1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) 27 * mapping->i_mmap_rwsem 28 * anon_vma->rwsem 29 * mm->page_table_lock or pte_lock 30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) 35 * mapping->tree_lock (widely used) 36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 38 * sb_lock (within inode_lock in fs/fs-writeback.c) 39 * mapping->tree_lock (widely used, in set_page_dirty, 40 * in arch-dependent flush_dcache_mmap_lock, 41 * within bdi.wb->list_lock in __sync_single_inode) 42 * 43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 44 * ->tasklist_lock 45 * pte map lock 46 */ 47 48 #include <linux/mm.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sched/task.h> 51 #include <linux/pagemap.h> 52 #include <linux/swap.h> 53 #include <linux/swapops.h> 54 #include <linux/slab.h> 55 #include <linux/init.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/rcupdate.h> 59 #include <linux/export.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/migrate.h> 63 #include <linux/hugetlb.h> 64 #include <linux/backing-dev.h> 65 #include <linux/page_idle.h> 66 67 #include <asm/tlbflush.h> 68 69 #include <trace/events/tlb.h> 70 71 #include "internal.h" 72 73 static struct kmem_cache *anon_vma_cachep; 74 static struct kmem_cache *anon_vma_chain_cachep; 75 76 static inline struct anon_vma *anon_vma_alloc(void) 77 { 78 struct anon_vma *anon_vma; 79 80 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 81 if (anon_vma) { 82 atomic_set(&anon_vma->refcount, 1); 83 anon_vma->degree = 1; /* Reference for first vma */ 84 anon_vma->parent = anon_vma; 85 /* 86 * Initialise the anon_vma root to point to itself. If called 87 * from fork, the root will be reset to the parents anon_vma. 88 */ 89 anon_vma->root = anon_vma; 90 } 91 92 return anon_vma; 93 } 94 95 static inline void anon_vma_free(struct anon_vma *anon_vma) 96 { 97 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 98 99 /* 100 * Synchronize against page_lock_anon_vma_read() such that 101 * we can safely hold the lock without the anon_vma getting 102 * freed. 103 * 104 * Relies on the full mb implied by the atomic_dec_and_test() from 105 * put_anon_vma() against the acquire barrier implied by 106 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 107 * 108 * page_lock_anon_vma_read() VS put_anon_vma() 109 * down_read_trylock() atomic_dec_and_test() 110 * LOCK MB 111 * atomic_read() rwsem_is_locked() 112 * 113 * LOCK should suffice since the actual taking of the lock must 114 * happen _before_ what follows. 115 */ 116 might_sleep(); 117 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 118 anon_vma_lock_write(anon_vma); 119 anon_vma_unlock_write(anon_vma); 120 } 121 122 kmem_cache_free(anon_vma_cachep, anon_vma); 123 } 124 125 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 126 { 127 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 128 } 129 130 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 131 { 132 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 133 } 134 135 static void anon_vma_chain_link(struct vm_area_struct *vma, 136 struct anon_vma_chain *avc, 137 struct anon_vma *anon_vma) 138 { 139 avc->vma = vma; 140 avc->anon_vma = anon_vma; 141 list_add(&avc->same_vma, &vma->anon_vma_chain); 142 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 143 } 144 145 /** 146 * __anon_vma_prepare - attach an anon_vma to a memory region 147 * @vma: the memory region in question 148 * 149 * This makes sure the memory mapping described by 'vma' has 150 * an 'anon_vma' attached to it, so that we can associate the 151 * anonymous pages mapped into it with that anon_vma. 152 * 153 * The common case will be that we already have one, which 154 * is handled inline by anon_vma_prepare(). But if 155 * not we either need to find an adjacent mapping that we 156 * can re-use the anon_vma from (very common when the only 157 * reason for splitting a vma has been mprotect()), or we 158 * allocate a new one. 159 * 160 * Anon-vma allocations are very subtle, because we may have 161 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 162 * and that may actually touch the spinlock even in the newly 163 * allocated vma (it depends on RCU to make sure that the 164 * anon_vma isn't actually destroyed). 165 * 166 * As a result, we need to do proper anon_vma locking even 167 * for the new allocation. At the same time, we do not want 168 * to do any locking for the common case of already having 169 * an anon_vma. 170 * 171 * This must be called with the mmap_sem held for reading. 172 */ 173 int __anon_vma_prepare(struct vm_area_struct *vma) 174 { 175 struct mm_struct *mm = vma->vm_mm; 176 struct anon_vma *anon_vma, *allocated; 177 struct anon_vma_chain *avc; 178 179 might_sleep(); 180 181 avc = anon_vma_chain_alloc(GFP_KERNEL); 182 if (!avc) 183 goto out_enomem; 184 185 anon_vma = find_mergeable_anon_vma(vma); 186 allocated = NULL; 187 if (!anon_vma) { 188 anon_vma = anon_vma_alloc(); 189 if (unlikely(!anon_vma)) 190 goto out_enomem_free_avc; 191 allocated = anon_vma; 192 } 193 194 anon_vma_lock_write(anon_vma); 195 /* page_table_lock to protect against threads */ 196 spin_lock(&mm->page_table_lock); 197 if (likely(!vma->anon_vma)) { 198 vma->anon_vma = anon_vma; 199 anon_vma_chain_link(vma, avc, anon_vma); 200 /* vma reference or self-parent link for new root */ 201 anon_vma->degree++; 202 allocated = NULL; 203 avc = NULL; 204 } 205 spin_unlock(&mm->page_table_lock); 206 anon_vma_unlock_write(anon_vma); 207 208 if (unlikely(allocated)) 209 put_anon_vma(allocated); 210 if (unlikely(avc)) 211 anon_vma_chain_free(avc); 212 213 return 0; 214 215 out_enomem_free_avc: 216 anon_vma_chain_free(avc); 217 out_enomem: 218 return -ENOMEM; 219 } 220 221 /* 222 * This is a useful helper function for locking the anon_vma root as 223 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 224 * have the same vma. 225 * 226 * Such anon_vma's should have the same root, so you'd expect to see 227 * just a single mutex_lock for the whole traversal. 228 */ 229 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 230 { 231 struct anon_vma *new_root = anon_vma->root; 232 if (new_root != root) { 233 if (WARN_ON_ONCE(root)) 234 up_write(&root->rwsem); 235 root = new_root; 236 down_write(&root->rwsem); 237 } 238 return root; 239 } 240 241 static inline void unlock_anon_vma_root(struct anon_vma *root) 242 { 243 if (root) 244 up_write(&root->rwsem); 245 } 246 247 /* 248 * Attach the anon_vmas from src to dst. 249 * Returns 0 on success, -ENOMEM on failure. 