xref: /openbmc/linux/mm/readahead.c (revision f7777dcc)
1 /*
2  * mm/readahead.c - address_space-level file readahead.
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 09Apr2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/fs.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/export.h>
15 #include <linux/blkdev.h>
16 #include <linux/backing-dev.h>
17 #include <linux/task_io_accounting_ops.h>
18 #include <linux/pagevec.h>
19 #include <linux/pagemap.h>
20 #include <linux/syscalls.h>
21 #include <linux/file.h>
22 
23 /*
24  * Initialise a struct file's readahead state.  Assumes that the caller has
25  * memset *ra to zero.
26  */
27 void
28 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
29 {
30 	ra->ra_pages = mapping->backing_dev_info->ra_pages;
31 	ra->prev_pos = -1;
32 }
33 EXPORT_SYMBOL_GPL(file_ra_state_init);
34 
35 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
36 
37 /*
38  * see if a page needs releasing upon read_cache_pages() failure
39  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
40  *   before calling, such as the NFS fs marking pages that are cached locally
41  *   on disk, thus we need to give the fs a chance to clean up in the event of
42  *   an error
43  */
44 static void read_cache_pages_invalidate_page(struct address_space *mapping,
45 					     struct page *page)
46 {
47 	if (page_has_private(page)) {
48 		if (!trylock_page(page))
49 			BUG();
50 		page->mapping = mapping;
51 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
52 		page->mapping = NULL;
53 		unlock_page(page);
54 	}
55 	page_cache_release(page);
56 }
57 
58 /*
59  * release a list of pages, invalidating them first if need be
60  */
61 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
62 					      struct list_head *pages)
63 {
64 	struct page *victim;
65 
66 	while (!list_empty(pages)) {
67 		victim = list_to_page(pages);
68 		list_del(&victim->lru);
69 		read_cache_pages_invalidate_page(mapping, victim);
70 	}
71 }
72 
73 /**
74  * read_cache_pages - populate an address space with some pages & start reads against them
75  * @mapping: the address_space
76  * @pages: The address of a list_head which contains the target pages.  These
77  *   pages have their ->index populated and are otherwise uninitialised.
78  * @filler: callback routine for filling a single page.
79  * @data: private data for the callback routine.
80  *
81  * Hides the details of the LRU cache etc from the filesystems.
82  */
83 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
84 			int (*filler)(void *, struct page *), void *data)
85 {
86 	struct page *page;
87 	int ret = 0;
88 
89 	while (!list_empty(pages)) {
90 		page = list_to_page(pages);
91 		list_del(&page->lru);
92 		if (add_to_page_cache_lru(page, mapping,
93 					page->index, GFP_KERNEL)) {
94 			read_cache_pages_invalidate_page(mapping, page);
95 			continue;
96 		}
97 		page_cache_release(page);
98 
99 		ret = filler(data, page);
100 		if (unlikely(ret)) {
101 			read_cache_pages_invalidate_pages(mapping, pages);
102 			break;
103 		}
104 		task_io_account_read(PAGE_CACHE_SIZE);
105 	}
106 	return ret;
107 }
108 
109 EXPORT_SYMBOL(read_cache_pages);
110 
111 static int read_pages(struct address_space *mapping, struct file *filp,
112 		struct list_head *pages, unsigned nr_pages)
113 {
114 	struct blk_plug plug;
115 	unsigned page_idx;
116 	int ret;
117 
118 	blk_start_plug(&plug);
119 
120 	if (mapping->a_ops->readpages) {
121 		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
122 		/* Clean up the remaining pages */
123 		put_pages_list(pages);
124 		goto out;
125 	}
126 
127 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
128 		struct page *page = list_to_page(pages);
129 		list_del(&page->lru);
130 		if (!add_to_page_cache_lru(page, mapping,
131 					page->index, GFP_KERNEL)) {
132 			mapping->a_ops->readpage(filp, page);
133 		}
134 		page_cache_release(page);
135 	}
136 	ret = 0;
137 
138 out:
139 	blk_finish_plug(&plug);
140 
141 	return ret;
142 }
143 
144 /*
145  * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
146  * the pages first, then submits them all for I/O. This avoids the very bad
147  * behaviour which would occur if page allocations are causing VM writeback.
148  * We really don't want to intermingle reads and writes like that.
149  *
150  * Returns the number of pages requested, or the maximum amount of I/O allowed.
