1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * page->flags PG_locked (lock_page) * (see hugetlbfs below) 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) 28 * mapping->i_mmap_rwsem 29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * folio_lock_memcg move_lock (in block_dirty_folio) 36 * i_pages lock (widely used) 37 * lruvec->lru_lock (in folio_lruvec_lock_irq) 38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 40 * sb_lock (within inode_lock in fs/fs-writeback.c) 41 * i_pages lock (widely used, in set_page_dirty, 42 * in arch-dependent flush_dcache_mmap_lock, 43 * within bdi.wb->list_lock in __sync_single_inode) 44 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 47 * pte map lock 48 * 49 * * hugetlbfs PageHuge() pages take locks in this order: 50 * mapping->i_mmap_rwsem 51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 52 * page->flags PG_locked (lock_page) 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/swapops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 #include <linux/mm_inline.h> 77 78 #include <asm/tlbflush.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/tlb.h> 82 #include <trace/events/migrate.h> 83 84 #include "internal.h" 85 86 static struct kmem_cache *anon_vma_cachep; 87 static struct kmem_cache *anon_vma_chain_cachep; 88 89 static inline struct anon_vma *anon_vma_alloc(void) 90 { 91 struct anon_vma *anon_vma; 92 93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 94 if (anon_vma) { 95 atomic_set(&anon_vma->refcount, 1); 96 anon_vma->num_children = 0; 97 anon_vma->num_active_vmas = 0; 98 anon_vma->parent = anon_vma; 99 /* 100 * Initialise the anon_vma root to point to itself. If called 101 * from fork, the root will be reset to the parents anon_vma. 102 */ 103 anon_vma->root = anon_vma; 104 } 105 106 return anon_vma; 107 } 108 109 static inline void anon_vma_free(struct anon_vma *anon_vma) 110 { 111 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 112 113 /* 114 * Synchronize against folio_lock_anon_vma_read() such that 115 * we can safely hold the lock without the anon_vma getting 116 * freed. 117 * 118 * Relies on the full mb implied by the atomic_dec_and_test() from 119 * put_anon_vma() against the acquire barrier implied by 120 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 121 * 122 * folio_lock_anon_vma_read() VS put_anon_vma() 123 * down_read_trylock() atomic_dec_and_test() 124 * LOCK MB 125 * atomic_read() rwsem_is_locked() 126 * 127 * LOCK should suffice since the actual taking of the lock must 128 * happen _before_ what follows. 129 */ 130 might_sleep(); 131 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 132 anon_vma_lock_write(anon_vma); 133 anon_vma_unlock_write(anon_vma); 134 } 135 136 kmem_cache_free(anon_vma_cachep, anon_vma); 137 } 138 139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 140 { 141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 142 } 143 144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 145 { 146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 147 } 148 149 static void anon_vma_chain_link(struct vm_area_struct *vma, 150 struct anon_vma_chain *avc, 151 struct anon_vma *anon_vma) 152 { 153 avc->vma = vma; 154 avc->anon_vma = anon_vma; 155 list_add(&avc->same_vma, &vma->anon_vma_chain); 156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 157 } 158 159 /** 160 * __anon_vma_prepare - attach an anon_vma to a memory region 161 * @vma: the memory region in question 162 * 163 * This makes sure the memory mapping described by 'vma' has 164 * an 'anon_vma' attached to it, so that we can associate the 165 * anonymous pages mapped into it with that anon_vma. 166 * 167 * The common case will be that we already have one, which 168 * is handled inline by anon_vma_prepare(). But if 169 * not we either need to find an adjacent mapping that we 170 * can re-use the anon_vma from (very common when the only 171 * reason for splitting a vma has been mprotect()), or we 172 * allocate a new one. 173 * 174 * Anon-vma allocations are very subtle, because we may have 175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 176 * and that may actually touch the rwsem even in the newly 177 * allocated vma (it depends on RCU to make sure that the 178 * anon_vma isn't actually destroyed). 179 * 180 * As a result, we need to do proper anon_vma locking even 181 * for the new allocation. At the same time, we do not want 182 * to do any locking for the common case of already having 183 * an anon_vma. 184 * 185 * This must be called with the mmap_lock held for reading. 186 */ 187 int __anon_vma_prepare(struct vm_area_struct *vma) 188 { 189 struct mm_struct *mm = vma->vm_mm; 190 struct anon_vma *anon_vma, *allocated; 191 struct anon_vma_chain *avc; 192 193 might_sleep(); 194 195 avc = anon_vma_chain_alloc(GFP_KERNEL); 196 if (!avc) 197 goto out_enomem; 198 199 anon_vma = find_mergeable_anon_vma(vma); 200 allocated = NULL; 201 if (!anon_vma) { 202 anon_vma = anon_vma_alloc(); 203 if (unlikely(!anon_vma)) 204 goto out_enomem_free_avc; 205 anon_vma->num_children++; /* self-parent link for new root */ 206 allocated = anon_vma; 207 } 208 209 anon_vma_lock_write(anon_vma); 210 /* page_table_lock to protect against threads */ 211 spin_lock(&mm->page_table_lock); 212 if (likely(!vma->anon_vma)) { 213 vma->anon_vma = anon_vma; 214 anon_vma_chain_link(vma, avc, anon_vma); 215 anon_vma->num_active_vmas++; 216 allocated = NULL; 217 avc = NULL; 218 } 219 spin_unlock(&mm->page_table_lock); 220 anon_vma_unlock_write(anon_vma); 221 222 if (unlikely(allocated)) 223 put_anon_vma(allocated); 224 if (unlikely(avc)) 225 anon_vma_chain_free(avc); 226 227 return 0; 228 229 out_enomem_free_avc: 230 anon_vma_chain_free(avc); 231 out_enomem: 232 return -ENOMEM; 233 } 234 235 /* 236 * This is a useful helper function for locking the anon_vma root as 237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 238 * have the same vma. 239 * 240 * Such anon_vma's should have the same root, so you'd expect to see 241 * just a single mutex_lock for the whole traversal. 242 */ 243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 244 { 245 struct anon_vma *new_root = anon_vma->root; 246 if (new_root != root) { 247 if (WARN_ON_ONCE(root)) 248 up_write(&root->rwsem); 249 root = new_root; 250 down_write(&root->rwsem); 251 } 252 return root; 253 } 254 255 static inline void unlock_anon_vma_root(struct anon_vma *root) 256 { 257 if (root) 258 up_write(&root->rwsem); 259 } 260 261 /* 262 * Attach the anon_vmas from src to dst. 263 * Returns 0 on success, -ENOMEM on failure. 264 * 265 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and 266 * anon_vma_fork(). The first three want an exact copy of src, while the last 267 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent 268 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, 269 * we can identify this case by checking (!dst->anon_vma && src->anon_vma). 270 * 271 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 272 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 273 * This prevents degradation of anon_vma hierarchy to endless linear chain in 274 * case of constantly forking task. On the other hand, an anon_vma with more 275 * than one child isn't reused even if there was no alive vma, thus rmap 276 * walker has a good chance of avoiding scanning the whole hierarchy when it 277 * searches where page is mapped. 278 */ 279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 280 { 281 struct anon_vma_chain *avc, *pavc; 282 struct anon_vma *root = NULL; 283 284 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 285 struct anon_vma *anon_vma; 286 287 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 288 if (unlikely(!avc)) { 289 unlock_anon_vma_root(root); 290 root = NULL; 291 avc = anon_vma_chain_alloc(GFP_KERNEL); 292 if (!avc) 293 goto enomem_failure; 294 } 295 anon_vma = pavc->anon_vma; 296 root = lock_anon_vma_root(root, anon_vma); 297 anon_vma_chain_link(dst, avc, anon_vma); 298 299 /* 300 * Reuse existing anon_vma if it has no vma and only one 301 * anon_vma child. 302 * 303 * Root anon_vma is never reused: 304 * it has self-parent reference and at least one child. 305 */ 306 if (!dst->anon_vma && src->anon_vma && 307 anon_vma->num_children < 2 && 308 anon_vma->num_active_vmas == 0) 309 dst->anon_vma = anon_vma; 310 } 311 if (dst->anon_vma) 312 dst->anon_vma->num_active_vmas++; 313 unlock_anon_vma_root(root); 314 return 0; 315 316 enomem_failure: 317 /* 318 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 319 * decremented in unlink_anon_vmas(). 320 * We can safely do this because callers of anon_vma_clone() don't care 321 * about dst->anon_vma if anon_vma_clone() failed. 322 */ 323 dst->anon_vma = NULL; 324 unlink_anon_vmas(dst); 325 return -ENOMEM; 326 } 327 328 /* 329 * Attach vma to its own anon_vma, as well as to the anon_vmas that 330 * the corresponding VMA in the parent process is attached to. 331 * Returns 0 on success, non-zero on failure. 332 */ 333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 334 { 335 struct anon_vma_chain *avc; 336 struct anon_vma *anon_vma; 337 int error; 338 339 /* Don't bother if the parent process has no anon_vma here. */ 340 if (!pvma->anon_vma) 341 return 0; 342 343 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 344 vma->anon_vma = NULL; 345 346 /* 347 * First, attach the new VMA to the parent VMA's anon_vmas, 348 * so rmap can find non-COWed pages in child processes. 