1 /* 2 * mm/readahead.c - address_space-level file readahead. 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 09Apr2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/fs.h> 12 #include <linux/gfp.h> 13 #include <linux/mm.h> 14 #include <linux/export.h> 15 #include <linux/blkdev.h> 16 #include <linux/backing-dev.h> 17 #include <linux/task_io_accounting_ops.h> 18 #include <linux/pagevec.h> 19 #include <linux/pagemap.h> 20 #include <linux/syscalls.h> 21 #include <linux/file.h> 22 23 /* 24 * Initialise a struct file's readahead state. Assumes that the caller has 25 * memset *ra to zero. 26 */ 27 void 28 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 29 { 30 ra->ra_pages = mapping->backing_dev_info->ra_pages; 31 ra->prev_pos = -1; 32 } 33 EXPORT_SYMBOL_GPL(file_ra_state_init); 34 35 #define list_to_page(head) (list_entry((head)->prev, struct page, lru)) 36 37 /* 38 * see if a page needs releasing upon read_cache_pages() failure 39 * - the caller of read_cache_pages() may have set PG_private or PG_fscache 40 * before calling, such as the NFS fs marking pages that are cached locally 41 * on disk, thus we need to give the fs a chance to clean up in the event of 42 * an error 43 */ 44 static void read_cache_pages_invalidate_page(struct address_space *mapping, 45 struct page *page) 46 { 47 if (page_has_private(page)) { 48 if (!trylock_page(page)) 49 BUG(); 50 page->mapping = mapping; 51 do_invalidatepage(page, 0); 52 page->mapping = NULL; 53 unlock_page(page); 54 } 55 page_cache_release(page); 56 } 57 58 /* 59 * release a list of pages, invalidating them first if need be 60 */ 61 static void read_cache_pages_invalidate_pages(struct address_space *mapping, 62 struct list_head *pages) 63 { 64 struct page *victim; 65 66 while (!list_empty(pages)) { 67 victim = list_to_page(pages); 68 list_del(&victim->lru); 69 read_cache_pages_invalidate_page(mapping, victim); 70 } 71 } 72 73 /** 74 * read_cache_pages - populate an address space with some pages & start reads against them 75 * @mapping: the address_space 76 * @pages: The address of a list_head which contains the target pages. These 77 * pages have their ->index populated and are otherwise uninitialised. 78 * @filler: callback routine for filling a single page. 79 * @data: private data for the callback routine. 80 * 81 * Hides the details of the LRU cache etc from the filesystems. 82 */ 83 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 84 int (*filler)(void *, struct page *), void *data) 85 { 86 struct page *page; 87 int ret = 0; 88 89 while (!list_empty(pages)) { 90 page = list_to_page(pages); 91 list_del(&page->lru); 92 if (add_to_page_cache_lru(page, mapping, 93 page->index, GFP_KERNEL)) { 94 read_cache_pages_invalidate_page(mapping, page); 95 continue; 96 } 97 page_cache_release(page); 98 99 ret = filler(data, page); 100 if (unlikely(ret)) { 101 read_cache_pages_invalidate_pages(mapping, pages); 102 break; 103 } 104 task_io_account_read(PAGE_CACHE_SIZE); 105 } 106 return ret; 107 } 108 109 EXPORT_SYMBOL(read_cache_pages); 110 111 static int read_pages(struct address_space *mapping, struct file *filp, 112 struct list_head *pages, unsigned nr_pages) 113 { 114 struct blk_plug plug; 115 unsigned page_idx; 116 int ret; 117 118 blk_start_plug(&plug); 119 120 if (mapping->a_ops->readpages) { 121 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages); 122 /* Clean up the remaining pages */ 123 put_pages_list(pages); 124 goto out; 125 } 126 127 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 128 struct page *page = list_to_page(pages); 129 list_del(&page->lru); 130 if (!add_to_page_cache_lru(page, mapping, 131 page->index, GFP_KERNEL)) { 132 mapping->a_ops->readpage(filp, page); 133 } 134 page_cache_release(page); 135 } 136 ret = 0; 137 138 out: 139 blk_finish_plug(&plug); 140 141 return ret; 142 } 143 144 /* 145 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates all 146 * the pages first, then submits them all for I/O. This avoids the very bad 147 * behaviour which would occur if page allocations are causing VM writeback. 148 * We really don't want to intermingle reads and writes like that. 149 * 150 * Returns the number of pages requested, or the maximum amount of I/O allowed. 