151  */
152 static int
153 __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
154 			pgoff_t offset, unsigned long nr_to_read,
155 			unsigned long lookahead_size)
156 {
157 	struct inode *inode = mapping->host;
158 	struct page *page;
159 	unsigned long end_index;	/* The last page we want to read */
160 	LIST_HEAD(page_pool);
161 	int page_idx;
162 	int ret = 0;
163 	loff_t isize = i_size_read(inode);
164 
165 	if (isize == 0)
166 		goto out;
167 
168 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
169 
170 	/*
171 	 * Preallocate as many pages as we will need.
172 	 */
173 	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
174 		pgoff_t page_offset = offset + page_idx;
175 
176 		if (page_offset > end_index)
177 			break;
178 
179 		rcu_read_lock();
180 		page = radix_tree_lookup(&mapping->page_tree, page_offset);
181 		rcu_read_unlock();
182 		if (page)
183 			continue;
184 
185 		page = page_cache_alloc_readahead(mapping);
186 		if (!page)
187 			break;
188 		page->index = page_offset;
189 		list_add(&page->lru, &page_pool);
190 		if (page_idx == nr_to_read - lookahead_size)
191 			SetPageReadahead(page);
192 		ret++;
193 	}
194 
195 	/*
196 	 * Now start the IO.  We ignore I/O errors - if the page is not
197 	 * uptodate then the caller will launch readpage again, and
198 	 * will then handle the error.
199 	 */
200 	if (ret)
201 		read_pages(mapping, filp, &page_pool, ret);
202 	BUG_ON(!list_empty(&page_pool));
203 out:
204 	return ret;
205 }
206 
207 /*
208  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
209  * memory at once.
210  */
211 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
212 		pgoff_t offset, unsigned long nr_to_read)
213 {
214 	int ret = 0;
215 
216 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
217 		return -EINVAL;
218 
219 	nr_to_read = max_sane_readahead(nr_to_read);
220 	while (nr_to_read) {
221 		int err;
222 
223 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
224 
225 		if (this_chunk > nr_to_read)
226 			this_chunk = nr_to_read;
227 		err = __do_page_cache_readahead(mapping, filp,
228 						offset, this_chunk, 0);
229 		if (err < 0) {
230 			ret = err;
231 			break;
232 		}
233 		ret += err;
234 		offset += this_chunk;
235 		nr_to_read -= this_chunk;
236 	}
237 	return ret;
238 }
239 
240 /*
241  * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
242  * sensible upper limit.
243  */
244 unsigned long max_sane_readahead(unsigned long nr)
245 {
246 	return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
247 		+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
248 }
249 
250 /*
251  * Submit IO for the read-ahead request in file_ra_state.
252  */
253 unsigned long ra_submit(struct file_ra_state *ra,
254 		       struct address_space *mapping, struct file *filp)
255 {
256 	int actual;
257 
258 	actual = __do_page_cache_readahead(mapping, filp,
259 					ra->start, ra->size, ra->async_size);
260 
261 	return actual;
262 }
263 
264 /*
265  * Set the initial window size, round to next power of 2 and square
266  * for small size, x 4 for medium, and x 2 for large
267  * for 128k (32 page) max ra
268  * 1-8 page = 32k initial, > 8 page = 128k initial
269  */
270 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
271 {
272 	unsigned long newsize = roundup_pow_of_two(size);
273 
274 	if (newsize <= max / 32)
275 		newsize = newsize * 4;
276 	else if (newsize <= max / 4)
277 		newsize = newsize * 2;
278 	else
279 		newsize = max;
280 
281 	return newsize;
282 }
283 
284 /*
285  *  Get the previous window size, ramp it up, and
286  *  return it as the new window size.
287  */
288 static unsigned long get_next_ra_size(struct file_ra_state *ra,
289 						unsigned long max)
290 {
291 	unsigned long cur = ra->size;
292 	unsigned long newsize;
293 
294 	if (cur < max / 16)
295 		newsize = 4 * cur;
296 	else
297 		newsize = 2 * cur;
298 
299 	return min(newsize, max);
300 }
301 
302 /*
303  * On-demand readahead design.
304  *
305  * The fields in struct file_ra_state represent the most-recently-executed
306  * readahead attempt:
307  *
308  *                        |<----- async_size ---------|
309  *     |------------------- size -------------------->|
310  *     |==================#===========================|
311  *     ^start             ^page marked with PG_readahead
312  *
313  * To overlap application thinking time and disk I/O time, we do
314  * `readahead pipelining': Do not wait until the application consumed all
315  * readahead pages and stalled on the missing page at readahead_index;
316  * Instead, submit an asynchronous readahead I/O as soon as there are
317  * only async_size pages left in the readahead window. Normally async_size
318  * will be equal to size, for maximum pipelining.