349 */ 350 error = anon_vma_clone(vma, pvma); 351 if (error) 352 return error; 353 354 /* An existing anon_vma has been reused, all done then. */ 355 if (vma->anon_vma) 356 return 0; 357 358 /* Then add our own anon_vma. */ 359 anon_vma = anon_vma_alloc(); 360 if (!anon_vma) 361 goto out_error; 362 anon_vma->num_active_vmas++; 363 avc = anon_vma_chain_alloc(GFP_KERNEL); 364 if (!avc) 365 goto out_error_free_anon_vma; 366 367 /* 368 * The root anon_vma's rwsem is the lock actually used when we 369 * lock any of the anon_vmas in this anon_vma tree. 370 */ 371 anon_vma->root = pvma->anon_vma->root; 372 anon_vma->parent = pvma->anon_vma; 373 /* 374 * With refcounts, an anon_vma can stay around longer than the 375 * process it belongs to. The root anon_vma needs to be pinned until 376 * this anon_vma is freed, because the lock lives in the root. 377 */ 378 get_anon_vma(anon_vma->root); 379 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 380 vma->anon_vma = anon_vma; 381 anon_vma_lock_write(anon_vma); 382 anon_vma_chain_link(vma, avc, anon_vma); 383 anon_vma->parent->num_children++; 384 anon_vma_unlock_write(anon_vma); 385 386 return 0; 387 388 out_error_free_anon_vma: 389 put_anon_vma(anon_vma); 390 out_error: 391 unlink_anon_vmas(vma); 392 return -ENOMEM; 393 } 394 395 void unlink_anon_vmas(struct vm_area_struct *vma) 396 { 397 struct anon_vma_chain *avc, *next; 398 struct anon_vma *root = NULL; 399 400 /* 401 * Unlink each anon_vma chained to the VMA. This list is ordered 402 * from newest to oldest, ensuring the root anon_vma gets freed last. 403 */ 404 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 405 struct anon_vma *anon_vma = avc->anon_vma; 406 407 root = lock_anon_vma_root(root, anon_vma); 408 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 409 410 /* 411 * Leave empty anon_vmas on the list - we'll need 412 * to free them outside the lock. 413 */ 414 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 415 anon_vma->parent->num_children--; 416 continue; 417 } 418 419 list_del(&avc->same_vma); 420 anon_vma_chain_free(avc); 421 } 422 if (vma->anon_vma) { 423 vma->anon_vma->num_active_vmas--; 424 425 /* 426 * vma would still be needed after unlink, and anon_vma will be prepared 427 * when handle fault. 428 */ 429 vma->anon_vma = NULL; 430 } 431 unlock_anon_vma_root(root); 432 433 /* 434 * Iterate the list once more, it now only contains empty and unlinked 435 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 436 * needing to write-acquire the anon_vma->root->rwsem. 437 */ 438 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 439 struct anon_vma *anon_vma = avc->anon_vma; 440 441 VM_WARN_ON(anon_vma->num_children); 442 VM_WARN_ON(anon_vma->num_active_vmas); 443 put_anon_vma(anon_vma); 444 445 list_del(&avc->same_vma); 446 anon_vma_chain_free(avc); 447 } 448 } 449 450 static void anon_vma_ctor(void *data) 451 { 452 struct anon_vma *anon_vma = data; 453 454 init_rwsem(&anon_vma->rwsem); 455 atomic_set(&anon_vma->refcount, 0); 456 anon_vma->rb_root = RB_ROOT_CACHED; 457 } 458 459 void __init anon_vma_init(void) 460 { 461 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 462 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 463 anon_vma_ctor); 464 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 465 SLAB_PANIC|SLAB_ACCOUNT); 466 } 467 468 /* 469 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 470 * 471 * Since there is no serialization what so ever against page_remove_rmap() 472 * the best this function can do is return a refcount increased anon_vma 473 * that might have been relevant to this page. 474 * 475 * The page might have been remapped to a different anon_vma or the anon_vma 476 * returned may already be freed (and even reused). 477 * 478 * In case it was remapped to a different anon_vma, the new anon_vma will be a 479 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 480 * ensure that any anon_vma obtained from the page will still be valid for as 481 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 482 * 483 * All users of this function must be very careful when walking the anon_vma 484 * chain and verify that the page in question is indeed mapped in it 485 * [ something equivalent to page_mapped_in_vma() ]. 486 * 487 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 488 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 489 * if there is a mapcount, we can dereference the anon_vma after observing 490 * those. 491 */ 492 struct anon_vma *page_get_anon_vma(struct page *page) 493 { 494 struct anon_vma *anon_vma = NULL; 495 unsigned long anon_mapping; 496 497 rcu_read_lock(); 498 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 499 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 500 goto out; 501 if (!page_mapped(page)) 502 goto out; 503 504 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 505 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 506 anon_vma = NULL; 507 goto out; 508 } 509 510 /* 511 * If this page is still mapped, then its anon_vma cannot have been 512 * freed. But if it has been unmapped, we have no security against the 513 * anon_vma structure being freed and reused (for another anon_vma: 514 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 515 * above cannot corrupt). 516 */ 517 if (!page_mapped(page)) { 518 rcu_read_unlock(); 519 put_anon_vma(anon_vma); 520 return NULL; 521 } 522 out: 523 rcu_read_unlock(); 524 525 return anon_vma; 526 } 527 528 /* 529 * Similar to page_get_anon_vma() except it locks the anon_vma. 530 * 531 * Its a little more complex as it tries to keep the fast path to a single 532 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 533 * reference like with page_get_anon_vma() and then block on the mutex 534 * on !rwc->try_lock case. 535 */ 536 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 537 struct rmap_walk_control *rwc) 538 { 539 struct anon_vma *anon_vma = NULL; 540 struct anon_vma *root_anon_vma; 541 unsigned long anon_mapping; 542 543 rcu_read_lock(); 544 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 545 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 546 goto out; 547 if (!folio_mapped(folio)) 548 goto out; 549 550 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 551 root_anon_vma = READ_ONCE(anon_vma->root); 552 if (down_read_trylock(&root_anon_vma->rwsem)) { 553 /* 554 * If the folio is still mapped, then this anon_vma is still 555 * its anon_vma, and holding the mutex ensures that it will 556 * not go away, see anon_vma_free(). 557 */ 558 if (!folio_mapped(folio)) { 559 up_read(&root_anon_vma->rwsem); 560 anon_vma = NULL; 561 } 562 goto out; 563 } 564 565 if (rwc && rwc->try_lock) { 566 anon_vma = NULL; 567 rwc->contended = true; 568 goto out; 569 } 570 571 /* trylock failed, we got to sleep */ 572 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 573 anon_vma = NULL; 574 goto out; 575 } 576 577 if (!folio_mapped(folio)) { 578 rcu_read_unlock(); 579 put_anon_vma(anon_vma); 580 return NULL; 581 } 582 583 /* we pinned the anon_vma, its safe to sleep */ 584 rcu_read_unlock(); 585 anon_vma_lock_read(anon_vma); 586 587 if (atomic_dec_and_test(&anon_vma->refcount)) { 588 /* 589 * Oops, we held the last refcount, release the lock 590 * and bail -- can't simply use put_anon_vma() because 591 * we'll deadlock on the anon_vma_lock_write() recursion. 592 */ 593 anon_vma_unlock_read(anon_vma); 594 __put_anon_vma(anon_vma); 595 anon_vma = NULL; 596 } 597 598 return anon_vma; 599 600 out: 601 rcu_read_unlock(); 602 return anon_vma; 603 } 604 605 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 606 { 607 anon_vma_unlock_read(anon_vma); 608 } 609 610 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 611 /* 612 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 613 * important if a PTE was dirty when it was unmapped that it's flushed 614 * before any IO is initiated on the page to prevent lost writes. Similarly, 615 * it must be flushed before freeing to prevent data leakage. 616 */ 617 void try_to_unmap_flush(void) 618 { 619 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 620 621 if (!tlb_ubc->flush_required) 622 return; 623 624 arch_tlbbatch_flush(&tlb_ubc->arch); 625 tlb_ubc->flush_required = false; 626 tlb_ubc->writable = false; 627 } 628 629 /* Flush iff there are potentially writable TLB entries that can race with IO */ 630 void try_to_unmap_flush_dirty(void) 631 { 632 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 633 634 if (tlb_ubc->writable) 635 try_to_unmap_flush(); 636 } 637 638 /* 639 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 640 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 641 */ 642 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 643 #define TLB_FLUSH_BATCH_PENDING_MASK \ 644 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 645 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 646 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 647 648 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 649 { 650 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 651 int batch, nbatch; 652 653 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 654 tlb_ubc->flush_required = true; 655 656 /* 657 * Ensure compiler does not re-order the setting of tlb_flush_batched 658 * before the PTE is cleared. 659 */ 660 barrier(); 661 batch = atomic_read(&mm->tlb_flush_batched); 662 retry: 663 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 664 /* 665 * Prevent `pending' from catching up with `flushed' because of 666 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 667 * `pending' becomes large. 668 */ 669 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1); 670 if (nbatch != batch) { 671 batch = nbatch; 672 goto retry; 673 } 674 } else { 675 atomic_inc(&mm->tlb_flush_batched); 676 } 677 678 /* 679 * If the PTE was dirty then it's best to assume it's writable. The 680 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 681 * before the page is queued for IO. 682 */ 683 if (writable) 684 tlb_ubc->writable = true; 685 } 686 687 /* 688 * Returns true if the TLB flush should be deferred to the end of a batch of 689 * unmap operations to reduce IPIs. 690 */ 691 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 692 { 693 bool should_defer = false; 694 695 if (!