xref: /openbmc/linux/mm/rmap.c (revision 1f9f6a78)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_rwsem
27  *         anon_vma->rwsem
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within bdi.wb->list_lock in __sync_single_inode)
39  *
40  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
41  *   ->tasklist_lock
42  *     pte map lock
43  */
44 
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	struct anon_vma *anon_vma;
71 
72 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 	if (anon_vma) {
74 		atomic_set(&anon_vma->refcount, 1);
75 		/*
76 		 * Initialise the anon_vma root to point to itself. If called
77 		 * from fork, the root will be reset to the parents anon_vma.
78 		 */
79 		anon_vma->root = anon_vma;
80 	}
81 
82 	return anon_vma;
83 }
84 
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 {
87 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
88 
89 	/*
90 	 * Synchronize against page_lock_anon_vma_read() such that
91 	 * we can safely hold the lock without the anon_vma getting
92 	 * freed.
93 	 *
94 	 * Relies on the full mb implied by the atomic_dec_and_test() from
95 	 * put_anon_vma() against the acquire barrier implied by
96 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
97 	 *
98 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
99 	 *   down_read_trylock()		  atomic_dec_and_test()
100 	 *   LOCK				  MB
101 	 *   atomic_read()			  rwsem_is_locked()
102 	 *
103 	 * LOCK should suffice since the actual taking of the lock must
104 	 * happen _before_ what follows.
105 	 */
106 	might_sleep();
107 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
108 		anon_vma_lock_write(anon_vma);
109 		anon_vma_unlock_write(anon_vma);
110 	}
111 
112 	kmem_cache_free(anon_vma_cachep, anon_vma);
113 }
114 
115 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
116 {
117 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
118 }
119 
120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
121 {
122 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123 }
124 
125 static void anon_vma_chain_link(struct vm_area_struct *vma,
126 				struct anon_vma_chain *avc,
127 				struct anon_vma *anon_vma)
128 {
129 	avc->vma = vma;
130 	avc->anon_vma = anon_vma;
131 	list_add(&avc->same_vma, &vma->anon_vma_chain);
132 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
133 }
134 
135 /**
136  * anon_vma_prepare - attach an anon_vma to a memory region
137  * @vma: the memory region in question
138  *
139  * This makes sure the memory mapping described by 'vma' has
140  * an 'anon_vma' attached to it, so that we can associate the
141  * anonymous pages mapped into it with that anon_vma.
142  *
143  * The common case will be that we already have one, but if
144  * not we either need to find an adjacent mapping that we
145  * can re-use the anon_vma from (very common when the only
146  * reason for splitting a vma has been mprotect()), or we
147  * allocate a new one.
148  *
149  * Anon-vma allocations are very subtle, because we may have
150  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
151  * and that may actually touch the spinlock even in the newly
152  * allocated vma (it depends on RCU to make sure that the
153  * anon_vma isn't actually destroyed).
154  *
155  * As a result, we need to do proper anon_vma locking even
156  * for the new allocation. At the same time, we do not want
157  * to do any locking for the common case of already having
158  * an anon_vma.
159  *
160  * This must be called with the mmap_sem held for reading.
161  */
162 int anon_vma_prepare(struct vm_area_struct *vma)
163 {
164 	struct anon_vma *anon_vma = vma->anon_vma;
165 	struct anon_vma_chain *avc;
166 
167 	might_sleep();
168 	if (unlikely(!anon_vma)) {
169 		struct mm_struct *mm = vma->vm_mm;
170 		struct anon_vma *allocated;
171 
172 		avc = anon_vma_chain_alloc(GFP_KERNEL);
173 		if (!avc)
174 			goto out_enomem;
175 
176 		anon_vma = find_mergeable_anon_vma(vma);
177 		allocated = NULL;
178 		if (!anon_vma) {
179 			anon_vma = anon_vma_alloc();
180 			if (unlikely(!anon_vma))
181 				goto out_enomem_free_avc;
182 			allocated = anon_vma;
183 		}
184 
185 		anon_vma_lock_write(anon_vma);
186 		/* page_table_lock to protect against threads */
187 		spin_lock(&mm->page_table_lock);
188 		if (likely(!vma->anon_vma)) {
189 			vma->anon_vma = anon_vma;
190 			anon_vma_chain_link(vma, avc, anon_vma);
191 			allocated = NULL;
192 			avc = NULL;
193 		}
194 		spin_unlock(&mm->page_table_lock);
195 		anon_vma_unlock_write(anon_vma);
196 
197 		if (unlikely(allocated))
198 			put_anon_vma(allocated);
199 		if (unlikely(avc))
200 			anon_vma_chain_free(avc);
201 	}
202 	return 0;
203 
204  out_enomem_free_avc:
205 	anon_vma_chain_free(avc);
206  out_enomem:
207 	return -ENOMEM;
208 }
209 
210 /*
211  * This is a useful helper function for locking the anon_vma root as
212  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
213  * have the same vma.
214  *
215  * Such anon_vma's should have the same root, so you'd expect to see
216  * just a single mutex_lock for the whole traversal.
217  */
218 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
219 {
220 	struct anon_vma *new_root = anon_vma->root;
221 	if (new_root != root) {
222 		if (WARN_ON_ONCE(root))
223 			up_write(&root->rwsem);
224 		root = new_root;
225 		down_write(&root->rwsem);
226 	}
227 	return root;
228 }
229 
230 static inline void unlock_anon_vma_root(struct anon_vma *root)
231 {
232 	if (root)
233 		up_write(&root->rwsem);
234 }
235 
236 /*
237  * Attach the anon_vmas from src to dst.
238  * Returns 0 on success, -ENOMEM on failure.
239  */
240 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
241 {
242 	struct anon_vma_chain *avc, *pavc;
243 	struct anon_vma *root = NULL;
244 
245 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
246 		struct anon_vma *anon_vma;
247 
248 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
249 		if (unlikely(!avc)) {
250 			unlock_anon_vma_root(root);
251 			root = NULL;
252 			avc = anon_vma_chain_alloc(GFP_KERNEL);
253 			if (!avc)
254 				goto enomem_failure;
255 		}
256 		anon_vma = pavc->anon_vma;
257 		root = lock_anon_vma_root(root, anon_vma);
258 		anon_vma_chain_link(dst, avc, anon_vma);
259 	}
260 	unlock_anon_vma_root(root);
261 	return 0;
262 
263  enomem_failure:
264 	unlink_anon_vmas(dst);
265 	return -ENOMEM;
266 }
267 
268 /*
269  * Attach vma to its own anon_vma, as well as to the anon_vmas that
270  * the corresponding VMA in the parent process is attached to.
271  * Returns 0 on success, non-zero on failure.
272  */
273 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
274 {
275 	struct anon_vma_chain *avc;
276 	struct anon_vma *anon_vma;
277 	int error;
278 
279 	/* Don't bother if the parent process has no anon_vma here. */
280 	if (!pvma->anon_vma)
281 		return 0;
282 
283 	/*
284 	 * First, attach the new VMA to the parent VMA's anon_vmas,
285 	 * so rmap can find non-COWed pages in child processes.
