xref: /openbmc/linux/mm/rmap.c (revision 174cd4b1)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27  *         mapping->i_mmap_rwsem
28  *           anon_vma->rwsem
29  *             mm->page_table_lock or pte_lock
30  *               zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31  *               swap_lock (in swap_duplicate, swap_info_get)
32  *                 mmlist_lock (in mmput, drain_mmlist and others)
33  *                 mapping->private_lock (in __set_page_dirty_buffers)
34  *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35  *                     mapping->tree_lock (widely used)
36  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
39  *                   mapping->tree_lock (widely used, in set_page_dirty,
40  *                             in arch-dependent flush_dcache_mmap_lock,
41  *                             within bdi.wb->list_lock in __sync_single_inode)
42  *
43  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
44  *   ->tasklist_lock
45  *     pte map lock
46  */
47 
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/pagemap.h>
51 #include <linux/swap.h>
52 #include <linux/swapops.h>
53 #include <linux/slab.h>
54 #include <linux/init.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/rcupdate.h>
58 #include <linux/export.h>
59 #include <linux/memcontrol.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/backing-dev.h>
64 #include <linux/page_idle.h>
65 
66 #include <asm/tlbflush.h>
67 
68 #include <trace/events/tlb.h>
69 
70 #include "internal.h"
71 
72 static struct kmem_cache *anon_vma_cachep;
73 static struct kmem_cache *anon_vma_chain_cachep;
74 
75 static inline struct anon_vma *anon_vma_alloc(void)
76 {
77 	struct anon_vma *anon_vma;
78 
79 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
80 	if (anon_vma) {
81 		atomic_set(&anon_vma->refcount, 1);
82 		anon_vma->degree = 1;	/* Reference for first vma */
83 		anon_vma->parent = anon_vma;
84 		/*
85 		 * Initialise the anon_vma root to point to itself. If called
86 		 * from fork, the root will be reset to the parents anon_vma.
87 		 */
88 		anon_vma->root = anon_vma;
89 	}
90 
91 	return anon_vma;
92 }
93 
94 static inline void anon_vma_free(struct anon_vma *anon_vma)
95 {
96 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
97 
98 	/*
99 	 * Synchronize against page_lock_anon_vma_read() such that
100 	 * we can safely hold the lock without the anon_vma getting
101 	 * freed.
102 	 *
103 	 * Relies on the full mb implied by the atomic_dec_and_test() from
104 	 * put_anon_vma() against the acquire barrier implied by
105 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
106 	 *
107 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
108 	 *   down_read_trylock()		  atomic_dec_and_test()
109 	 *   LOCK				  MB
110 	 *   atomic_read()			  rwsem_is_locked()
111 	 *
112 	 * LOCK should suffice since the actual taking of the lock must
113 	 * happen _before_ what follows.
114 	 */
115 	might_sleep();
116 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
117 		anon_vma_lock_write(anon_vma);
118 		anon_vma_unlock_write(anon_vma);
119 	}
120 
121 	kmem_cache_free(anon_vma_cachep, anon_vma);
122 }
123 
124 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
125 {
126 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
127 }
128 
129 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
130 {
131 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
132 }
133 
134 static void anon_vma_chain_link(struct vm_area_struct *vma,
135 				struct anon_vma_chain *avc,
136 				struct anon_vma *anon_vma)
137 {
138 	avc->vma = vma;
139 	avc->anon_vma = anon_vma;
140 	list_add(&avc->same_vma, &vma->anon_vma_chain);
141 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
142 }
143 
144 /**
145  * __anon_vma_prepare - attach an anon_vma to a memory region
146  * @vma: the memory region in question
147  *
148  * This makes sure the memory mapping described by 'vma' has
149  * an 'anon_vma' attached to it, so that we can associate the
150  * anonymous pages mapped into it with that anon_vma.
151  *
152  * The common case will be that we already have one, which
153  * is handled inline by anon_vma_prepare(). But if
154  * not we either need to find an adjacent mapping that we
155  * can re-use the anon_vma from (very common when the only
156  * reason for splitting a vma has been mprotect()), or we
157  * allocate a new one.
158  *
159  * Anon-vma allocations are very subtle, because we may have
160  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
161  * and that may actually touch the spinlock even in the newly
162  * allocated vma (it depends on RCU to make sure that the
163  * anon_vma isn't actually destroyed).
164  *
165  * As a result, we need to do proper anon_vma locking even
166  * for the new allocation. At the same time, we do not want
167  * to do any locking for the common case of already having
168  * an anon_vma.
169  *
170  * This must be called with the mmap_sem held for reading.
171  */
172 int __anon_vma_prepare(struct vm_area_struct *vma)
173 {
174 	struct mm_struct *mm = vma->vm_mm;
175 	struct anon_vma *anon_vma, *allocated;
176 	struct anon_vma_chain *avc;
177 
178 	might_sleep();
179 
180 	avc = anon_vma_chain_alloc(GFP_KERNEL);
181 	if (!avc)
182 		goto out_enomem;
183 
184 	anon_vma = find_mergeable_anon_vma(vma);
185 	allocated = NULL;
186 	if (!anon_vma) {
187 		anon_vma = anon_vma_alloc();
188 		if (unlikely(!anon_vma))
189 			goto out_enomem_free_avc;
190 		allocated = anon_vma;
191 	}
192 
193 	anon_vma_lock_write(anon_vma);
194 	/* page_table_lock to protect against threads */
195 	spin_lock(&mm->page_table_lock);
196 	if (likely(!vma->anon_vma)) {
197 		vma->anon_vma = anon_vma;
198 		anon_vma_chain_link(vma, avc, anon_vma);
199 		/* vma reference or self-parent link for new root */
200 		anon_vma->degree++;
201 		allocated = NULL;
202 		avc = NULL;
203 	}
204 	spin_unlock(&mm->page_table_lock);
205 	anon_vma_unlock_write(anon_vma);
206 
207 	if (unlikely(allocated))
208 		put_anon_vma(allocated);
209 	if (unlikely(avc))
210 		anon_vma_chain_free(avc);
211 
212 	return 0;
213 
214  out_enomem_free_avc:
215 	anon_vma_chain_free(avc);
216  out_enomem:
217 	return -ENOMEM;
218 }
219 
220 /*
221  * This is a useful helper function for locking the anon_vma root as
222  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
223  * have the same vma.
224  *
225  * Such anon_vma's should have the same root, so you'd expect to see
226  * just a single mutex_lock for the whole traversal.
227  */
228 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
229 {
230 	struct anon_vma *new_root = anon_vma->root;
231 	if (new_root != root) {
232 		if (WARN_ON_ONCE(root))
233 			up_write(&root->rwsem);
234 		root = new_root;
235 		down_write(&root->rwsem);
236 	}
237 	return root;
238 }
239 
240 static inline void unlock_anon_vma_root(struct anon_vma *root)
241 {
242 	if (root)
243 		up_write(&root->rwsem);
244 }
245 
246 /*
247  * Attach the anon_vmas from src to dst.