(flags & TTU_BATCH_FLUSH)) 696 return false; 697 698 /* If remote CPUs need to be flushed then defer batch the flush */ 699 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 700 should_defer = true; 701 put_cpu(); 702 703 return should_defer; 704 } 705 706 /* 707 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 708 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 709 * operation such as mprotect or munmap to race between reclaim unmapping 710 * the page and flushing the page. If this race occurs, it potentially allows 711 * access to data via a stale TLB entry. Tracking all mm's that have TLB 712 * batching in flight would be expensive during reclaim so instead track 713 * whether TLB batching occurred in the past and if so then do a flush here 714 * if required. This will cost one additional flush per reclaim cycle paid 715 * by the first operation at risk such as mprotect and mumap. 716 * 717 * This must be called under the PTL so that an access to tlb_flush_batched 718 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 719 * via the PTL. 720 */ 721 void flush_tlb_batched_pending(struct mm_struct *mm) 722 { 723 int batch = atomic_read(&mm->tlb_flush_batched); 724 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 725 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 726 727 if (pending != flushed) { 728 flush_tlb_mm(mm); 729 /* 730 * If the new TLB flushing is pending during flushing, leave 731 * mm->tlb_flush_batched as is, to avoid losing flushing. 732 */ 733 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 734 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 735 } 736 } 737 #else 738 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 739 { 740 } 741 742 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 743 { 744 return false; 745 } 746 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 747 748 /* 749 * At what user virtual address is page expected in vma? 750 * Caller should check the page is actually part of the vma. 751 */ 752 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 753 { 754 struct folio *folio = page_folio(page); 755 if (folio_test_anon(folio)) { 756 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 757 /* 758 * Note: swapoff's unuse_vma() is more efficient with this 759 * check, and needs it to match anon_vma when KSM is active. 760 */ 761 if (!vma->anon_vma || !page__anon_vma || 762 vma->anon_vma->root != page__anon_vma->root) 763 return -EFAULT; 764 } else if (!vma->vm_file) { 765 return -EFAULT; 766 } else if (vma->vm_file->f_mapping != folio->mapping) { 767 return -EFAULT; 768 } 769 770 return vma_address(page, vma); 771 } 772 773 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 774 { 775 pgd_t *pgd; 776 p4d_t *p4d; 777 pud_t *pud; 778 pmd_t *pmd = NULL; 779 pmd_t pmde; 780 781 pgd = pgd_offset(mm, address); 782 if (!pgd_present(*pgd)) 783 goto out; 784 785 p4d = p4d_offset(pgd, address); 786 if (!p4d_present(*p4d)) 787 goto out; 788 789 pud = pud_offset(p4d, address); 790 if (!pud_present(*pud)) 791 goto out; 792 793 pmd = pmd_offset(pud, address); 794 /* 795 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 796 * without holding anon_vma lock for write. So when looking for a 797 * genuine pmde (in which to find pte), test present and !THP together. 798 */ 799 pmde = *pmd; 800 barrier(); 801 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 802 pmd = NULL; 803 out: 804 return pmd; 805 } 806 807 struct folio_referenced_arg { 808 int mapcount; 809 int referenced; 810 unsigned long vm_flags; 811 struct mem_cgroup *memcg; 812 }; 813 /* 814 * arg: folio_referenced_arg will be passed 815 */ 816 static bool folio_referenced_one(struct folio *folio, 817 struct vm_area_struct *vma, unsigned long address, void *arg) 818 { 819 struct folio_referenced_arg *pra = arg; 820 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 821 int referenced = 0; 822 823 while (page_vma_mapped_walk(&pvmw)) { 824 address = pvmw.address; 825 826 if ((vma->vm_flags & VM_LOCKED) && 827 (!folio_test_large(folio) || !pvmw.pte)) { 828 /* Restore the mlock which got missed */ 829 mlock_vma_folio(folio, vma, !pvmw.pte); 830 page_vma_mapped_walk_done(&pvmw); 831 pra->vm_flags |= VM_LOCKED; 832 return false; /* To break the loop */ 833 } 834 835 if (pvmw.pte) { 836 if (ptep_clear_flush_young_notify(vma, address, 837 pvmw.pte)) { 838 /* 839 * Don't treat a reference through 840 * a sequentially read mapping as such. 841 * If the folio has been used in another mapping, 842 * we will catch it; if this other mapping is 843 * already gone, the unmap path will have set 844 * the referenced flag or activated the folio. 845 */ 846 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 847 referenced++; 848 } 849 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 850 if (pmdp_clear_flush_young_notify(vma, address, 851 pvmw.pmd)) 852 referenced++; 853 } else { 854 /* unexpected pmd-mapped folio? */ 855 WARN_ON_ONCE(1); 856 } 857 858 pra->mapcount--; 859 } 860 861 if (referenced) 862 folio_clear_idle(folio); 863 if (folio_test_clear_young(folio)) 864 referenced++; 865 866 if (referenced) { 867 pra->referenced++; 868 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 869 } 870 871 if (!pra->mapcount) 872 return false; /* To break the loop */ 873 874 return true; 875 } 876 877 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 878 { 879 struct folio_referenced_arg *pra = arg; 880 struct mem_cgroup *memcg = pra->memcg; 881 882 if (!mm_match_cgroup(vma->vm_mm, memcg)) 883 return true; 884 885 return false; 886 } 887 888 /** 889 * folio_referenced() - Test if the folio was referenced. 890 * @folio: The folio to test. 891 * @is_locked: Caller holds lock on the folio. 892 * @memcg: target memory cgroup 893 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 894 * 895 * Quick test_and_clear_referenced for all mappings of a folio, 896 * 897 * Return: The number of mappings which referenced the folio. Return -1 if 898 * the function bailed out due to rmap lock contention. 899 */ 900 int folio_referenced(struct folio *folio, int is_locked, 901 struct mem_cgroup *memcg, unsigned long *vm_flags) 902 { 903 int we_locked = 0; 904 struct folio_referenced_arg pra = { 905 .mapcount = folio_mapcount(folio), 906 .memcg = memcg, 907 }; 908 struct rmap_walk_control rwc = { 909 .rmap_one = folio_referenced_one, 910 .arg = (void *)&pra, 911 .anon_lock = folio_lock_anon_vma_read, 912 .try_lock = true, 913 }; 914 915 *vm_flags = 0; 916 if (!pra.mapcount) 917 return 0; 918 919 if (!folio_raw_mapping(folio)) 920 return 0; 921 922 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 923 we_locked = folio_trylock(folio); 924 if (!we_locked) 925 return 1; 926 } 927 928 /* 929 * If we are reclaiming on behalf of a cgroup, skip 930 * counting on behalf of references from different 931 * cgroups 932 */ 933 if (memcg) { 934 rwc.invalid_vma = invalid_folio_referenced_vma; 935 } 936 937 rmap_walk(folio, &rwc); 938 *vm_flags = pra.vm_flags; 939 940 if (we_locked) 941 folio_unlock(folio); 942 943 return rwc.contended ? -1 : pra.referenced; 944 } 945 946 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 947 { 948 int cleaned = 0; 949 struct vm_area_struct *vma = pvmw->vma; 950 struct mmu_notifier_range range; 951 unsigned long address = pvmw->address; 952 953 /* 954 * We have to assume the worse case ie pmd for invalidation. Note that 955 * the folio can not be freed from this function. 956 */ 957 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 958 0, vma, vma->vm_mm, address, 959 vma_address_end(pvmw)); 960 mmu_notifier_invalidate_range_start(&range); 961 962 while (page_vma_mapped_walk(pvmw)) { 963 int ret = 0; 964 965 address = pvmw->address; 966 if (pvmw->pte) { 967 pte_t entry; 968 pte_t *pte = pvmw->pte; 969 970 if (!pte_dirty(*pte) && !pte_write(*pte)) 971 continue; 972 973 flush_cache_page(vma, address, pte_pfn(*pte)); 974 entry = ptep_clear_flush(vma, address, pte); 975 entry = pte_wrprotect(entry); 976 entry = pte_mkclean(entry); 977 set_pte_at(vma->vm_mm, address, pte, entry); 978 ret = 1; 979 } else { 980 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 981 pmd_t *pmd = pvmw->pmd; 982 pmd_t entry; 983 984 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 985 continue; 986 987 flush_cache_range(vma, address, 988 address + HPAGE_PMD_SIZE); 989 entry = pmdp_invalidate(vma, address, pmd); 990 entry = pmd_wrprotect(entry); 991 entry = pmd_mkclean(entry); 992 set_pmd_at(vma->vm_mm, address, pmd, entry); 993 ret = 1; 994 #else 995 /* unexpected pmd-mapped folio? */ 996 WARN_ON_ONCE(1); 997 #endif 998 } 999 1000 /* 1001 * No need to call mmu_notifier_invalidate_range() as we are 1002 * downgrading page table protection not changing it to point 1003 * to a new page. 1004 * 1005 * See Documentation/mm/mmu_notifier.rst 1006 */ 1007 if (ret) 1008 cleaned++; 1009 } 1010 1011 mmu_notifier_invalidate_range_end(&range); 1012 1013 return cleaned; 1014 } 1015 1016 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1017 unsigned long address, void *arg) 1018 { 1019 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1020 int *cleaned = arg; 1021 1022 *cleaned += page_vma_mkclean_one(&pvmw); 1023 1024 return true; 1025 } 1026 1027 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1028 { 1029 if (vma->vm_flags & VM_SHARED) 1030 return false; 1031 1032 return true; 1033 } 1034 1035 int folio_mkclean(struct folio *folio) 1036 { 1037 int cleaned = 0; 1038 struct address_space *mapping; 1039 struct rmap_walk_control rwc = { 1040 .arg = (void *)&cleaned, 1041 .rmap_one = page_mkclean_one, 1042 .invalid_vma = invalid_mkclean_vma, 1043 }; 1044 1045 BUG_ON(!folio_test_locked(folio)); 1046 1047 if (!folio_mapped(folio)) 1048 return 0; 1049 1050 mapping = folio_mapping(folio); 1051 if (!mapping) 1052 return 0; 1053 1054 rmap_walk(folio, &rwc); 1055 1056 return cleaned; 1057 } 1058 EXPORT_SYMBOL_GPL(folio_mkclean); 1059 1060 /** 1061 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1062 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1063 * within the @vma of shared mappings. And since clean PTEs 1064 * should also be readonly, write protects them too. 1065 * @pfn: start pfn. 1066 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1067 * @pgoff: page offset that the @pfn mapped with. 1068 * @vma: vma that @pfn mapped within. 