1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * mapping->i_mmap_rwsem 27 * anon_vma->rwsem 28 * mm->page_table_lock or pte_lock 29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 30 * swap_lock (in swap_duplicate, swap_info_get) 31 * mmlist_lock (in mmput, drain_mmlist and others) 32 * mapping->private_lock (in __set_page_dirty_buffers) 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within bdi.wb->list_lock in __sync_single_inode) 39 * 40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 41 * ->tasklist_lock 42 * pte map lock 43 */ 44 45 #include <linux/mm.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/slab.h> 50 #include <linux/init.h> 51 #include <linux/ksm.h> 52 #include <linux/rmap.h> 53 #include <linux/rcupdate.h> 54 #include <linux/export.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/migrate.h> 58 #include <linux/hugetlb.h> 59 #include <linux/backing-dev.h> 60 61 #include <asm/tlbflush.h> 62 63 #include "internal.h" 64 65 static struct kmem_cache *anon_vma_cachep; 66 static struct kmem_cache *anon_vma_chain_cachep; 67 68 static inline struct anon_vma *anon_vma_alloc(void) 69 { 70 struct anon_vma *anon_vma; 71 72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 73 if (anon_vma) { 74 atomic_set(&anon_vma->refcount, 1); 75 anon_vma->degree = 1; /* Reference for first vma */ 76 anon_vma->parent = anon_vma; 77 /* 78 * Initialise the anon_vma root to point to itself. If called 79 * from fork, the root will be reset to the parents anon_vma. 80 */ 81 anon_vma->root = anon_vma; 82 } 83 84 return anon_vma; 85 } 86 87 static inline void anon_vma_free(struct anon_vma *anon_vma) 88 { 89 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 90 91 /* 92 * Synchronize against page_lock_anon_vma_read() such that 93 * we can safely hold the lock without the anon_vma getting 94 * freed. 95 * 96 * Relies on the full mb implied by the atomic_dec_and_test() from 97 * put_anon_vma() against the acquire barrier implied by 98 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 99 * 100 * page_lock_anon_vma_read() VS put_anon_vma() 101 * down_read_trylock() atomic_dec_and_test() 102 * LOCK MB 103 * atomic_read() rwsem_is_locked() 104 * 105 * LOCK should suffice since the actual taking of the lock must 106 * happen _before_ what follows. 107 */ 108 might_sleep(); 109 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 110 anon_vma_lock_write(anon_vma); 111 anon_vma_unlock_write(anon_vma); 112 } 113 114 kmem_cache_free(anon_vma_cachep, anon_vma); 115 } 116 117 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 118 { 119 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 120 } 121 122 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 123 { 124 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 125 } 126 127 static void anon_vma_chain_link(struct vm_area_struct *vma, 128 struct anon_vma_chain *avc, 129 struct anon_vma *anon_vma) 130 { 131 avc->vma = vma; 132 avc->anon_vma = anon_vma; 133 list_add(&avc->same_vma, &vma->anon_vma_chain); 134 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 135 } 136 137 /** 138 * anon_vma_prepare - attach an anon_vma to a memory region 139 * @vma: the memory region in question 140 * 141 * This makes sure the memory mapping described by 'vma' has 142 * an 'anon_vma' attached to it, so that we can associate the 143 * anonymous pages mapped into it with that anon_vma. 144 * 145 * The common case will be that we already have one, but if 146 * not we either need to find an adjacent mapping that we 147 * can re-use the anon_vma from (very common when the only 148 * reason for splitting a vma has been mprotect()), or we 149 * allocate a new one. 150 * 151 * Anon-vma allocations are very subtle, because we may have 152 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 153 * and that may actually touch the spinlock even in the newly 154 * allocated vma (it depends on RCU to make sure that the 155 * anon_vma isn't actually destroyed). 156 * 157 * As a result, we need to do proper anon_vma locking even 158 * for the new allocation. At the same time, we do not want 159 * to do any locking for the common case of already having 160 * an anon_vma. 161 * 162 * This must be called with the mmap_sem held for reading. 163 */ 164 int anon_vma_prepare(struct vm_area_struct *vma) 165 { 166 struct anon_vma *anon_vma = vma->anon_vma; 167 struct anon_vma_chain *avc; 168 169 might_sleep(); 170 if (unlikely(!anon_vma)) { 171 struct mm_struct *mm = vma->vm_mm; 172 struct anon_vma *allocated; 173 174 avc = anon_vma_chain_alloc(GFP_KERNEL); 175 if (!avc) 176 goto out_enomem; 177 178 anon_vma = find_mergeable_anon_vma(vma); 179 allocated = NULL; 180 if (!anon_vma) { 181 anon_vma = anon_vma_alloc(); 182 if (unlikely(!anon_vma)) 183 goto out_enomem_free_avc; 184 allocated = anon_vma; 185 } 186 187 anon_vma_lock_write(anon_vma); 188 /* page_table_lock to protect against threads */ 189 spin_lock(&mm->page_table_lock); 190 if (likely(!vma->anon_vma)) { 191 vma->anon_vma = anon_vma; 192 anon_vma_chain_link(vma, avc, anon_vma); 193 /* vma reference or self-parent link for new root */ 194 anon_vma->degree++; 195 allocated = NULL; 196 avc = NULL; 197 } 198 spin_unlock(&mm->page_table_lock); 199 anon_vma_unlock_write(anon_vma); 200 201 if (unlikely(allocated)) 202 put_anon_vma(allocated); 203 if (unlikely(avc)) 204 anon_vma_chain_free(avc); 205 } 206 return 0; 207 208 out_enomem_free_avc: 209 anon_vma_chain_free(avc); 210 out_enomem: 211 return -ENOMEM; 212 } 213 214 /* 215 * This is a useful helper function for locking the anon_vma root as 216 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 217 * have the same vma. 218 * 219 * Such anon_vma's should have the same root, so you'd expect to see 220 * just a single mutex_lock for the whole traversal. 