248  * Returns 0 on success, -ENOMEM on failure.
249  *
250  * If dst->anon_vma is NULL this function tries to find and reuse existing
251  * anon_vma which has no vmas and only one child anon_vma. This prevents
252  * degradation of anon_vma hierarchy to endless linear chain in case of
253  * constantly forking task. On the other hand, an anon_vma with more than one
254  * child isn't reused even if there was no alive vma, thus rmap walker has a
255  * good chance of avoiding scanning the whole hierarchy when it searches where
256  * page is mapped.
257  */
258 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
259 {
260 	struct anon_vma_chain *avc, *pavc;
261 	struct anon_vma *root = NULL;
262 
263 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
264 		struct anon_vma *anon_vma;
265 
266 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
267 		if (unlikely(!avc)) {
268 			unlock_anon_vma_root(root);
269 			root = NULL;
270 			avc = anon_vma_chain_alloc(GFP_KERNEL);
271 			if (!avc)
272 				goto enomem_failure;
273 		}
274 		anon_vma = pavc->anon_vma;
275 		root = lock_anon_vma_root(root, anon_vma);
276 		anon_vma_chain_link(dst, avc, anon_vma);
277 
278 		/*
279 		 * Reuse existing anon_vma if its degree lower than two,
280 		 * that means it has no vma and only one anon_vma child.
281 		 *
282 		 * Do not chose parent anon_vma, otherwise first child
283 		 * will always reuse it. Root anon_vma is never reused:
284 		 * it has self-parent reference and at least one child.
285 		 */
286 		if (!dst->anon_vma && anon_vma != src->anon_vma &&
287 				anon_vma->degree < 2)
288 			dst->anon_vma = anon_vma;
289 	}
290 	if (dst->anon_vma)
291 		dst->anon_vma->degree++;
292 	unlock_anon_vma_root(root);
293 	return 0;
294 
295  enomem_failure:
296 	/*
297 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
298 	 * decremented in unlink_anon_vmas().
299 	 * We can safely do this because callers of anon_vma_clone() don't care
300 	 * about dst->anon_vma if anon_vma_clone() failed.
301 	 */
302 	dst->anon_vma = NULL;
303 	unlink_anon_vmas(dst);
304 	return -ENOMEM;
305 }
306 
307 /*
308  * Attach vma to its own anon_vma, as well as to the anon_vmas that
309  * the corresponding VMA in the parent process is attached to.
310  * Returns 0 on success, non-zero on failure.
311  */
312 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
313 {
314 	struct anon_vma_chain *avc;
315 	struct anon_vma *anon_vma;
316 	int error;
317 
318 	/* Don't bother if the parent process has no anon_vma here. */
319 	if (!pvma->anon_vma)
320 		return 0;
321 
322 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
323 	vma->anon_vma = NULL;
324 
325 	/*
326 	 * First, attach the new VMA to the parent VMA's anon_vmas,
327 	 * so rmap can find non-COWed pages in child processes.
328 	 */
329 	error = anon_vma_clone(vma, pvma);
330 	if (error)
331 		return error;
332 
333 	/* An existing anon_vma has been reused, all done then. */
334 	if (vma->anon_vma)
335 		return 0;
336 
337 	/* Then add our own anon_vma. */
338 	anon_vma = anon_vma_alloc();
339 	if (!anon_vma)
340 		goto out_error;
341 	avc = anon_vma_chain_alloc(GFP_KERNEL);
342 	if (!avc)
343 		goto out_error_free_anon_vma;
344 
345 	/*
346 	 * The root anon_vma's spinlock is the lock actually used when we
347 	 * lock any of the anon_vmas in this anon_vma tree.
348 	 */
349 	anon_vma->root = pvma->anon_vma->root;
350 	anon_vma->parent = pvma->anon_vma;
351 	/*
352 	 * With refcounts, an anon_vma can stay around longer than the
353 	 * process it belongs to. The root anon_vma needs to be pinned until
354 	 * this anon_vma is freed, because the lock lives in the root.
355 	 */
356 	get_anon_vma(anon_vma->root);
357 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
358 	vma->anon_vma = anon_vma;
359 	anon_vma_lock_write(anon_vma);
360 	anon_vma_chain_link(vma, avc, anon_vma);
361 	anon_vma->parent->degree++;
362 	anon_vma_unlock_write(anon_vma);
363 
364 	return 0;
365 
366  out_error_free_anon_vma:
367 	put_anon_vma(anon_vma);
368  out_error:
369 	unlink_anon_vmas(vma);
370 	return -ENOMEM;
371 }
372 
373 void unlink_anon_vmas(struct vm_area_struct *vma)
374 {
375 	struct anon_vma_chain *avc, *next;
376 	struct anon_vma *root = NULL;
377 
378 	/*
379 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
380 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
381 	 */
382 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
383 		struct anon_vma *anon_vma = avc->anon_vma;
384 
385 		root = lock_anon_vma_root(root, anon_vma);
386 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
387 
388 		/*
389 		 * Leave empty anon_vmas on the list - we'll need
390 		 * to free them outside the lock.
391 		 */
392 		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
393 			anon_vma->parent->degree--;
394 			continue;
395 		}
396 
397 		list_del(&avc->same_vma);
398 		anon_vma_chain_free(avc);
399 	}
400 	if (vma->anon_vma)
401 		vma->anon_vma->degree--;
402 	unlock_anon_vma_root(root);
403 
404 	/*
405 	 * Iterate the list once more, it now only contains empty and unlinked
406 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
407 	 * needing to write-acquire the anon_vma->root->rwsem.
408 	 */
409 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
410 		struct anon_vma *anon_vma = avc->anon_vma;
411 
412 		VM_WARN_ON(anon_vma->degree);
413 		put_anon_vma(anon_vma);
414 
415 		list_del(&avc->same_vma);
416 		anon_vma_chain_free(avc);
417 	}
418 }
419 
420 static void anon_vma_ctor(void *data)
421 {
422 	struct anon_vma *anon_vma = data;
423 
424 	init_rwsem(&anon_vma->rwsem);
425 	atomic_set(&anon_vma->refcount, 0);
426 	anon_vma->rb_root = RB_ROOT;
427 }
428 
429 void __init anon_vma_init(void)
430 {
431 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
432 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
433 			anon_vma_ctor);
434 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
435 			SLAB_PANIC|SLAB_ACCOUNT);
436 }
437 
438 /*
439  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
440  *
441  * Since there is no serialization what so ever against page_remove_rmap()
442  * the best this function can do is return a locked anon_vma that might
443  * have been relevant to this page.
444  *
445  * The page might have been remapped to a different anon_vma or the anon_vma
446  * returned may already be freed (and even reused).
447  *
448  * In case it was remapped to a different anon_vma, the new anon_vma will be a
449  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
450  * ensure that any anon_vma obtained from the page will still be valid for as
451  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
452  *
453  * All users of this function must be very careful when walking the anon_vma
454  * chain and verify that the page in question is indeed mapped in it
455  * [ something equivalent to page_mapped_in_vma() ].