1069 * 1070 * Returns the number of cleaned PTEs (including PMDs). 1071 */ 1072 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1073 struct vm_area_struct *vma) 1074 { 1075 struct page_vma_mapped_walk pvmw = { 1076 .pfn = pfn, 1077 .nr_pages = nr_pages, 1078 .pgoff = pgoff, 1079 .vma = vma, 1080 .flags = PVMW_SYNC, 1081 }; 1082 1083 if (invalid_mkclean_vma(vma, NULL)) 1084 return 0; 1085 1086 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); 1087 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1088 1089 return page_vma_mkclean_one(&pvmw); 1090 } 1091 1092 /** 1093 * page_move_anon_rmap - move a page to our anon_vma 1094 * @page: the page to move to our anon_vma 1095 * @vma: the vma the page belongs to 1096 * 1097 * When a page belongs exclusively to one process after a COW event, 1098 * that page can be moved into the anon_vma that belongs to just that 1099 * process, so the rmap code will not search the parent or sibling 1100 * processes. 1101 */ 1102 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1103 { 1104 struct anon_vma *anon_vma = vma->anon_vma; 1105 struct page *subpage = page; 1106 1107 page = compound_head(page); 1108 1109 VM_BUG_ON_PAGE(!PageLocked(page), page); 1110 VM_BUG_ON_VMA(!anon_vma, vma); 1111 1112 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1113 /* 1114 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1115 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1116 * folio_test_anon()) will not see one without the other. 1117 */ 1118 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1119 SetPageAnonExclusive(subpage); 1120 } 1121 1122 /** 1123 * __page_set_anon_rmap - set up new anonymous rmap 1124 * @page: Page or Hugepage to add to rmap 1125 * @vma: VM area to add page to. 1126 * @address: User virtual address of the mapping 1127 * @exclusive: the page is exclusively owned by the current process 1128 */ 1129 static void __page_set_anon_rmap(struct page *page, 1130 struct vm_area_struct *vma, unsigned long address, int exclusive) 1131 { 1132 struct anon_vma *anon_vma = vma->anon_vma; 1133 1134 BUG_ON(!anon_vma); 1135 1136 if (PageAnon(page)) 1137 goto out; 1138 1139 /* 1140 * If the page isn't exclusively mapped into this vma, 1141 * we must use the _oldest_ possible anon_vma for the 1142 * page mapping! 1143 */ 1144 if (!exclusive) 1145 anon_vma = anon_vma->root; 1146 1147 /* 1148 * page_idle does a lockless/optimistic rmap scan on page->mapping. 1149 * Make sure the compiler doesn't split the stores of anon_vma and 1150 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1151 * could mistake the mapping for a struct address_space and crash. 1152 */ 1153 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1154 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1155 page->index = linear_page_index(vma, address); 1156 out: 1157 if (exclusive) 1158 SetPageAnonExclusive(page); 1159 } 1160 1161 /** 1162 * __page_check_anon_rmap - sanity check anonymous rmap addition 1163 * @page: the page to add the mapping to 1164 * @vma: the vm area in which the mapping is added 1165 * @address: the user virtual address mapped 1166 */ 1167 static void __page_check_anon_rmap(struct page *page, 1168 struct vm_area_struct *vma, unsigned long address) 1169 { 1170 struct folio *folio = page_folio(page); 1171 /* 1172 * The page's anon-rmap details (mapping and index) are guaranteed to 1173 * be set up correctly at this point. 1174 * 1175 * We have exclusion against page_add_anon_rmap because the caller 1176 * always holds the page locked. 1177 * 1178 * We have exclusion against page_add_new_anon_rmap because those pages 1179 * are initially only visible via the pagetables, and the pte is locked 1180 * over the call to page_add_new_anon_rmap. 1181 */ 1182 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1183 folio); 1184 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1185 page); 1186 } 1187 1188 /** 1189 * page_add_anon_rmap - add pte mapping to an anonymous page 1190 * @page: the page to add the mapping to 1191 * @vma: the vm area in which the mapping is added 1192 * @address: the user virtual address mapped 1193 * @flags: the rmap flags 1194 * 1195 * The caller needs to hold the pte lock, and the page must be locked in 1196 * the anon_vma case: to serialize mapping,index checking after setting, 1197 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1198 * (but PageKsm is never downgraded to PageAnon). 1199 */ 1200 void page_add_anon_rmap(struct page *page, 1201 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1202 { 1203 bool compound = flags & RMAP_COMPOUND; 1204 bool first; 1205 1206 if (unlikely(PageKsm(page))) 1207 lock_page_memcg(page); 1208 else 1209 VM_BUG_ON_PAGE(!PageLocked(page), page); 1210 1211 if (compound) { 1212 atomic_t *mapcount; 1213 VM_BUG_ON_PAGE(!PageLocked(page), page); 1214 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1215 mapcount = compound_mapcount_ptr(page); 1216 first = atomic_inc_and_test(mapcount); 1217 } else { 1218 first = atomic_inc_and_test(&page->_mapcount); 1219 } 1220 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 1221 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 1222 1223 if (first) { 1224 int nr = compound ? thp_nr_pages(page) : 1; 1225 /* 1226 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1227 * these counters are not modified in interrupt context, and 1228 * pte lock(a spinlock) is held, which implies preemption 1229 * disabled. 1230 */ 1231 if (compound) 1232 __mod_lruvec_page_state(page, NR_ANON_THPS, nr); 1233 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1234 } 1235 1236 if (unlikely(PageKsm(page))) 1237 unlock_page_memcg(page); 1238 1239 /* address might be in next vma when migration races vma_adjust */ 1240 else if (first) 1241 __page_set_anon_rmap(page, vma, address, 1242 !!(flags & RMAP_EXCLUSIVE)); 1243 else 1244 __page_check_anon_rmap(page, vma, address); 1245 1246 mlock_vma_page(page, vma, compound); 1247 } 1248 1249 /** 1250 * page_add_new_anon_rmap - add mapping to a new anonymous page 1251 * @page: the page to add the mapping to 1252 * @vma: the vm area in which the mapping is added 1253 * @address: the user virtual address mapped 1254 * 1255 * If it's a compound page, it is accounted as a compound page. As the page 1256 * is new, it's assume to get mapped exclusively by a single process. 1257 * 1258 * Same as page_add_anon_rmap but must only be called on *new* pages. 1259 * This means the inc-and-test can be bypassed. 1260 * Page does not have to be locked. 1261 */ 1262 void page_add_new_anon_rmap(struct page *page, 1263 struct vm_area_struct *vma, unsigned long address) 1264 { 1265 const bool compound = PageCompound(page); 1266 int nr = compound ? thp_nr_pages(page) : 1; 1267 1268 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1269 __SetPageSwapBacked(page); 1270 if (compound) { 1271 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1272 /* increment count (starts at -1) */ 1273 atomic_set(compound_mapcount_ptr(page), 0); 1274 atomic_set(compound_pincount_ptr(page), 0); 1275 1276 __mod_lruvec_page_state(page, NR_ANON_THPS, nr); 1277 } else { 1278 /* increment count (starts at -1) */ 1279 atomic_set(&page->_mapcount, 0); 1280 } 1281 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1282 __page_set_anon_rmap(page, vma, address, 1); 1283 } 1284 1285 /** 1286 * page_add_file_rmap - add pte mapping to a file page 1287 * @page: the page to add the mapping to 1288 * @vma: the vm area in which the mapping is added 1289 * @compound: charge the page as compound or small page 1290 * 1291 * The caller needs to hold the pte lock. 1292 */ 1293 void page_add_file_rmap(struct page *page, 1294 struct vm_area_struct *vma, bool compound) 1295 { 1296 int i, nr = 0; 1297 1298 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1299 lock_page_memcg(page); 1300 if (compound && PageTransHuge(page)) { 1301 int nr_pages = thp_nr_pages(page); 1302 1303 for (i = 0; i < nr_pages; i++) { 1304 if (atomic_inc_and_test(&page[i]._mapcount)) 1305 nr++; 1306 } 1307 if (!atomic_inc_and_test(compound_mapcount_ptr(page))) 1308 goto out; 1309 1310 /* 1311 * It is racy to ClearPageDoubleMap in page_remove_file_rmap(); 1312 * but page lock is held by all page_add_file_rmap() compound 1313 * callers, and SetPageDoubleMap below warns if !PageLocked: 1314 * so here is a place that DoubleMap can be safely cleared. 