286 	 */
287 	error = anon_vma_clone(vma, pvma);
288 	if (error)
289 		return error;
290 
291 	/* Then add our own anon_vma. */
292 	anon_vma = anon_vma_alloc();
293 	if (!anon_vma)
294 		goto out_error;
295 	avc = anon_vma_chain_alloc(GFP_KERNEL);
296 	if (!avc)
297 		goto out_error_free_anon_vma;
298 
299 	/*
300 	 * The root anon_vma's spinlock is the lock actually used when we
301 	 * lock any of the anon_vmas in this anon_vma tree.
302 	 */
303 	anon_vma->root = pvma->anon_vma->root;
304 	/*
305 	 * With refcounts, an anon_vma can stay around longer than the
306 	 * process it belongs to. The root anon_vma needs to be pinned until
307 	 * this anon_vma is freed, because the lock lives in the root.
308 	 */
309 	get_anon_vma(anon_vma->root);
310 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
311 	vma->anon_vma = anon_vma;
312 	anon_vma_lock_write(anon_vma);
313 	anon_vma_chain_link(vma, avc, anon_vma);
314 	anon_vma_unlock_write(anon_vma);
315 
316 	return 0;
317 
318  out_error_free_anon_vma:
319 	put_anon_vma(anon_vma);
320  out_error:
321 	unlink_anon_vmas(vma);
322 	return -ENOMEM;
323 }
324 
325 void unlink_anon_vmas(struct vm_area_struct *vma)
326 {
327 	struct anon_vma_chain *avc, *next;
328 	struct anon_vma *root = NULL;
329 
330 	/*
331 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
332 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
333 	 */
334 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
335 		struct anon_vma *anon_vma = avc->anon_vma;
336 
337 		root = lock_anon_vma_root(root, anon_vma);
338 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
339 
340 		/*
341 		 * Leave empty anon_vmas on the list - we'll need
342 		 * to free them outside the lock.
343 		 */
344 		if (RB_EMPTY_ROOT(&anon_vma->rb_root))
345 			continue;
346 
347 		list_del(&avc->same_vma);
348 		anon_vma_chain_free(avc);
349 	}
350 	unlock_anon_vma_root(root);
351 
352 	/*
353 	 * Iterate the list once more, it now only contains empty and unlinked
354 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
355 	 * needing to write-acquire the anon_vma->root->rwsem.
356 	 */
357 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
358 		struct anon_vma *anon_vma = avc->anon_vma;
359 
360 		put_anon_vma(anon_vma);
361 
362 		list_del(&avc->same_vma);
363 		anon_vma_chain_free(avc);
364 	}
365 }
366 
367 static void anon_vma_ctor(void *data)
368 {
369 	struct anon_vma *anon_vma = data;
370 
371 	init_rwsem(&anon_vma->rwsem);
372 	atomic_set(&anon_vma->refcount, 0);
373 	anon_vma->rb_root = RB_ROOT;
374 }
375 
376 void __init anon_vma_init(void)
377 {
378 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
379 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
380 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
381 }
382 
383 /*
384  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
385  *
386  * Since there is no serialization what so ever against page_remove_rmap()
387  * the best this function can do is return a locked anon_vma that might
388  * have been relevant to this page.
389  *
390  * The page might have been remapped to a different anon_vma or the anon_vma
391  * returned may already be freed (and even reused).
392  *
393  * In case it was remapped to a different anon_vma, the new anon_vma will be a
394  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
395  * ensure that any anon_vma obtained from the page will still be valid for as
396  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
397  *
398  * All users of this function must be very careful when walking the anon_vma
399  * chain and verify that the page in question is indeed mapped in it
400  * [ something equivalent to page_mapped_in_vma() ].
401  *
402  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
403  * that the anon_vma pointer from page->mapping is valid if there is a
404  * mapcount, we can dereference the anon_vma after observing those.
405  */
406 struct anon_vma *page_get_anon_vma(struct page *page)
407 {
408 	struct anon_vma *anon_vma = NULL;
409 	unsigned long anon_mapping;
410 
411 	rcu_read_lock();
412 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
413 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
414 		goto out;
415 	if (!page_mapped(page))
416 		goto out;
417 
418 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
419 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
420 		anon_vma = NULL;
421 		goto out;
422 	}
423 
424 	/*
425 	 * If this page is still mapped, then its anon_vma cannot have been
426 	 * freed.  But if it has been unmapped, we have no security against the
427 	 * anon_vma structure being freed and reused (for another anon_vma:
428 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
429 	 * above cannot corrupt).
430 	 */
431 	if (!page_mapped(page)) {
432 		rcu_read_unlock();
433 		put_anon_vma(anon_vma);
434 		return NULL;
435 	}
436 out:
437 	rcu_read_unlock();
438 
439 	return anon_vma;
440 }
441 
442 /*
443  * Similar to page_get_anon_vma() except it locks the anon_vma.
444  *
445  * Its a little more complex as it tries to keep the fast path to a single
446  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
447  * reference like with page_get_anon_vma() and then block on the mutex.
448  */
449 struct anon_vma *page_lock_anon_vma_read(struct page *page)
450 {
451 	struct anon_vma *anon_vma = NULL;
452 	struct anon_vma *root_anon_vma;
453 	unsigned long anon_mapping;
454 
455 	rcu_read_lock();
456 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
457 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
458 		goto out;
459 	if (!page_mapped(page))
460 		goto out;
461 
462 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
463 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
464 	if (down_read_trylock(&root_anon_vma->rwsem)) {
465 		/*
466 		 * If the page is still mapped, then this anon_vma is still
467 		 * its anon_vma, and holding the mutex ensures that it will
468 		 * not go away, see anon_vma_free().
469 		 */
470 		if (!page_mapped(page)) {
471 			up_read(&root_anon_vma->rwsem);
472 			anon_vma = NULL;
473 		}
474 		goto out;
475 	}
476 
477 	/* trylock failed, we got to sleep */
478 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
479 		anon_vma = NULL;
480 		goto out;
481 	}
482 
483 	if (!page_mapped(page)) {
484 		rcu_read_unlock();
485 		put_anon_vma(anon_vma);
486 		return NULL;
487 	}
488 
489 	/* we pinned the anon_vma, its safe to sleep */
490 	rcu_read_unlock();
491 	anon_vma_lock_read(anon_vma);
492 
493 	if (atomic_dec_and_test(&anon_vma->refcount)) {
494 		/*
495 		 * Oops, we held the last refcount, release the lock
496 		 * and bail -- can't simply use put_anon_vma() because
497 		 * we'll deadlock on the anon_vma_lock_write() recursion.
498 		 */
499 		anon_vma_unlock_read(anon_vma);
500 		__put_anon_vma(anon_vma);
501 		anon_vma = NULL;
502 	}
503 
504 	return anon_vma;
505 
506 out:
507 	rcu_read_unlock();
508 	return anon_vma;
509 }
510 
511 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
512 {
513 	anon_vma_unlock_read(anon_vma);
514 }
515 
516 /*
517  * At what user virtual address is page expected in @vma?