456  *
457  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
458  * that the anon_vma pointer from page->mapping is valid if there is a
459  * mapcount, we can dereference the anon_vma after observing those.
460  */
461 struct anon_vma *page_get_anon_vma(struct page *page)
462 {
463 	struct anon_vma *anon_vma = NULL;
464 	unsigned long anon_mapping;
465 
466 	rcu_read_lock();
467 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
468 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
469 		goto out;
470 	if (!page_mapped(page))
471 		goto out;
472 
473 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
474 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 		anon_vma = NULL;
476 		goto out;
477 	}
478 
479 	/*
480 	 * If this page is still mapped, then its anon_vma cannot have been
481 	 * freed.  But if it has been unmapped, we have no security against the
482 	 * anon_vma structure being freed and reused (for another anon_vma:
483 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
484 	 * above cannot corrupt).
485 	 */
486 	if (!page_mapped(page)) {
487 		rcu_read_unlock();
488 		put_anon_vma(anon_vma);
489 		return NULL;
490 	}
491 out:
492 	rcu_read_unlock();
493 
494 	return anon_vma;
495 }
496 
497 /*
498  * Similar to page_get_anon_vma() except it locks the anon_vma.
499  *
500  * Its a little more complex as it tries to keep the fast path to a single
501  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
502  * reference like with page_get_anon_vma() and then block on the mutex.
503  */
504 struct anon_vma *page_lock_anon_vma_read(struct page *page)
505 {
506 	struct anon_vma *anon_vma = NULL;
507 	struct anon_vma *root_anon_vma;
508 	unsigned long anon_mapping;
509 
510 	rcu_read_lock();
511 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
512 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
513 		goto out;
514 	if (!page_mapped(page))
515 		goto out;
516 
517 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
518 	root_anon_vma = READ_ONCE(anon_vma->root);
519 	if (down_read_trylock(&root_anon_vma->rwsem)) {
520 		/*
521 		 * If the page is still mapped, then this anon_vma is still
522 		 * its anon_vma, and holding the mutex ensures that it will
523 		 * not go away, see anon_vma_free().
524 		 */
525 		if (!page_mapped(page)) {
526 			up_read(&root_anon_vma->rwsem);
527 			anon_vma = NULL;
528 		}
529 		goto out;
530 	}
531 
532 	/* trylock failed, we got to sleep */
533 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
534 		anon_vma = NULL;
535 		goto out;
536 	}
537 
538 	if (!page_mapped(page)) {
539 		rcu_read_unlock();
540 		put_anon_vma(anon_vma);
541 		return NULL;
542 	}
543 
544 	/* we pinned the anon_vma, its safe to sleep */
545 	rcu_read_unlock();
546 	anon_vma_lock_read(anon_vma);
547 
548 	if (atomic_dec_and_test(&anon_vma->refcount)) {
549 		/*
550 		 * Oops, we held the last refcount, release the lock
551 		 * and bail -- can't simply use put_anon_vma() because
552 		 * we'll deadlock on the anon_vma_lock_write() recursion.
553 		 */
554 		anon_vma_unlock_read(anon_vma);
555 		__put_anon_vma(anon_vma);
556 		anon_vma = NULL;
557 	}
558 
559 	return anon_vma;
560 
561 out:
562 	rcu_read_unlock();
563 	return anon_vma;
564 }
565 
566 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
567 {
568 	anon_vma_unlock_read(anon_vma);
569 }
570 
571 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
572 /*
573  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
574  * important if a PTE was dirty when it was unmapped that it's flushed
575  * before any IO is initiated on the page to prevent lost writes. Similarly,
576  * it must be flushed before freeing to prevent data leakage.
577  */
578 void try_to_unmap_flush(void)
579 {
580 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
581 	int cpu;
582 
583 	if (!tlb_ubc->flush_required)
584 		return;
585 
586 	cpu = get_cpu();
587 
588 	if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
589 		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
590 		local_flush_tlb();
591 		trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
592 	}
593 
594 	if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
595 		flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
596 	cpumask_clear(&tlb_ubc->cpumask);
597 	tlb_ubc->flush_required = false;
598 	tlb_ubc->writable = false;
599 	put_cpu();
600 }
601 
602 /* Flush iff there are potentially writable TLB entries that can race with IO */
603 void try_to_unmap_flush_dirty(void)
604 {
605 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
606 
607 	if (tlb_ubc->writable)
608 		try_to_unmap_flush();
609 }
610 
611 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
612 {
613 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
614 
615 	cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
616 	tlb_ubc->flush_required = true;
617 
618 	/*
619 	 * If the PTE was dirty then it's best to assume it's writable. The
620 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
621 	 * before the page is queued for IO.
622 	 */
623 	if (writable)
624 		tlb_ubc->writable = true;
625 }
626 
627 /*
628  * Returns true if the TLB flush should be deferred to the end of a batch of
629  * unmap operations to reduce IPIs.
630  */
631 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
632 {
633 	bool should_defer = false;
634 
635 	if (!(flags & TTU_BATCH_FLUSH))
636 		return false;
637 
638 	/* If remote CPUs need to be flushed then defer batch the flush */
639 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
640 		should_defer = true;
641 	put_cpu();
642 
643 	return should_defer;
644 }
645 #else
646 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
647 {
648 }
649 
650 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
651 {
652 	return false;
653 }
654 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
655 
656 /*
657  * At what user virtual address is page expected in vma?
658  * Caller should check the page is actually part of the vma.
659  */
660 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
661 {
662 	unsigned long address;
663 	if (PageAnon(page)) {
664 		struct anon_vma *page__anon_vma = page_anon_vma(page);
665 		/*
666 		 * Note: swapoff's unuse_vma() is more efficient with this
667 		 * check, and needs it to match anon_vma when KSM is active.
668 		 */
669 		if (!vma->anon_vma || !page__anon_vma ||
670 		    vma->anon_vma->root != page__anon_vma->root)
671 			return -EFAULT;
672 	} else if (page->mapping) {
673 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
674 			return -EFAULT;
675 	} else
676 		return -EFAULT;
677 	address = __vma_address(page, vma);
678 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
679 		return -EFAULT;
680 	return address;
681 }
682 
683 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
684 {
685 	pgd_t *pgd;
686 	pud_t *pud;
687 	pmd_t *pmd = NULL;
688 	pmd_t pmde;
689 
690 	pgd = pgd_offset(mm, address);
691 	if (!pgd_present(*pgd))
692 		goto out;
693 
694 	pud = pud_offset(pgd, address);
695 	if (!pud_present(*pud))
696 		goto out;
697 
698 	pmd = pmd_offset(pud, address);
699 	/*
700 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
701 	 * without holding anon_vma lock for write.  So when looking for a
702 	 * genuine pmde (in which to find pte), test present and !THP together.
