1 /* 2 * mm/readahead.c - address_space-level file readahead. 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 09Apr2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/dax.h> 12 #include <linux/gfp.h> 13 #include <linux/export.h> 14 #include <linux/blkdev.h> 15 #include <linux/backing-dev.h> 16 #include <linux/task_io_accounting_ops.h> 17 #include <linux/pagevec.h> 18 #include <linux/pagemap.h> 19 #include <linux/syscalls.h> 20 #include <linux/file.h> 21 #include <linux/mm_inline.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/fadvise.h> 24 25 #include "internal.h" 26 27 /* 28 * Initialise a struct file's readahead state. Assumes that the caller has 29 * memset *ra to zero. 30 */ 31 void 32 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 33 { 34 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 35 ra->prev_pos = -1; 36 } 37 EXPORT_SYMBOL_GPL(file_ra_state_init); 38 39 /* 40 * see if a page needs releasing upon read_cache_pages() failure 41 * - the caller of read_cache_pages() may have set PG_private or PG_fscache 42 * before calling, such as the NFS fs marking pages that are cached locally 43 * on disk, thus we need to give the fs a chance to clean up in the event of 44 * an error 45 */ 46 static void read_cache_pages_invalidate_page(struct address_space *mapping, 47 struct page *page) 48 { 49 if (page_has_private(page)) { 50 if (!trylock_page(page)) 51 BUG(); 52 page->mapping = mapping; 53 do_invalidatepage(page, 0, PAGE_SIZE); 54 page->mapping = NULL; 55 unlock_page(page); 56 } 57 put_page(page); 58 } 59 60 /* 61 * release a list of pages, invalidating them first if need be 62 */ 63 static void read_cache_pages_invalidate_pages(struct address_space *mapping, 64 struct list_head *pages) 65 { 66 struct page *victim; 67 68 while (!list_empty(pages)) { 69 victim = lru_to_page(pages); 70 list_del(&victim->lru); 71 read_cache_pages_invalidate_page(mapping, victim); 72 } 73 } 74 75 /** 76 * read_cache_pages - populate an address space with some pages & start reads against them 77 * @mapping: the address_space 78 * @pages: The address of a list_head which contains the target pages. These 79 * pages have their ->index populated and are otherwise uninitialised. 80 * @filler: callback routine for filling a single page. 81 * @data: private data for the callback routine. 82 * 83 * Hides the details of the LRU cache etc from the filesystems. 84 */ 85 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 86 int (*filler)(void *, struct page *), void *data) 87 { 88 struct page *page; 89 int ret = 0; 90 91 while (!list_empty(pages)) { 92 page = lru_to_page(pages); 93 list_del(&page->lru); 94 if (add_to_page_cache_lru(page, mapping, page->index, 95 readahead_gfp_mask(mapping))) { 96 read_cache_pages_invalidate_page(mapping, page); 97 continue; 98 } 99 put_page(page); 100 101 ret = filler(data, page); 102 if (unlikely(ret)) { 103 read_cache_pages_invalidate_pages(mapping, pages); 104 break; 105 } 106 task_io_account_read(PAGE_SIZE); 107 } 108 return ret; 109 } 110 111 EXPORT_SYMBOL(read_cache_pages); 112 113 static int read_pages(struct address_space *mapping, struct file *filp, 114 struct list_head *pages, unsigned int nr_pages, gfp_t gfp) 115 { 116 struct blk_plug plug; 117 unsigned page_idx; 118 int ret; 119 120 blk_start_plug(&plug); 121 122 if (mapping->a_ops->readpages) { 123 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages); 124 /* Clean up the remaining pages */ 125 put_pages_list(pages); 126 goto out; 127 } 128 129 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 130 struct page *page = lru_to_page(pages); 131 list_del(&page->lru); 132 if (!add_to_page_cache_lru(page, mapping, page->index, gfp)) 133 mapping->a_ops->readpage(filp, page); 134 put_page(page); 135 } 136 ret = 0; 137 138 out: 139 blk_finish_plug(&plug); 140 141 return ret; 142 } 143 144 /* 145 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates 146 * the pages first, then submits them for I/O. This avoids the very bad 147 * behaviour which would occur if page allocations are causing VM writeback. 148 * We really don't want to intermingle reads and writes like that. 149 * 150 * Returns the number of pages requested, or the maximum amount of I/O allowed. 