250 * 251 * If dst->anon_vma is NULL this function tries to find and reuse existing 252 * anon_vma which has no vmas and only one child anon_vma. This prevents 253 * degradation of anon_vma hierarchy to endless linear chain in case of 254 * constantly forking task. On the other hand, an anon_vma with more than one 255 * child isn't reused even if there was no alive vma, thus rmap walker has a 256 * good chance of avoiding scanning the whole hierarchy when it searches where 257 * page is mapped. 258 */ 259 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 260 { 261 struct anon_vma_chain *avc, *pavc; 262 struct anon_vma *root = NULL; 263 264 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 265 struct anon_vma *anon_vma; 266 267 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 268 if (unlikely(!avc)) { 269 unlock_anon_vma_root(root); 270 root = NULL; 271 avc = anon_vma_chain_alloc(GFP_KERNEL); 272 if (!avc) 273 goto enomem_failure; 274 } 275 anon_vma = pavc->anon_vma; 276 root = lock_anon_vma_root(root, anon_vma); 277 anon_vma_chain_link(dst, avc, anon_vma); 278 279 /* 280 * Reuse existing anon_vma if its degree lower than two, 281 * that means it has no vma and only one anon_vma child. 282 * 283 * Do not chose parent anon_vma, otherwise first child 284 * will always reuse it. Root anon_vma is never reused: 285 * it has self-parent reference and at least one child. 286 */ 287 if (!dst->anon_vma && anon_vma != src->anon_vma && 288 anon_vma->degree < 2) 289 dst->anon_vma = anon_vma; 290 } 291 if (dst->anon_vma) 292 dst->anon_vma->degree++; 293 unlock_anon_vma_root(root); 294 return 0; 295 296 enomem_failure: 297 /* 298 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 299 * decremented in unlink_anon_vmas(). 300 * We can safely do this because callers of anon_vma_clone() don't care 301 * about dst->anon_vma if anon_vma_clone() failed. 302 */ 303 dst->anon_vma = NULL; 304 unlink_anon_vmas(dst); 305 return -ENOMEM; 306 } 307 308 /* 309 * Attach vma to its own anon_vma, as well as to the anon_vmas that 310 * the corresponding VMA in the parent process is attached to. 311 * Returns 0 on success, non-zero on failure. 312 */ 313 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 314 { 315 struct anon_vma_chain *avc; 316 struct anon_vma *anon_vma; 317 int error; 318 319 /* Don't bother if the parent process has no anon_vma here. */ 320 if (!pvma->anon_vma) 321 return 0; 322 323 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 324 vma->anon_vma = NULL; 325 326 /* 327 * First, attach the new VMA to the parent VMA's anon_vmas, 328 * so rmap can find non-COWed pages in child processes. 329 */ 330 error = anon_vma_clone(vma, pvma); 331 if (error) 332 return error; 333 334 /* An existing anon_vma has been reused, all done then. */ 335 if (vma->anon_vma) 336 return 0; 337 338 /* Then add our own anon_vma. */ 339 anon_vma = anon_vma_alloc(); 340 if (!anon_vma) 341 goto out_error; 342 avc = anon_vma_chain_alloc(GFP_KERNEL); 343 if (!avc) 344 goto out_error_free_anon_vma; 345 346 /* 347 * The root anon_vma's spinlock is the lock actually used when we 348 * lock any of the anon_vmas in this anon_vma tree. 349 */ 350 anon_vma->root = pvma->anon_vma->root; 351 anon_vma->parent = pvma->anon_vma; 352 /* 353 * With refcounts, an anon_vma can stay around longer than the 354 * process it belongs to. The root anon_vma needs to be pinned until 355 * this anon_vma is freed, because the lock lives in the root. 356 */ 357 get_anon_vma(anon_vma->root); 358 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 359 vma->anon_vma = anon_vma; 360 anon_vma_lock_write(anon_vma); 361 anon_vma_chain_link(vma, avc, anon_vma); 362 anon_vma->parent->degree++; 363 anon_vma_unlock_write(anon_vma); 364 365 return 0; 366 367 out_error_free_anon_vma: 368 put_anon_vma(anon_vma); 369 out_error: 370 unlink_anon_vmas(vma); 371 return -ENOMEM; 372 } 373 374 void unlink_anon_vmas(struct vm_area_struct *vma) 375 { 376 struct anon_vma_chain *avc, *next; 377 struct anon_vma *root = NULL; 378 379 /* 380 * Unlink each anon_vma chained to the VMA. This list is ordered 381 * from newest to oldest, ensuring the root anon_vma gets freed last. 382 */ 383 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 384 struct anon_vma *anon_vma = avc->anon_vma; 385 386 root = lock_anon_vma_root(root, anon_vma); 387 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 388 389 /* 390 * Leave empty anon_vmas on the list - we'll need 391 * to free them outside the lock. 392 */ 393 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) { 394 anon_vma->parent->degree--; 395 continue; 396 } 397 398 list_del(&avc->same_vma); 399 anon_vma_chain_free(avc); 400 } 401 if (vma->anon_vma) 402 vma->anon_vma->degree--; 403 unlock_anon_vma_root(root); 404 405 /* 406 * Iterate the list once more, it now only contains empty and unlinked 407 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 408 * needing to write-acquire the anon_vma->root->rwsem. 409 */ 410 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 411 struct anon_vma *anon_vma = avc->anon_vma; 412 413 VM_WARN_ON(anon_vma->degree); 414 put_anon_vma(anon_vma); 415 416 list_del(&avc->same_vma); 417 anon_vma_chain_free(avc); 418 } 419 } 420 421 static void anon_vma_ctor(void *data) 422 { 423 struct anon_vma *anon_vma = data; 424 425 init_rwsem(&anon_vma->rwsem); 426 atomic_set(&anon_vma->refcount, 0); 427 anon_vma->rb_root = RB_ROOT; 428 } 429 430 void __init anon_vma_init(void) 431 { 432 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 433 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 434 anon_vma_ctor); 435 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 436 SLAB_PANIC|SLAB_ACCOUNT); 437 } 438 439 /* 440 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 441 * 442 * Since there is no serialization what so ever against page_remove_rmap() 443 * the best this function can do is return a locked anon_vma that might 444 * have been relevant to this page. 445 * 446 * The page might have been remapped to a different anon_vma or the anon_vma 447 * returned may already be freed (and even reused). 448 * 449 * In case it was remapped to a different anon_vma, the new anon_vma will be a 450 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 451 * ensure that any anon_vma obtained from the page will still be valid for as 452 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 453 * 454 * All users of this function must be very careful when walking the anon_vma 455 * chain and verify that the page in question is indeed mapped in it 456 * [ something equivalent to page_mapped_in_vma() ]. 