703 	 */
704 	pmde = *pmd;
705 	barrier();
706 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
707 		pmd = NULL;
708 out:
709 	return pmd;
710 }
711 
712 struct page_referenced_arg {
713 	int mapcount;
714 	int referenced;
715 	unsigned long vm_flags;
716 	struct mem_cgroup *memcg;
717 };
718 /*
719  * arg: page_referenced_arg will be passed
720  */
721 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
722 			unsigned long address, void *arg)
723 {
724 	struct page_referenced_arg *pra = arg;
725 	struct page_vma_mapped_walk pvmw = {
726 		.page = page,
727 		.vma = vma,
728 		.address = address,
729 	};
730 	int referenced = 0;
731 
732 	while (page_vma_mapped_walk(&pvmw)) {
733 		address = pvmw.address;
734 
735 		if (vma->vm_flags & VM_LOCKED) {
736 			page_vma_mapped_walk_done(&pvmw);
737 			pra->vm_flags |= VM_LOCKED;
738 			return SWAP_FAIL; /* To break the loop */
739 		}
740 
741 		if (pvmw.pte) {
742 			if (ptep_clear_flush_young_notify(vma, address,
743 						pvmw.pte)) {
744 				/*
745 				 * Don't treat a reference through
746 				 * a sequentially read mapping as such.
747 				 * If the page has been used in another mapping,
748 				 * we will catch it; if this other mapping is
749 				 * already gone, the unmap path will have set
750 				 * PG_referenced or activated the page.
751 				 */
752 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
753 					referenced++;
754 			}
755 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
756 			if (pmdp_clear_flush_young_notify(vma, address,
757 						pvmw.pmd))
758 				referenced++;
759 		} else {
760 			/* unexpected pmd-mapped page? */
761 			WARN_ON_ONCE(1);
762 		}
763 
764 		pra->mapcount--;
765 	}
766 
767 	if (referenced)
768 		clear_page_idle(page);
769 	if (test_and_clear_page_young(page))
770 		referenced++;
771 
772 	if (referenced) {
773 		pra->referenced++;
774 		pra->vm_flags |= vma->vm_flags;
775 	}
776 
777 	if (!pra->mapcount)
778 		return SWAP_SUCCESS; /* To break the loop */
779 
780 	return SWAP_AGAIN;
781 }
782 
783 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
784 {
785 	struct page_referenced_arg *pra = arg;
786 	struct mem_cgroup *memcg = pra->memcg;
787 
788 	if (!mm_match_cgroup(vma->vm_mm, memcg))
789 		return true;
790 
791 	return false;
792 }
793 
794 /**
795  * page_referenced - test if the page was referenced
796  * @page: the page to test
797  * @is_locked: caller holds lock on the page
798  * @memcg: target memory cgroup
799  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
800  *
801  * Quick test_and_clear_referenced for all mappings to a page,
802  * returns the number of ptes which referenced the page.
803  */
804 int page_referenced(struct page *page,
805 		    int is_locked,
806 		    struct mem_cgroup *memcg,
807 		    unsigned long *vm_flags)
808 {
809 	int ret;
810 	int we_locked = 0;
811 	struct page_referenced_arg pra = {
812 		.mapcount = total_mapcount(page),
813 		.memcg = memcg,
814 	};
815 	struct rmap_walk_control rwc = {
816 		.rmap_one = page_referenced_one,
817 		.arg = (void *)&pra,
818 		.anon_lock = page_lock_anon_vma_read,
819 	};
820 
821 	*vm_flags = 0;
822 	if (!page_mapped(page))
823 		return 0;
824 
825 	if (!page_rmapping(page))
826 		return 0;
827 
828 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
829 		we_locked = trylock_page(page);
830 		if (!we_locked)
831 			return 1;
832 	}
833 
834 	/*
835 	 * If we are reclaiming on behalf of a cgroup, skip
836 	 * counting on behalf of references from different
837 	 * cgroups
838 	 */
839 	if (memcg) {
840 		rwc.invalid_vma = invalid_page_referenced_vma;
841 	}
842 
843 	ret = rmap_walk(page, &rwc);
844 	*vm_flags = pra.vm_flags;
845 
846 	if (we_locked)
847 		unlock_page(page);
848 
849 	return pra.referenced;
850 }
851 
852 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
853 			    unsigned long address, void *arg)
854 {
855 	struct page_vma_mapped_walk pvmw = {
856 		.page = page,
857 		.vma = vma,
858 		.address = address,
859 		.flags = PVMW_SYNC,
860 	};
861 	int *cleaned = arg;
862 
863 	while (page_vma_mapped_walk(&pvmw)) {
864 		int ret = 0;
865 		address = pvmw.address;
866 		if (pvmw.pte) {
867 			pte_t entry;
868 			pte_t *pte = pvmw.pte;
869 
870 			if (!pte_dirty(*pte) && !pte_write(*pte))
871 				continue;
872 
873 			flush_cache_page(vma, address, pte_pfn(*pte));
874 			entry = ptep_clear_flush(vma, address, pte);
875 			entry = pte_wrprotect(entry);
876 			entry = pte_mkclean(entry);
877 			set_pte_at(vma->vm_mm, address, pte, entry);
878 			ret = 1;
879 		} else {
880 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
881 			pmd_t *pmd = pvmw.pmd;
882 			pmd_t entry;
883 
884 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
885 				continue;
886 
887 			flush_cache_page(vma, address, page_to_pfn(page));
888 			entry = pmdp_huge_clear_flush(vma, address, pmd);
889 			entry = pmd_wrprotect(entry);
890 			entry = pmd_mkclean(entry);
891 			set_pmd_at(vma->vm_mm, address, pmd, entry);
892 			ret = 1;
893 #else
894 			/* unexpected pmd-mapped page? */
895 			WARN_ON_ONCE(1);
896 #endif
897 		}
898 
899 		if (ret) {
900 			mmu_notifier_invalidate_page(vma->vm_mm, address);
901 			(*cleaned)++;
902 		}
903 	}
904 
905 	return SWAP_AGAIN;
906 }
907 
908 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
909 {
910 	if (vma->vm_flags & VM_SHARED)
911 		return false;
912 
913 	return true;
914 }
915 
916 int page_mkclean(struct page *page)
917 {
918 	int cleaned = 0;
919 	struct address_space *mapping;
920 	struct rmap_walk_control rwc = {
921 		.arg = (void *)&cleaned,
922 		.rmap_one = page_mkclean_one,
923 		.invalid_vma = invalid_mkclean_vma,
924 	};
925 
926 	BUG_ON(!PageLocked(page));
927 
928 	if (!page_mapped(page))
929 		return 0;
930 
931 	mapping = page_mapping(page);
932 	if (!mapping)
933 		return 0;
934 
935 	rmap_walk(page, &rwc);
936 
937 	return cleaned;
938 }
939 EXPORT_SYMBOL_GPL(page_mkclean);
940 
941 /**
942  * page_move_anon_rmap - move a page to our anon_vma
943  * @page:	the page to move to our anon_vma
944  * @vma:	the vma the page belongs to
945  *
946  * When a page belongs exclusively to one process after a COW event,
947  * that page can be moved into the anon_vma that belongs to just that
948  * process, so the rmap code will not search the parent or sibling
949  * processes.