319  *
320  * In interleaved sequential reads, concurrent streams on the same fd can
321  * be invalidating each other's readahead state. So we flag the new readahead
322  * page at (start+size-async_size) with PG_readahead, and use it as readahead
323  * indicator. The flag won't be set on already cached pages, to avoid the
324  * readahead-for-nothing fuss, saving pointless page cache lookups.
325  *
326  * prev_pos tracks the last visited byte in the _previous_ read request.
327  * It should be maintained by the caller, and will be used for detecting
328  * small random reads. Note that the readahead algorithm checks loosely
329  * for sequential patterns. Hence interleaved reads might be served as
330  * sequential ones.
331  *
332  * There is a special-case: if the first page which the application tries to
333  * read happens to be the first page of the file, it is assumed that a linear
334  * read is about to happen and the window is immediately set to the initial size
335  * based on I/O request size and the max_readahead.
336  *
337  * The code ramps up the readahead size aggressively at first, but slow down as
338  * it approaches max_readhead.
339  */
340 
341 /*
342  * Count contiguously cached pages from @offset-1 to @offset-@max,
343  * this count is a conservative estimation of
344  * 	- length of the sequential read sequence, or
345  * 	- thrashing threshold in memory tight systems
346  */
347 static pgoff_t count_history_pages(struct address_space *mapping,
348 				   struct file_ra_state *ra,
349 				   pgoff_t offset, unsigned long max)
350 {
351 	pgoff_t head;
352 
353 	rcu_read_lock();
354 	head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);
355 	rcu_read_unlock();
356 
357 	return offset - 1 - head;
358 }
359 
360 /*
361  * page cache context based read-ahead
362  */
363 static int try_context_readahead(struct address_space *mapping,
364 				 struct file_ra_state *ra,
365 				 pgoff_t offset,
366 				 unsigned long req_size,
367 				 unsigned long max)
368 {
369 	pgoff_t size;
370 
371 	size = count_history_pages(mapping, ra, offset, max);
372 
373 	/*
374 	 * not enough history pages:
375 	 * it could be a random read
376 	 */
377 	if (size <= req_size)
378 		return 0;
379 
380 	/*
381 	 * starts from beginning of file:
382 	 * it is a strong indication of long-run stream (or whole-file-read)
383 	 */
384 	if (size >= offset)
385 		size *= 2;
386 
387 	ra->start = offset;
388 	ra->size = min(size + req_size, max);
389 	ra->async_size = 1;
390 
391 	return 1;
392 }
393 
394 /*
395  * A minimal readahead algorithm for trivial sequential/random reads.
396  */
397 static unsigned long
398 ondemand_readahead(struct address_space *mapping,
399 		   struct file_ra_state *ra, struct file *filp,
400 		   bool hit_readahead_marker, pgoff_t offset,
401 		   unsigned long req_size)
402 {
403 	unsigned long max = max_sane_readahead(ra->ra_pages);
404 
405 	/*
406 	 * start of file
407 	 */
408 	if (!offset)
409 		goto initial_readahead;
410 
411 	/*
412 	 * It's the expected callback offset, assume sequential access.
413 	 * Ramp up sizes, and push forward the readahead window.
414 	 */
415 	if ((offset == (ra->start + ra->size - ra->async_size) ||
416 	     offset == (ra->start + ra->size))) {
417 		ra->start += ra->size;
418 		ra->size = get_next_ra_size(ra, max);
419 		ra->async_size = ra->size;
420 		goto readit;
421 	}
422 
423 	/*
424 	 * Hit a marked page without valid readahead state.
425 	 * E.g. interleaved reads.
426 	 * Query the pagecache for async_size, which normally equals to
427 	 * readahead size. Ramp it up and use it as the new readahead size.
428 	 */
429 	if (hit_readahead_marker) {
430 		pgoff_t start;
431 
432 		rcu_read_lock();
433 		start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
434 		rcu_read_unlock();
435 
436 		if (!start || start - offset > max)
437 			return 0;
438 
439 		ra->start = start;
440 		ra->size = start - offset;	/* old async_size */
441 		ra->size += req_size;
442 		ra->size = get_next_ra_size(ra, max);
443 		ra->async_size = ra->size;
444 		goto readit;
445 	}
446 
447 	/*
448 	 * oversize read
449 	 */
450 	if (req_size > max)
451 		goto initial_readahead;
452 
453 	/*
454 	 * sequential cache miss
455 	 */
456 	if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
457 		goto initial_readahead;
458 
459 	/*
460 	 * Query the page cache and look for the traces(cached history pages)
461 	 * that a sequential stream would leave behind.