518  */
519 static inline unsigned long
520 __vma_address(struct page *page, struct vm_area_struct *vma)
521 {
522 	pgoff_t pgoff = page_to_pgoff(page);
523 	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524 }
525 
526 inline unsigned long
527 vma_address(struct page *page, struct vm_area_struct *vma)
528 {
529 	unsigned long address = __vma_address(page, vma);
530 
531 	/* page should be within @vma mapping range */
532 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
533 
534 	return address;
535 }
536 
537 /*
538  * At what user virtual address is page expected in vma?
539  * Caller should check the page is actually part of the vma.
540  */
541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542 {
543 	unsigned long address;
544 	if (PageAnon(page)) {
545 		struct anon_vma *page__anon_vma = page_anon_vma(page);
546 		/*
547 		 * Note: swapoff's unuse_vma() is more efficient with this
548 		 * check, and needs it to match anon_vma when KSM is active.
549 		 */
550 		if (!vma->anon_vma || !page__anon_vma ||
551 		    vma->anon_vma->root != page__anon_vma->root)
552 			return -EFAULT;
553 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
554 		if (!vma->vm_file ||
555 		    vma->vm_file->f_mapping != page->mapping)
556 			return -EFAULT;
557 	} else
558 		return -EFAULT;
559 	address = __vma_address(page, vma);
560 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561 		return -EFAULT;
562 	return address;
563 }
564 
565 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
566 {
567 	pgd_t *pgd;
568 	pud_t *pud;
569 	pmd_t *pmd = NULL;
570 	pmd_t pmde;
571 
572 	pgd = pgd_offset(mm, address);
573 	if (!pgd_present(*pgd))
574 		goto out;
575 
576 	pud = pud_offset(pgd, address);
577 	if (!pud_present(*pud))
578 		goto out;
579 
580 	pmd = pmd_offset(pud, address);
581 	/*
582 	 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
583 	 * without holding anon_vma lock for write.  So when looking for a
584 	 * genuine pmde (in which to find pte), test present and !THP together.
585 	 */
586 	pmde = *pmd;
587 	barrier();
588 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
589 		pmd = NULL;
590 out:
591 	return pmd;
592 }
593 
594 /*
595  * Check that @page is mapped at @address into @mm.
596  *
597  * If @sync is false, page_check_address may perform a racy check to avoid
598  * the page table lock when the pte is not present (helpful when reclaiming
599  * highly shared pages).
600  *
601  * On success returns with pte mapped and locked.
602  */
603 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
604 			  unsigned long address, spinlock_t **ptlp, int sync)
605 {
606 	pmd_t *pmd;
607 	pte_t *pte;
608 	spinlock_t *ptl;
609 
610 	if (unlikely(PageHuge(page))) {
611 		/* when pud is not present, pte will be NULL */
612 		pte = huge_pte_offset(mm, address);
613 		if (!pte)
614 			return NULL;
615 
616 		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
617 		goto check;
618 	}
619 
620 	pmd = mm_find_pmd(mm, address);
621 	if (!pmd)
622 		return NULL;
623 
624 	pte = pte_offset_map(pmd, address);
625 	/* Make a quick check before getting the lock */
626 	if (!sync && !pte_present(*pte)) {
627 		pte_unmap(pte);
628 		return NULL;
629 	}
630 
631 	ptl = pte_lockptr(mm, pmd);
632 check:
633 	spin_lock(ptl);
634 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
635 		*ptlp = ptl;
636 		return pte;
637 	}
638 	pte_unmap_unlock(pte, ptl);
639 	return NULL;
640 }
641 
642 /**
643  * page_mapped_in_vma - check whether a page is really mapped in a VMA
644  * @page: the page to test
645  * @vma: the VMA to test
646  *
647  * Returns 1 if the page is mapped into the page tables of the VMA, 0
648  * if the page is not mapped into the page tables of this VMA.  Only
649  * valid for normal file or anonymous VMAs.
650  */
651 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
652 {
653 	unsigned long address;
654 	pte_t *pte;
655 	spinlock_t *ptl;
656 
657 	address = __vma_address(page, vma);
658 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
659 		return 0;
660 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
661 	if (!pte)			/* the page is not in this mm */
662 		return 0;
663 	pte_unmap_unlock(pte, ptl);
664 
665 	return 1;
666 }
667 
668 struct page_referenced_arg {
669 	int mapcount;
670 	int referenced;
671 	unsigned long vm_flags;
672 	struct mem_cgroup *memcg;
673 };
674 /*
675  * arg: page_referenced_arg will be passed
676  */
677 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
678 			unsigned long address, void *arg)
679 {
680 	struct mm_struct *mm = vma->vm_mm;
681 	spinlock_t *ptl;
682 	int referenced = 0;
683 	struct page_referenced_arg *pra = arg;
684 
685 	if (unlikely(PageTransHuge(page))) {
686 		pmd_t *pmd;
687 
688 		/*
689 		 * rmap might return false positives; we must filter
690 		 * these out using page_check_address_pmd().
691 		 */
692 		pmd = page_check_address_pmd(page, mm, address,
693 					     PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
694 		if (!pmd)
695 			return SWAP_AGAIN;
696 
697 		if (vma->vm_flags & VM_LOCKED) {
698 			spin_unlock(ptl);
699 			pra->vm_flags |= VM_LOCKED;
700 			return SWAP_FAIL; /* To break the loop */
701 		}
702 
703 		/* go ahead even if the pmd is pmd_trans_splitting() */
704 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
705 			referenced++;
706 		spin_unlock(ptl);
707 	} else {
708 		pte_t *pte;
709 
710 		/*
711 		 * rmap might return false positives; we must filter
712 		 * these out using page_check_address().
713 		 */
714 		pte = page_check_address(page, mm, address, &ptl, 0);
715 		if (!pte)
716 			return SWAP_AGAIN;
717 
718 		if (vma->vm_flags & VM_LOCKED) {
719 			pte_unmap_unlock(pte, ptl);
720 			pra->vm_flags |= VM_LOCKED;
721 			return SWAP_FAIL; /* To break the loop */
722 		}
723 
724 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
725 			/*
726 			 * Don't treat a reference through a sequentially read
727 			 * mapping as such.  If the page has been used in
728 			 * another mapping, we will catch it; if this other
729 			 * mapping is already gone, the unmap path will have
730 			 * set PG_referenced or activated the page.