950  */
951 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
952 {
953 	struct anon_vma *anon_vma = vma->anon_vma;
954 
955 	page = compound_head(page);
956 
957 	VM_BUG_ON_PAGE(!PageLocked(page), page);
958 	VM_BUG_ON_VMA(!anon_vma, vma);
959 
960 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
961 	/*
962 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
963 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
964 	 * PageAnon()) will not see one without the other.
965 	 */
966 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
967 }
968 
969 /**
970  * __page_set_anon_rmap - set up new anonymous rmap
971  * @page:	Page to add to rmap
972  * @vma:	VM area to add page to.
973  * @address:	User virtual address of the mapping
974  * @exclusive:	the page is exclusively owned by the current process
975  */
976 static void __page_set_anon_rmap(struct page *page,
977 	struct vm_area_struct *vma, unsigned long address, int exclusive)
978 {
979 	struct anon_vma *anon_vma = vma->anon_vma;
980 
981 	BUG_ON(!anon_vma);
982 
983 	if (PageAnon(page))
984 		return;
985 
986 	/*
987 	 * If the page isn't exclusively mapped into this vma,
988 	 * we must use the _oldest_ possible anon_vma for the
989 	 * page mapping!
990 	 */
991 	if (!exclusive)
992 		anon_vma = anon_vma->root;
993 
994 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
995 	page->mapping = (struct address_space *) anon_vma;
996 	page->index = linear_page_index(vma, address);
997 }
998 
999 /**
1000  * __page_check_anon_rmap - sanity check anonymous rmap addition
1001  * @page:	the page to add the mapping to
1002  * @vma:	the vm area in which the mapping is added
1003  * @address:	the user virtual address mapped
1004  */
1005 static void __page_check_anon_rmap(struct page *page,
1006 	struct vm_area_struct *vma, unsigned long address)
1007 {
1008 #ifdef CONFIG_DEBUG_VM
1009 	/*
1010 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1011 	 * be set up correctly at this point.
1012 	 *
1013 	 * We have exclusion against page_add_anon_rmap because the caller
1014 	 * always holds the page locked, except if called from page_dup_rmap,
1015 	 * in which case the page is already known to be setup.
1016 	 *
1017 	 * We have exclusion against page_add_new_anon_rmap because those pages
1018 	 * are initially only visible via the pagetables, and the pte is locked
1019 	 * over the call to page_add_new_anon_rmap.
1020 	 */
1021 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1022 	BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1023 #endif
1024 }
1025 
1026 /**
1027  * page_add_anon_rmap - add pte mapping to an anonymous page
1028  * @page:	the page to add the mapping to
1029  * @vma:	the vm area in which the mapping is added
1030  * @address:	the user virtual address mapped
1031  * @compound:	charge the page as compound or small page
1032  *
1033  * The caller needs to hold the pte lock, and the page must be locked in
1034  * the anon_vma case: to serialize mapping,index checking after setting,
1035  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1036  * (but PageKsm is never downgraded to PageAnon).
1037  */
1038 void page_add_anon_rmap(struct page *page,
1039 	struct vm_area_struct *vma, unsigned long address, bool compound)
1040 {
1041 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1042 }
1043 
1044 /*
1045  * Special version of the above for do_swap_page, which often runs
1046  * into pages that are exclusively owned by the current process.
1047  * Everybody else should continue to use page_add_anon_rmap above.
1048  */
1049 void do_page_add_anon_rmap(struct page *page,
1050 	struct vm_area_struct *vma, unsigned long address, int flags)
1051 {
1052 	bool compound = flags & RMAP_COMPOUND;
1053 	bool first;
1054 
1055 	if (compound) {
1056 		atomic_t *mapcount;
1057 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1058 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1059 		mapcount = compound_mapcount_ptr(page);
1060 		first = atomic_inc_and_test(mapcount);
1061 	} else {
1062 		first = atomic_inc_and_test(&page->_mapcount);
1063 	}
1064 
1065 	if (first) {
1066 		int nr = compound ? hpage_nr_pages(page) : 1;
1067 		/*
1068 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1069 		 * these counters are not modified in interrupt context, and
1070 		 * pte lock(a spinlock) is held, which implies preemption
1071 		 * disabled.
1072 		 */
1073 		if (compound)
1074 			__inc_node_page_state(page, NR_ANON_THPS);
1075 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1076 	}
1077 	if (unlikely(PageKsm(page)))
1078 		return;
1079 
1080 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1081 
1082 	/* address might be in next vma when migration races vma_adjust */
1083 	if (first)
1084 		__page_set_anon_rmap(page, vma, address,
1085 				flags & RMAP_EXCLUSIVE);
1086 	else
1087 		__page_check_anon_rmap(page, vma, address);
1088 }
1089 
1090 /**
1091  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1092  * @page:	the page to add the mapping to
1093  * @vma:	the vm area in which the mapping is added
1094  * @address:	the user virtual address mapped
1095  * @compound:	charge the page as compound or small page
1096  *
1097  * Same as page_add_anon_rmap but must only be called on *new* pages.
1098  * This means the inc-and-test can be bypassed.
1099  * Page does not have to be locked.
1100  */
1101 void page_add_new_anon_rmap(struct page *page,
1102 	struct vm_area_struct *vma, unsigned long address, bool compound)
1103 {
1104 	int nr = compound ? hpage_nr_pages(page) : 1;
1105 
1106 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1107 	__SetPageSwapBacked(page);
1108 	if (compound) {
1109 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1110 		/* increment count (starts at -1) */
1111 		atomic_set(compound_mapcount_ptr(page), 0);
1112 		__inc_node_page_state(page, NR_ANON_THPS);
1113 	} else {
1114 		/* Anon THP always mapped first with PMD */
1115 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1116 		/* increment count (starts at -1) */
1117 		atomic_set(&page->_mapcount, 0);
1118 	}
1119 	__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1120 	__page_set_anon_rmap(page, vma, address, 1);
1121 }
1122 
1123 /**
1124  * page_add_file_rmap - add pte mapping to a file page
1125  * @page: the page to add the mapping to
1126  *
1127  * The caller needs to hold the pte lock.