221 */ 222 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 223 { 224 struct anon_vma *new_root = anon_vma->root; 225 if (new_root != root) { 226 if (WARN_ON_ONCE(root)) 227 up_write(&root->rwsem); 228 root = new_root; 229 down_write(&root->rwsem); 230 } 231 return root; 232 } 233 234 static inline void unlock_anon_vma_root(struct anon_vma *root) 235 { 236 if (root) 237 up_write(&root->rwsem); 238 } 239 240 /* 241 * Attach the anon_vmas from src to dst. 242 * Returns 0 on success, -ENOMEM on failure. 243 * 244 * If dst->anon_vma is NULL this function tries to find and reuse existing 245 * anon_vma which has no vmas and only one child anon_vma. This prevents 246 * degradation of anon_vma hierarchy to endless linear chain in case of 247 * constantly forking task. On the other hand, an anon_vma with more than one 248 * child isn't reused even if there was no alive vma, thus rmap walker has a 249 * good chance of avoiding scanning the whole hierarchy when it searches where 250 * page is mapped. 251 */ 252 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 253 { 254 struct anon_vma_chain *avc, *pavc; 255 struct anon_vma *root = NULL; 256 257 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 258 struct anon_vma *anon_vma; 259 260 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 261 if (unlikely(!avc)) { 262 unlock_anon_vma_root(root); 263 root = NULL; 264 avc = anon_vma_chain_alloc(GFP_KERNEL); 265 if (!avc) 266 goto enomem_failure; 267 } 268 anon_vma = pavc->anon_vma; 269 root = lock_anon_vma_root(root, anon_vma); 270 anon_vma_chain_link(dst, avc, anon_vma); 271 272 /* 273 * Reuse existing anon_vma if its degree lower than two, 274 * that means it has no vma and only one anon_vma child. 275 * 276 * Do not chose parent anon_vma, otherwise first child 277 * will always reuse it. Root anon_vma is never reused: 278 * it has self-parent reference and at least one child. 279 */ 280 if (!dst->anon_vma && anon_vma != src->anon_vma && 281 anon_vma->degree < 2) 282 dst->anon_vma = anon_vma; 283 } 284 if (dst->anon_vma) 285 dst->anon_vma->degree++; 286 unlock_anon_vma_root(root); 287 return 0; 288 289 enomem_failure: 290 unlink_anon_vmas(dst); 291 return -ENOMEM; 292 } 293 294 /* 295 * Attach vma to its own anon_vma, as well as to the anon_vmas that 296 * the corresponding VMA in the parent process is attached to. 297 * Returns 0 on success, non-zero on failure. 298 */ 299 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 300 { 301 struct anon_vma_chain *avc; 302 struct anon_vma *anon_vma; 303 int error; 304 305 /* Don't bother if the parent process has no anon_vma here. */ 306 if (!pvma->anon_vma) 307 return 0; 308 309 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 310 vma->anon_vma = NULL; 311 312 /* 313 * First, attach the new VMA to the parent VMA's anon_vmas, 314 * so rmap can find non-COWed pages in child processes. 315 */ 316 error = anon_vma_clone(vma, pvma); 317 if (error) 318 return error; 319 320 /* An existing anon_vma has been reused, all done then. */ 321 if (vma->anon_vma) 322 return 0; 323 324 /* Then add our own anon_vma. */ 325 anon_vma = anon_vma_alloc(); 326 if (!anon_vma) 327 goto out_error; 328 avc = anon_vma_chain_alloc(GFP_KERNEL); 329 if (!avc) 330 goto out_error_free_anon_vma; 331 332 /* 333 * The root anon_vma's spinlock is the lock actually used when we 334 * lock any of the anon_vmas in this anon_vma tree. 335 */ 336 anon_vma->root = pvma->anon_vma->root; 337 anon_vma->parent = pvma->anon_vma; 338 /* 339 * With refcounts, an anon_vma can stay around longer than the 340 * process it belongs to. The root anon_vma needs to be pinned until 341 * this anon_vma is freed, because the lock lives in the root. 342 */ 343 get_anon_vma(anon_vma->root); 344 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 345 vma->anon_vma = anon_vma; 346 anon_vma_lock_write(anon_vma); 347 anon_vma_chain_link(vma, avc, anon_vma); 348 anon_vma->parent->degree++; 349 anon_vma_unlock_write(anon_vma); 350 351 return 0; 352 353 out_error_free_anon_vma: 354 put_anon_vma(anon_vma); 355 out_error: 356 unlink_anon_vmas(vma); 357 return -ENOMEM; 358 } 359 360 void unlink_anon_vmas(struct vm_area_struct *vma) 361 { 362 struct anon_vma_chain *avc, *next; 363 struct anon_vma *root = NULL; 364 365 /* 366 * Unlink each anon_vma chained to the VMA. This list is ordered 367 * from newest to oldest, ensuring the root anon_vma gets freed last. 368 */ 369 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 370 struct anon_vma *anon_vma = avc->anon_vma; 371 372 root = lock_anon_vma_root(root, anon_vma); 373 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 374 375 /* 376 * Leave empty anon_vmas on the list - we'll need 377 * to free them outside the lock. 378 */ 379 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) { 380 anon_vma->parent->degree--; 381 continue; 382 } 383 384 list_del(&avc->same_vma); 385 anon_vma_chain_free(avc); 386 } 387 if (vma->anon_vma) 388 vma->anon_vma->degree--; 389 unlock_anon_vma_root(root); 390 391 /* 392 * Iterate the list once more, it now only contains empty and unlinked 393 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 394 * needing to write-acquire the anon_vma->root->rwsem. 395 */ 396 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 397 struct anon_vma *anon_vma = avc->anon_vma; 398 399 BUG_ON(anon_vma->degree); 400 put_anon_vma(anon_vma); 401 402 list_del(&avc->same_vma); 403 anon_vma_chain_free(avc); 404 } 405 } 406 407 static void anon_vma_ctor(void *data) 408 { 409 struct anon_vma *anon_vma = data; 410 411 init_rwsem(&anon_vma->rwsem); 412 atomic_set(&anon_vma->refcount, 0); 413 anon_vma->rb_root = RB_ROOT; 414 } 415 416 void __init anon_vma_init(void) 417 { 418 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 419 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 420 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 421 } 422 423 /* 424 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 425 * 426 * Since there is no serialization what so ever against page_remove_rmap() 427 * the best this function can do is return a locked anon_vma that might 428 * have been relevant to this page. 429 * 430 * The page might have been remapped to a different anon_vma or the anon_vma 431 * returned may already be freed (and even reused). 