1315 */ 1316 VM_WARN_ON_ONCE(!PageLocked(page)); 1317 if (nr == nr_pages && PageDoubleMap(page)) 1318 ClearPageDoubleMap(page); 1319 1320 if (PageSwapBacked(page)) 1321 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, 1322 nr_pages); 1323 else 1324 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, 1325 nr_pages); 1326 } else { 1327 if (PageTransCompound(page) && page_mapping(page)) { 1328 VM_WARN_ON_ONCE(!PageLocked(page)); 1329 SetPageDoubleMap(compound_head(page)); 1330 } 1331 if (atomic_inc_and_test(&page->_mapcount)) 1332 nr++; 1333 } 1334 out: 1335 if (nr) 1336 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); 1337 unlock_page_memcg(page); 1338 1339 mlock_vma_page(page, vma, compound); 1340 } 1341 1342 static void page_remove_file_rmap(struct page *page, bool compound) 1343 { 1344 int i, nr = 0; 1345 1346 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1347 1348 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1349 if (unlikely(PageHuge(page))) { 1350 /* hugetlb pages are always mapped with pmds */ 1351 atomic_dec(compound_mapcount_ptr(page)); 1352 return; 1353 } 1354 1355 /* page still mapped by someone else? */ 1356 if (compound && PageTransHuge(page)) { 1357 int nr_pages = thp_nr_pages(page); 1358 1359 for (i = 0; i < nr_pages; i++) { 1360 if (atomic_add_negative(-1, &page[i]._mapcount)) 1361 nr++; 1362 } 1363 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1364 goto out; 1365 if (PageSwapBacked(page)) 1366 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, 1367 -nr_pages); 1368 else 1369 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, 1370 -nr_pages); 1371 } else { 1372 if (atomic_add_negative(-1, &page->_mapcount)) 1373 nr++; 1374 } 1375 out: 1376 if (nr) 1377 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); 1378 } 1379 1380 static void page_remove_anon_compound_rmap(struct page *page) 1381 { 1382 int i, nr; 1383 1384 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1385 return; 1386 1387 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1388 if (unlikely(PageHuge(page))) 1389 return; 1390 1391 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1392 return; 1393 1394 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page)); 1395 1396 if (TestClearPageDoubleMap(page)) { 1397 /* 1398 * Subpages can be mapped with PTEs too. Check how many of 1399 * them are still mapped. 1400 */ 1401 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) { 1402 if (atomic_add_negative(-1, &page[i]._mapcount)) 1403 nr++; 1404 } 1405 1406 /* 1407 * Queue the page for deferred split if at least one small 1408 * page of the compound page is unmapped, but at least one 1409 * small page is still mapped. 1410 */ 1411 if (nr && nr < thp_nr_pages(page)) 1412 deferred_split_huge_page(page); 1413 } else { 1414 nr = thp_nr_pages(page); 1415 } 1416 1417 if (nr) 1418 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr); 1419 } 1420 1421 /** 1422 * page_remove_rmap - take down pte mapping from a page 1423 * @page: page to remove mapping from 1424 * @vma: the vm area from which the mapping is removed 1425 * @compound: uncharge the page as compound or small page 1426 * 1427 * The caller needs to hold the pte lock. 1428 */ 1429 void page_remove_rmap(struct page *page, 1430 struct vm_area_struct *vma, bool compound) 1431 { 1432 lock_page_memcg(page); 1433 1434 if (!PageAnon(page)) { 1435 page_remove_file_rmap(page, compound); 1436 goto out; 1437 } 1438 1439 if (compound) { 1440 page_remove_anon_compound_rmap(page); 1441 goto out; 1442 } 1443 1444 /* page still mapped by someone else? */ 1445 if (!atomic_add_negative(-1, &page->_mapcount)) 1446 goto out; 1447 1448 /* 1449 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1450 * these counters are not modified in interrupt context, and 1451 * pte lock(a spinlock) is held, which implies preemption disabled. 1452 */ 1453 __dec_lruvec_page_state(page, NR_ANON_MAPPED); 1454 1455 if (PageTransCompound(page)) 1456 deferred_split_huge_page(compound_head(page)); 1457 1458 /* 1459 * It would be tidy to reset the PageAnon mapping here, 1460 * but that might overwrite a racing page_add_anon_rmap 1461 * which increments mapcount after us but sets mapping 1462 * before us: so leave the reset to free_unref_page, 1463 * and remember that it's only reliable while mapped. 1464 * Leaving it set also helps swapoff to reinstate ptes 1465 * faster for those pages still in swapcache. 1466 */ 1467 out: 1468 unlock_page_memcg(page); 1469 1470 munlock_vma_page(page, vma, compound); 1471 } 1472 1473 /* 1474 * @arg: enum ttu_flags will be passed to this argument 1475 */ 1476 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1477 unsigned long address, void *arg) 1478 { 1479 struct mm_struct *mm = vma->vm_mm; 1480 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1481 pte_t pteval; 1482 struct page *subpage; 1483 bool anon_exclusive, ret = true; 1484 struct mmu_notifier_range range; 1485 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1486 1487 /* 1488 * When racing against e.g. zap_pte_range() on another cpu, 1489 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1490 * try_to_unmap() may return before page_mapped() has become false, 1491 * if page table locking is skipped: use TTU_SYNC to wait for that. 1492 */ 1493 if (flags & TTU_SYNC) 1494 pvmw.flags = PVMW_SYNC; 1495 1496 if (flags & TTU_SPLIT_HUGE_PMD) 1497 split_huge_pmd_address(vma, address, false, folio); 1498 1499 /* 1500 * For THP, we have to assume the worse case ie pmd for invalidation. 1501 * For hugetlb, it could be much worse if we need to do pud 1502 * invalidation in the case of pmd sharing. 1503 * 1504 * Note that the folio can not be freed in this function as call of 1505 * try_to_unmap() must hold a reference on the folio. 1506 */ 1507 range.end = vma_address_end(&pvmw); 1508 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1509 address, range.end); 1510 if (folio_test_hugetlb(folio)) { 1511 /* 1512 * If sharing is possible, start and end will be adjusted 1513 * accordingly. 1514 */ 1515 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1516 &range.end); 1517 } 1518 mmu_notifier_invalidate_range_start(&range); 1519 1520 while (page_vma_mapped_walk(&pvmw)) { 1521 /* Unexpected PMD-mapped THP? */ 1522 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1523 1524 /* 1525 * If the folio is in an mlock()d vma, we must not swap it out. 1526 */ 1527 if (!(flags & TTU_IGNORE_MLOCK) && 1528 (vma->vm_flags & VM_LOCKED)) { 1529 /* Restore the mlock which got missed */ 1530 mlock_vma_folio(folio, vma, false); 1531 page_vma_mapped_walk_done(&pvmw); 1532 ret = false; 1533 break; 1534 } 1535 1536 subpage = folio_page(folio, 1537 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1538 address = pvmw.address; 1539 anon_exclusive = folio_test_anon(folio) && 1540 PageAnonExclusive(subpage); 1541 1542 if (folio_test_hugetlb(folio)) { 1543 bool anon = folio_test_anon(folio); 1544 1545 /* 1546 * The try_to_unmap() is only passed a hugetlb page 1547 * in the case where the hugetlb page is poisoned. 1548 */ 1549 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1550 /* 1551 * huge_pmd_unshare may unmap an entire PMD page. 1552 * There is no way of knowing exactly which PMDs may 1553 * be cached for this mm, so we must flush them all. 1554 * start/end were already adjusted above to cover this 1555 * range. 1556 */ 1557 flush_cache_range(vma, range.start, range.end); 1558 1559 /* 1560 * To call huge_pmd_unshare, i_mmap_rwsem must be 1561 * held in write mode. Caller needs to explicitly 1562 * do this outside rmap routines. 1563 */ 1564 VM_BUG_ON(!anon && !(flags & TTU_RMAP_LOCKED)); 1565 if (!anon && huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1566 flush_tlb_range(vma, range.start, range.end); 1567 mmu_notifier_invalidate_range(mm, range.start, 1568 range.end); 1569 1570 /* 1571 * The ref count of the PMD page was dropped 1572 * which is part of the way map counting 1573 * is done for shared PMDs. Return 'true' 1574 * here. When there is no other sharing, 1575 * huge_pmd_unshare returns false and we will 1576 * unmap the actual page and drop map count 1577 * to zero. 1578 */ 1579 page_vma_mapped_walk_done(&pvmw); 1580 break; 1581 } 1582 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1583 } else { 1584 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1585 /* 1586 * Nuke the page table entry. When having to clear 1587 * PageAnonExclusive(), we always have to flush. 1588 */ 1589 if (should_defer_flush(mm, flags) && !anon_exclusive) { 1590 /* 1591 * We clear the PTE but do not flush so potentially 1592 * a remote CPU could still be writing to the folio. 1593 * If the entry was previously clean then the 1594 * architecture must guarantee that a clear->dirty 1595 * transition on a cached TLB entry is written through 1596 * and traps if the PTE is unmapped. 1597 */ 1598 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1599 1600 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1601 } else { 1602 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1603 } 1604 } 1605 1606 /* 1607 * Now the pte is cleared. If this pte was uffd-wp armed, 1608 * we may want to replace a none pte with a marker pte if 1609 * it's file-backed, so we don't lose the tracking info. 1610 */ 1611 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1612 1613 /* Set the dirty flag on the folio now the pte is gone. */ 1614 if (pte_dirty(pteval)) 1615 folio_mark_dirty(folio); 1616 1617 /* Update high watermark before we lower rss */ 1618 update_hiwater_rss(mm); 1619 1620 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) { 1621 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1622 if (folio_test_hugetlb(folio)) { 1623 hugetlb_count_sub(folio_nr_pages(folio), mm); 1624 set_huge_pte_at(mm, address, pvmw.pte, pteval); 1625 } else { 1626 dec_mm_counter(mm, mm_counter(&folio->page)); 1627 set_pte_at(mm, address, pvmw.pte, pteval); 1628 } 1629 1630 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1631 /* 1632 * The guest indicated that the page content is of no 1633 * interest anymore. Simply discard the pte, vmscan 1634 * will take care of the rest. 1635 * A future reference will then fault in a new zero 1636 * page. When userfaultfd is active, we must not drop 1637 * this page though, as its main user (postcopy 1638 * migration) will not expect userfaults on already 1639 * copied pages. 