151 */ 152 static int 153 __do_page_cache_readahead(struct address_space *mapping, struct file *filp, 154 pgoff_t offset, unsigned long nr_to_read, 155 unsigned long lookahead_size) 156 { 157 struct inode *inode = mapping->host; 158 struct page *page; 159 unsigned long end_index; /* The last page we want to read */ 160 LIST_HEAD(page_pool); 161 int page_idx; 162 int ret = 0; 163 loff_t isize = i_size_read(inode); 164 165 if (isize == 0) 166 goto out; 167 168 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT); 169 170 /* 171 * Preallocate as many pages as we will need. 172 */ 173 for (page_idx = 0; page_idx < nr_to_read; page_idx++) { 174 pgoff_t page_offset = offset + page_idx; 175 176 if (page_offset > end_index) 177 break; 178 179 rcu_read_lock(); 180 page = radix_tree_lookup(&mapping->page_tree, page_offset); 181 rcu_read_unlock(); 182 if (page) 183 continue; 184 185 page = page_cache_alloc_readahead(mapping); 186 if (!page) 187 break; 188 page->index = page_offset; 189 list_add(&page->lru, &page_pool); 190 if (page_idx == nr_to_read - lookahead_size) 191 SetPageReadahead(page); 192 ret++; 193 } 194 195 /* 196 * Now start the IO. We ignore I/O errors - if the page is not 197 * uptodate then the caller will launch readpage again, and 198 * will then handle the error. 199 */ 200 if (ret) 201 read_pages(mapping, filp, &page_pool, ret); 202 BUG_ON(!list_empty(&page_pool)); 203 out: 204 return ret; 205 } 206 207 /* 208 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 209 * memory at once. 210 */ 211 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 212 pgoff_t offset, unsigned long nr_to_read) 213 { 214 int ret = 0; 215 216 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages)) 217 return -EINVAL; 218 219 nr_to_read = max_sane_readahead(nr_to_read); 220 while (nr_to_read) { 221 int err; 222 223 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE; 224 225 if (this_chunk > nr_to_read) 226 this_chunk = nr_to_read; 227 err = __do_page_cache_readahead(mapping, filp, 228 offset, this_chunk, 0); 229 if (err < 0) { 230 ret = err; 231 break; 232 } 233 ret += err; 234 offset += this_chunk; 235 nr_to_read -= this_chunk; 236 } 237 return ret; 238 } 239 240 /* 241 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a 242 * sensible upper limit. 243 */ 244 unsigned long max_sane_readahead(unsigned long nr) 245 { 246 return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE) 247 + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2); 248 } 249 250 /* 251 * Submit IO for the read-ahead request in file_ra_state. 252 */ 253 unsigned long ra_submit(struct file_ra_state *ra, 254 struct address_space *mapping, struct file *filp) 255 { 256 int actual; 257 258 actual = __do_page_cache_readahead(mapping, filp, 259 ra->start, ra->size, ra->async_size); 260 261 return actual; 262 } 263 264 /* 265 * Set the initial window size, round to next power of 2 and square 266 * for small size, x 4 for medium, and x 2 for large 267 * for 128k (32 page) max ra 268 * 1-8 page = 32k initial, > 8 page = 128k initial 269 */ 270 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 271 { 272 unsigned long newsize = roundup_pow_of_two(size); 273 274 if (newsize <= max / 32) 275 newsize = newsize * 4; 276 else if (newsize <= max / 4) 277 newsize = newsize * 2; 278 else 279 newsize = max; 280 281 return newsize; 282 } 283 284 /* 285 * Get the previous window size, ramp it up, and 286 * return it as the new window size. 287 */ 288 static unsigned long get_next_ra_size(struct file_ra_state *ra, 289 unsigned long max) 290 { 291 unsigned long cur = ra->size; 292 unsigned long newsize; 293 294 if (cur < max / 16) 295 newsize = 4 * cur; 296 else 297 newsize = 2 * cur; 298 299 return min(newsize, max); 300 } 301 302 /* 303 * On-demand readahead design. 304 * 305 * The fields in struct file_ra_state represent the most-recently-executed 306 * readahead attempt: 307 * 308 * |<----- async_size ---------| 309 * |------------------- size -------------------->| 310 * |==================#===========================| 311 * ^start ^page marked with PG_readahead 312 * 313 * To overlap application thinking time and disk I/O time, we do 314 * `readahead pipelining': Do not wait until the application consumed all 315 * readahead pages and stalled on the missing page at readahead_index; 316 * Instead, submit an asynchronous readahead I/O as soon as there are 317 * only async_size pages left in the readahead window. Normally async_size 318 * will be equal to size, for maximum pipelining. 