432 * 433 * In case it was remapped to a different anon_vma, the new anon_vma will be a 434 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 435 * ensure that any anon_vma obtained from the page will still be valid for as 436 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 437 * 438 * All users of this function must be very careful when walking the anon_vma 439 * chain and verify that the page in question is indeed mapped in it 440 * [ something equivalent to page_mapped_in_vma() ]. 441 * 442 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 443 * that the anon_vma pointer from page->mapping is valid if there is a 444 * mapcount, we can dereference the anon_vma after observing those. 445 */ 446 struct anon_vma *page_get_anon_vma(struct page *page) 447 { 448 struct anon_vma *anon_vma = NULL; 449 unsigned long anon_mapping; 450 451 rcu_read_lock(); 452 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 453 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 454 goto out; 455 if (!page_mapped(page)) 456 goto out; 457 458 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 459 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 460 anon_vma = NULL; 461 goto out; 462 } 463 464 /* 465 * If this page is still mapped, then its anon_vma cannot have been 466 * freed. But if it has been unmapped, we have no security against the 467 * anon_vma structure being freed and reused (for another anon_vma: 468 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 469 * above cannot corrupt). 470 */ 471 if (!page_mapped(page)) { 472 rcu_read_unlock(); 473 put_anon_vma(anon_vma); 474 return NULL; 475 } 476 out: 477 rcu_read_unlock(); 478 479 return anon_vma; 480 } 481 482 /* 483 * Similar to page_get_anon_vma() except it locks the anon_vma. 484 * 485 * Its a little more complex as it tries to keep the fast path to a single 486 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 487 * reference like with page_get_anon_vma() and then block on the mutex. 488 */ 489 struct anon_vma *page_lock_anon_vma_read(struct page *page) 490 { 491 struct anon_vma *anon_vma = NULL; 492 struct anon_vma *root_anon_vma; 493 unsigned long anon_mapping; 494 495 rcu_read_lock(); 496 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 497 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 498 goto out; 499 if (!page_mapped(page)) 500 goto out; 501 502 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 503 root_anon_vma = ACCESS_ONCE(anon_vma->root); 504 if (down_read_trylock(&root_anon_vma->rwsem)) { 505 /* 506 * If the page is still mapped, then this anon_vma is still 507 * its anon_vma, and holding the mutex ensures that it will 508 * not go away, see anon_vma_free(). 509 */ 510 if (!page_mapped(page)) { 511 up_read(&root_anon_vma->rwsem); 512 anon_vma = NULL; 513 } 514 goto out; 515 } 516 517 /* trylock failed, we got to sleep */ 518 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 519 anon_vma = NULL; 520 goto out; 521 } 522 523 if (!page_mapped(page)) { 524 rcu_read_unlock(); 525 put_anon_vma(anon_vma); 526 return NULL; 527 } 528 529 /* we pinned the anon_vma, its safe to sleep */ 530 rcu_read_unlock(); 531 anon_vma_lock_read(anon_vma); 532 533 if (atomic_dec_and_test(&anon_vma->refcount)) { 534 /* 535 * Oops, we held the last refcount, release the lock 536 * and bail -- can't simply use put_anon_vma() because 537 * we'll deadlock on the anon_vma_lock_write() recursion. 538 */ 539 anon_vma_unlock_read(anon_vma); 540 __put_anon_vma(anon_vma); 541 anon_vma = NULL; 542 } 543 544 return anon_vma; 545 546 out: 547 rcu_read_unlock(); 548 return anon_vma; 549 } 550 551 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 552 { 553 anon_vma_unlock_read(anon_vma); 554 } 555 556 /* 557 * At what user virtual address is page expected in @vma? 558 */ 559 static inline unsigned long 560 __vma_address(struct page *page, struct vm_area_struct *vma) 561 { 562 pgoff_t pgoff = page_to_pgoff(page); 563 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 564 } 565 566 inline unsigned long 567 vma_address(struct page *page, struct vm_area_struct *vma) 568 { 569 unsigned long address = __vma_address(page, vma); 570 571 /* page should be within @vma mapping range */ 572 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 573 574 return address; 575 } 576 577 /* 578 * At what user virtual address is page expected in vma? 579 * Caller should check the page is actually part of the vma. 580 */ 581 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 582 { 583 unsigned long address; 584 if (PageAnon(page)) { 585 struct anon_vma *page__anon_vma = page_anon_vma(page); 586 /* 587 * Note: swapoff's unuse_vma() is more efficient with this 588 * check, and needs it to match anon_vma when KSM is active. 589 */ 590 if (!vma->anon_vma || !page__anon_vma || 591 vma->anon_vma->root != page__anon_vma->root) 592 return -EFAULT; 593 } else if (page->mapping) { 594 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) 595 return -EFAULT; 596 } else 597 return -EFAULT; 598 address = __vma_address(page, vma); 599 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 600 return -EFAULT; 601 return address; 602 } 603 604 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 605 { 606 pgd_t *pgd; 607 pud_t *pud; 608 pmd_t *pmd = NULL; 609 pmd_t pmde; 610 611 pgd = pgd_offset(mm, address); 612 if (!pgd_present(*pgd)) 613 goto out; 614 615 pud = pud_offset(pgd, address); 616 if (!pud_present(*pud)) 617 goto out; 618 619 pmd = pmd_offset(pud, address); 620 /* 621 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at() 622 * without holding anon_vma lock for write. So when looking for a 623 * genuine pmde (in which to find pte), test present and !THP together. 