1128  */
1129 void page_add_file_rmap(struct page *page, bool compound)
1130 {
1131 	int i, nr = 1;
1132 
1133 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1134 	lock_page_memcg(page);
1135 	if (compound && PageTransHuge(page)) {
1136 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1137 			if (atomic_inc_and_test(&page[i]._mapcount))
1138 				nr++;
1139 		}
1140 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1141 			goto out;
1142 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1143 		__inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1144 	} else {
1145 		if (PageTransCompound(page) && page_mapping(page)) {
1146 			VM_WARN_ON_ONCE(!PageLocked(page));
1147 
1148 			SetPageDoubleMap(compound_head(page));
1149 			if (PageMlocked(page))
1150 				clear_page_mlock(compound_head(page));
1151 		}
1152 		if (!atomic_inc_and_test(&page->_mapcount))
1153 			goto out;
1154 	}
1155 	__mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr);
1156 	mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1157 out:
1158 	unlock_page_memcg(page);
1159 }
1160 
1161 static void page_remove_file_rmap(struct page *page, bool compound)
1162 {
1163 	int i, nr = 1;
1164 
1165 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1166 	lock_page_memcg(page);
1167 
1168 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1169 	if (unlikely(PageHuge(page))) {
1170 		/* hugetlb pages are always mapped with pmds */
1171 		atomic_dec(compound_mapcount_ptr(page));
1172 		goto out;
1173 	}
1174 
1175 	/* page still mapped by someone else? */
1176 	if (compound && PageTransHuge(page)) {
1177 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1178 			if (atomic_add_negative(-1, &page[i]._mapcount))
1179 				nr++;
1180 		}
1181 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1182 			goto out;
1183 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1184 		__dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1185 	} else {
1186 		if (!atomic_add_negative(-1, &page->_mapcount))
1187 			goto out;
1188 	}
1189 
1190 	/*
1191 	 * We use the irq-unsafe __{inc|mod}_zone_page_state because
1192 	 * these counters are not modified in interrupt context, and
1193 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1194 	 */
1195 	__mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr);
1196 	mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1197 
1198 	if (unlikely(PageMlocked(page)))
1199 		clear_page_mlock(page);
1200 out:
1201 	unlock_page_memcg(page);
1202 }
1203 
1204 static void page_remove_anon_compound_rmap(struct page *page)
1205 {
1206 	int i, nr;
1207 
1208 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1209 		return;
1210 
1211 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1212 	if (unlikely(PageHuge(page)))
1213 		return;
1214 
1215 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1216 		return;
1217 
1218 	__dec_node_page_state(page, NR_ANON_THPS);
1219 
1220 	if (TestClearPageDoubleMap(page)) {
1221 		/*
1222 		 * Subpages can be mapped with PTEs too. Check how many of
1223 		 * themi are still mapped.
1224 		 */
1225 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1226 			if (atomic_add_negative(-1, &page[i]._mapcount))
1227 				nr++;
1228 		}
1229 	} else {
1230 		nr = HPAGE_PMD_NR;
1231 	}
1232 
1233 	if (unlikely(PageMlocked(page)))
1234 		clear_page_mlock(page);
1235 
1236 	if (nr) {
1237 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1238 		deferred_split_huge_page(page);
1239 	}
1240 }
1241 
1242 /**
1243  * page_remove_rmap - take down pte mapping from a page
1244  * @page:	page to remove mapping from
1245  * @compound:	uncharge the page as compound or small page
1246  *
1247  * The caller needs to hold the pte lock.
1248  */
1249 void page_remove_rmap(struct page *page, bool compound)
1250 {
1251 	if (!PageAnon(page))
1252 		return page_remove_file_rmap(page, compound);
1253 
1254 	if (compound)
1255 		return page_remove_anon_compound_rmap(page);
1256 
1257 	/* page still mapped by someone else? */
1258 	if (!atomic_add_negative(-1, &page->_mapcount))
1259 		return;
1260 
1261 	/*
1262 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1263 	 * these counters are not modified in interrupt context, and
1264 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1265 	 */
1266 	__dec_node_page_state(page, NR_ANON_MAPPED);
1267 
1268 	if (unlikely(PageMlocked(page)))
1269 		clear_page_mlock(page);
1270 
1271 	if (PageTransCompound(page))
1272 		deferred_split_huge_page(compound_head(page));
1273 
1274 	/*
1275 	 * It would be tidy to reset the PageAnon mapping here,
1276 	 * but that might overwrite a racing page_add_anon_rmap
1277 	 * which increments mapcount after us but sets mapping
1278 	 * before us: so leave the reset to free_hot_cold_page,
1279 	 * and remember that it's only reliable while mapped.
1280 	 * Leaving it set also helps swapoff to reinstate ptes
1281 	 * faster for those pages still in swapcache.
1282 	 */
1283 }
1284 
1285 struct rmap_private {
1286 	enum ttu_flags flags;
1287 	int lazyfreed;
1288 };
1289 
1290 /*
1291  * @arg: enum ttu_flags will be passed to this argument
1292  */
1293 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1294 		     unsigned long address, void *arg)
1295 {
1296 	struct mm_struct *mm = vma->vm_mm;
1297 	struct page_vma_mapped_walk pvmw = {
1298 		.page = page,
1299 		.vma = vma,
1300 		.address = address,
1301 	};
1302 	pte_t pteval;
1303 	struct page *subpage;
1304 	int ret = SWAP_AGAIN;
1305 	struct rmap_private *rp = arg;
1306 	enum ttu_flags flags = rp->flags;
1307 
1308 	/* munlock has nothing to gain from examining un-locked vmas */
1309 	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1310 		return SWAP_AGAIN;
1311 
1312 	if (flags & TTU_SPLIT_HUGE_PMD) {
1313 		split_huge_pmd_address(vma, address,
1314 				flags & TTU_MIGRATION, page);
1315 	}
1316 
1317 	while (page_vma_mapped_walk(&pvmw)) {
1318 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1319 		address = pvmw.address;
1320 
1321 		/* Unexpected PMD-mapped THP? */
1322 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1323 
1324 		/*
1325 		 * If the page is mlock()d, we cannot swap it out.
1326 		 * If it's recently referenced (perhaps page_referenced
1327 		 * skipped over this mm) then we should reactivate it.
1328 		 */
1329 		if (!(flags & TTU_IGNORE_MLOCK)) {
1330 			if (vma->vm_flags & VM_LOCKED) {
1331 				/* PTE-mapped THP are never mlocked */
1332 				if (!PageTransCompound(page)) {
1333 					/*
1334 					 * Holding pte lock, we do *not* need
1335 					 * mmap_sem here
1336 					 */
1337 					mlock_vma_page(page);
1338 				}
1339 				ret = SWAP_MLOCK;
1340 				page_vma_mapped_walk_done(&pvmw);
1341 				break;
1342 			}
1343 			if (flags & TTU_MUNLOCK)
1344 				continue;
1345 		}
1346 
1347 		if (!(flags & TTU_IGNORE_ACCESS)) {
1348 			if (ptep_clear_flush_young_notify(vma, address,
1349 						pvmw.pte)) {
1350 				ret = SWAP_FAIL;
1351 				page_vma_mapped_walk_done(&pvmw);
1352 				break;
1353 			}
1354 		}
1355 
1356 		/* Nuke the page table entry. */
1357 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1358 		if (should_defer_flush(mm, flags)) {
1359 			/*
1360 			 * We clear the PTE but do not flush so potentially
1361 			 * a remote CPU could still be writing to the page.
1362 			 * If the entry was previously clean then the
1363 			 * architecture must guarantee that a clear->dirty
1364 			 * transition on a cached TLB entry is written through
1365 			 * and traps if the PTE is unmapped.