731 			 */
732 			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
733 				referenced++;
734 		}
735 		pte_unmap_unlock(pte, ptl);
736 	}
737 
738 	if (referenced) {
739 		pra->referenced++;
740 		pra->vm_flags |= vma->vm_flags;
741 	}
742 
743 	pra->mapcount--;
744 	if (!pra->mapcount)
745 		return SWAP_SUCCESS; /* To break the loop */
746 
747 	return SWAP_AGAIN;
748 }
749 
750 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
751 {
752 	struct page_referenced_arg *pra = arg;
753 	struct mem_cgroup *memcg = pra->memcg;
754 
755 	if (!mm_match_cgroup(vma->vm_mm, memcg))
756 		return true;
757 
758 	return false;
759 }
760 
761 /**
762  * page_referenced - test if the page was referenced
763  * @page: the page to test
764  * @is_locked: caller holds lock on the page
765  * @memcg: target memory cgroup
766  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
767  *
768  * Quick test_and_clear_referenced for all mappings to a page,
769  * returns the number of ptes which referenced the page.
770  */
771 int page_referenced(struct page *page,
772 		    int is_locked,
773 		    struct mem_cgroup *memcg,
774 		    unsigned long *vm_flags)
775 {
776 	int ret;
777 	int we_locked = 0;
778 	struct page_referenced_arg pra = {
779 		.mapcount = page_mapcount(page),
780 		.memcg = memcg,
781 	};
782 	struct rmap_walk_control rwc = {
783 		.rmap_one = page_referenced_one,
784 		.arg = (void *)&pra,
785 		.anon_lock = page_lock_anon_vma_read,
786 	};
787 
788 	*vm_flags = 0;
789 	if (!page_mapped(page))
790 		return 0;
791 
792 	if (!page_rmapping(page))
793 		return 0;
794 
795 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
796 		we_locked = trylock_page(page);
797 		if (!we_locked)
798 			return 1;
799 	}
800 
801 	/*
802 	 * If we are reclaiming on behalf of a cgroup, skip
803 	 * counting on behalf of references from different
804 	 * cgroups
805 	 */
806 	if (memcg) {
807 		rwc.invalid_vma = invalid_page_referenced_vma;
808 	}
809 
810 	ret = rmap_walk(page, &rwc);
811 	*vm_flags = pra.vm_flags;
812 
813 	if (we_locked)
814 		unlock_page(page);
815 
816 	return pra.referenced;
817 }
818 
819 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
820 			    unsigned long address, void *arg)
821 {
822 	struct mm_struct *mm = vma->vm_mm;
823 	pte_t *pte;
824 	spinlock_t *ptl;
825 	int ret = 0;
826 	int *cleaned = arg;
827 
828 	pte = page_check_address(page, mm, address, &ptl, 1);
829 	if (!pte)
830 		goto out;
831 
832 	if (pte_dirty(*pte) || pte_write(*pte)) {
833 		pte_t entry;
834 
835 		flush_cache_page(vma, address, pte_pfn(*pte));
836 		entry = ptep_clear_flush(vma, address, pte);
837 		entry = pte_wrprotect(entry);
838 		entry = pte_mkclean(entry);
839 		set_pte_at(mm, address, pte, entry);
840 		ret = 1;
841 	}
842 
843 	pte_unmap_unlock(pte, ptl);
844 
845 	if (ret) {
846 		mmu_notifier_invalidate_page(mm, address);
847 		(*cleaned)++;
848 	}
849 out:
850 	return SWAP_AGAIN;
851 }
852 
853 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
854 {
855 	if (vma->vm_flags & VM_SHARED)
856 		return false;
857 
858 	return true;
859 }
860 
861 int page_mkclean(struct page *page)
862 {
863 	int cleaned = 0;
864 	struct address_space *mapping;
865 	struct rmap_walk_control rwc = {
866 		.arg = (void *)&cleaned,
867 		.rmap_one = page_mkclean_one,
868 		.invalid_vma = invalid_mkclean_vma,
869 	};
870 
871 	BUG_ON(!PageLocked(page));
872 
873 	if (!page_mapped(page))
874 		return 0;
875 
876 	mapping = page_mapping(page);
877 	if (!mapping)
878 		return 0;
879 
880 	rmap_walk(page, &rwc);
881 
882 	return cleaned;
883 }
884 EXPORT_SYMBOL_GPL(page_mkclean);
885 
886 /**
887  * page_move_anon_rmap - move a page to our anon_vma
888  * @page:	the page to move to our anon_vma
889  * @vma:	the vma the page belongs to
890  * @address:	the user virtual address mapped
891  *
892  * When a page belongs exclusively to one process after a COW event,
893  * that page can be moved into the anon_vma that belongs to just that
894  * process, so the rmap code will not search the parent or sibling
895  * processes.
896  */
897 void page_move_anon_rmap(struct page *page,
898 	struct vm_area_struct *vma, unsigned long address)
899 {
900 	struct anon_vma *anon_vma = vma->anon_vma;
901 
902 	VM_BUG_ON_PAGE(!PageLocked(page), page);
903 	VM_BUG_ON_VMA(!anon_vma, vma);
904 	VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
905 
906 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
907 	page->mapping = (struct address_space *) anon_vma;
908 }
909 
910 /**
911  * __page_set_anon_rmap - set up new anonymous rmap
912  * @page:	Page to add to rmap
913  * @vma:	VM area to add page to.
914  * @address:	User virtual address of the mapping
915  * @exclusive:	the page is exclusively owned by the current process
916  */
917 static void __page_set_anon_rmap(struct page *page,
918 	struct vm_area_struct *vma, unsigned long address, int exclusive)
919 {
920 	struct anon_vma *anon_vma = vma->anon_vma;
921 
922 	BUG_ON(!anon_vma);
923 
924 	if (PageAnon(page))
925 		return;
926 
927 	/*
928 	 * If the page isn't exclusively mapped into this vma,
929 	 * we must use the _oldest_ possible anon_vma for the
930 	 * page mapping!
931 	 */
932 	if (!exclusive)
933 		anon_vma = anon_vma->root;
934 
935 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
936 	page->mapping = (struct address_space *) anon_vma;
937 	page->index = linear_page_index(vma, address);
938 }
939 
940 /**
941  * __page_check_anon_rmap - sanity check anonymous rmap addition
942  * @page:	the page to add the mapping to
943  * @vma:	the vm area in which the mapping is added
944  * @address:	the user virtual address mapped
945  */
946 static void __page_check_anon_rmap(struct page *page,
947 	struct vm_area_struct *vma, unsigned long address)
948 {
949 #ifdef CONFIG_DEBUG_VM
950 	/*
951 	 * The page's anon-rmap details (mapping and index) are guaranteed to
952 	 * be set up correctly at this point.
953 	 *
954 	 * We have exclusion against page_add_anon_rmap because the caller
955 	 * always holds the page locked, except if called from page_dup_rmap,
956 	 * in which case the page is already known to be setup.
957 	 *
958 	 * We have exclusion against page_add_new_anon_rmap because those pages
959 	 * are initially only visible via the pagetables, and the pte is locked
960 	 * over the call to page_add_new_anon_rmap.