624 */ 625 pmde = *pmd; 626 barrier(); 627 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 628 pmd = NULL; 629 out: 630 return pmd; 631 } 632 633 /* 634 * Check that @page is mapped at @address into @mm. 635 * 636 * If @sync is false, page_check_address may perform a racy check to avoid 637 * the page table lock when the pte is not present (helpful when reclaiming 638 * highly shared pages). 639 * 640 * On success returns with pte mapped and locked. 641 */ 642 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 643 unsigned long address, spinlock_t **ptlp, int sync) 644 { 645 pmd_t *pmd; 646 pte_t *pte; 647 spinlock_t *ptl; 648 649 if (unlikely(PageHuge(page))) { 650 /* when pud is not present, pte will be NULL */ 651 pte = huge_pte_offset(mm, address); 652 if (!pte) 653 return NULL; 654 655 ptl = huge_pte_lockptr(page_hstate(page), mm, pte); 656 goto check; 657 } 658 659 pmd = mm_find_pmd(mm, address); 660 if (!pmd) 661 return NULL; 662 663 pte = pte_offset_map(pmd, address); 664 /* Make a quick check before getting the lock */ 665 if (!sync && !pte_present(*pte)) { 666 pte_unmap(pte); 667 return NULL; 668 } 669 670 ptl = pte_lockptr(mm, pmd); 671 check: 672 spin_lock(ptl); 673 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 674 *ptlp = ptl; 675 return pte; 676 } 677 pte_unmap_unlock(pte, ptl); 678 return NULL; 679 } 680 681 /** 682 * page_mapped_in_vma - check whether a page is really mapped in a VMA 683 * @page: the page to test 684 * @vma: the VMA to test 685 * 686 * Returns 1 if the page is mapped into the page tables of the VMA, 0 687 * if the page is not mapped into the page tables of this VMA. Only 688 * valid for normal file or anonymous VMAs. 689 */ 690 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 691 { 692 unsigned long address; 693 pte_t *pte; 694 spinlock_t *ptl; 695 696 address = __vma_address(page, vma); 697 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 698 return 0; 699 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 700 if (!pte) /* the page is not in this mm */ 701 return 0; 702 pte_unmap_unlock(pte, ptl); 703 704 return 1; 705 } 706 707 struct page_referenced_arg { 708 int mapcount; 709 int referenced; 710 unsigned long vm_flags; 711 struct mem_cgroup *memcg; 712 }; 713 /* 714 * arg: page_referenced_arg will be passed 715 */ 716 static int page_referenced_one(struct page *page, struct vm_area_struct *vma, 717 unsigned long address, void *arg) 718 { 719 struct mm_struct *mm = vma->vm_mm; 720 spinlock_t *ptl; 721 int referenced = 0; 722 struct page_referenced_arg *pra = arg; 723 724 if (unlikely(PageTransHuge(page))) { 725 pmd_t *pmd; 726 727 /* 728 * rmap might return false positives; we must filter 729 * these out using page_check_address_pmd(). 730 */ 731 pmd = page_check_address_pmd(page, mm, address, 732 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl); 733 if (!pmd) 734 return SWAP_AGAIN; 735 736 if (vma->vm_flags & VM_LOCKED) { 737 spin_unlock(ptl); 738 pra->vm_flags |= VM_LOCKED; 739 return SWAP_FAIL; /* To break the loop */ 740 } 741 742 /* go ahead even if the pmd is pmd_trans_splitting() */ 743 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 744 referenced++; 745 spin_unlock(ptl); 746 } else { 747 pte_t *pte; 748 749 /* 750 * rmap might return false positives; we must filter 751 * these out using page_check_address(). 752 */ 753 pte = page_check_address(page, mm, address, &ptl, 0); 754 if (!pte) 755 return SWAP_AGAIN; 756 757 if (vma->vm_flags & VM_LOCKED) { 758 pte_unmap_unlock(pte, ptl); 759 pra->vm_flags |= VM_LOCKED; 760 return SWAP_FAIL; /* To break the loop */ 761 } 762 763 if (ptep_clear_flush_young_notify(vma, address, pte)) { 764 /* 765 * Don't treat a reference through a sequentially read 766 * mapping as such. If the page has been used in 767 * another mapping, we will catch it; if this other 768 * mapping is already gone, the unmap path will have 769 * set PG_referenced or activated the page. 770 */ 771 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 772 referenced++; 773 } 774 pte_unmap_unlock(pte, ptl); 775 } 776 777 if (referenced) { 778 pra->referenced++; 779 pra->vm_flags |= vma->vm_flags; 780 } 781 782 pra->mapcount--; 783 if (!pra->mapcount) 784 return SWAP_SUCCESS; /* To break the loop */ 785 786 return SWAP_AGAIN; 787 } 788 789 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 790 { 791 struct page_referenced_arg *pra = arg; 792 struct mem_cgroup *memcg = pra->memcg; 793 794 if (!mm_match_cgroup(vma->vm_mm, memcg)) 795 return true; 796 797 return false; 798 } 799 800 /** 801 * page_referenced - test if the page was referenced 802 * @page: the page to test 803 * @is_locked: caller holds lock on the page 804 * @memcg: target memory cgroup 805 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 806 * 807 * Quick test_and_clear_referenced for all mappings to a page, 808 * returns the number of ptes which referenced the page. 809 */ 810 int page_referenced(struct page *page, 811 int is_locked, 812 struct mem_cgroup *memcg, 813 unsigned long *vm_flags) 814 { 815 int ret; 816 int we_locked = 0; 817 struct page_referenced_arg pra = { 818 .mapcount = page_mapcount(page), 819 .memcg = memcg, 820 }; 821 struct rmap_walk_control rwc = { 822 .rmap_one = page_referenced_one, 823 .arg = (void *)&pra, 824 .anon_lock = page_lock_anon_vma_read, 825 }; 826 827 *vm_flags = 0; 828 if (!page_mapped(page)) 829 return 0; 830 831 if (!page_rmapping(page)) 