1366 			 */
1367 			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1368 
1369 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1370 		} else {
1371 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1372 		}
1373 
1374 		/* Move the dirty bit to the page. Now the pte is gone. */
1375 		if (pte_dirty(pteval))
1376 			set_page_dirty(page);
1377 
1378 		/* Update high watermark before we lower rss */
1379 		update_hiwater_rss(mm);
1380 
1381 		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1382 			if (PageHuge(page)) {
1383 				int nr = 1 << compound_order(page);
1384 				hugetlb_count_sub(nr, mm);
1385 			} else {
1386 				dec_mm_counter(mm, mm_counter(page));
1387 			}
1388 
1389 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1390 			set_pte_at(mm, address, pvmw.pte, pteval);
1391 		} else if (pte_unused(pteval)) {
1392 			/*
1393 			 * The guest indicated that the page content is of no
1394 			 * interest anymore. Simply discard the pte, vmscan
1395 			 * will take care of the rest.
1396 			 */
1397 			dec_mm_counter(mm, mm_counter(page));
1398 		} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1399 				(flags & TTU_MIGRATION)) {
1400 			swp_entry_t entry;
1401 			pte_t swp_pte;
1402 			/*
1403 			 * Store the pfn of the page in a special migration
1404 			 * pte. do_swap_page() will wait until the migration
1405 			 * pte is removed and then restart fault handling.
1406 			 */
1407 			entry = make_migration_entry(subpage,
1408 					pte_write(pteval));
1409 			swp_pte = swp_entry_to_pte(entry);
1410 			if (pte_soft_dirty(pteval))
1411 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1412 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1413 		} else if (PageAnon(page)) {
1414 			swp_entry_t entry = { .val = page_private(subpage) };
1415 			pte_t swp_pte;
1416 			/*
1417 			 * Store the swap location in the pte.
1418 			 * See handle_pte_fault() ...
1419 			 */
1420 			VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1421 
1422 			if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1423 				/* It's a freeable page by MADV_FREE */
1424 				dec_mm_counter(mm, MM_ANONPAGES);
1425 				rp->lazyfreed++;
1426 				goto discard;
1427 			}
1428 
1429 			if (swap_duplicate(entry) < 0) {
1430 				set_pte_at(mm, address, pvmw.pte, pteval);
1431 				ret = SWAP_FAIL;
1432 				page_vma_mapped_walk_done(&pvmw);
1433 				break;
1434 			}
1435 			if (list_empty(&mm->mmlist)) {
1436 				spin_lock(&mmlist_lock);
1437 				if (list_empty(&mm->mmlist))
1438 					list_add(&mm->mmlist, &init_mm.mmlist);
1439 				spin_unlock(&mmlist_lock);
1440 			}
1441 			dec_mm_counter(mm, MM_ANONPAGES);
1442 			inc_mm_counter(mm, MM_SWAPENTS);
1443 			swp_pte = swp_entry_to_pte(entry);
1444 			if (pte_soft_dirty(pteval))
1445 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1446 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1447 		} else
1448 			dec_mm_counter(mm, mm_counter_file(page));
1449 discard:
1450 		page_remove_rmap(subpage, PageHuge(page));
1451 		put_page(page);
1452 		mmu_notifier_invalidate_page(mm, address);
1453 	}
1454 	return ret;
1455 }
1456 
1457 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1458 {
1459 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1460 
1461 	if (!maybe_stack)
1462 		return false;
1463 
1464 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1465 						VM_STACK_INCOMPLETE_SETUP)
1466 		return true;
1467 
1468 	return false;
1469 }
1470 
1471 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1472 {
1473 	return is_vma_temporary_stack(vma);
1474 }
1475 
1476 static int page_mapcount_is_zero(struct page *page)
1477 {
1478 	return !total_mapcount(page);
1479 }
1480 
1481 /**
1482  * try_to_unmap - try to remove all page table mappings to a page
1483  * @page: the page to get unmapped
1484  * @flags: action and flags
1485  *
1486  * Tries to remove all the page table entries which are mapping this
1487  * page, used in the pageout path.  Caller must hold the page lock.
1488  * Return values are:
1489  *
1490  * SWAP_SUCCESS	- we succeeded in removing all mappings
1491  * SWAP_AGAIN	- we missed a mapping, try again later
1492  * SWAP_FAIL	- the page is unswappable
1493  * SWAP_MLOCK	- page is mlocked.
1494  */
1495 int try_to_unmap(struct page *page, enum ttu_flags flags)
1496 {
1497 	int ret;
1498 	struct rmap_private rp = {
1499 		.flags = flags,
1500 		.lazyfreed = 0,
1501 	};
1502 
1503 	struct rmap_walk_control rwc = {
1504 		.rmap_one = try_to_unmap_one,
1505 		.arg = &rp,
1506 		.done = page_mapcount_is_zero,
1507 		.anon_lock = page_lock_anon_vma_read,
1508 	};
1509 
1510 	/*
1511 	 * During exec, a temporary VMA is setup and later moved.
1512 	 * The VMA is moved under the anon_vma lock but not the
1513 	 * page tables leading to a race where migration cannot
1514 	 * find the migration ptes. Rather than increasing the
1515 	 * locking requirements of exec(), migration skips
1516 	 * temporary VMAs until after exec() completes.
1517 	 */
1518 	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1519 		rwc.invalid_vma = invalid_migration_vma;
1520 
1521 	if (flags & TTU_RMAP_LOCKED)
1522 		ret = rmap_walk_locked(page, &rwc);
1523 	else
1524 		ret = rmap_walk(page, &rwc);
1525 
1526 	if (ret != SWAP_MLOCK && !page_mapcount(page)) {
1527 		ret = SWAP_SUCCESS;
1528 		if (rp.lazyfreed && !PageDirty(page))
1529 			ret = SWAP_LZFREE;
1530 	}
1531 	return ret;
1532 }
1533 
1534 static int page_not_mapped(struct page *page)
1535 {
1536 	return !page_mapped(page);
1537 };
1538 
1539 /**
1540  * try_to_munlock - try to munlock a page
1541  * @page: the page to be munlocked
1542  *
1543  * Called from munlock code.  Checks all of the VMAs mapping the page
1544  * to make sure nobody else has this page mlocked. The page will be
1545  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1546  *
1547  * Return values are:
1548  *
1549  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1550  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1551  * SWAP_FAIL	- page cannot be located at present
1552  * SWAP_MLOCK	- page is now mlocked.