1640 */ 1641 dec_mm_counter(mm, mm_counter(&folio->page)); 1642 /* We have to invalidate as we cleared the pte */ 1643 mmu_notifier_invalidate_range(mm, address, 1644 address + PAGE_SIZE); 1645 } else if (folio_test_anon(folio)) { 1646 swp_entry_t entry = { .val = page_private(subpage) }; 1647 pte_t swp_pte; 1648 /* 1649 * Store the swap location in the pte. 1650 * See handle_pte_fault() ... 1651 */ 1652 if (unlikely(folio_test_swapbacked(folio) != 1653 folio_test_swapcache(folio))) { 1654 WARN_ON_ONCE(1); 1655 ret = false; 1656 /* We have to invalidate as we cleared the pte */ 1657 mmu_notifier_invalidate_range(mm, address, 1658 address + PAGE_SIZE); 1659 page_vma_mapped_walk_done(&pvmw); 1660 break; 1661 } 1662 1663 /* MADV_FREE page check */ 1664 if (!folio_test_swapbacked(folio)) { 1665 int ref_count, map_count; 1666 1667 /* 1668 * Synchronize with gup_pte_range(): 1669 * - clear PTE; barrier; read refcount 1670 * - inc refcount; barrier; read PTE 1671 */ 1672 smp_mb(); 1673 1674 ref_count = folio_ref_count(folio); 1675 map_count = folio_mapcount(folio); 1676 1677 /* 1678 * Order reads for page refcount and dirty flag 1679 * (see comments in __remove_mapping()). 1680 */ 1681 smp_rmb(); 1682 1683 /* 1684 * The only page refs must be one from isolation 1685 * plus the rmap(s) (dropped by discard:). 1686 */ 1687 if (ref_count == 1 + map_count && 1688 !folio_test_dirty(folio)) { 1689 /* Invalidate as we cleared the pte */ 1690 mmu_notifier_invalidate_range(mm, 1691 address, address + PAGE_SIZE); 1692 dec_mm_counter(mm, MM_ANONPAGES); 1693 goto discard; 1694 } 1695 1696 /* 1697 * If the folio was redirtied, it cannot be 1698 * discarded. Remap the page to page table. 1699 */ 1700 set_pte_at(mm, address, pvmw.pte, pteval); 1701 folio_set_swapbacked(folio); 1702 ret = false; 1703 page_vma_mapped_walk_done(&pvmw); 1704 break; 1705 } 1706 1707 if (swap_duplicate(entry) < 0) { 1708 set_pte_at(mm, address, pvmw.pte, pteval); 1709 ret = false; 1710 page_vma_mapped_walk_done(&pvmw); 1711 break; 1712 } 1713 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1714 swap_free(entry); 1715 set_pte_at(mm, address, pvmw.pte, pteval); 1716 ret = false; 1717 page_vma_mapped_walk_done(&pvmw); 1718 break; 1719 } 1720 if (anon_exclusive && 1721 page_try_share_anon_rmap(subpage)) { 1722 swap_free(entry); 1723 set_pte_at(mm, address, pvmw.pte, pteval); 1724 ret = false; 1725 page_vma_mapped_walk_done(&pvmw); 1726 break; 1727 } 1728 /* 1729 * Note: We *don't* remember if the page was mapped 1730 * exclusively in the swap pte if the architecture 1731 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In 1732 * that case, swapin code has to re-determine that 1733 * manually and might detect the page as possibly 1734 * shared, for example, if there are other references on 1735 * the page or if the page is under writeback. We made 1736 * sure that there are no GUP pins on the page that 1737 * would rely on it, so for GUP pins this is fine. 1738 */ 1739 if (list_empty(&mm->mmlist)) { 1740 spin_lock(&mmlist_lock); 1741 if (list_empty(&mm->mmlist)) 1742 list_add(&mm->mmlist, &init_mm.mmlist); 1743 spin_unlock(&mmlist_lock); 1744 } 1745 dec_mm_counter(mm, MM_ANONPAGES); 1746 inc_mm_counter(mm, MM_SWAPENTS); 1747 swp_pte = swp_entry_to_pte(entry); 1748 if (anon_exclusive) 1749 swp_pte = pte_swp_mkexclusive(swp_pte); 1750 if (pte_soft_dirty(pteval)) 1751 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1752 if (pte_uffd_wp(pteval)) 1753 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1754 set_pte_at(mm, address, pvmw.pte, swp_pte); 1755 /* Invalidate as we cleared the pte */ 1756 mmu_notifier_invalidate_range(mm, address, 1757 address + PAGE_SIZE); 1758 } else { 1759 /* 1760 * This is a locked file-backed folio, 1761 * so it cannot be removed from the page 1762 * cache and replaced by a new folio before 1763 * mmu_notifier_invalidate_range_end, so no 1764 * concurrent thread might update its page table 1765 * to point at a new folio while a device is 1766 * still using this folio. 1767 * 1768 * See Documentation/mm/mmu_notifier.rst 1769 */ 1770 dec_mm_counter(mm, mm_counter_file(&folio->page)); 1771 } 1772 discard: 1773 /* 1774 * No need to call mmu_notifier_invalidate_range() it has be 1775 * done above for all cases requiring it to happen under page 1776 * table lock before mmu_notifier_invalidate_range_end() 1777 * 1778 * See Documentation/mm/mmu_notifier.rst 1779 */ 1780 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 1781 if (vma->vm_flags & VM_LOCKED) 1782 mlock_page_drain_local(); 1783 folio_put(folio); 1784 } 1785 1786 mmu_notifier_invalidate_range_end(&range); 1787 1788 return ret; 1789 } 1790 1791 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1792 { 1793 return vma_is_temporary_stack(vma); 1794 } 1795 1796 static int page_not_mapped(struct folio *folio) 1797 { 1798 return !folio_mapped(folio); 1799 } 1800 1801 /** 1802 * try_to_unmap - Try to remove all page table mappings to a folio. 1803 * @folio: The folio to unmap. 1804 * @flags: action and flags 1805 * 1806 * Tries to remove all the page table entries which are mapping this 1807 * folio. It is the caller's responsibility to check if the folio is 1808 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1809 * 1810 * Context: Caller must hold the folio lock. 1811 */ 1812 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1813 { 1814 struct rmap_walk_control rwc = { 1815 .rmap_one = try_to_unmap_one, 1816 .arg = (void *)flags, 1817 .done = page_not_mapped, 1818 .anon_lock = folio_lock_anon_vma_read, 1819 }; 1820 1821 if (flags & TTU_RMAP_LOCKED) 1822 rmap_walk_locked(folio, &rwc); 1823 else 1824 rmap_walk(folio, &rwc); 1825 } 1826 1827 /* 1828 * @arg: enum ttu_flags will be passed to this argument. 1829 * 1830 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1831 * containing migration entries. 1832 */ 1833 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 1834 unsigned long address, void *arg) 1835 { 1836 struct mm_struct *mm = vma->vm_mm; 1837 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1838 pte_t pteval; 1839 struct page *subpage; 1840 bool anon_exclusive, ret = true; 1841 struct mmu_notifier_range range; 1842 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1843 1844 /* 1845 * When racing against e.g. zap_pte_range() on another cpu, 1846 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1847 * try_to_migrate() may return before page_mapped() has become false, 1848 * if page table locking is skipped: use TTU_SYNC to wait for that. 1849 */ 1850 if (flags & TTU_SYNC) 1851 pvmw.flags = PVMW_SYNC; 1852 1853 /* 1854 * unmap_page() in mm/huge_memory.c is the only user of migration with 1855 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1856 */ 1857 if (flags & TTU_SPLIT_HUGE_PMD) 1858 split_huge_pmd_address(vma, address, true, folio); 1859 1860 /* 1861 * For THP, we have to assume the worse case ie pmd for invalidation. 1862 * For hugetlb, it could be much worse if we need to do pud 1863 * invalidation in the case of pmd sharing. 1864 * 1865 * Note that the page can not be free in this function as call of 1866 * try_to_unmap() must hold a reference on the page. 1867 */ 1868 range.end = vma_address_end(&pvmw); 1869 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1870 address, range.end); 1871 if (folio_test_hugetlb(folio)) { 1872 /* 1873 * If sharing is possible, start and end will be adjusted 1874 * accordingly. 1875 */ 1876 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1877 &range.end); 1878 } 1879 mmu_notifier_invalidate_range_start(&range); 1880 1881 while (page_vma_mapped_walk(&pvmw)) { 1882 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1883 /* PMD-mapped THP migration entry */ 1884 if (!pvmw.pte) { 1885 subpage = folio_page(folio, 1886 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 1887 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 1888 !folio_test_pmd_mappable(folio), folio); 1889 1890 if (set_pmd_migration_entry(&pvmw, subpage)) { 1891 ret = false; 1892 page_vma_mapped_walk_done(&pvmw); 1893 break; 1894 } 1895 continue; 1896 } 1897 #endif 1898 1899 /* Unexpected PMD-mapped THP? */ 1900 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1901 1902 if (folio_is_zone_device(folio)) { 1903 /* 1904 * Our PTE is a non-present device exclusive entry and 1905 * calculating the subpage as for the common case would 1906 * result in an invalid pointer. 1907 * 1908 * Since only PAGE_SIZE pages can currently be 1909 * migrated, just set it to page. This will need to be 1910 * changed when hugepage migrations to device private 1911 * memory are supported. 1912 */ 1913 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 1914 subpage = &folio->page; 1915 } else { 1916 subpage = folio_page(folio, 1917 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1918 } 1919 address = pvmw.address; 1920 anon_exclusive = folio_test_anon(folio) && 1921 PageAnonExclusive(subpage); 1922 1923 if (folio_test_hugetlb(folio)) { 1924 bool anon = folio_test_anon(folio); 1925 1926 /* 1927 * huge_pmd_unshare may unmap an entire PMD page. 1928 * There is no way of knowing exactly which PMDs may 1929 * be cached for this mm, so we must flush them all. 1930 * start/end were already adjusted above to cover this 1931 * range. 1932 */ 1933 flush_cache_range(vma, range.start, range.end); 1934 1935 /* 1936 * To call huge_pmd_unshare, i_mmap_rwsem must be 1937 * held in write mode. Caller needs to explicitly 1938 * do this outside rmap routines. 1939 */ 1940 VM_BUG_ON(!anon && !