457 * 458 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 459 * that the anon_vma pointer from page->mapping is valid if there is a 460 * mapcount, we can dereference the anon_vma after observing those. 461 */ 462 struct anon_vma *page_get_anon_vma(struct page *page) 463 { 464 struct anon_vma *anon_vma = NULL; 465 unsigned long anon_mapping; 466 467 rcu_read_lock(); 468 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 469 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 470 goto out; 471 if (!page_mapped(page)) 472 goto out; 473 474 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 475 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 476 anon_vma = NULL; 477 goto out; 478 } 479 480 /* 481 * If this page is still mapped, then its anon_vma cannot have been 482 * freed. But if it has been unmapped, we have no security against the 483 * anon_vma structure being freed and reused (for another anon_vma: 484 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 485 * above cannot corrupt). 486 */ 487 if (!page_mapped(page)) { 488 rcu_read_unlock(); 489 put_anon_vma(anon_vma); 490 return NULL; 491 } 492 out: 493 rcu_read_unlock(); 494 495 return anon_vma; 496 } 497 498 /* 499 * Similar to page_get_anon_vma() except it locks the anon_vma. 500 * 501 * Its a little more complex as it tries to keep the fast path to a single 502 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 503 * reference like with page_get_anon_vma() and then block on the mutex. 504 */ 505 struct anon_vma *page_lock_anon_vma_read(struct page *page) 506 { 507 struct anon_vma *anon_vma = NULL; 508 struct anon_vma *root_anon_vma; 509 unsigned long anon_mapping; 510 511 rcu_read_lock(); 512 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 513 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 514 goto out; 515 if (!page_mapped(page)) 516 goto out; 517 518 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 519 root_anon_vma = READ_ONCE(anon_vma->root); 520 if (down_read_trylock(&root_anon_vma->rwsem)) { 521 /* 522 * If the page is still mapped, then this anon_vma is still 523 * its anon_vma, and holding the mutex ensures that it will 524 * not go away, see anon_vma_free(). 525 */ 526 if (!page_mapped(page)) { 527 up_read(&root_anon_vma->rwsem); 528 anon_vma = NULL; 529 } 530 goto out; 531 } 532 533 /* trylock failed, we got to sleep */ 534 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 535 anon_vma = NULL; 536 goto out; 537 } 538 539 if (!page_mapped(page)) { 540 rcu_read_unlock(); 541 put_anon_vma(anon_vma); 542 return NULL; 543 } 544 545 /* we pinned the anon_vma, its safe to sleep */ 546 rcu_read_unlock(); 547 anon_vma_lock_read(anon_vma); 548 549 if (atomic_dec_and_test(&anon_vma->refcount)) { 550 /* 551 * Oops, we held the last refcount, release the lock 552 * and bail -- can't simply use put_anon_vma() because 553 * we'll deadlock on the anon_vma_lock_write() recursion. 554 */ 555 anon_vma_unlock_read(anon_vma); 556 __put_anon_vma(anon_vma); 557 anon_vma = NULL; 558 } 559 560 return anon_vma; 561 562 out: 563 rcu_read_unlock(); 564 return anon_vma; 565 } 566 567 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 568 { 569 anon_vma_unlock_read(anon_vma); 570 } 571 572 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 573 /* 574 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 575 * important if a PTE was dirty when it was unmapped that it's flushed 576 * before any IO is initiated on the page to prevent lost writes. Similarly, 577 * it must be flushed before freeing to prevent data leakage. 578 */ 579 void try_to_unmap_flush(void) 580 { 581 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 582 int cpu; 583 584 if (!tlb_ubc->flush_required) 585 return; 586 587 cpu = get_cpu(); 588 589 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) { 590 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 591 local_flush_tlb(); 592 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL); 593 } 594 595 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) 596 flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL); 597 cpumask_clear(&tlb_ubc->cpumask); 598 tlb_ubc->flush_required = false; 599 tlb_ubc->writable = false; 600 put_cpu(); 601 } 602 603 /* Flush iff there are potentially writable TLB entries that can race with IO */ 604 void try_to_unmap_flush_dirty(void) 605 { 606 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 607 608 if (tlb_ubc->writable) 609 try_to_unmap_flush(); 610 } 611 612 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 613 { 614 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 615 616 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm)); 617 tlb_ubc->flush_required = true; 618 619 /* 620 * If the PTE was dirty then it's best to assume it's writable. The 621 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 622 * before the page is queued for IO. 623 */ 624 if (writable) 625 tlb_ubc->writable = true; 626 } 627 628 /* 629 * Returns true if the TLB flush should be deferred to the end of a batch of 630 * unmap operations to reduce IPIs. 631 */ 632 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 633 { 634 bool should_defer = false; 635 636 if (!(flags & TTU_BATCH_FLUSH)) 637 return false; 638 639 /* If remote CPUs need to be flushed then defer batch the flush */ 640 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 641 should_defer = true; 642 put_cpu(); 643 644 return should_defer; 645 } 646 #else 647 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 648 { 649 } 650 651 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 652 { 653 return false; 654 } 655 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 656 657 /* 658 * At what user virtual address is page expected in vma? 659 * Caller should check the page is actually part of the vma. 660 */ 661 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 662 { 663 unsigned long address; 664 if (PageAnon(page)) { 665 struct anon_vma *page__anon_vma = page_anon_vma(page); 666 /* 667 * Note: swapoff's unuse_vma() is more efficient with this 668 * check, and needs it to match anon_vma when KSM is active. 