462 	 */
463 	if (try_context_readahead(mapping, ra, offset, req_size, max))
464 		goto readit;
465 
466 	/*
467 	 * standalone, small random read
468 	 * Read as is, and do not pollute the readahead state.
469 	 */
470 	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
471 
472 initial_readahead:
473 	ra->start = offset;
474 	ra->size = get_init_ra_size(req_size, max);
475 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
476 
477 readit:
478 	/*
479 	 * Will this read hit the readahead marker made by itself?
480 	 * If so, trigger the readahead marker hit now, and merge
481 	 * the resulted next readahead window into the current one.
482 	 */
483 	if (offset == ra->start && ra->size == ra->async_size) {
484 		ra->async_size = get_next_ra_size(ra, max);
485 		ra->size += ra->async_size;
486 	}
487 
488 	return ra_submit(ra, mapping, filp);
489 }
490 
491 /**
492  * page_cache_sync_readahead - generic file readahead
493  * @mapping: address_space which holds the pagecache and I/O vectors
494  * @ra: file_ra_state which holds the readahead state
495  * @filp: passed on to ->readpage() and ->readpages()
496  * @offset: start offset into @mapping, in pagecache page-sized units
497  * @req_size: hint: total size of the read which the caller is performing in
498  *            pagecache pages
499  *
500  * page_cache_sync_readahead() should be called when a cache miss happened:
501  * it will submit the read.  The readahead logic may decide to piggyback more
502  * pages onto the read request if access patterns suggest it will improve
503  * performance.
504  */
505 void page_cache_sync_readahead(struct address_space *mapping,
506 			       struct file_ra_state *ra, struct file *filp,
507 			       pgoff_t offset, unsigned long req_size)
508 {
509 	/* no read-ahead */
510 	if (!ra->ra_pages)
511 		return;
512 
513 	/* be dumb */
514 	if (filp && (filp->f_mode & FMODE_RANDOM)) {
515 		force_page_cache_readahead(mapping, filp, offset, req_size);
516 		return;
517 	}
518 
519 	/* do read-ahead */
520 	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
521 }
522 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
523 
524 /**
525  * page_cache_async_readahead - file readahead for marked pages
526  * @mapping: address_space which holds the pagecache and I/O vectors
527  * @ra: file_ra_state which holds the readahead state
528  * @filp: passed on to ->readpage() and ->readpages()
529  * @page: the page at @offset which has the PG_readahead flag set
530  * @offset: start offset into @mapping, in pagecache page-sized units
531  * @req_size: hint: total size of the read which the caller is performing in
532  *            pagecache pages
533  *
534  * page_cache_async_readahead() should be called when a page is used which
535  * has the PG_readahead flag; this is a marker to suggest that the application
536  * has used up enough of the readahead window that we should start pulling in
537  * more pages.
538  */
539 void
540 page_cache_async_readahead(struct address_space *mapping,
541 			   struct file_ra_state *ra, struct file *filp,
542 			   struct page *page, pgoff_t offset,
543 			   unsigned long req_size)
544 {
545 	/* no read-ahead */
546 	if (!ra->ra_pages)
547 		return;
548 
549 	/*
550 	 * Same bit is used for PG_readahead and PG_reclaim.
551 	 */
552 	if (PageWriteback(page))
553 		return;
554 
555 	ClearPageReadahead(page);
556 
557 	/*
558 	 * Defer asynchronous read-ahead on IO congestion.
559 	 */
560 	if (bdi_read_congested(mapping->backing_dev_info))
561 		return;
562 
563 	/* do read-ahead */
564 	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
565 }
566 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
567 
568 static ssize_t
569 do_readahead(struct address_space *mapping, struct file *filp,
570 	     pgoff_t index, unsigned long nr)
571 {
572 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
573 		return -EINVAL;
574 
575 	force_page_cache_readahead(mapping, filp, index, nr);
576 	return 0;
577 }
578 
579 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
580 {
581 	ssize_t ret;
582 	struct fd f;
583 
584 	ret = -EBADF;
585 	f = fdget(fd);
586 	if (f.file) {
587 		if (f.file->f_mode & FMODE_READ) {
588 			struct address_space *mapping = f.file->f_mapping;
589 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
590 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
591 			unsigned long len = end - start + 1;
592 			ret = do_readahead(mapping, f.file, start, len);
593 		}
594 		fdput(f);
595 	}
596 	return ret;
597 }
598