(flags & TTU_RMAP_LOCKED)); 1941 if (!anon && huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1942 flush_tlb_range(vma, range.start, range.end); 1943 mmu_notifier_invalidate_range(mm, range.start, 1944 range.end); 1945 1946 /* 1947 * The ref count of the PMD page was dropped 1948 * which is part of the way map counting 1949 * is done for shared PMDs. Return 'true' 1950 * here. When there is no other sharing, 1951 * huge_pmd_unshare returns false and we will 1952 * unmap the actual page and drop map count 1953 * to zero. 1954 */ 1955 page_vma_mapped_walk_done(&pvmw); 1956 break; 1957 } 1958 1959 /* Nuke the hugetlb page table entry */ 1960 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1961 } else { 1962 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1963 /* Nuke the page table entry. */ 1964 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1965 } 1966 1967 /* Set the dirty flag on the folio now the pte is gone. */ 1968 if (pte_dirty(pteval)) 1969 folio_mark_dirty(folio); 1970 1971 /* Update high watermark before we lower rss */ 1972 update_hiwater_rss(mm); 1973 1974 if (folio_is_device_private(folio)) { 1975 unsigned long pfn = folio_pfn(folio); 1976 swp_entry_t entry; 1977 pte_t swp_pte; 1978 1979 if (anon_exclusive) 1980 BUG_ON(page_try_share_anon_rmap(subpage)); 1981 1982 /* 1983 * Store the pfn of the page in a special migration 1984 * pte. do_swap_page() will wait until the migration 1985 * pte is removed and then restart fault handling. 1986 */ 1987 entry = pte_to_swp_entry(pteval); 1988 if (is_writable_device_private_entry(entry)) 1989 entry = make_writable_migration_entry(pfn); 1990 else if (anon_exclusive) 1991 entry = make_readable_exclusive_migration_entry(pfn); 1992 else 1993 entry = make_readable_migration_entry(pfn); 1994 swp_pte = swp_entry_to_pte(entry); 1995 1996 /* 1997 * pteval maps a zone device page and is therefore 1998 * a swap pte. 1999 */ 2000 if (pte_swp_soft_dirty(pteval)) 2001 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2002 if (pte_swp_uffd_wp(pteval)) 2003 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2004 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2005 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2006 compound_order(&folio->page)); 2007 /* 2008 * No need to invalidate here it will synchronize on 2009 * against the special swap migration pte. 2010 */ 2011 } else if (PageHWPoison(subpage)) { 2012 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2013 if (folio_test_hugetlb(folio)) { 2014 hugetlb_count_sub(folio_nr_pages(folio), mm); 2015 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2016 } else { 2017 dec_mm_counter(mm, mm_counter(&folio->page)); 2018 set_pte_at(mm, address, pvmw.pte, pteval); 2019 } 2020 2021 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2022 /* 2023 * The guest indicated that the page content is of no 2024 * interest anymore. Simply discard the pte, vmscan 2025 * will take care of the rest. 2026 * A future reference will then fault in a new zero 2027 * page. When userfaultfd is active, we must not drop 2028 * this page though, as its main user (postcopy 2029 * migration) will not expect userfaults on already 2030 * copied pages. 2031 */ 2032 dec_mm_counter(mm, mm_counter(&folio->page)); 2033 /* We have to invalidate as we cleared the pte */ 2034 mmu_notifier_invalidate_range(mm, address, 2035 address + PAGE_SIZE); 2036 } else { 2037 swp_entry_t entry; 2038 pte_t swp_pte; 2039 2040 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2041 if (folio_test_hugetlb(folio)) 2042 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2043 else 2044 set_pte_at(mm, address, pvmw.pte, pteval); 2045 ret = false; 2046 page_vma_mapped_walk_done(&pvmw); 2047 break; 2048 } 2049 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2050 !anon_exclusive, subpage); 2051 if (anon_exclusive && 2052 page_try_share_anon_rmap(subpage)) { 2053 if (folio_test_hugetlb(folio)) 2054 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2055 else 2056 set_pte_at(mm, address, pvmw.pte, pteval); 2057 ret = false; 2058 page_vma_mapped_walk_done(&pvmw); 2059 break; 2060 } 2061 2062 /* 2063 * Store the pfn of the page in a special migration 2064 * pte. do_swap_page() will wait until the migration 2065 * pte is removed and then restart fault handling. 2066 */ 2067 if (pte_write(pteval)) 2068 entry = make_writable_migration_entry( 2069 page_to_pfn(subpage)); 2070 else if (anon_exclusive) 2071 entry = make_readable_exclusive_migration_entry( 2072 page_to_pfn(subpage)); 2073 else 2074 entry = make_readable_migration_entry( 2075 page_to_pfn(subpage)); 2076 2077 swp_pte = swp_entry_to_pte(entry); 2078 if (pte_soft_dirty(pteval)) 2079 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2080 if (pte_uffd_wp(pteval)) 2081 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2082 if (folio_test_hugetlb(folio)) 2083 set_huge_pte_at(mm, address, pvmw.pte, swp_pte); 2084 else 2085 set_pte_at(mm, address, pvmw.pte, swp_pte); 2086 trace_set_migration_pte(address, pte_val(swp_pte), 2087 compound_order(&folio->page)); 2088 /* 2089 * No need to invalidate here it will synchronize on 2090 * against the special swap migration pte. 2091 */ 2092 } 2093 2094 /* 2095 * No need to call mmu_notifier_invalidate_range() it has be 2096 * done above for all cases requiring it to happen under page 2097 * table lock before mmu_notifier_invalidate_range_end() 2098 * 2099 * See Documentation/mm/mmu_notifier.rst 2100 */ 2101 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 2102 if (vma->vm_flags & VM_LOCKED) 2103 mlock_page_drain_local(); 2104 folio_put(folio); 2105 } 2106 2107 mmu_notifier_invalidate_range_end(&range); 2108 2109 return ret; 2110 } 2111 2112 /** 2113 * try_to_migrate - try to replace all page table mappings with swap entries 2114 * @folio: the folio to replace page table entries for 2115 * @flags: action and flags 2116 * 2117 * Tries to remove all the page table entries which are mapping this folio and 2118 * replace them with special swap entries. Caller must hold the folio lock. 2119 */ 2120 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2121 { 2122 struct rmap_walk_control rwc = { 2123 .rmap_one = try_to_migrate_one, 2124 .arg = (void *)flags, 2125 .done = page_not_mapped, 2126 .anon_lock = folio_lock_anon_vma_read, 2127 }; 2128 2129 /* 2130 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2131 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags. 2132 */ 2133 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2134 TTU_SYNC))) 2135 return; 2136 2137 if (folio_is_zone_device(folio) && 2138 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2139 return; 2140 2141 /* 2142 * During exec, a temporary VMA is setup and later moved. 2143 * The VMA is moved under the anon_vma lock but not the 2144 * page tables leading to a race where migration cannot 2145 * find the migration ptes. Rather than increasing the 2146 * locking requirements of exec(), migration skips 2147 * temporary VMAs until after exec() completes. 2148 */ 2149 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2150 rwc.invalid_vma = invalid_migration_vma; 2151 2152 if (flags & TTU_RMAP_LOCKED) 2153 rmap_walk_locked(folio, &rwc); 2154 else 2155 rmap_walk(folio, &rwc); 2156 } 2157 2158 #ifdef CONFIG_DEVICE_PRIVATE 2159 struct make_exclusive_args { 2160 struct mm_struct *mm; 2161 unsigned long address; 2162 void *owner; 2163 bool valid; 2164 }; 2165 2166 static bool page_make_device_exclusive_one(struct folio *folio, 2167 struct vm_area_struct *vma, unsigned long address, void *priv) 2168 { 2169 struct mm_struct *mm = vma->vm_mm; 2170 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2171 struct make_exclusive_args *args = priv; 2172 pte_t pteval; 2173 struct page *subpage; 2174 bool ret = true; 2175 struct mmu_notifier_range range; 2176 swp_entry_t entry; 2177 pte_t swp_pte; 2178 2179 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, 2180 vma->vm_mm, address, min(vma->vm_end, 2181 address + folio_size(folio)), 2182 args->owner); 2183 mmu_notifier_invalidate_range_start(&range); 2184 2185 while (page_vma_mapped_walk(&pvmw)) { 2186 /* Unexpected PMD-mapped THP? */ 2187 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2188 2189 if (!pte_present(*pvmw.pte)) { 2190 ret = false; 2191 page_vma_mapped_walk_done(&pvmw); 2192 break; 2193 } 2194 2195 subpage = folio_page(folio, 2196 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 2197 address = pvmw.address; 2198 2199 /* Nuke the page table entry. */ 2200 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 2201 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2202 2203 /* Set the dirty flag on the folio now the pte is gone. */ 2204 if (pte_dirty(pteval)) 2205 folio_mark_dirty(folio); 2206 2207 /* 2208 * Check that our target page is still mapped at the expected 2209 * address. 2210 */ 2211 if (args->mm == mm && args->address == address && 2212 pte_write(pteval)) 2213 args->valid = true; 2214 2215 /* 2216 * Store the pfn of the page in a special migration 2217 * pte. do_swap_page() will wait until the migration 2218 * pte is removed and then restart fault handling. 2219 */ 2220 if (pte_write(pteval)) 2221 entry = make_writable_device_exclusive_entry( 2222 page_to_pfn(subpage)); 2223 else 2224 entry = make_readable_device_exclusive_entry( 2225 page_to_pfn(subpage)); 2226 swp_pte = swp_entry_to_pte(entry); 2227 if (pte_soft_dirty(pteval)) 2228 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2229 if (pte_uffd_wp(pteval)) 2230 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2231 2232 set_pte_at(mm, address, pvmw.pte, swp_pte); 2233 2234 /* 2235 * There is a reference on the page for the swap entry which has 2236 * been removed, so shouldn't take another. 