669 */ 670 if (!vma->anon_vma || !page__anon_vma || 671 vma->anon_vma->root != page__anon_vma->root) 672 return -EFAULT; 673 } else if (page->mapping) { 674 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) 675 return -EFAULT; 676 } else 677 return -EFAULT; 678 address = __vma_address(page, vma); 679 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 680 return -EFAULT; 681 return address; 682 } 683 684 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 685 { 686 pgd_t *pgd; 687 p4d_t *p4d; 688 pud_t *pud; 689 pmd_t *pmd = NULL; 690 pmd_t pmde; 691 692 pgd = pgd_offset(mm, address); 693 if (!pgd_present(*pgd)) 694 goto out; 695 696 p4d = p4d_offset(pgd, address); 697 if (!p4d_present(*p4d)) 698 goto out; 699 700 pud = pud_offset(p4d, address); 701 if (!pud_present(*pud)) 702 goto out; 703 704 pmd = pmd_offset(pud, address); 705 /* 706 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 707 * without holding anon_vma lock for write. So when looking for a 708 * genuine pmde (in which to find pte), test present and !THP together. 709 */ 710 pmde = *pmd; 711 barrier(); 712 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 713 pmd = NULL; 714 out: 715 return pmd; 716 } 717 718 struct page_referenced_arg { 719 int mapcount; 720 int referenced; 721 unsigned long vm_flags; 722 struct mem_cgroup *memcg; 723 }; 724 /* 725 * arg: page_referenced_arg will be passed 726 */ 727 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, 728 unsigned long address, void *arg) 729 { 730 struct page_referenced_arg *pra = arg; 731 struct page_vma_mapped_walk pvmw = { 732 .page = page, 733 .vma = vma, 734 .address = address, 735 }; 736 int referenced = 0; 737 738 while (page_vma_mapped_walk(&pvmw)) { 739 address = pvmw.address; 740 741 if (vma->vm_flags & VM_LOCKED) { 742 page_vma_mapped_walk_done(&pvmw); 743 pra->vm_flags |= VM_LOCKED; 744 return false; /* To break the loop */ 745 } 746 747 if (pvmw.pte) { 748 if (ptep_clear_flush_young_notify(vma, address, 749 pvmw.pte)) { 750 /* 751 * Don't treat a reference through 752 * a sequentially read mapping as such. 753 * If the page has been used in another mapping, 754 * we will catch it; if this other mapping is 755 * already gone, the unmap path will have set 756 * PG_referenced or activated the page. 757 */ 758 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 759 referenced++; 760 } 761 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 762 if (pmdp_clear_flush_young_notify(vma, address, 763 pvmw.pmd)) 764 referenced++; 765 } else { 766 /* unexpected pmd-mapped page? */ 767 WARN_ON_ONCE(1); 768 } 769 770 pra->mapcount--; 771 } 772 773 if (referenced) 774 clear_page_idle(page); 775 if (test_and_clear_page_young(page)) 776 referenced++; 777 778 if (referenced) { 779 pra->referenced++; 780 pra->vm_flags |= vma->vm_flags; 781 } 782 783 if (!pra->mapcount) 784 return false; /* To break the loop */ 785 786 return true; 787 } 788 789 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 790 { 791 struct page_referenced_arg *pra = arg; 792 struct mem_cgroup *memcg = pra->memcg; 793 794 if (!mm_match_cgroup(vma->vm_mm, memcg)) 795 return true; 796 797 return false; 798 } 799 800 /** 801 * page_referenced - test if the page was referenced 802 * @page: the page to test 803 * @is_locked: caller holds lock on the page 804 * @memcg: target memory cgroup 805 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 806 * 807 * Quick test_and_clear_referenced for all mappings to a page, 808 * returns the number of ptes which referenced the page. 809 */ 810 int page_referenced(struct page *page, 811 int is_locked, 812 struct mem_cgroup *memcg, 813 unsigned long *vm_flags) 814 { 815 int we_locked = 0; 816 struct page_referenced_arg pra = { 817 .mapcount = total_mapcount(page), 818 .memcg = memcg, 819 }; 820 struct rmap_walk_control rwc = { 821 .rmap_one = page_referenced_one, 822 .arg = (void *)&pra, 823 .anon_lock = page_lock_anon_vma_read, 824 }; 825 826 *vm_flags = 0; 827 if (!page_mapped(page)) 828 return 0; 829 830 if (!page_rmapping(page)) 831 return 0; 832 833 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 834 we_locked = trylock_page(page); 835 if (!we_locked) 836 return 1; 837 } 838 839 /* 840 * If we are reclaiming on behalf of a cgroup, skip 841 * counting on behalf of references from different 842 * cgroups 843 */ 844 if (memcg) { 845 rwc.invalid_vma = invalid_page_referenced_vma; 846 } 847 848 rmap_walk(page, &rwc); 849 *vm_flags = pra.vm_flags; 850 851 if (we_locked) 852 unlock_page(page); 853 854 return pra.referenced; 855 } 856 857 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, 858 unsigned long address, void *arg) 859 { 860 struct page_vma_mapped_walk pvmw = { 861 .page = page, 862 .vma = vma, 863 .address = address, 864 .flags = PVMW_SYNC, 865 }; 866 int *cleaned = arg; 867 868 while (page_vma_mapped_walk(&pvmw)) { 869 int ret = 0; 870 address = pvmw.address; 871 if (pvmw.pte) { 872 pte_t entry; 873 pte_t *pte = pvmw.pte; 874 875 if (!pte_dirty(*pte) && !pte_write(*pte)) 876 continue; 877 878 flush_cache_page(vma, address, pte_pfn(*pte)); 879 entry = ptep_clear_flush(vma, address, pte); 880 entry = pte_wrprotect(entry); 881 entry = pte_mkclean(entry); 882 set_pte_at(vma->vm_mm, address, pte, entry); 883 ret = 1; 884 } else { 885 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 886 pmd_t *pmd = pvmw.pmd; 887 pmd_t entry; 888 889 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 890 continue; 891 892 flush_cache_page(vma, address, page_to_pfn(page)); 893 entry = pmdp_huge_clear_flush(vma, address, pmd); 894 entry = pmd_wrprotect(entry); 895 entry = pmd_mkclean(entry); 896 set_pmd_at(vma->vm_mm, address, pmd, entry); 897 ret = 1; 898 #else 899 /* unexpected pmd-mapped page? */ 900 WARN_ON_ONCE(1); 901 #endif 902 } 903 904 if (ret) { 905 mmu_notifier_invalidate_page(vma->vm_mm, address); 906 (*cleaned)++; 907 } 908 } 909 910 return true; 911 } 912 913 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 914 { 915 if (vma->vm_flags & VM_SHARED) 916 return false; 917 918 return true; 919 } 920 921 int page_mkclean(struct page *page) 922 { 923 int cleaned = 0; 924 struct address_space *mapping; 925 struct rmap_walk_control rwc = { 926 .arg = (void *)&cleaned, 927 .rmap_one = page_mkclean_one, 928 .invalid_vma = invalid_mkclean_vma, 929 }; 930 931 BUG_ON(!PageLocked(page)); 932 933 if (!page_mapped(page)) 934 return 0; 935 936 mapping = page_mapping(page); 937 if (!mapping) 938 return 0; 939 940 rmap_walk(page, &rwc); 941 942 return cleaned; 943 } 944 EXPORT_SYMBOL_GPL(page_mkclean); 945 946 /** 947 * page_move_anon_rmap - move a page to our anon_vma 948 * @page: the page to move to our anon_vma 949 * @vma: the vma the page belongs to 950 * 951 * When a page belongs exclusively to one process after a COW event, 952 * that page can be moved into the anon_vma that belongs to just that 953 * process, so the rmap code will not search the parent or sibling 954 * processes. 