832 return 0; 833 834 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 835 we_locked = trylock_page(page); 836 if (!we_locked) 837 return 1; 838 } 839 840 /* 841 * If we are reclaiming on behalf of a cgroup, skip 842 * counting on behalf of references from different 843 * cgroups 844 */ 845 if (memcg) { 846 rwc.invalid_vma = invalid_page_referenced_vma; 847 } 848 849 ret = rmap_walk(page, &rwc); 850 *vm_flags = pra.vm_flags; 851 852 if (we_locked) 853 unlock_page(page); 854 855 return pra.referenced; 856 } 857 858 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 859 unsigned long address, void *arg) 860 { 861 struct mm_struct *mm = vma->vm_mm; 862 pte_t *pte; 863 spinlock_t *ptl; 864 int ret = 0; 865 int *cleaned = arg; 866 867 pte = page_check_address(page, mm, address, &ptl, 1); 868 if (!pte) 869 goto out; 870 871 if (pte_dirty(*pte) || pte_write(*pte)) { 872 pte_t entry; 873 874 flush_cache_page(vma, address, pte_pfn(*pte)); 875 entry = ptep_clear_flush(vma, address, pte); 876 entry = pte_wrprotect(entry); 877 entry = pte_mkclean(entry); 878 set_pte_at(mm, address, pte, entry); 879 ret = 1; 880 } 881 882 pte_unmap_unlock(pte, ptl); 883 884 if (ret) { 885 mmu_notifier_invalidate_page(mm, address); 886 (*cleaned)++; 887 } 888 out: 889 return SWAP_AGAIN; 890 } 891 892 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 893 { 894 if (vma->vm_flags & VM_SHARED) 895 return false; 896 897 return true; 898 } 899 900 int page_mkclean(struct page *page) 901 { 902 int cleaned = 0; 903 struct address_space *mapping; 904 struct rmap_walk_control rwc = { 905 .arg = (void *)&cleaned, 906 .rmap_one = page_mkclean_one, 907 .invalid_vma = invalid_mkclean_vma, 908 }; 909 910 BUG_ON(!PageLocked(page)); 911 912 if (!page_mapped(page)) 913 return 0; 914 915 mapping = page_mapping(page); 916 if (!mapping) 917 return 0; 918 919 rmap_walk(page, &rwc); 920 921 return cleaned; 922 } 923 EXPORT_SYMBOL_GPL(page_mkclean); 924 925 /** 926 * page_move_anon_rmap - move a page to our anon_vma 927 * @page: the page to move to our anon_vma 928 * @vma: the vma the page belongs to 929 * @address: the user virtual address mapped 930 * 931 * When a page belongs exclusively to one process after a COW event, 932 * that page can be moved into the anon_vma that belongs to just that 933 * process, so the rmap code will not search the parent or sibling 934 * processes. 935 */ 936 void page_move_anon_rmap(struct page *page, 937 struct vm_area_struct *vma, unsigned long address) 938 { 939 struct anon_vma *anon_vma = vma->anon_vma; 940 941 VM_BUG_ON_PAGE(!PageLocked(page), page); 942 VM_BUG_ON_VMA(!anon_vma, vma); 943 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page); 944 945 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 946 page->mapping = (struct address_space *) anon_vma; 947 } 948 949 /** 950 * __page_set_anon_rmap - set up new anonymous rmap 951 * @page: Page to add to rmap 952 * @vma: VM area to add page to. 953 * @address: User virtual address of the mapping 954 * @exclusive: the page is exclusively owned by the current process 955 */ 956 static void __page_set_anon_rmap(struct page *page, 957 struct vm_area_struct *vma, unsigned long address, int exclusive) 958 { 959 struct anon_vma *anon_vma = vma->anon_vma; 960 961 BUG_ON(!anon_vma); 962 963 if (PageAnon(page)) 964 return; 965 966 /* 967 * If the page isn't exclusively mapped into this vma, 968 * we must use the _oldest_ possible anon_vma for the 969 * page mapping! 970 */ 971 if (!exclusive) 972 anon_vma = anon_vma->root; 973 974 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 975 page->mapping = (struct address_space *) anon_vma; 976 page->index = linear_page_index(vma, address); 977 } 978 979 /** 980 * __page_check_anon_rmap - sanity check anonymous rmap addition 981 * @page: the page to add the mapping to 982 * @vma: the vm area in which the mapping is added 983 * @address: the user virtual address mapped 984 */ 985 static void __page_check_anon_rmap(struct page *page, 986 struct vm_area_struct *vma, unsigned long address) 987 { 988 #ifdef CONFIG_DEBUG_VM 989 /* 990 * The page's anon-rmap details (mapping and index) are guaranteed to 991 * be set up correctly at this point. 992 * 993 * We have exclusion against page_add_anon_rmap because the caller 994 * always holds the page locked, except if called from page_dup_rmap, 995 * in which case the page is already known to be setup. 996 * 997 * We have exclusion against page_add_new_anon_rmap because those pages 998 * are initially only visible via the pagetables, and the pte is locked 999 * over the call to page_add_new_anon_rmap. 1000 */ 1001 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1002 BUG_ON(page->index != linear_page_index(vma, address)); 1003 #endif 1004 } 1005 1006 /** 1007 * page_add_anon_rmap - add pte mapping to an anonymous page 1008 * @page: the page to add the mapping to 1009 * @vma: the vm area in which the mapping is added 1010 * @address: the user virtual address mapped 1011 * 1012 * The caller needs to hold the pte lock, and the page must be locked in 1013 * the anon_vma case: to serialize mapping,index checking after setting, 1014 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1015 * (but PageKsm is never downgraded to PageAnon). 1016 */ 1017 void page_add_anon_rmap(struct page *page, 1018 struct vm_area_struct *vma, unsigned long address) 1019 { 1020 do_page_add_anon_rmap(page, vma, address, 0); 1021 } 1022 1023 /* 1024 * Special version of the above for do_swap_page, which often runs 1025 * into pages that are exclusively owned by the current process. 1026 * Everybody else should continue to use page_add_anon_rmap above. 