319 * 320 * In interleaved sequential reads, concurrent streams on the same fd can 321 * be invalidating each other's readahead state. So we flag the new readahead 322 * page at (start+size-async_size) with PG_readahead, and use it as readahead 323 * indicator. The flag won't be set on already cached pages, to avoid the 324 * readahead-for-nothing fuss, saving pointless page cache lookups. 325 * 326 * prev_pos tracks the last visited byte in the _previous_ read request. 327 * It should be maintained by the caller, and will be used for detecting 328 * small random reads. Note that the readahead algorithm checks loosely 329 * for sequential patterns. Hence interleaved reads might be served as 330 * sequential ones. 331 * 332 * There is a special-case: if the first page which the application tries to 333 * read happens to be the first page of the file, it is assumed that a linear 334 * read is about to happen and the window is immediately set to the initial size 335 * based on I/O request size and the max_readahead. 336 * 337 * The code ramps up the readahead size aggressively at first, but slow down as 338 * it approaches max_readhead. 339 */ 340 341 /* 342 * Count contiguously cached pages from @offset-1 to @offset-@max, 343 * this count is a conservative estimation of 344 * - length of the sequential read sequence, or 345 * - thrashing threshold in memory tight systems 346 */ 347 static pgoff_t count_history_pages(struct address_space *mapping, 348 struct file_ra_state *ra, 349 pgoff_t offset, unsigned long max) 350 { 351 pgoff_t head; 352 353 rcu_read_lock(); 354 head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max); 355 rcu_read_unlock(); 356 357 return offset - 1 - head; 358 } 359 360 /* 361 * page cache context based read-ahead 362 */ 363 static int try_context_readahead(struct address_space *mapping, 364 struct file_ra_state *ra, 365 pgoff_t offset, 366 unsigned long req_size, 367 unsigned long max) 368 { 369 pgoff_t size; 370 371 size = count_history_pages(mapping, ra, offset, max); 372 373 /* 374 * no history pages: 375 * it could be a random read 376 */ 377 if (!size) 378 return 0; 379 380 /* 381 * starts from beginning of file: 382 * it is a strong indication of long-run stream (or whole-file-read) 383 */ 384 if (size >= offset) 385 size *= 2; 386 387 ra->start = offset; 388 ra->size = get_init_ra_size(size + req_size, max); 389 ra->async_size = ra->size; 390 391 return 1; 392 } 393 394 /* 395 * A minimal readahead algorithm for trivial sequential/random reads. 396 */ 397 static unsigned long 398 ondemand_readahead(struct address_space *mapping, 399 struct file_ra_state *ra, struct file *filp, 400 bool hit_readahead_marker, pgoff_t offset, 401 unsigned long req_size) 402 { 403 unsigned long max = max_sane_readahead(ra->ra_pages); 404 405 /* 406 * start of file 407 */ 408 if (!offset) 409 goto initial_readahead; 410 411 /* 412 * It's the expected callback offset, assume sequential access. 413 * Ramp up sizes, and push forward the readahead window. 414 */ 415 if ((offset == (ra->start + ra->size - ra->async_size) || 416 offset == (ra->start + ra->size))) { 417 ra->start += ra->size; 418 ra->size = get_next_ra_size(ra, max); 419 ra->async_size = ra->size; 420 goto readit; 421 } 422 423 /* 424 * Hit a marked page without valid readahead state. 425 * E.g. interleaved reads. 426 * Query the pagecache for async_size, which normally equals to 427 * readahead size. Ramp it up and use it as the new readahead size. 428 */ 429 if (hit_readahead_marker) { 430 pgoff_t start; 431 432 rcu_read_lock(); 433 start = radix_tree_next_hole(&mapping->page_tree, offset+1,max); 434 rcu_read_unlock(); 435 436 if (!start || start - offset > max) 437 return 0; 438 439 ra->start = start; 440 ra->size = start - offset; /* old async_size */ 441 ra->size += req_size; 442 ra->size = get_next_ra_size(ra, max); 443 ra->async_size = ra->size; 444 goto readit; 445 } 446 447 /* 448 * oversize read 449 */ 450 if (req_size > max) 451 goto initial_readahead; 452 453 /* 454 * sequential cache miss 455 */ 456 if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL) 457 goto initial_readahead; 458 459 /* 460 * Query the page cache and look for the traces(cached history pages) 461 * that a sequential stream would leave behind. 