955 */ 956 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 957 { 958 struct anon_vma *anon_vma = vma->anon_vma; 959 960 page = compound_head(page); 961 962 VM_BUG_ON_PAGE(!PageLocked(page), page); 963 VM_BUG_ON_VMA(!anon_vma, vma); 964 965 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 966 /* 967 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 968 * simultaneously, so a concurrent reader (eg page_referenced()'s 969 * PageAnon()) will not see one without the other. 970 */ 971 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 972 } 973 974 /** 975 * __page_set_anon_rmap - set up new anonymous rmap 976 * @page: Page to add to rmap 977 * @vma: VM area to add page to. 978 * @address: User virtual address of the mapping 979 * @exclusive: the page is exclusively owned by the current process 980 */ 981 static void __page_set_anon_rmap(struct page *page, 982 struct vm_area_struct *vma, unsigned long address, int exclusive) 983 { 984 struct anon_vma *anon_vma = vma->anon_vma; 985 986 BUG_ON(!anon_vma); 987 988 if (PageAnon(page)) 989 return; 990 991 /* 992 * If the page isn't exclusively mapped into this vma, 993 * we must use the _oldest_ possible anon_vma for the 994 * page mapping! 995 */ 996 if (!exclusive) 997 anon_vma = anon_vma->root; 998 999 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1000 page->mapping = (struct address_space *) anon_vma; 1001 page->index = linear_page_index(vma, address); 1002 } 1003 1004 /** 1005 * __page_check_anon_rmap - sanity check anonymous rmap addition 1006 * @page: the page to add the mapping to 1007 * @vma: the vm area in which the mapping is added 1008 * @address: the user virtual address mapped 1009 */ 1010 static void __page_check_anon_rmap(struct page *page, 1011 struct vm_area_struct *vma, unsigned long address) 1012 { 1013 #ifdef CONFIG_DEBUG_VM 1014 /* 1015 * The page's anon-rmap details (mapping and index) are guaranteed to 1016 * be set up correctly at this point. 1017 * 1018 * We have exclusion against page_add_anon_rmap because the caller 1019 * always holds the page locked, except if called from page_dup_rmap, 1020 * in which case the page is already known to be setup. 1021 * 1022 * We have exclusion against page_add_new_anon_rmap because those pages 1023 * are initially only visible via the pagetables, and the pte is locked 1024 * over the call to page_add_new_anon_rmap. 1025 */ 1026 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1027 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address)); 1028 #endif 1029 } 1030 1031 /** 1032 * page_add_anon_rmap - add pte mapping to an anonymous page 1033 * @page: the page to add the mapping to 1034 * @vma: the vm area in which the mapping is added 1035 * @address: the user virtual address mapped 1036 * @compound: charge the page as compound or small page 1037 * 1038 * The caller needs to hold the pte lock, and the page must be locked in 1039 * the anon_vma case: to serialize mapping,index checking after setting, 1040 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1041 * (but PageKsm is never downgraded to PageAnon). 1042 */ 1043 void page_add_anon_rmap(struct page *page, 1044 struct vm_area_struct *vma, unsigned long address, bool compound) 1045 { 1046 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); 1047 } 1048 1049 /* 1050 * Special version of the above for do_swap_page, which often runs 1051 * into pages that are exclusively owned by the current process. 1052 * Everybody else should continue to use page_add_anon_rmap above. 1053 */ 1054 void do_page_add_anon_rmap(struct page *page, 1055 struct vm_area_struct *vma, unsigned long address, int flags) 1056 { 1057 bool compound = flags & RMAP_COMPOUND; 1058 bool first; 1059 1060 if (compound) { 1061 atomic_t *mapcount; 1062 VM_BUG_ON_PAGE(!PageLocked(page), page); 1063 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1064 mapcount = compound_mapcount_ptr(page); 1065 first = atomic_inc_and_test(mapcount); 1066 } else { 1067 first = atomic_inc_and_test(&page->_mapcount); 1068 } 1069 1070 if (first) { 1071 int nr = compound ? hpage_nr_pages(page) : 1; 1072 /* 1073 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1074 * these counters are not modified in interrupt context, and 1075 * pte lock(a spinlock) is held, which implies preemption 1076 * disabled. 1077 */ 1078 if (compound) 1079 __inc_node_page_state(page, NR_ANON_THPS); 1080 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); 1081 } 1082 if (unlikely(PageKsm(page))) 1083 return; 1084 1085 VM_BUG_ON_PAGE(!PageLocked(page), page); 1086 1087 /* address might be in next vma when migration races vma_adjust */ 1088 if (first) 1089 __page_set_anon_rmap(page, vma, address, 1090 flags & RMAP_EXCLUSIVE); 1091 else 1092 __page_check_anon_rmap(page, vma, address); 1093 } 1094 1095 /** 1096 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1097 * @page: the page to add the mapping to 1098 * @vma: the vm area in which the mapping is added 1099 * @address: the user virtual address mapped 1100 * @compound: charge the page as compound or small page 1101 * 1102 * Same as page_add_anon_rmap but must only be called on *new* pages. 1103 * This means the inc-and-test can be bypassed. 1104 * Page does not have to be locked. 