. Otherwise returns true (success).
2172  */
2173 static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm,
2174 				unsigned long address, void *owner)
2175 {
2176 	struct make_exclusive_args args = {
2177 		.mm = mm,
2178 		.address = address,
2179 		.owner = owner,
2180 		.valid = false,
2181 	};
2182 	struct rmap_walk_control rwc = {
2183 		.rmap_one = page_make_device_exclusive_one,
2184 		.done = page_not_mapped,
2185 		.anon_lock = page_lock_anon_vma_read,
2186 		.arg = &args,
2187 	};
2188 
2189 	/*
2190 	 * Restrict to anonymous pages for now to avoid potential writeback
2191 	 * issues. Also tail pages shouldn't be passed to rmap_walk so skip
2192 	 * those.
2193 	 */
2194 	if (!PageAnon(page) || PageTail(page))
2195 		return false;
2196 
2197 	rmap_walk(page, &rwc);
2198 
2199 	return args.valid && !page_mapcount(page);
2200 }
2201 
2202 /**
2203  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2204  * @mm: mm_struct of assoicated target process
2205  * @start: start of the region to mark for exclusive device access
2206  * @end: end address of region
2207  * @pages: returns the pages which were successfully marked for exclusive access
2208  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2209  *
2210  * Returns: number of pages found in the range by GUP. A page is marked for
2211  * exclusive access only if the page pointer is non-NULL.
2212  *
2213  * This function finds ptes mapping page(s) to the given address range, locks
2214  * them and replaces mappings with special swap entries preventing userspace CPU
2215  * access. On fault these entries are replaced with the original mapping after
2216  * calling MMU notifiers.
2217  *
2218  * A driver using this to program access from a device must use a mmu notifier
2219  * critical section to hold a device specific lock during programming. Once
2220  * programming is complete it should drop the page lock and reference after
2221  * which point CPU access to the page will revoke the exclusive access.
2222  */
2223 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2224 				unsigned long end, struct page **pages,
2225 				void *owner)
2226 {
2227 	long npages = (end - start) >> PAGE_SHIFT;
2228 	long i;
2229 
2230 	npages = get_user_pages_remote(mm, start, npages,
2231 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2232 				       pages, NULL, NULL);
2233 	if (npages < 0)
2234 		return npages;
2235 
2236 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2237 		if (!trylock_page(pages[i])) {
2238 			put_page(pages[i]);
2239 			pages[i] = NULL;
2240 			continue;
2241 		}
2242 
2243 		if (!page_make_device_exclusive(pages[i], mm, start, owner)) {
2244 			unlock_page(pages[i]);
2245 			put_page(pages[i]);
2246 			pages[i] = NULL;
2247 		}
2248 	}
2249 
2250 	return npages;
2251 }
2252 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2253 #endif
2254 
2255 void __put_anon_vma(struct anon_vma *anon_vma)
2256 {
2257 	struct anon_vma *root = anon_vma->root;
2258 
2259 	anon_vma_free(anon_vma);
2260 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2261 		anon_vma_free(root);
2262 }
2263 
2264 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
2265 					struct rmap_walk_control *rwc)
2266 {
2267 	struct anon_vma *anon_vma;
2268 
2269 	if (rwc->anon_lock)
2270 		return rwc->anon_lock(page);
2271 
2272 	/*
2273 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
2274 	 * because that depends on page_mapped(); but not all its usages
2275 	 * are holding mmap_lock. Users without mmap_lock are required to
2276 	 * take a reference count to prevent the anon_vma disappearing
2277 	 */
2278 	anon_vma = page_anon_vma(page);
2279 	if (!anon_vma)
2280 		return NULL;
2281 
2282 	anon_vma_lock_read(anon_vma);
2283 	return anon_vma;
2284 }
2285 
2286 /*
2287  * rmap_walk_anon - do something to anonymous page using the object-based
2288  * rmap method
2289  * @page: the page to be handled
2290  * @rwc: control variable according to each walk type
2291  *
2292  * Find all the mappings of a page using the mapping pointer and the vma chains
2293  * contained in the anon_vma struct it points to.
2294  *
2295  * When called from page_mlock(), the mmap_lock of the mm containing the vma
2296  * where the page was found will be held for write.  So, we won't recheck
2297  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
2298  * LOCKED.