1027 */ 1028 void do_page_add_anon_rmap(struct page *page, 1029 struct vm_area_struct *vma, unsigned long address, int exclusive) 1030 { 1031 int first = atomic_inc_and_test(&page->_mapcount); 1032 if (first) { 1033 /* 1034 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1035 * these counters are not modified in interrupt context, and 1036 * pte lock(a spinlock) is held, which implies preemption 1037 * disabled. 1038 */ 1039 if (PageTransHuge(page)) 1040 __inc_zone_page_state(page, 1041 NR_ANON_TRANSPARENT_HUGEPAGES); 1042 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1043 hpage_nr_pages(page)); 1044 } 1045 if (unlikely(PageKsm(page))) 1046 return; 1047 1048 VM_BUG_ON_PAGE(!PageLocked(page), page); 1049 /* address might be in next vma when migration races vma_adjust */ 1050 if (first) 1051 __page_set_anon_rmap(page, vma, address, exclusive); 1052 else 1053 __page_check_anon_rmap(page, vma, address); 1054 } 1055 1056 /** 1057 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1058 * @page: the page to add the mapping to 1059 * @vma: the vm area in which the mapping is added 1060 * @address: the user virtual address mapped 1061 * 1062 * Same as page_add_anon_rmap but must only be called on *new* pages. 1063 * This means the inc-and-test can be bypassed. 1064 * Page does not have to be locked. 1065 */ 1066 void page_add_new_anon_rmap(struct page *page, 1067 struct vm_area_struct *vma, unsigned long address) 1068 { 1069 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1070 SetPageSwapBacked(page); 1071 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1072 if (PageTransHuge(page)) 1073 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1074 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1075 hpage_nr_pages(page)); 1076 __page_set_anon_rmap(page, vma, address, 1); 1077 } 1078 1079 /** 1080 * page_add_file_rmap - add pte mapping to a file page 1081 * @page: the page to add the mapping to 1082 * 1083 * The caller needs to hold the pte lock. 1084 */ 1085 void page_add_file_rmap(struct page *page) 1086 { 1087 struct mem_cgroup *memcg; 1088 1089 memcg = mem_cgroup_begin_page_stat(page); 1090 if (atomic_inc_and_test(&page->_mapcount)) { 1091 __inc_zone_page_state(page, NR_FILE_MAPPED); 1092 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); 1093 } 1094 mem_cgroup_end_page_stat(memcg); 1095 } 1096 1097 static void page_remove_file_rmap(struct page *page) 1098 { 1099 struct mem_cgroup *memcg; 1100 1101 memcg = mem_cgroup_begin_page_stat(page); 1102 1103 /* page still mapped by someone else? */ 1104 if (!atomic_add_negative(-1, &page->_mapcount)) 1105 goto out; 1106 1107 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1108 if (unlikely(PageHuge(page))) 1109 goto out; 1110 1111 /* 1112 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1113 * these counters are not modified in interrupt context, and 1114 * pte lock(a spinlock) is held, which implies preemption disabled. 1115 */ 1116 __dec_zone_page_state(page, NR_FILE_MAPPED); 1117 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); 1118 1119 if (unlikely(PageMlocked(page))) 1120 clear_page_mlock(page); 1121 out: 1122 mem_cgroup_end_page_stat(memcg); 1123 } 1124 1125 /** 1126 * page_remove_rmap - take down pte mapping from a page 1127 * @page: page to remove mapping from 1128 * 1129 * The caller needs to hold the pte lock. 1130 */ 1131 void page_remove_rmap(struct page *page) 1132 { 1133 if (!PageAnon(page)) { 1134 page_remove_file_rmap(page); 1135 return; 1136 } 1137 1138 /* page still mapped by someone else? */ 1139 if (!atomic_add_negative(-1, &page->_mapcount)) 1140 return; 1141 1142 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1143 if (unlikely(PageHuge(page))) 1144 return; 1145 1146 /* 1147 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1148 * these counters are not modified in interrupt context, and 1149 * pte lock(a spinlock) is held, which implies preemption disabled. 1150 */ 1151 if (PageTransHuge(page)) 1152 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1153 1154 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1155 -hpage_nr_pages(page)); 1156 1157 if (unlikely(PageMlocked(page))) 1158 clear_page_mlock(page); 1159 1160 /* 1161 * It would be tidy to reset the PageAnon mapping here, 1162 * but that might overwrite a racing page_add_anon_rmap 1163 * which increments mapcount after us but sets mapping 1164 * before us: so leave the reset to free_hot_cold_page, 1165 * and remember that it's only reliable while mapped. 1166 * Leaving it set also helps swapoff to reinstate ptes 1167 * faster for those pages still in swapcache. 1168 */ 1169 } 1170 1171 /* 1172 * @arg: enum ttu_flags will be passed to this argument 1173 */ 1174 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1175 unsigned long address, void *arg) 1176 { 1177 struct mm_struct *mm = vma->vm_mm; 1178 pte_t *pte; 1179 pte_t pteval; 1180 spinlock_t *ptl; 1181 int ret = SWAP_AGAIN; 1182 enum ttu_flags flags = (enum ttu_flags)arg; 1183 1184 pte = page_check_address(page, mm, address, &ptl, 0); 1185 if (!pte) 1186 goto out; 1187 1188 /* 1189 * If the page is mlock()d, we cannot swap it out. 1190 * If it's recently referenced (perhaps page_referenced 1191 * skipped over this mm) then we should reactivate it. 1192 */ 1193 if (!(flags & TTU_IGNORE_MLOCK)) { 1194 if (vma->vm_flags & VM_LOCKED) 1195 goto out_mlock; 1196 1197 if (flags & TTU_MUNLOCK) 1198 goto out_unmap; 1199 } 1200 if (!