1105 */ 1106 void page_add_new_anon_rmap(struct page *page, 1107 struct vm_area_struct *vma, unsigned long address, bool compound) 1108 { 1109 int nr = compound ? hpage_nr_pages(page) : 1; 1110 1111 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1112 __SetPageSwapBacked(page); 1113 if (compound) { 1114 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1115 /* increment count (starts at -1) */ 1116 atomic_set(compound_mapcount_ptr(page), 0); 1117 __inc_node_page_state(page, NR_ANON_THPS); 1118 } else { 1119 /* Anon THP always mapped first with PMD */ 1120 VM_BUG_ON_PAGE(PageTransCompound(page), page); 1121 /* increment count (starts at -1) */ 1122 atomic_set(&page->_mapcount, 0); 1123 } 1124 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); 1125 __page_set_anon_rmap(page, vma, address, 1); 1126 } 1127 1128 /** 1129 * page_add_file_rmap - add pte mapping to a file page 1130 * @page: the page to add the mapping to 1131 * 1132 * The caller needs to hold the pte lock. 1133 */ 1134 void page_add_file_rmap(struct page *page, bool compound) 1135 { 1136 int i, nr = 1; 1137 1138 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1139 lock_page_memcg(page); 1140 if (compound && PageTransHuge(page)) { 1141 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1142 if (atomic_inc_and_test(&page[i]._mapcount)) 1143 nr++; 1144 } 1145 if (!atomic_inc_and_test(compound_mapcount_ptr(page))) 1146 goto out; 1147 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 1148 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED); 1149 } else { 1150 if (PageTransCompound(page) && page_mapping(page)) { 1151 VM_WARN_ON_ONCE(!PageLocked(page)); 1152 1153 SetPageDoubleMap(compound_head(page)); 1154 if (PageMlocked(page)) 1155 clear_page_mlock(compound_head(page)); 1156 } 1157 if (!atomic_inc_and_test(&page->_mapcount)) 1158 goto out; 1159 } 1160 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr); 1161 mod_memcg_page_state(page, NR_FILE_MAPPED, nr); 1162 out: 1163 unlock_page_memcg(page); 1164 } 1165 1166 static void page_remove_file_rmap(struct page *page, bool compound) 1167 { 1168 int i, nr = 1; 1169 1170 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1171 lock_page_memcg(page); 1172 1173 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1174 if (unlikely(PageHuge(page))) { 1175 /* hugetlb pages are always mapped with pmds */ 1176 atomic_dec(compound_mapcount_ptr(page)); 1177 goto out; 1178 } 1179 1180 /* page still mapped by someone else? */ 1181 if (compound && PageTransHuge(page)) { 1182 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1183 if (atomic_add_negative(-1, &page[i]._mapcount)) 1184 nr++; 1185 } 1186 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1187 goto out; 1188 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 1189 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED); 1190 } else { 1191 if (!atomic_add_negative(-1, &page->_mapcount)) 1192 goto out; 1193 } 1194 1195 /* 1196 * We use the irq-unsafe __{inc|mod}_zone_page_state because 1197 * these counters are not modified in interrupt context, and 1198 * pte lock(a spinlock) is held, which implies preemption disabled. 1199 */ 1200 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr); 1201 mod_memcg_page_state(page, NR_FILE_MAPPED, -nr); 1202 1203 if (unlikely(PageMlocked(page))) 1204 clear_page_mlock(page); 1205 out: 1206 unlock_page_memcg(page); 1207 } 1208 1209 static void page_remove_anon_compound_rmap(struct page *page) 1210 { 1211 int i, nr; 1212 1213 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1214 return; 1215 1216 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1217 if (unlikely(PageHuge(page))) 1218 return; 1219 1220 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1221 return; 1222 1223 __dec_node_page_state(page, NR_ANON_THPS); 1224 1225 if (TestClearPageDoubleMap(page)) { 1226 /* 1227 * Subpages can be mapped with PTEs too. Check how many of 1228 * themi are still mapped. 1229 */ 1230 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1231 if (atomic_add_negative(-1, &page[i]._mapcount)) 1232 nr++; 1233 } 1234 } else { 1235 nr = HPAGE_PMD_NR; 1236 } 1237 1238 if (unlikely(PageMlocked(page))) 1239 clear_page_mlock(page); 1240 1241 if (nr) { 1242 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr); 1243 deferred_split_huge_page(page); 1244 } 1245 } 1246 1247 /** 1248 * page_remove_rmap - take down pte mapping from a page 1249 * @page: page to remove mapping from 1250 * @compound: uncharge the page as compound or small page 1251 * 1252 * The caller needs to hold the pte lock. 1253 */ 1254 void page_remove_rmap(struct page *page, bool compound) 1255 { 1256 if (!PageAnon(page)) 1257 return page_remove_file_rmap(page, compound); 1258 1259 if (compound) 1260 return page_remove_anon_compound_rmap(page); 1261 1262 /* page still mapped by someone else? */ 1263 if (!atomic_add_negative(-1, &page->_mapcount)) 1264 return; 1265 1266 /* 1267 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1268 * these counters are not modified in interrupt context, and 1269 * pte lock(a spinlock) is held, which implies preemption disabled. 1270 */ 1271 __dec_node_page_state(page, NR_ANON_MAPPED); 1272 1273 if (unlikely(PageMlocked(page))) 1274 clear_page_mlock(page); 1275 1276 if (PageTransCompound(page)) 1277 deferred_split_huge_page(compound_head(page)); 1278 1279 /* 1280 * It would be tidy to reset the PageAnon mapping here, 1281 * but that might overwrite a racing page_add_anon_rmap 1282 * which increments mapcount after us but sets mapping 1283 * before us: so leave the reset to free_hot_cold_page, 1284 * and remember that it's only reliable while mapped. 1285 * Leaving it set also helps swapoff to reinstate ptes 1286 * faster for those pages still in swapcache. 1287 */ 1288 } 1289 1290 /* 1291 * @arg: enum ttu_flags will be passed to this argument 1292 */ 1293 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1294 unsigned long address, void *arg) 1295 { 1296 struct mm_struct *mm = vma->vm_mm; 1297 struct page_vma_mapped_walk pvmw = { 1298 .page = page, 1299 .vma = vma, 1300 .address = address, 1301 }; 1302 pte_t pteval; 1303 struct page *subpage; 1304 bool ret = true; 1305 enum ttu_flags flags = (enum ttu_flags)arg; 1306 1307 /* munlock has nothing to gain from examining un-locked vmas */ 1308 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) 1309 return true; 1310 1311 if (flags & TTU_SPLIT_HUGE_PMD) { 1312 split_huge_pmd_address(vma, address, 1313 flags & TTU_MIGRATION, page); 1314 } 1315 1316 while (page_vma_mapped_walk(&pvmw)) { 1317 /* 1318 * If the page is mlock()d, we cannot swap it out. 1319 * If it's recently referenced (perhaps page_referenced 1320 * skipped over this mm) then we should reactivate it. 1321 */ 1322 if (!(flags & TTU_IGNORE_MLOCK)) { 1323 if (vma->vm_flags & VM_LOCKED) { 1324 /* PTE-mapped THP are never mlocked */ 1325 if (!PageTransCompound(page)) { 1326 /* 1327 * Holding pte lock, we do *not* need 1328 * mmap_sem here 1329 */ 1330 mlock_vma_page(page); 1331 } 1332 ret = false; 1333 page_vma_mapped_walk_done(&pvmw); 1334 break; 1335 } 1336 if (flags & TTU_MUNLOCK) 1337 continue; 1338 } 1339 1340 /* Unexpected PMD-mapped THP? */ 1341 VM_BUG_ON_PAGE(!pvmw.pte, page); 1342 1343 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); 1344 address = pvmw.address; 1345 1346 1347 if (!