961 	 */
962 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
963 	BUG_ON(page->index != linear_page_index(vma, address));
964 #endif
965 }
966 
967 /**
968  * page_add_anon_rmap - add pte mapping to an anonymous page
969  * @page:	the page to add the mapping to
970  * @vma:	the vm area in which the mapping is added
971  * @address:	the user virtual address mapped
972  *
973  * The caller needs to hold the pte lock, and the page must be locked in
974  * the anon_vma case: to serialize mapping,index checking after setting,
975  * and to ensure that PageAnon is not being upgraded racily to PageKsm
976  * (but PageKsm is never downgraded to PageAnon).
977  */
978 void page_add_anon_rmap(struct page *page,
979 	struct vm_area_struct *vma, unsigned long address)
980 {
981 	do_page_add_anon_rmap(page, vma, address, 0);
982 }
983 
984 /*
985  * Special version of the above for do_swap_page, which often runs
986  * into pages that are exclusively owned by the current process.
987  * Everybody else should continue to use page_add_anon_rmap above.
988  */
989 void do_page_add_anon_rmap(struct page *page,
990 	struct vm_area_struct *vma, unsigned long address, int exclusive)
991 {
992 	int first = atomic_inc_and_test(&page->_mapcount);
993 	if (first) {
994 		/*
995 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
996 		 * these counters are not modified in interrupt context, and
997 		 * pte lock(a spinlock) is held, which implies preemption
998 		 * disabled.
999 		 */
1000 		if (PageTransHuge(page))
1001 			__inc_zone_page_state(page,
1002 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1003 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1004 				hpage_nr_pages(page));
1005 	}
1006 	if (unlikely(PageKsm(page)))
1007 		return;
1008 
1009 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1010 	/* address might be in next vma when migration races vma_adjust */
1011 	if (first)
1012 		__page_set_anon_rmap(page, vma, address, exclusive);
1013 	else
1014 		__page_check_anon_rmap(page, vma, address);
1015 }
1016 
1017 /**
1018  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1019  * @page:	the page to add the mapping to
1020  * @vma:	the vm area in which the mapping is added
1021  * @address:	the user virtual address mapped
1022  *
1023  * Same as page_add_anon_rmap but must only be called on *new* pages.
1024  * This means the inc-and-test can be bypassed.
1025  * Page does not have to be locked.
1026  */
1027 void page_add_new_anon_rmap(struct page *page,
1028 	struct vm_area_struct *vma, unsigned long address)
1029 {
1030 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1031 	SetPageSwapBacked(page);
1032 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1033 	if (PageTransHuge(page))
1034 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1035 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1036 			hpage_nr_pages(page));
1037 	__page_set_anon_rmap(page, vma, address, 1);
1038 }
1039 
1040 /**
1041  * page_add_file_rmap - add pte mapping to a file page
1042  * @page: the page to add the mapping to
1043  *
1044  * The caller needs to hold the pte lock.
1045  */
1046 void page_add_file_rmap(struct page *page)
1047 {
1048 	struct mem_cgroup *memcg;
1049 	unsigned long flags;
1050 	bool locked;
1051 
1052 	memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1053 	if (atomic_inc_and_test(&page->_mapcount)) {
1054 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1055 		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1056 	}
1057 	mem_cgroup_end_page_stat(memcg, &locked, &flags);
1058 }
1059 
1060 static void page_remove_file_rmap(struct page *page)
1061 {
1062 	struct mem_cgroup *memcg;
1063 	unsigned long flags;
1064 	bool locked;
1065 
1066 	memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1067 
1068 	/* page still mapped by someone else? */
1069 	if (!atomic_add_negative(-1, &page->_mapcount))
1070 		goto out;
1071 
1072 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1073 	if (unlikely(PageHuge(page)))
1074 		goto out;
1075 
1076 	/*
1077 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1078 	 * these counters are not modified in interrupt context, and
1079 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1080 	 */
1081 	__dec_zone_page_state(page, NR_FILE_MAPPED);
1082 	mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1083 
1084 	if (unlikely(PageMlocked(page)))
1085 		clear_page_mlock(page);
1086 out:
1087 	mem_cgroup_end_page_stat(memcg, &locked, &flags);
1088 }
1089 
1090 /**
1091  * page_remove_rmap - take down pte mapping from a page
1092  * @page: page to remove mapping from
1093  *
1094  * The caller needs to hold the pte lock.
1095  */
1096 void page_remove_rmap(struct page *page)
1097 {
1098 	if (!PageAnon(page)) {
1099 		page_remove_file_rmap(page);
1100 		return;
1101 	}
1102 
1103 	/* page still mapped by someone else? */
1104 	if (!atomic_add_negative(-1, &page->_mapcount))
1105 		return;
1106 
1107 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1108 	if (unlikely(PageHuge(page)))
1109 		return;
1110 
1111 	/*
1112 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1113 	 * these counters are not modified in interrupt context, and
1114 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1115 	 */
1116 	if (PageTransHuge(page))
1117 		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1118 
1119 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1120 			      -hpage_nr_pages(page));
1121 
1122 	if (unlikely(PageMlocked(page)))
1123 		clear_page_mlock(page);
1124 
1125 	/*
1126 	 * It would be tidy to reset the PageAnon mapping here,
1127 	 * but that might overwrite a racing page_add_anon_rmap
1128 	 * which increments mapcount after us but sets mapping
1129 	 * before us: so leave the reset to free_hot_cold_page,
1130 	 * and remember that it's only reliable while mapped.
1131 	 * Leaving it set also helps swapoff to reinstate ptes
1132 	 * faster for those pages still in swapcache.
1133 	 */
1134 }
1135 
1136 /*
1137  * @arg: enum ttu_flags will be passed to this argument
1138  */
1139 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1140 		     unsigned long address, void *arg)
1141 {
1142 	struct mm_struct *mm = vma->vm_mm;
1143 	pte_t *pte;
1144 	pte_t pteval;
1145 	spinlock_t *ptl;
1146 	int ret = SWAP_AGAIN;
1147 	enum ttu_flags flags = (enum ttu_flags)arg;
1148 
1149 	pte = page_check_address(page, mm, address, &ptl, 0);
1150 	if (!pte)
1151 		goto out;
1152 
1153 	/*
1154 	 * If the page is mlock()d, we cannot swap it out.
1155 	 * If it's recently referenced (perhaps page_referenced
1156 	 * skipped over this mm) then we should reactivate it.
1157 	 */
1158 	if (!(flags & TTU_IGNORE_MLOCK)) {
1159 		if (vma->vm_flags & VM_LOCKED)
1160 			goto out_mlock;
1161 
1162 		if (flags & TTU_MUNLOCK)
1163 			goto out_unmap;
1164 	}
1165 	if (!(flags & TTU_IGNORE_ACCESS)) {
1166 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1167 			ret = SWAP_FAIL;
1168 			goto out_unmap;
1169 		}
1170   	}
1171 
1172 	/* Nuke the page table entry. */
1173 	flush_cache_page(vma, address, page_to_pfn(page));
1174 	pteval = ptep_clear_flush(vma, address, pte);
1175 
1176 	/* Move the dirty bit to the physical page now the pte is gone. */
1177 	if (pte_dirty(pteval))
1178 		set_page_dirty(page);
1179 
1180 	/* Update high watermark before we lower rss */
1181 	update_hiwater_rss(mm);
1182 
1183 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1184 		if (!PageHuge(page)) {
1185 			if (PageAnon(page))
1186 				dec_mm_counter(mm, MM_ANONPAGES);
1187 			else
1188 				dec_mm_counter(mm, MM_FILEPAGES);
1189 		}
1190 		set_pte_at(mm, address, pte,
1191 			   swp_entry_to_pte(make_hwpoison_entry(page)));
1192 	} else if (pte_unused(pteval)) {
1193 		/*
1194 		 * The guest indicated that the page content is of no
1195 		 * interest anymore. Simply discard the pte, vmscan
1196 		 * will take care of the rest.