462 */ 463 if (try_context_readahead(mapping, ra, offset, req_size, max)) 464 goto readit; 465 466 /* 467 * standalone, small random read 468 * Read as is, and do not pollute the readahead state. 469 */ 470 return __do_page_cache_readahead(mapping, filp, offset, req_size, 0); 471 472 initial_readahead: 473 ra->start = offset; 474 ra->size = get_init_ra_size(req_size, max); 475 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 476 477 readit: 478 /* 479 * Will this read hit the readahead marker made by itself? 480 * If so, trigger the readahead marker hit now, and merge 481 * the resulted next readahead window into the current one. 482 */ 483 if (offset == ra->start && ra->size == ra->async_size) { 484 ra->async_size = get_next_ra_size(ra, max); 485 ra->size += ra->async_size; 486 } 487 488 return ra_submit(ra, mapping, filp); 489 } 490 491 /** 492 * page_cache_sync_readahead - generic file readahead 493 * @mapping: address_space which holds the pagecache and I/O vectors 494 * @ra: file_ra_state which holds the readahead state 495 * @filp: passed on to ->readpage() and ->readpages() 496 * @offset: start offset into @mapping, in pagecache page-sized units 497 * @req_size: hint: total size of the read which the caller is performing in 498 * pagecache pages 499 * 500 * page_cache_sync_readahead() should be called when a cache miss happened: 501 * it will submit the read. The readahead logic may decide to piggyback more 502 * pages onto the read request if access patterns suggest it will improve 503 * performance. 504 */ 505 void page_cache_sync_readahead(struct address_space *mapping, 506 struct file_ra_state *ra, struct file *filp, 507 pgoff_t offset, unsigned long req_size) 508 { 509 /* no read-ahead */ 510 if (!ra->ra_pages) 511 return; 512 513 /* be dumb */ 514 if (filp && (filp->f_mode & FMODE_RANDOM)) { 515 force_page_cache_readahead(mapping, filp, offset, req_size); 516 return; 517 } 518 519 /* do read-ahead */ 520 ondemand_readahead(mapping, ra, filp, false, offset, req_size); 521 } 522 EXPORT_SYMBOL_GPL(page_cache_sync_readahead); 523 524 /** 525 * page_cache_async_readahead - file readahead for marked pages 526 * @mapping: address_space which holds the pagecache and I/O vectors 527 * @ra: file_ra_state which holds the readahead state 528 * @filp: passed on to ->readpage() and ->readpages() 529 * @page: the page at @offset which has the PG_readahead flag set 530 * @offset: start offset into @mapping, in pagecache page-sized units 531 * @req_size: hint: total size of the read which the caller is performing in 532 * pagecache pages 533 * 534 * page_cache_async_readahead() should be called when a page is used which 535 * has the PG_readahead flag; this is a marker to suggest that the application 536 * has used up enough of the readahead window that we should start pulling in 537 * more pages. 538 */ 539 void 540 page_cache_async_readahead(struct address_space *mapping, 541 struct file_ra_state *ra, struct file *filp, 542 struct page *page, pgoff_t offset, 543 unsigned long req_size) 544 { 545 /* no read-ahead */ 546 if (!ra->ra_pages) 547 return; 548 549 /* 550 * Same bit is used for PG_readahead and PG_reclaim. 551 */ 552 if (PageWriteback(page)) 553 return; 554 555 ClearPageReadahead(page); 556 557 /* 558 * Defer asynchronous read-ahead on IO congestion. 559 */ 560 if (bdi_read_congested(mapping->backing_dev_info)) 561 return; 562 563 /* do read-ahead */ 564 ondemand_readahead(mapping, ra, filp, true, offset, req_size); 565 } 566 EXPORT_SYMBOL_GPL(page_cache_async_readahead); 567 568 static ssize_t 569 do_readahead(struct address_space *mapping, struct file *filp, 570 pgoff_t index, unsigned long nr) 571 { 572 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 573 return -EINVAL; 574 575 force_page_cache_readahead(mapping, filp, index, nr); 576 return 0; 577 } 578 579 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 580 { 581 ssize_t ret; 582 struct fd f; 583 584 ret = -EBADF; 585 f = fdget(fd); 586 if (f.file) { 587 if (f.file->f_mode & FMODE_READ) { 588 struct address_space *mapping = f.file->f_mapping; 589 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 590 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 591 unsigned long len = end - start + 1; 592 ret = do_readahead(mapping, f.file, start, len); 593 } 594 fdput(f); 595 } 596 return ret; 597 } 598