(flags & TTU_IGNORE_ACCESS)) { 1348 if (ptep_clear_flush_young_notify(vma, address, 1349 pvmw.pte)) { 1350 ret = false; 1351 page_vma_mapped_walk_done(&pvmw); 1352 break; 1353 } 1354 } 1355 1356 /* Nuke the page table entry. */ 1357 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1358 if (should_defer_flush(mm, flags)) { 1359 /* 1360 * We clear the PTE but do not flush so potentially 1361 * a remote CPU could still be writing to the page. 1362 * If the entry was previously clean then the 1363 * architecture must guarantee that a clear->dirty 1364 * transition on a cached TLB entry is written through 1365 * and traps if the PTE is unmapped. 1366 */ 1367 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1368 1369 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1370 } else { 1371 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1372 } 1373 1374 /* Move the dirty bit to the page. Now the pte is gone. */ 1375 if (pte_dirty(pteval)) 1376 set_page_dirty(page); 1377 1378 /* Update high watermark before we lower rss */ 1379 update_hiwater_rss(mm); 1380 1381 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1382 if (PageHuge(page)) { 1383 int nr = 1 << compound_order(page); 1384 hugetlb_count_sub(nr, mm); 1385 } else { 1386 dec_mm_counter(mm, mm_counter(page)); 1387 } 1388 1389 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1390 set_pte_at(mm, address, pvmw.pte, pteval); 1391 } else if (pte_unused(pteval)) { 1392 /* 1393 * The guest indicated that the page content is of no 1394 * interest anymore. Simply discard the pte, vmscan 1395 * will take care of the rest. 1396 */ 1397 dec_mm_counter(mm, mm_counter(page)); 1398 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1399 (flags & TTU_MIGRATION)) { 1400 swp_entry_t entry; 1401 pte_t swp_pte; 1402 /* 1403 * Store the pfn of the page in a special migration 1404 * pte. do_swap_page() will wait until the migration 1405 * pte is removed and then restart fault handling. 1406 */ 1407 entry = make_migration_entry(subpage, 1408 pte_write(pteval)); 1409 swp_pte = swp_entry_to_pte(entry); 1410 if (pte_soft_dirty(pteval)) 1411 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1412 set_pte_at(mm, address, pvmw.pte, swp_pte); 1413 } else if (PageAnon(page)) { 1414 swp_entry_t entry = { .val = page_private(subpage) }; 1415 pte_t swp_pte; 1416 /* 1417 * Store the swap location in the pte. 1418 * See handle_pte_fault() ... 1419 */ 1420 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { 1421 WARN_ON_ONCE(1); 1422 ret = false; 1423 page_vma_mapped_walk_done(&pvmw); 1424 break; 1425 } 1426 1427 /* MADV_FREE page check */ 1428 if (!PageSwapBacked(page)) { 1429 if (!PageDirty(page)) { 1430 dec_mm_counter(mm, MM_ANONPAGES); 1431 goto discard; 1432 } 1433 1434 /* 1435 * If the page was redirtied, it cannot be 1436 * discarded. Remap the page to page table. 1437 */ 1438 set_pte_at(mm, address, pvmw.pte, pteval); 1439 SetPageSwapBacked(page); 1440 ret = false; 1441 page_vma_mapped_walk_done(&pvmw); 1442 break; 1443 } 1444 1445 if (swap_duplicate(entry) < 0) { 1446 set_pte_at(mm, address, pvmw.pte, pteval); 1447 ret = false; 1448 page_vma_mapped_walk_done(&pvmw); 1449 break; 1450 } 1451 if (list_empty(&mm->mmlist)) { 1452 spin_lock(&mmlist_lock); 1453 if (list_empty(&mm->mmlist)) 1454 list_add(&mm->mmlist, &init_mm.mmlist); 1455 spin_unlock(&mmlist_lock); 1456 } 1457 dec_mm_counter(mm, MM_ANONPAGES); 1458 inc_mm_counter(mm, MM_SWAPENTS); 1459 swp_pte = swp_entry_to_pte(entry); 1460 if (pte_soft_dirty(pteval)) 1461 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1462 set_pte_at(mm, address, pvmw.pte, swp_pte); 1463 } else 1464 dec_mm_counter(mm, mm_counter_file(page)); 1465 discard: 1466 page_remove_rmap(subpage, PageHuge(page)); 1467 put_page(page); 1468 mmu_notifier_invalidate_page(mm, address); 1469 } 1470 return ret; 1471 } 1472 1473 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1474 { 1475 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1476 1477 if (!maybe_stack) 1478 return false; 1479 1480 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1481 VM_STACK_INCOMPLETE_SETUP) 1482 return true; 1483 1484 return false; 1485 } 1486 1487 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1488 { 1489 return is_vma_temporary_stack(vma); 1490 } 1491 1492 static int page_mapcount_is_zero(struct page *page) 1493 { 1494 return !total_mapcount(page); 1495 } 1496 1497 /** 1498 * try_to_unmap - try to remove all page table mappings to a page 1499 * @page: the page to get unmapped 1500 * @flags: action and flags 1501 * 1502 * Tries to remove all the page table entries which are mapping this 1503 * page, used in the pageout path. Caller must hold the page lock. 1504 * 1505 * If unmap is successful, return true. Otherwise, false. 1506 */ 1507 bool try_to_unmap(struct page *page, enum ttu_flags flags) 1508 { 1509 struct rmap_walk_control rwc = { 1510 .rmap_one = try_to_unmap_one, 1511 .arg = (void *)flags, 1512 .done = page_mapcount_is_zero, 1513 .anon_lock = page_lock_anon_vma_read, 1514 }; 1515 1516 /* 1517 * During exec, a temporary VMA is setup and later moved. 1518 * The VMA is moved under the anon_vma lock but not the 1519 * page tables leading to a race where migration cannot 1520 * find the migration ptes. Rather than increasing the 1521 * locking requirements of exec(), migration skips 1522 * temporary VMAs until after exec() completes. 1523 */ 1524 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) 1525 rwc.invalid_vma = invalid_migration_vma; 1526 1527 if (flags & TTU_RMAP_LOCKED) 1528 rmap_walk_locked(page, &rwc); 1529 else 1530 rmap_walk(page, &rwc); 1531 1532 return !page_mapcount(page) ? true : false; 1533 } 1534 1535 static int page_not_mapped(struct page *page) 1536 { 1537 return !page_mapped(page); 1538 }; 1539 1540 /** 1541 * try_to_munlock - try to munlock a page 1542 * @page: the page to be munlocked 1543 * 1544 * Called from munlock code. Checks all of the VMAs mapping the page 1545 * to make sure nobody else has this page mlocked. The page will be 1546 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1547 */ 1548 1549 void try_to_munlock(struct page *page) 1550 { 1551 struct rmap_walk_control rwc = { 1552 .rmap_one = try_to_unmap_one, 1553 .arg = (void *)TTU_MUNLOCK, 1554 .done = page_not_mapped, 1555 .anon_lock = page_lock_anon_vma_read, 1556 1557 }; 1558 1559 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 