1197 		 */
1198 		if (PageAnon(page))
1199 			dec_mm_counter(mm, MM_ANONPAGES);
1200 		else
1201 			dec_mm_counter(mm, MM_FILEPAGES);
1202 	} else if (PageAnon(page)) {
1203 		swp_entry_t entry = { .val = page_private(page) };
1204 		pte_t swp_pte;
1205 
1206 		if (PageSwapCache(page)) {
1207 			/*
1208 			 * Store the swap location in the pte.
1209 			 * See handle_pte_fault() ...
1210 			 */
1211 			if (swap_duplicate(entry) < 0) {
1212 				set_pte_at(mm, address, pte, pteval);
1213 				ret = SWAP_FAIL;
1214 				goto out_unmap;
1215 			}
1216 			if (list_empty(&mm->mmlist)) {
1217 				spin_lock(&mmlist_lock);
1218 				if (list_empty(&mm->mmlist))
1219 					list_add(&mm->mmlist, &init_mm.mmlist);
1220 				spin_unlock(&mmlist_lock);
1221 			}
1222 			dec_mm_counter(mm, MM_ANONPAGES);
1223 			inc_mm_counter(mm, MM_SWAPENTS);
1224 		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1225 			/*
1226 			 * Store the pfn of the page in a special migration
1227 			 * pte. do_swap_page() will wait until the migration
1228 			 * pte is removed and then restart fault handling.
1229 			 */
1230 			BUG_ON(!(flags & TTU_MIGRATION));
1231 			entry = make_migration_entry(page, pte_write(pteval));
1232 		}
1233 		swp_pte = swp_entry_to_pte(entry);
1234 		if (pte_soft_dirty(pteval))
1235 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1236 		set_pte_at(mm, address, pte, swp_pte);
1237 		BUG_ON(pte_file(*pte));
1238 	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1239 		   (flags & TTU_MIGRATION)) {
1240 		/* Establish migration entry for a file page */
1241 		swp_entry_t entry;
1242 		entry = make_migration_entry(page, pte_write(pteval));
1243 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1244 	} else
1245 		dec_mm_counter(mm, MM_FILEPAGES);
1246 
1247 	page_remove_rmap(page);
1248 	page_cache_release(page);
1249 
1250 out_unmap:
1251 	pte_unmap_unlock(pte, ptl);
1252 	if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1253 		mmu_notifier_invalidate_page(mm, address);
1254 out:
1255 	return ret;
1256 
1257 out_mlock:
1258 	pte_unmap_unlock(pte, ptl);
1259 
1260 
1261 	/*
1262 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1263 	 * unstable result and race. Plus, We can't wait here because
1264 	 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
1265 	 * if trylock failed, the page remain in evictable lru and later
1266 	 * vmscan could retry to move the page to unevictable lru if the
1267 	 * page is actually mlocked.
1268 	 */
1269 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1270 		if (vma->vm_flags & VM_LOCKED) {
1271 			mlock_vma_page(page);
1272 			ret = SWAP_MLOCK;
1273 		}
1274 		up_read(&vma->vm_mm->mmap_sem);
1275 	}
1276 	return ret;
1277 }
1278 
1279 /*
1280  * objrmap doesn't work for nonlinear VMAs because the assumption that
1281  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1282  * Consequently, given a particular page and its ->index, we cannot locate the
1283  * ptes which are mapping that page without an exhaustive linear search.
1284  *
1285  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1286  * maps the file to which the target page belongs.  The ->vm_private_data field
1287  * holds the current cursor into that scan.  Successive searches will circulate
1288  * around the vma's virtual address space.
1289  *
1290  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1291  * more scanning pressure is placed against them as well.   Eventually pages
1292  * will become fully unmapped and are eligible for eviction.
1293  *
1294  * For very sparsely populated VMAs this is a little inefficient - chances are
1295  * there there won't be many ptes located within the scan cluster.  In this case
1296  * maybe we could scan further - to the end of the pte page, perhaps.
1297  *
1298  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1299  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1300  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1301  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1302  */
1303 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1304 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1305 
1306 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1307 		struct vm_area_struct *vma, struct page *check_page)
1308 {
1309 	struct mm_struct *mm = vma->vm_mm;
1310 	pmd_t *pmd;
1311 	pte_t *pte;
1312 	pte_t pteval;
1313 	spinlock_t *ptl;
1314 	struct page *page;
1315 	unsigned long address;
1316 	unsigned long mmun_start;	/* For mmu_notifiers */
1317 	unsigned long mmun_end;		/* For mmu_notifiers */
1318 	unsigned long end;
1319 	int ret = SWAP_AGAIN;
1320 	int locked_vma = 0;
1321 
1322 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1323 	end = address + CLUSTER_SIZE;
1324 	if (address < vma->vm_start)
1325 		address = vma->vm_start;
1326 	if (end > vma->vm_end)
1327 		end = vma->vm_end;
1328 
1329 	pmd = mm_find_pmd(mm, address);
1330 	if (!pmd)
1331 		return ret;
1332 
1333 	mmun_start = address;
1334 	mmun_end   = end;
1335 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1336 
1337 	/*
1338 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1339 	 * keep the sem while scanning the cluster for mlocking pages.
1340 	 */
1341 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1342 		locked_vma = (vma->vm_flags & VM_LOCKED);
1343 		if (!locked_vma)
1344 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1345 	}
1346 
1347 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1348 
1349 	/* Update high watermark before we lower rss */
1350 	update_hiwater_rss(mm);
1351 
1352 	for (; address < end; pte++, address += PAGE_SIZE) {
1353 		if (!pte_present(*pte))
1354 			continue;
1355 		page = vm_normal_page(vma, address, *pte);
1356 		BUG_ON(!page || PageAnon(page));
1357 
1358 		if (locked_vma) {
1359 			if (page == check_page) {
1360 				/* we know we have check_page locked */
1361 				mlock_vma_page(page);
1362 				ret = SWAP_MLOCK;
1363 			} else if (trylock_page(page)) {
1364 				/*
1365 				 * If we can lock the page, perform mlock.
1366 				 * Otherwise leave the page alone, it will be
1367 				 * eventually encountered again later.