2299  */
2300 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
2301 		bool locked)
2302 {
2303 	struct anon_vma *anon_vma;
2304 	pgoff_t pgoff_start, pgoff_end;
2305 	struct anon_vma_chain *avc;
2306 
2307 	if (locked) {
2308 		anon_vma = page_anon_vma(page);
2309 		/* anon_vma disappear under us? */
2310 		VM_BUG_ON_PAGE(!anon_vma, page);
2311 	} else {
2312 		anon_vma = rmap_walk_anon_lock(page, rwc);
2313 	}
2314 	if (!anon_vma)
2315 		return;
2316 
2317 	pgoff_start = page_to_pgoff(page);
2318 	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2319 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2320 			pgoff_start, pgoff_end) {
2321 		struct vm_area_struct *vma = avc->vma;
2322 		unsigned long address = vma_address(page, vma);
2323 
2324 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2325 		cond_resched();
2326 
2327 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2328 			continue;
2329 
2330 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
2331 			break;
2332 		if (rwc->done && rwc->done(page))
2333 			break;
2334 	}
2335 
2336 	if (!locked)
2337 		anon_vma_unlock_read(anon_vma);
2338 }
2339 
2340 /*
2341  * rmap_walk_file - do something to file page using the object-based rmap method
2342  * @page: the page to be handled
2343  * @rwc: control variable according to each walk type
2344  *
2345  * Find all the mappings of a page using the mapping pointer and the vma chains
2346  * contained in the address_space struct it points to.
2347  *
2348  * When called from page_mlock(), the mmap_lock of the mm containing the vma
2349  * where the page was found will be held for write.  So, we won't recheck
2350  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
2351  * LOCKED.
2352  */
2353 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
2354 		bool locked)
2355 {
2356 	struct address_space *mapping = page_mapping(page);
2357 	pgoff_t pgoff_start, pgoff_end;
2358 	struct vm_area_struct *vma;
2359 
2360 	/*
2361 	 * The page lock not only makes sure that page->mapping cannot
2362 	 * suddenly be NULLified by truncation, it makes sure that the
2363 	 * structure at mapping cannot be freed and reused yet,
2364 	 * so we can safely take mapping->i_mmap_rwsem.
2365 	 */
2366 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2367 
2368 	if (!mapping)
2369 		return;
2370 
2371 	pgoff_start = page_to_pgoff(page);
2372 	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2373 	if (!locked)
2374 		i_mmap_lock_read(mapping);
2375 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2376 			pgoff_start, pgoff_end) {
2377 		unsigned long address = vma_address(page, vma);
2378 
2379 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2380 		cond_resched();
2381 
2382 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2383 			continue;
2384 
2385 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
2386 			goto done;
2387 		if (rwc->done && rwc->done(page))
2388 			goto done;
2389 	}
2390 
2391 done:
2392 	if (!locked)
2393 		i_mmap_unlock_read(mapping);
2394 }
2395 
2396 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
2397 {
2398 	if (unlikely(PageKsm(page)))
2399 		rmap_walk_ksm(page, rwc);
2400 	else if (PageAnon(page))
2401 		rmap_walk_anon(page, rwc, false);
2402 	else
2403 		rmap_walk_file(page, rwc, false);
2404 }
2405 
2406 /* Like rmap_walk, but caller holds relevant rmap lock */
2407 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
2408 {
2409 	/* no ksm support for now */
2410 	VM_BUG_ON_PAGE(PageKsm(page), page);
2411 	if (PageAnon(page))
2412 		rmap_walk_anon(page, rwc, true);
2413 	else
2414 		rmap_walk_file(page, rwc, true);
2415 }
2416 
2417 #ifdef CONFIG_HUGETLB_PAGE
2418 /*
2419  * The following two functions are for anonymous (private mapped) hugepages.
2420  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2421  * and no lru code, because we handle hugepages differently from common pages.
2422  */
2423 void hugepage_add_anon_rmap(struct page *page,
2424 			    struct vm_area_struct *vma, unsigned long address)
2425 {
2426 	struct anon_vma *anon_vma = vma->anon_vma;
2427 	int first;
2428 
2429 	BUG_ON(!PageLocked(page));
2430 	BUG_ON(!anon_vma);
2431 	/* address might be in next vma when migration races vma_adjust */
2432 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
2433 	if (first)
2434 		__page_set_anon_rmap(page, vma, address, 0);
2435 }
2436 
2437 void hugepage_add_new_anon_rmap(struct page *page,
2438 			struct vm_area_struct *vma, unsigned long address)
2439 {
2440 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2441 	atomic_set(compound_mapcount_ptr(page), 0);
2442 	if (hpage_pincount_available(page))
2443 		atomic_set(compound_pincount_ptr(page), 0);
2444 
2445 	__page_set_anon_rmap(page, vma, address, 1);
2446 }
2447 #endif /* CONFIG_HUGETLB_PAGE */
2448