151 */ 152 unsigned int __do_page_cache_readahead(struct address_space *mapping, 153 struct file *filp, pgoff_t offset, unsigned long nr_to_read, 154 unsigned long lookahead_size) 155 { 156 struct inode *inode = mapping->host; 157 struct page *page; 158 unsigned long end_index; /* The last page we want to read */ 159 LIST_HEAD(page_pool); 160 int page_idx; 161 unsigned int nr_pages = 0; 162 loff_t isize = i_size_read(inode); 163 gfp_t gfp_mask = readahead_gfp_mask(mapping); 164 165 if (isize == 0) 166 goto out; 167 168 end_index = ((isize - 1) >> PAGE_SHIFT); 169 170 /* 171 * Preallocate as many pages as we will need. 172 */ 173 for (page_idx = 0; page_idx < nr_to_read; page_idx++) { 174 pgoff_t page_offset = offset + page_idx; 175 176 if (page_offset > end_index) 177 break; 178 179 page = xa_load(&mapping->i_pages, page_offset); 180 if (page && !xa_is_value(page)) { 181 /* 182 * Page already present? Kick off the current batch of 183 * contiguous pages before continuing with the next 184 * batch. 185 */ 186 if (nr_pages) 187 read_pages(mapping, filp, &page_pool, nr_pages, 188 gfp_mask); 189 nr_pages = 0; 190 continue; 191 } 192 193 page = __page_cache_alloc(gfp_mask); 194 if (!page) 195 break; 196 page->index = page_offset; 197 list_add(&page->lru, &page_pool); 198 if (page_idx == nr_to_read - lookahead_size) 199 SetPageReadahead(page); 200 nr_pages++; 201 } 202 203 /* 204 * Now start the IO. We ignore I/O errors - if the page is not 205 * uptodate then the caller will launch readpage again, and 206 * will then handle the error. 207 */ 208 if (nr_pages) 209 read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask); 210 BUG_ON(!list_empty(&page_pool)); 211 out: 212 return nr_pages; 213 } 214 215 /* 216 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 217 * memory at once. 218 */ 219 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 220 pgoff_t offset, unsigned long nr_to_read) 221 { 222 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 223 struct file_ra_state *ra = &filp->f_ra; 224 unsigned long max_pages; 225 226 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages)) 227 return -EINVAL; 228 229 /* 230 * If the request exceeds the readahead window, allow the read to 231 * be up to the optimal hardware IO size 232 */ 233 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 234 nr_to_read = min(nr_to_read, max_pages); 235 while (nr_to_read) { 236 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 237 238 if (this_chunk > nr_to_read) 239 this_chunk = nr_to_read; 240 __do_page_cache_readahead(mapping, filp, offset, this_chunk, 0); 241 242 offset += this_chunk; 243 nr_to_read -= this_chunk; 244 } 245 return 0; 246 } 247 248 /* 249 * Set the initial window size, round to next power of 2 and square 250 * for small size, x 4 for medium, and x 2 for large 251 * for 128k (32 page) max ra 252 * 1-8 page = 32k initial, > 8 page = 128k initial 253 */ 254 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 255 { 256 unsigned long newsize = roundup_pow_of_two(size); 257 258 if (newsize <= max / 32) 259 newsize = newsize * 4; 260 else if (newsize <= max / 4) 261 newsize = newsize * 2; 262 else 263 newsize = max; 264 265 return newsize; 266 } 267 268 /* 269 * Get the previous window size, ramp it up, and 270 * return it as the new window size. 271 */ 272 static unsigned long get_next_ra_size(struct file_ra_state *ra, 273 unsigned long max) 274 { 275 unsigned long cur = ra->size; 276 277 if (cur < max / 16) 278 return 4 * cur; 279 if (cur <= max / 2) 280 return 2 * cur; 281 return max; 282 } 283 284 /* 285 * On-demand readahead design. 286 * 287 * The fields in struct file_ra_state represent the most-recently-executed 288 * readahead attempt: 289 * 290 * |<----- async_size ---------| 291 * |------------------- size -------------------->| 292 * |==================#===========================| 293 * ^start ^page marked with PG_readahead 294 * 295 * To overlap application thinking time and disk I/O time, we do 296 * `readahead pipelining': Do not wait until the application consumed all 297 * readahead pages and stalled on the missing page at readahead_index; 298 * Instead, submit an asynchronous readahead I/O as soon as there are 299 * only async_size pages left in the readahead window. Normally async_size 300 * will be equal to size, for maximum pipelining. 