1368 				 */
1369 				mlock_vma_page(page);
1370 				unlock_page(page);
1371 			}
1372 			continue;	/* don't unmap */
1373 		}
1374 
1375 		/*
1376 		 * No need for _notify because we're within an
1377 		 * mmu_notifier_invalidate_range_ {start|end} scope.
1378 		 */
1379 		if (ptep_clear_flush_young(vma, address, pte))
1380 			continue;
1381 
1382 		/* Nuke the page table entry. */
1383 		flush_cache_page(vma, address, pte_pfn(*pte));
1384 		pteval = ptep_clear_flush_notify(vma, address, pte);
1385 
1386 		/* If nonlinear, store the file page offset in the pte. */
1387 		if (page->index != linear_page_index(vma, address)) {
1388 			pte_t ptfile = pgoff_to_pte(page->index);
1389 			if (pte_soft_dirty(pteval))
1390 				ptfile = pte_file_mksoft_dirty(ptfile);
1391 			set_pte_at(mm, address, pte, ptfile);
1392 		}
1393 
1394 		/* Move the dirty bit to the physical page now the pte is gone. */
1395 		if (pte_dirty(pteval))
1396 			set_page_dirty(page);
1397 
1398 		page_remove_rmap(page);
1399 		page_cache_release(page);
1400 		dec_mm_counter(mm, MM_FILEPAGES);
1401 		(*mapcount)--;
1402 	}
1403 	pte_unmap_unlock(pte - 1, ptl);
1404 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1405 	if (locked_vma)
1406 		up_read(&vma->vm_mm->mmap_sem);
1407 	return ret;
1408 }
1409 
1410 static int try_to_unmap_nonlinear(struct page *page,
1411 		struct address_space *mapping, void *arg)
1412 {
1413 	struct vm_area_struct *vma;
1414 	int ret = SWAP_AGAIN;
1415 	unsigned long cursor;
1416 	unsigned long max_nl_cursor = 0;
1417 	unsigned long max_nl_size = 0;
1418 	unsigned int mapcount;
1419 
1420 	list_for_each_entry(vma,
1421 		&mapping->i_mmap_nonlinear, shared.nonlinear) {
1422 
1423 		cursor = (unsigned long) vma->vm_private_data;
1424 		if (cursor > max_nl_cursor)
1425 			max_nl_cursor = cursor;
1426 		cursor = vma->vm_end - vma->vm_start;
1427 		if (cursor > max_nl_size)
1428 			max_nl_size = cursor;
1429 	}
1430 
1431 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1432 		return SWAP_FAIL;
1433 	}
1434 
1435 	/*
1436 	 * We don't try to search for this page in the nonlinear vmas,
1437 	 * and page_referenced wouldn't have found it anyway.  Instead
1438 	 * just walk the nonlinear vmas trying to age and unmap some.
1439 	 * The mapcount of the page we came in with is irrelevant,
1440 	 * but even so use it as a guide to how hard we should try?
1441 	 */
1442 	mapcount = page_mapcount(page);
1443 	if (!mapcount)
1444 		return ret;
1445 
1446 	cond_resched();
1447 
1448 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1449 	if (max_nl_cursor == 0)
1450 		max_nl_cursor = CLUSTER_SIZE;
1451 
1452 	do {
1453 		list_for_each_entry(vma,
1454 			&mapping->i_mmap_nonlinear, shared.nonlinear) {
1455 
1456 			cursor = (unsigned long) vma->vm_private_data;
1457 			while (cursor < max_nl_cursor &&
1458 				cursor < vma->vm_end - vma->vm_start) {
1459 				if (try_to_unmap_cluster(cursor, &mapcount,
1460 						vma, page) == SWAP_MLOCK)
1461 					ret = SWAP_MLOCK;
1462 				cursor += CLUSTER_SIZE;
1463 				vma->vm_private_data = (void *) cursor;
1464 				if ((int)mapcount <= 0)
1465 					return ret;
1466 			}
1467 			vma->vm_private_data = (void *) max_nl_cursor;
1468 		}
1469 		cond_resched();
1470 		max_nl_cursor += CLUSTER_SIZE;
1471 	} while (max_nl_cursor <= max_nl_size);
1472 
1473 	/*
1474 	 * Don't loop forever (perhaps all the remaining pages are
1475 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1476 	 * vmas, now forgetting on which ones it had fallen behind.
1477 	 */
1478 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1479 		vma->vm_private_data = NULL;
1480 
1481 	return ret;
1482 }
1483 
1484 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1485 {
1486 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1487 
1488 	if (!maybe_stack)
1489 		return false;
1490 
1491 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1492 						VM_STACK_INCOMPLETE_SETUP)
1493 		return true;
1494 
1495 	return false;
1496 }
1497 
1498 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1499 {
1500 	return is_vma_temporary_stack(vma);
1501 }
1502 
1503 static int page_not_mapped(struct page *page)
1504 {
1505 	return !page_mapped(page);
1506 };
1507 
1508 /**
1509  * try_to_unmap - try to remove all page table mappings to a page
1510  * @page: the page to get unmapped
1511  * @flags: action and flags
1512  *
1513  * Tries to remove all the page table entries which are mapping this
1514  * page, used in the pageout path.  Caller must hold the page lock.
1515  * Return values are:
1516  *
1517  * SWAP_SUCCESS	- we succeeded in removing all mappings
1518  * SWAP_AGAIN	- we missed a mapping, try again later
1519  * SWAP_FAIL	- the page is unswappable
1520  * SWAP_MLOCK	- page is mlocked.
1521  */
1522 int try_to_unmap(struct page *page, enum ttu_flags flags)
1523 {
1524 	int ret;
1525 	struct rmap_walk_control rwc = {
1526 		.rmap_one = try_to_unmap_one,
1527 		.arg = (void *)flags,
1528 		.done = page_not_mapped,
1529 		.file_nonlinear = try_to_unmap_nonlinear,
1530 		.anon_lock = page_lock_anon_vma_read,
1531 	};
1532 
1533 	VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1534 
1535 	/*
1536 	 * During exec, a temporary VMA is setup and later moved.
1537 	 * The VMA is moved under the anon_vma lock but not the
1538 	 * page tables leading to a race where migration cannot
1539 	 * find the migration ptes. Rather than increasing the
1540 	 * locking requirements of exec(), migration skips
1541 	 * temporary VMAs until after exec() completes.
1542 	 */
1543 	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1544 		rwc.invalid_vma = invalid_migration_vma;
1545 
1546 	ret = rmap_walk(page, &rwc);
1547 
1548 	if (ret != SWAP_MLOCK && !page_mapped(page))
1549 		ret = SWAP_SUCCESS;
1550 	return ret;
1551 }
1552 
1553 /**
1554  * try_to_munlock - try to munlock a page
1555  * @page: the page to be munlocked
1556  *
1557  * Called from munlock code.  Checks all of the VMAs mapping the page
1558  * to make sure nobody else has this page mlocked. The page will be
1559  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1560  *
1561  * Return values are:
1562  *
1563  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1564  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1565  * SWAP_FAIL	- page cannot be located at present
1566  * SWAP_MLOCK	- page is now mlocked.