(flags & TTU_IGNORE_ACCESS)) { 1201 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1202 ret = SWAP_FAIL; 1203 goto out_unmap; 1204 } 1205 } 1206 1207 /* Nuke the page table entry. */ 1208 flush_cache_page(vma, address, page_to_pfn(page)); 1209 pteval = ptep_clear_flush(vma, address, pte); 1210 1211 /* Move the dirty bit to the physical page now the pte is gone. */ 1212 if (pte_dirty(pteval)) 1213 set_page_dirty(page); 1214 1215 /* Update high watermark before we lower rss */ 1216 update_hiwater_rss(mm); 1217 1218 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1219 if (!PageHuge(page)) { 1220 if (PageAnon(page)) 1221 dec_mm_counter(mm, MM_ANONPAGES); 1222 else 1223 dec_mm_counter(mm, MM_FILEPAGES); 1224 } 1225 set_pte_at(mm, address, pte, 1226 swp_entry_to_pte(make_hwpoison_entry(page))); 1227 } else if (pte_unused(pteval)) { 1228 /* 1229 * The guest indicated that the page content is of no 1230 * interest anymore. Simply discard the pte, vmscan 1231 * will take care of the rest. 1232 */ 1233 if (PageAnon(page)) 1234 dec_mm_counter(mm, MM_ANONPAGES); 1235 else 1236 dec_mm_counter(mm, MM_FILEPAGES); 1237 } else if (PageAnon(page)) { 1238 swp_entry_t entry = { .val = page_private(page) }; 1239 pte_t swp_pte; 1240 1241 if (PageSwapCache(page)) { 1242 /* 1243 * Store the swap location in the pte. 1244 * See handle_pte_fault() ... 1245 */ 1246 if (swap_duplicate(entry) < 0) { 1247 set_pte_at(mm, address, pte, pteval); 1248 ret = SWAP_FAIL; 1249 goto out_unmap; 1250 } 1251 if (list_empty(&mm->mmlist)) { 1252 spin_lock(&mmlist_lock); 1253 if (list_empty(&mm->mmlist)) 1254 list_add(&mm->mmlist, &init_mm.mmlist); 1255 spin_unlock(&mmlist_lock); 1256 } 1257 dec_mm_counter(mm, MM_ANONPAGES); 1258 inc_mm_counter(mm, MM_SWAPENTS); 1259 } else if (IS_ENABLED(CONFIG_MIGRATION)) { 1260 /* 1261 * Store the pfn of the page in a special migration 1262 * pte. do_swap_page() will wait until the migration 1263 * pte is removed and then restart fault handling. 1264 */ 1265 BUG_ON(!(flags & TTU_MIGRATION)); 1266 entry = make_migration_entry(page, pte_write(pteval)); 1267 } 1268 swp_pte = swp_entry_to_pte(entry); 1269 if (pte_soft_dirty(pteval)) 1270 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1271 set_pte_at(mm, address, pte, swp_pte); 1272 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1273 (flags & TTU_MIGRATION)) { 1274 /* Establish migration entry for a file page */ 1275 swp_entry_t entry; 1276 entry = make_migration_entry(page, pte_write(pteval)); 1277 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1278 } else 1279 dec_mm_counter(mm, MM_FILEPAGES); 1280 1281 page_remove_rmap(page); 1282 page_cache_release(page); 1283 1284 out_unmap: 1285 pte_unmap_unlock(pte, ptl); 1286 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK)) 1287 mmu_notifier_invalidate_page(mm, address); 1288 out: 1289 return ret; 1290 1291 out_mlock: 1292 pte_unmap_unlock(pte, ptl); 1293 1294 1295 /* 1296 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1297 * unstable result and race. Plus, We can't wait here because 1298 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem. 1299 * if trylock failed, the page remain in evictable lru and later 1300 * vmscan could retry to move the page to unevictable lru if the 1301 * page is actually mlocked. 1302 */ 1303 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1304 if (vma->vm_flags & VM_LOCKED) { 1305 mlock_vma_page(page); 1306 ret = SWAP_MLOCK; 1307 } 1308 up_read(&vma->vm_mm->mmap_sem); 1309 } 1310 return ret; 1311 } 1312 1313 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1314 { 1315 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1316 1317 if (!maybe_stack) 1318 return false; 1319 1320 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1321 VM_STACK_INCOMPLETE_SETUP) 1322 return true; 1323 1324 return false; 1325 } 1326 1327 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1328 { 1329 return is_vma_temporary_stack(vma); 1330 } 1331 1332 static int page_not_mapped(struct page *page) 1333 { 1334 return !page_mapped(page); 1335 }; 1336 1337 /** 1338 * try_to_unmap - try to remove all page table mappings to a page 1339 * @page: the page to get unmapped 1340 * @flags: action and flags 1341 * 1342 * Tries to remove all the page table entries which are mapping this 1343 * page, used in the pageout path. Caller must hold the page lock. 1344 * Return values are: 1345 * 1346 * SWAP_SUCCESS - we succeeded in removing all mappings 1347 * SWAP_AGAIN - we missed a mapping, try again later 1348 * SWAP_FAIL - the page is unswappable 1349 * SWAP_MLOCK - page is mlocked. 1350 */ 1351 int try_to_unmap(struct page *page, enum ttu_flags flags) 1352 { 1353 int ret; 1354 struct rmap_walk_control rwc = { 1355 .rmap_one = try_to_unmap_one, 1356 .arg = (void *)flags, 1357 .done = page_not_mapped, 1358 .anon_lock = page_lock_anon_vma_read, 1359 }; 1360 1361 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page); 1362 1363 /* 1364 * During exec, a temporary VMA is setup and later moved. 1365 * The VMA is moved under the anon_vma lock but not the 1366 * page tables leading to a race where migration cannot 1367 * find the migration ptes. Rather than increasing the 1368 * locking requirements of exec(), migration skips 1369 * temporary VMAs until after exec() completes. 1370 */ 1371 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) 1372 rwc.invalid_vma = invalid_migration_vma; 1373 1374 ret = rmap_walk(page, &rwc); 1375 1376 if (ret != SWAP_MLOCK && !page_mapped(page)) 1377 ret = SWAP_SUCCESS; 1378 return ret; 1379 } 1380 1381 /** 1382 * try_to_munlock - try to munlock a page 1383 * @page: the page to be munlocked 1384 * 1385 * Called from munlock code. Checks all of the VMAs mapping the page 1386 * to make sure nobody else has this page mlocked. The page will be 1387 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1388 * 1389 * Return values are: 1390 * 1391 * SWAP_AGAIN - no vma is holding page mlocked, or, 1392 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1393 * SWAP_FAIL - page cannot be located at present 1394 * SWAP_MLOCK - page is now mlocked. 