1553  */
1554 int try_to_munlock(struct page *page)
1555 {
1556 	int ret;
1557 	struct rmap_private rp = {
1558 		.flags = TTU_MUNLOCK,
1559 		.lazyfreed = 0,
1560 	};
1561 
1562 	struct rmap_walk_control rwc = {
1563 		.rmap_one = try_to_unmap_one,
1564 		.arg = &rp,
1565 		.done = page_not_mapped,
1566 		.anon_lock = page_lock_anon_vma_read,
1567 
1568 	};
1569 
1570 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1571 
1572 	ret = rmap_walk(page, &rwc);
1573 	return ret;
1574 }
1575 
1576 void __put_anon_vma(struct anon_vma *anon_vma)
1577 {
1578 	struct anon_vma *root = anon_vma->root;
1579 
1580 	anon_vma_free(anon_vma);
1581 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1582 		anon_vma_free(root);
1583 }
1584 
1585 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1586 					struct rmap_walk_control *rwc)
1587 {
1588 	struct anon_vma *anon_vma;
1589 
1590 	if (rwc->anon_lock)
1591 		return rwc->anon_lock(page);
1592 
1593 	/*
1594 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1595 	 * because that depends on page_mapped(); but not all its usages
1596 	 * are holding mmap_sem. Users without mmap_sem are required to
1597 	 * take a reference count to prevent the anon_vma disappearing
1598 	 */
1599 	anon_vma = page_anon_vma(page);
1600 	if (!anon_vma)
1601 		return NULL;
1602 
1603 	anon_vma_lock_read(anon_vma);
1604 	return anon_vma;
1605 }
1606 
1607 /*
1608  * rmap_walk_anon - do something to anonymous page using the object-based
1609  * rmap method
1610  * @page: the page to be handled
1611  * @rwc: control variable according to each walk type
1612  *
1613  * Find all the mappings of a page using the mapping pointer and the vma chains
1614  * contained in the anon_vma struct it points to.
1615  *
1616  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1617  * where the page was found will be held for write.  So, we won't recheck
1618  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1619  * LOCKED.
1620  */
1621 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1622 		bool locked)
1623 {
1624 	struct anon_vma *anon_vma;
1625 	pgoff_t pgoff_start, pgoff_end;
1626 	struct anon_vma_chain *avc;
1627 	int ret = SWAP_AGAIN;
1628 
1629 	if (locked) {
1630 		anon_vma = page_anon_vma(page);
1631 		/* anon_vma disappear under us? */
1632 		VM_BUG_ON_PAGE(!anon_vma, page);
1633 	} else {
1634 		anon_vma = rmap_walk_anon_lock(page, rwc);
1635 	}
1636 	if (!anon_vma)
1637 		return ret;
1638 
1639 	pgoff_start = page_to_pgoff(page);
1640 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1641 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1642 			pgoff_start, pgoff_end) {
1643 		struct vm_area_struct *vma = avc->vma;
1644 		unsigned long address = vma_address(page, vma);
1645 
1646 		cond_resched();
1647 
1648 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1649 			continue;
1650 
1651 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1652 		if (ret != SWAP_AGAIN)
1653 			break;
1654 		if (rwc->done && rwc->done(page))
1655 			break;
1656 	}
1657 
1658 	if (!locked)
1659 		anon_vma_unlock_read(anon_vma);
1660 	return ret;
1661 }
1662 
1663 /*
1664  * rmap_walk_file - do something to file page using the object-based rmap method
1665  * @page: the page to be handled
1666  * @rwc: control variable according to each walk type
1667  *
1668  * Find all the mappings of a page using the mapping pointer and the vma chains
1669  * contained in the address_space struct it points to.
1670  *
1671  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1672  * where the page was found will be held for write.  So, we won't recheck
1673  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1674  * LOCKED.
1675  */
1676 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1677 		bool locked)
1678 {
1679 	struct address_space *mapping = page_mapping(page);
1680 	pgoff_t pgoff_start, pgoff_end;
1681 	struct vm_area_struct *vma;
1682 	int ret = SWAP_AGAIN;
1683 
1684 	/*
1685 	 * The page lock not only makes sure that page->mapping cannot
1686 	 * suddenly be NULLified by truncation, it makes sure that the
1687 	 * structure at mapping cannot be freed and reused yet,
1688 	 * so we can safely take mapping->i_mmap_rwsem.
1689 	 */
1690 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1691 
1692 	if (!mapping)
1693 		return ret;
1694 
1695 	pgoff_start = page_to_pgoff(page);
1696 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1697 	if (!locked)
1698 		i_mmap_lock_read(mapping);
1699 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
1700 			pgoff_start, pgoff_end) {
1701 		unsigned long address = vma_address(page, vma);
1702 
1703 		cond_resched();
1704 
1705 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1706 			continue;
1707 
1708 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1709 		if (ret != SWAP_AGAIN)
1710 			goto done;
1711 		if (rwc->done && rwc->done(page))
1712 			goto done;
1713 	}
1714 
1715 done:
1716 	if (!locked)
1717 		i_mmap_unlock_read(mapping);
1718 	return ret;
1719 }
1720 
1721 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1722 {
1723 	if (unlikely(PageKsm(page)))
1724 		return rmap_walk_ksm(page, rwc);
1725 	else if (PageAnon(page))
1726 		return rmap_walk_anon(page, rwc, false);
1727 	else
1728 		return rmap_walk_file(page, rwc, false);
1729 }
1730 
1731 /* Like rmap_walk, but caller holds relevant rmap lock */
1732 int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1733 {
1734 	/* no ksm support for now */
1735 	VM_BUG_ON_PAGE(PageKsm(page), page);
1736 	if (PageAnon(page))
1737 		return rmap_walk_anon(page, rwc, true);
1738 	else
1739 		return rmap_walk_file(page, rwc, true);
1740 }
1741 
1742 #ifdef CONFIG_HUGETLB_PAGE
1743 /*
1744  * The following three functions are for anonymous (private mapped) hugepages.
1745  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1746  * and no lru code, because we handle hugepages differently from common pages.
1747  */
1748 static void __hugepage_set_anon_rmap(struct page *page,
1749 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1750 {
1751 	struct anon_vma *anon_vma = vma->anon_vma;
1752 
1753 	BUG_ON(!anon_vma);
1754 
1755 	if (PageAnon(page))
1756 		return;
1757 	if (!exclusive)
1758 		anon_vma = anon_vma->root;
1759 
1760 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1761 	page->mapping = (struct address_space *) anon_vma;
1762 	page->index = linear_page_index(vma, address);
1763 }
1764 
1765 void hugepage_add_anon_rmap(struct page *page,
1766 			    struct vm_area_struct *vma, unsigned long address)
1767 {
1768 	struct anon_vma *anon_vma = vma->anon_vma;
1769 	int first;
1770 
1771 	BUG_ON(!PageLocked(page));
1772 	BUG_ON(!anon_vma);
1773 	/* address might be in next vma when migration races vma_adjust */
1774 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1775 	if (first)
1776 		__hugepage_set_anon_rmap(page, vma, address, 0);
1777 }
1778 
1779 void hugepage_add_new_anon_rmap(struct page *page,
1780 			struct vm_area_struct *vma, unsigned long address)
1781 {
1782 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1783 	atomic_set(compound_mapcount_ptr(page), 0);
1784 	__hugepage_set_anon_rmap(page, vma, address, 1);
1785 }
1786 #endif /* CONFIG_HUGETLB_PAGE */
1787