1567  */
1568 int try_to_munlock(struct page *page)
1569 {
1570 	int ret;
1571 	struct rmap_walk_control rwc = {
1572 		.rmap_one = try_to_unmap_one,
1573 		.arg = (void *)TTU_MUNLOCK,
1574 		.done = page_not_mapped,
1575 		/*
1576 		 * We don't bother to try to find the munlocked page in
1577 		 * nonlinears. It's costly. Instead, later, page reclaim logic
1578 		 * may call try_to_unmap() and recover PG_mlocked lazily.
1579 		 */
1580 		.file_nonlinear = NULL,
1581 		.anon_lock = page_lock_anon_vma_read,
1582 
1583 	};
1584 
1585 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1586 
1587 	ret = rmap_walk(page, &rwc);
1588 	return ret;
1589 }
1590 
1591 void __put_anon_vma(struct anon_vma *anon_vma)
1592 {
1593 	struct anon_vma *root = anon_vma->root;
1594 
1595 	anon_vma_free(anon_vma);
1596 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1597 		anon_vma_free(root);
1598 }
1599 
1600 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1601 					struct rmap_walk_control *rwc)
1602 {
1603 	struct anon_vma *anon_vma;
1604 
1605 	if (rwc->anon_lock)
1606 		return rwc->anon_lock(page);
1607 
1608 	/*
1609 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1610 	 * because that depends on page_mapped(); but not all its usages
1611 	 * are holding mmap_sem. Users without mmap_sem are required to
1612 	 * take a reference count to prevent the anon_vma disappearing
1613 	 */
1614 	anon_vma = page_anon_vma(page);
1615 	if (!anon_vma)
1616 		return NULL;
1617 
1618 	anon_vma_lock_read(anon_vma);
1619 	return anon_vma;
1620 }
1621 
1622 /*
1623  * rmap_walk_anon - do something to anonymous page using the object-based
1624  * rmap method
1625  * @page: the page to be handled
1626  * @rwc: control variable according to each walk type
1627  *
1628  * Find all the mappings of a page using the mapping pointer and the vma chains
1629  * contained in the anon_vma struct it points to.
1630  *
1631  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1632  * where the page was found will be held for write.  So, we won't recheck
1633  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1634  * LOCKED.
1635  */
1636 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1637 {
1638 	struct anon_vma *anon_vma;
1639 	pgoff_t pgoff;
1640 	struct anon_vma_chain *avc;
1641 	int ret = SWAP_AGAIN;
1642 
1643 	anon_vma = rmap_walk_anon_lock(page, rwc);
1644 	if (!anon_vma)
1645 		return ret;
1646 
1647 	pgoff = page_to_pgoff(page);
1648 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1649 		struct vm_area_struct *vma = avc->vma;
1650 		unsigned long address = vma_address(page, vma);
1651 
1652 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1653 			continue;
1654 
1655 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1656 		if (ret != SWAP_AGAIN)
1657 			break;
1658 		if (rwc->done && rwc->done(page))
1659 			break;
1660 	}
1661 	anon_vma_unlock_read(anon_vma);
1662 	return ret;
1663 }
1664 
1665 /*
1666  * rmap_walk_file - do something to file page using the object-based rmap method
1667  * @page: the page to be handled
1668  * @rwc: control variable according to each walk type
1669  *
1670  * Find all the mappings of a page using the mapping pointer and the vma chains
1671  * contained in the address_space struct it points to.
1672  *
1673  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1674  * where the page was found will be held for write.  So, we won't recheck
1675  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1676  * LOCKED.
1677  */
1678 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1679 {
1680 	struct address_space *mapping = page->mapping;
1681 	pgoff_t pgoff;
1682 	struct vm_area_struct *vma;
1683 	int ret = SWAP_AGAIN;
1684 
1685 	/*
1686 	 * The page lock not only makes sure that page->mapping cannot
1687 	 * suddenly be NULLified by truncation, it makes sure that the
1688 	 * structure at mapping cannot be freed and reused yet,
1689 	 * so we can safely take mapping->i_mmap_rwsem.
1690 	 */
1691 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1692 
1693 	if (!mapping)
1694 		return ret;
1695 
1696 	pgoff = page_to_pgoff(page);
1697 	i_mmap_lock_read(mapping);
1698 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1699 		unsigned long address = vma_address(page, vma);
1700 
1701 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1702 			continue;
1703 
1704 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1705 		if (ret != SWAP_AGAIN)
1706 			goto done;
1707 		if (rwc->done && rwc->done(page))
1708 			goto done;
1709 	}
1710 
1711 	if (!rwc->file_nonlinear)
1712 		goto done;
1713 
1714 	if (list_empty(&mapping->i_mmap_nonlinear))
1715 		goto done;
1716 
1717 	ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1718 done:
1719 	i_mmap_unlock_read(mapping);
1720 	return ret;
1721 }
1722 
1723 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1724 {
1725 	if (unlikely(PageKsm(page)))
1726 		return rmap_walk_ksm(page, rwc);
1727 	else if (PageAnon(page))
1728 		return rmap_walk_anon(page, rwc);
1729 	else
1730 		return rmap_walk_file(page, rwc);
1731 }
1732 
1733 #ifdef CONFIG_HUGETLB_PAGE
1734 /*
1735  * The following three functions are for anonymous (private mapped) hugepages.
1736  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1737  * and no lru code, because we handle hugepages differently from common pages.
1738  */
1739 static void __hugepage_set_anon_rmap(struct page *page,
1740 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1741 {
1742 	struct anon_vma *anon_vma = vma->anon_vma;
1743 
1744 	BUG_ON(!anon_vma);
1745 
1746 	if (PageAnon(page))
1747 		return;
1748 	if (!exclusive)
1749 		anon_vma = anon_vma->root;
1750 
1751 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1752 	page->mapping = (struct address_space *) anon_vma;
1753 	page->index = linear_page_index(vma, address);
1754 }
1755 
1756 void hugepage_add_anon_rmap(struct page *page,
1757 			    struct vm_area_struct *vma, unsigned long address)
1758 {
1759 	struct anon_vma *anon_vma = vma->anon_vma;
1760 	int first;
1761 
1762 	BUG_ON(!PageLocked(page));
1763 	BUG_ON(!anon_vma);
1764 	/* address might be in next vma when migration races vma_adjust */
1765 	first = atomic_inc_and_test(&page->_mapcount);
1766 	if (first)
1767 		__hugepage_set_anon_rmap(page, vma, address, 0);
1768 }
1769 
1770 void hugepage_add_new_anon_rmap(struct page *page,
1771 			struct vm_area_struct *vma, unsigned long address)
1772 {
1773 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1774 	atomic_set(&page->_mapcount, 0);
1775 	__hugepage_set_anon_rmap(page, vma, address, 1);
1776 }
1777 #endif /* CONFIG_HUGETLB_PAGE */
1778