2237 */ 2238 page_remove_rmap(subpage, vma, false); 2239 } 2240 2241 mmu_notifier_invalidate_range_end(&range); 2242 2243 return ret; 2244 } 2245 2246 /** 2247 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2248 * @folio: The folio to replace page table entries for. 2249 * @mm: The mm_struct where the folio is expected to be mapped. 2250 * @address: Address where the folio is expected to be mapped. 2251 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2252 * 2253 * Tries to remove all the page table entries which are mapping this 2254 * folio and replace them with special device exclusive swap entries to 2255 * grant a device exclusive access to the folio. 2256 * 2257 * Context: Caller must hold the folio lock. 2258 * Return: false if the page is still mapped, or if it could not be unmapped 2259 * from the expected address. Otherwise returns true (success). 2260 */ 2261 static bool folio_make_device_exclusive(struct folio *folio, 2262 struct mm_struct *mm, unsigned long address, void *owner) 2263 { 2264 struct make_exclusive_args args = { 2265 .mm = mm, 2266 .address = address, 2267 .owner = owner, 2268 .valid = false, 2269 }; 2270 struct rmap_walk_control rwc = { 2271 .rmap_one = page_make_device_exclusive_one, 2272 .done = page_not_mapped, 2273 .anon_lock = folio_lock_anon_vma_read, 2274 .arg = &args, 2275 }; 2276 2277 /* 2278 * Restrict to anonymous folios for now to avoid potential writeback 2279 * issues. 2280 */ 2281 if (!folio_test_anon(folio)) 2282 return false; 2283 2284 rmap_walk(folio, &rwc); 2285 2286 return args.valid && !folio_mapcount(folio); 2287 } 2288 2289 /** 2290 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2291 * @mm: mm_struct of associated target process 2292 * @start: start of the region to mark for exclusive device access 2293 * @end: end address of region 2294 * @pages: returns the pages which were successfully marked for exclusive access 2295 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2296 * 2297 * Returns: number of pages found in the range by GUP. A page is marked for 2298 * exclusive access only if the page pointer is non-NULL. 2299 * 2300 * This function finds ptes mapping page(s) to the given address range, locks 2301 * them and replaces mappings with special swap entries preventing userspace CPU 2302 * access. On fault these entries are replaced with the original mapping after 2303 * calling MMU notifiers. 2304 * 2305 * A driver using this to program access from a device must use a mmu notifier 2306 * critical section to hold a device specific lock during programming. Once 2307 * programming is complete it should drop the page lock and reference after 2308 * which point CPU access to the page will revoke the exclusive access. 2309 */ 2310 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2311 unsigned long end, struct page **pages, 2312 void *owner) 2313 { 2314 long npages = (end - start) >> PAGE_SHIFT; 2315 long i; 2316 2317 npages = get_user_pages_remote(mm, start, npages, 2318 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2319 pages, NULL, NULL); 2320 if (npages < 0) 2321 return npages; 2322 2323 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2324 struct folio *folio = page_folio(pages[i]); 2325 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2326 folio_put(folio); 2327 pages[i] = NULL; 2328 continue; 2329 } 2330 2331 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2332 folio_unlock(folio); 2333 folio_put(folio); 2334 pages[i] = NULL; 2335 } 2336 } 2337 2338 return npages; 2339 } 2340 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2341 #endif 2342 2343 void __put_anon_vma(struct anon_vma *anon_vma) 2344 { 2345 struct anon_vma *root = anon_vma->root; 2346 2347 anon_vma_free(anon_vma); 2348 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2349 anon_vma_free(root); 2350 } 2351 2352 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2353 struct rmap_walk_control *rwc) 2354 { 2355 struct anon_vma *anon_vma; 2356 2357 if (rwc->anon_lock) 2358 return rwc->anon_lock(folio, rwc); 2359 2360 /* 2361 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2362 * because that depends on page_mapped(); but not all its usages 2363 * are holding mmap_lock. Users without mmap_lock are required to 2364 * take a reference count to prevent the anon_vma disappearing 2365 */ 2366 anon_vma = folio_anon_vma(folio); 2367 if (!anon_vma) 2368 return NULL; 2369 2370 if (anon_vma_trylock_read(anon_vma)) 2371 goto out; 2372 2373 if (rwc->try_lock) { 2374 anon_vma = NULL; 2375 rwc->contended = true; 2376 goto out; 2377 } 2378 2379 anon_vma_lock_read(anon_vma); 2380 out: 2381 return anon_vma; 2382 } 2383 2384 /* 2385 * rmap_walk_anon - do something to anonymous page using the object-based 2386 * rmap method 2387 * @page: the page to be handled 2388 * @rwc: control variable according to each walk type 2389 * 2390 * Find all the mappings of a page using the mapping pointer and the vma chains 2391 * contained in the anon_vma struct it points to. 2392 */ 2393 static void rmap_walk_anon(struct folio *folio, 2394 struct rmap_walk_control *rwc, bool locked) 2395 { 2396 struct anon_vma *anon_vma; 2397 pgoff_t pgoff_start, pgoff_end; 2398 struct anon_vma_chain *avc; 2399 2400 if (locked) { 2401 anon_vma = folio_anon_vma(folio); 2402 /* anon_vma disappear under us? */ 2403 VM_BUG_ON_FOLIO(!anon_vma, folio); 2404 } else { 2405 anon_vma = rmap_walk_anon_lock(folio, rwc); 2406 } 2407 if (!anon_vma) 2408 return; 2409 2410 pgoff_start = folio_pgoff(folio); 2411 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2412 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2413 pgoff_start, pgoff_end) { 2414 struct vm_area_struct *vma = avc->vma; 2415 unsigned long address = vma_address(&folio->page, vma); 2416 2417 VM_BUG_ON_VMA(address == -EFAULT, vma); 2418 cond_resched(); 2419 2420 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2421 continue; 2422 2423 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2424 break; 2425 if (rwc->done && rwc->done(folio)) 2426 break; 2427 } 2428 2429 if (!locked) 2430 anon_vma_unlock_read(anon_vma); 2431 } 2432 2433 /* 2434 * rmap_walk_file - do something to file page using the object-based rmap method 2435 * @page: the page to be handled 2436 * @rwc: control variable according to each walk type 2437 * 2438 * Find all the mappings of a page using the mapping pointer and the vma chains 2439 * contained in the address_space struct it points to. 2440 */ 2441 static void rmap_walk_file(struct folio *folio, 2442 struct rmap_walk_control *rwc, bool locked) 2443 { 2444 struct address_space *mapping = folio_mapping(folio); 2445 pgoff_t pgoff_start, pgoff_end; 2446 struct vm_area_struct *vma; 2447 2448 /* 2449 * The page lock not only makes sure that page->mapping cannot 2450 * suddenly be NULLified by truncation, it makes sure that the 2451 * structure at mapping cannot be freed and reused yet, 2452 * so we can safely take mapping->i_mmap_rwsem. 2453 */ 2454 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2455 2456 if (!mapping) 2457 return; 2458 2459 pgoff_start = folio_pgoff(folio); 2460 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2461 if (!locked) { 2462 if (i_mmap_trylock_read(mapping)) 2463 goto lookup; 2464 2465 if (rwc->try_lock) { 2466 rwc->contended = true; 2467 return; 2468 } 2469 2470 i_mmap_lock_read(mapping); 2471 } 2472 lookup: 2473 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2474 pgoff_start, pgoff_end) { 2475 unsigned long address = vma_address(&folio->page, vma); 2476 2477 VM_BUG_ON_VMA(address == -EFAULT, vma); 2478 cond_resched(); 2479 2480 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2481 continue; 2482 2483 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2484 goto done; 2485 if (rwc->done && rwc->done(folio)) 2486 goto done; 2487 } 2488 2489 done: 2490 if (!locked) 2491 i_mmap_unlock_read(mapping); 2492 } 2493 2494 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2495 { 2496 if (unlikely(folio_test_ksm(folio))) 2497 rmap_walk_ksm(folio, rwc); 2498 else if (folio_test_anon(folio)) 2499 rmap_walk_anon(folio, rwc, false); 2500 else 2501 rmap_walk_file(folio, rwc, false); 2502 } 2503 2504 /* Like rmap_walk, but caller holds relevant rmap lock */ 2505 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2506 { 2507 /* no ksm support for now */ 2508 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2509 if (folio_test_anon(folio)) 2510 rmap_walk_anon(folio, rwc, true); 2511 else 2512 rmap_walk_file(folio, rwc, true); 2513 } 2514 2515 #ifdef CONFIG_HUGETLB_PAGE 2516 /* 2517 * The following two functions are for anonymous (private mapped) hugepages. 2518 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2519 * and no lru code, because we handle hugepages differently from common pages. 2520 * 2521 * RMAP_COMPOUND is ignored. 2522 */ 2523 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 2524 unsigned long address, rmap_t flags) 2525 { 2526 struct anon_vma *anon_vma = vma->anon_vma; 2527 int first; 2528 2529 BUG_ON(!PageLocked(page)); 2530 BUG_ON(!anon_vma); 2531 /* address might be in next vma when migration races vma_adjust */ 2532 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 2533 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 2534 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 2535 if (first) 2536 __page_set_anon_rmap(page, vma, address, 2537 !!(flags & RMAP_EXCLUSIVE)); 2538 } 2539 2540 void hugepage_add_new_anon_rmap(struct page *page, 2541 struct vm_area_struct *vma, unsigned long address) 2542 { 2543 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2544 atomic_set(compound_mapcount_ptr(page), 0); 2545 atomic_set(compound_pincount_ptr(page), 0); 2546 2547 __page_set_anon_rmap(page, vma, address, 1); 2548 } 2549 #endif /* CONFIG_HUGETLB_PAGE */ 2550