1395 */ 1396 int try_to_munlock(struct page *page) 1397 { 1398 int ret; 1399 struct rmap_walk_control rwc = { 1400 .rmap_one = try_to_unmap_one, 1401 .arg = (void *)TTU_MUNLOCK, 1402 .done = page_not_mapped, 1403 .anon_lock = page_lock_anon_vma_read, 1404 1405 }; 1406 1407 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 1408 1409 ret = rmap_walk(page, &rwc); 1410 return ret; 1411 } 1412 1413 void __put_anon_vma(struct anon_vma *anon_vma) 1414 { 1415 struct anon_vma *root = anon_vma->root; 1416 1417 anon_vma_free(anon_vma); 1418 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1419 anon_vma_free(root); 1420 } 1421 1422 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 1423 struct rmap_walk_control *rwc) 1424 { 1425 struct anon_vma *anon_vma; 1426 1427 if (rwc->anon_lock) 1428 return rwc->anon_lock(page); 1429 1430 /* 1431 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1432 * because that depends on page_mapped(); but not all its usages 1433 * are holding mmap_sem. Users without mmap_sem are required to 1434 * take a reference count to prevent the anon_vma disappearing 1435 */ 1436 anon_vma = page_anon_vma(page); 1437 if (!anon_vma) 1438 return NULL; 1439 1440 anon_vma_lock_read(anon_vma); 1441 return anon_vma; 1442 } 1443 1444 /* 1445 * rmap_walk_anon - do something to anonymous page using the object-based 1446 * rmap method 1447 * @page: the page to be handled 1448 * @rwc: control variable according to each walk type 1449 * 1450 * Find all the mappings of a page using the mapping pointer and the vma chains 1451 * contained in the anon_vma struct it points to. 1452 * 1453 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1454 * where the page was found will be held for write. So, we won't recheck 1455 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1456 * LOCKED. 1457 */ 1458 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc) 1459 { 1460 struct anon_vma *anon_vma; 1461 pgoff_t pgoff; 1462 struct anon_vma_chain *avc; 1463 int ret = SWAP_AGAIN; 1464 1465 anon_vma = rmap_walk_anon_lock(page, rwc); 1466 if (!anon_vma) 1467 return ret; 1468 1469 pgoff = page_to_pgoff(page); 1470 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1471 struct vm_area_struct *vma = avc->vma; 1472 unsigned long address = vma_address(page, vma); 1473 1474 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1475 continue; 1476 1477 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1478 if (ret != SWAP_AGAIN) 1479 break; 1480 if (rwc->done && rwc->done(page)) 1481 break; 1482 } 1483 anon_vma_unlock_read(anon_vma); 1484 return ret; 1485 } 1486 1487 /* 1488 * rmap_walk_file - do something to file page using the object-based rmap method 1489 * @page: the page to be handled 1490 * @rwc: control variable according to each walk type 1491 * 1492 * Find all the mappings of a page using the mapping pointer and the vma chains 1493 * contained in the address_space struct it points to. 1494 * 1495 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1496 * where the page was found will be held for write. So, we won't recheck 1497 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1498 * LOCKED. 1499 */ 1500 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc) 1501 { 1502 struct address_space *mapping = page->mapping; 1503 pgoff_t pgoff; 1504 struct vm_area_struct *vma; 1505 int ret = SWAP_AGAIN; 1506 1507 /* 1508 * The page lock not only makes sure that page->mapping cannot 1509 * suddenly be NULLified by truncation, it makes sure that the 1510 * structure at mapping cannot be freed and reused yet, 1511 * so we can safely take mapping->i_mmap_rwsem. 1512 */ 1513 VM_BUG_ON_PAGE(!PageLocked(page), page); 1514 1515 if (!mapping) 1516 return ret; 1517 1518 pgoff = page_to_pgoff(page); 1519 i_mmap_lock_read(mapping); 1520 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1521 unsigned long address = vma_address(page, vma); 1522 1523 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1524 continue; 1525 1526 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1527 if (ret != SWAP_AGAIN) 1528 goto done; 1529 if (rwc->done && rwc->done(page)) 1530 goto done; 1531 } 1532 1533 done: 1534 i_mmap_unlock_read(mapping); 1535 return ret; 1536 } 1537 1538 int rmap_walk(struct page *page, struct rmap_walk_control *rwc) 1539 { 1540 if (unlikely(PageKsm(page))) 1541 return rmap_walk_ksm(page, rwc); 1542 else if (PageAnon(page)) 1543 return rmap_walk_anon(page, rwc); 1544 else 1545 return rmap_walk_file(page, rwc); 1546 } 1547 1548 #ifdef CONFIG_HUGETLB_PAGE 1549 /* 1550 * The following three functions are for anonymous (private mapped) hugepages. 1551 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1552 * and no lru code, because we handle hugepages differently from common pages. 1553 */ 1554 static void __hugepage_set_anon_rmap(struct page *page, 1555 struct vm_area_struct *vma, unsigned long address, int exclusive) 1556 { 1557 struct anon_vma *anon_vma = vma->anon_vma; 1558 1559 BUG_ON(!anon_vma); 1560 1561 if (PageAnon(page)) 1562 return; 1563 if (!exclusive) 1564 anon_vma = anon_vma->root; 1565 1566 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1567 page->mapping = (struct address_space *) anon_vma; 1568 page->index = linear_page_index(vma, address); 1569 } 1570 1571 void hugepage_add_anon_rmap(struct page *page, 1572 struct vm_area_struct *vma, unsigned long address) 1573 { 1574 struct anon_vma *anon_vma = vma->anon_vma; 1575 int first; 1576 1577 BUG_ON(!PageLocked(page)); 1578 BUG_ON(!anon_vma); 1579 /* address might be in next vma when migration races vma_adjust */ 1580 first = atomic_inc_and_test(&page->_mapcount); 1581 if (first) 1582 __hugepage_set_anon_rmap(page, vma, address, 0); 1583 } 1584 1585 void hugepage_add_new_anon_rmap(struct page *page, 1586 struct vm_area_struct *vma, unsigned long address) 1587 { 1588 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1589 atomic_set(&page->_mapcount, 0); 1590 __hugepage_set_anon_rmap(page, vma, address, 1); 1591 } 1592 #endif /* CONFIG_HUGETLB_PAGE */ 1593