1560 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 1561 1562 rmap_walk(page, &rwc); 1563 } 1564 1565 void __put_anon_vma(struct anon_vma *anon_vma) 1566 { 1567 struct anon_vma *root = anon_vma->root; 1568 1569 anon_vma_free(anon_vma); 1570 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1571 anon_vma_free(root); 1572 } 1573 1574 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 1575 struct rmap_walk_control *rwc) 1576 { 1577 struct anon_vma *anon_vma; 1578 1579 if (rwc->anon_lock) 1580 return rwc->anon_lock(page); 1581 1582 /* 1583 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1584 * because that depends on page_mapped(); but not all its usages 1585 * are holding mmap_sem. Users without mmap_sem are required to 1586 * take a reference count to prevent the anon_vma disappearing 1587 */ 1588 anon_vma = page_anon_vma(page); 1589 if (!anon_vma) 1590 return NULL; 1591 1592 anon_vma_lock_read(anon_vma); 1593 return anon_vma; 1594 } 1595 1596 /* 1597 * rmap_walk_anon - do something to anonymous page using the object-based 1598 * rmap method 1599 * @page: the page to be handled 1600 * @rwc: control variable according to each walk type 1601 * 1602 * Find all the mappings of a page using the mapping pointer and the vma chains 1603 * contained in the anon_vma struct it points to. 1604 * 1605 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1606 * where the page was found will be held for write. So, we won't recheck 1607 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1608 * LOCKED. 1609 */ 1610 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, 1611 bool locked) 1612 { 1613 struct anon_vma *anon_vma; 1614 pgoff_t pgoff_start, pgoff_end; 1615 struct anon_vma_chain *avc; 1616 1617 if (locked) { 1618 anon_vma = page_anon_vma(page); 1619 /* anon_vma disappear under us? */ 1620 VM_BUG_ON_PAGE(!anon_vma, page); 1621 } else { 1622 anon_vma = rmap_walk_anon_lock(page, rwc); 1623 } 1624 if (!anon_vma) 1625 return; 1626 1627 pgoff_start = page_to_pgoff(page); 1628 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; 1629 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 1630 pgoff_start, pgoff_end) { 1631 struct vm_area_struct *vma = avc->vma; 1632 unsigned long address = vma_address(page, vma); 1633 1634 cond_resched(); 1635 1636 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1637 continue; 1638 1639 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 1640 break; 1641 if (rwc->done && rwc->done(page)) 1642 break; 1643 } 1644 1645 if (!locked) 1646 anon_vma_unlock_read(anon_vma); 1647 } 1648 1649 /* 1650 * rmap_walk_file - do something to file page using the object-based rmap method 1651 * @page: the page to be handled 1652 * @rwc: control variable according to each walk type 1653 * 1654 * Find all the mappings of a page using the mapping pointer and the vma chains 1655 * contained in the address_space struct it points to. 1656 * 1657 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1658 * where the page was found will be held for write. So, we won't recheck 1659 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1660 * LOCKED. 1661 */ 1662 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, 1663 bool locked) 1664 { 1665 struct address_space *mapping = page_mapping(page); 1666 pgoff_t pgoff_start, pgoff_end; 1667 struct vm_area_struct *vma; 1668 1669 /* 1670 * The page lock not only makes sure that page->mapping cannot 1671 * suddenly be NULLified by truncation, it makes sure that the 1672 * structure at mapping cannot be freed and reused yet, 1673 * so we can safely take mapping->i_mmap_rwsem. 1674 */ 1675 VM_BUG_ON_PAGE(!PageLocked(page), page); 1676 1677 if (!mapping) 1678 return; 1679 1680 pgoff_start = page_to_pgoff(page); 1681 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; 1682 if (!locked) 1683 i_mmap_lock_read(mapping); 1684 vma_interval_tree_foreach(vma, &mapping->i_mmap, 1685 pgoff_start, pgoff_end) { 1686 unsigned long address = vma_address(page, vma); 1687 1688 cond_resched(); 1689 1690 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1691 continue; 1692 1693 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 1694 goto done; 1695 if (rwc->done && rwc->done(page)) 1696 goto done; 1697 } 1698 1699 done: 1700 if (!locked) 1701 i_mmap_unlock_read(mapping); 1702 } 1703 1704 void rmap_walk(struct page *page, struct rmap_walk_control *rwc) 1705 { 1706 if (unlikely(PageKsm(page))) 1707 rmap_walk_ksm(page, rwc); 1708 else if (PageAnon(page)) 1709 rmap_walk_anon(page, rwc, false); 1710 else 1711 rmap_walk_file(page, rwc, false); 1712 } 1713 1714 /* Like rmap_walk, but caller holds relevant rmap lock */ 1715 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) 1716 { 1717 /* no ksm support for now */ 1718 VM_BUG_ON_PAGE(PageKsm(page), page); 1719 if (PageAnon(page)) 1720 rmap_walk_anon(page, rwc, true); 1721 else 1722 rmap_walk_file(page, rwc, true); 1723 } 1724 1725 #ifdef CONFIG_HUGETLB_PAGE 1726 /* 1727 * The following three functions are for anonymous (private mapped) hugepages. 1728 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1729 * and no lru code, because we handle hugepages differently from common pages. 1730 */ 1731 static void __hugepage_set_anon_rmap(struct page *page, 1732 struct vm_area_struct *vma, unsigned long address, int exclusive) 1733 { 1734 struct anon_vma *anon_vma = vma->anon_vma; 1735 1736 BUG_ON(!anon_vma); 1737 1738 if (PageAnon(page)) 1739 return; 1740 if (!exclusive) 1741 anon_vma = anon_vma->root; 1742 1743 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1744 page->mapping = (struct address_space *) anon_vma; 1745 page->index = linear_page_index(vma, address); 1746 } 1747 1748 void hugepage_add_anon_rmap(struct page *page, 1749 struct vm_area_struct *vma, unsigned long address) 1750 { 1751 struct anon_vma *anon_vma = vma->anon_vma; 1752 int first; 1753 1754 BUG_ON(!PageLocked(page)); 1755 BUG_ON(!anon_vma); 1756 /* address might be in next vma when migration races vma_adjust */ 1757 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 1758 if (first) 1759 __hugepage_set_anon_rmap(page, vma, address, 0); 1760 } 1761 1762 void hugepage_add_new_anon_rmap(struct page *page, 1763 struct vm_area_struct *vma, unsigned long address) 1764 { 1765 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1766 atomic_set(compound_mapcount_ptr(page), 0); 1767 __hugepage_set_anon_rmap(page, vma, address, 1); 1768 } 1769 #endif /* CONFIG_HUGETLB_PAGE */ 1770