301 * 302 * In interleaved sequential reads, concurrent streams on the same fd can 303 * be invalidating each other's readahead state. So we flag the new readahead 304 * page at (start+size-async_size) with PG_readahead, and use it as readahead 305 * indicator. The flag won't be set on already cached pages, to avoid the 306 * readahead-for-nothing fuss, saving pointless page cache lookups. 307 * 308 * prev_pos tracks the last visited byte in the _previous_ read request. 309 * It should be maintained by the caller, and will be used for detecting 310 * small random reads. Note that the readahead algorithm checks loosely 311 * for sequential patterns. Hence interleaved reads might be served as 312 * sequential ones. 313 * 314 * There is a special-case: if the first page which the application tries to 315 * read happens to be the first page of the file, it is assumed that a linear 316 * read is about to happen and the window is immediately set to the initial size 317 * based on I/O request size and the max_readahead. 318 * 319 * The code ramps up the readahead size aggressively at first, but slow down as 320 * it approaches max_readhead. 321 */ 322 323 /* 324 * Count contiguously cached pages from @offset-1 to @offset-@max, 325 * this count is a conservative estimation of 326 * - length of the sequential read sequence, or 327 * - thrashing threshold in memory tight systems 328 */ 329 static pgoff_t count_history_pages(struct address_space *mapping, 330 pgoff_t offset, unsigned long max) 331 { 332 pgoff_t head; 333 334 rcu_read_lock(); 335 head = page_cache_prev_miss(mapping, offset - 1, max); 336 rcu_read_unlock(); 337 338 return offset - 1 - head; 339 } 340 341 /* 342 * page cache context based read-ahead 343 */ 344 static int try_context_readahead(struct address_space *mapping, 345 struct file_ra_state *ra, 346 pgoff_t offset, 347 unsigned long req_size, 348 unsigned long max) 349 { 350 pgoff_t size; 351 352 size = count_history_pages(mapping, offset, max); 353 354 /* 355 * not enough history pages: 356 * it could be a random read 357 */ 358 if (size <= req_size) 359 return 0; 360 361 /* 362 * starts from beginning of file: 363 * it is a strong indication of long-run stream (or whole-file-read) 364 */ 365 if (size >= offset) 366 size *= 2; 367 368 ra->start = offset; 369 ra->size = min(size + req_size, max); 370 ra->async_size = 1; 371 372 return 1; 373 } 374 375 /* 376 * A minimal readahead algorithm for trivial sequential/random reads. 377 */ 378 static unsigned long 379 ondemand_readahead(struct address_space *mapping, 380 struct file_ra_state *ra, struct file *filp, 381 bool hit_readahead_marker, pgoff_t offset, 382 unsigned long req_size) 383 { 384 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 385 unsigned long max_pages = ra->ra_pages; 386 unsigned long add_pages; 387 pgoff_t prev_offset; 388 389 /* 390 * If the request exceeds the readahead window, allow the read to 391 * be up to the optimal hardware IO size 392 */ 393 if (req_size > max_pages && bdi->io_pages > max_pages) 394 max_pages = min(req_size, bdi->io_pages); 395 396 /* 397 * start of file 398 */ 399 if (!offset) 400 goto initial_readahead; 401 402 /* 403 * It's the expected callback offset, assume sequential access. 404 * Ramp up sizes, and push forward the readahead window. 405 */ 406 if ((offset == (ra->start + ra->size - ra->async_size) || 407 offset == (ra->start + ra->size))) { 408 ra->start += ra->size; 409 ra->size = get_next_ra_size(ra, max_pages); 410 ra->async_size = ra->size; 411 goto readit; 412 } 413 414 /* 415 * Hit a marked page without valid readahead state. 416 * E.g. interleaved reads. 417 * Query the pagecache for async_size, which normally equals to 418 * readahead size. Ramp it up and use it as the new readahead size. 419 */ 420 if (hit_readahead_marker) { 421 pgoff_t start; 422 423 rcu_read_lock(); 424 start = page_cache_next_miss(mapping, offset + 1, max_pages); 425 rcu_read_unlock(); 426 427 if (!start || start - offset > max_pages) 428 return 0; 429 430 ra->start = start; 431 ra->size = start - offset; /* old async_size */ 432 ra->size += req_size; 433 ra->size = get_next_ra_size(ra, max_pages); 434 ra->async_size = ra->size; 435 goto readit; 436 } 437 438 /* 439 * oversize read 440 */ 441 if (req_size > max_pages) 442 goto initial_readahead; 443 444 /* 445 * sequential cache miss 446 * trivial case: (offset - prev_offset) == 1 447 * unaligned reads: (offset - prev_offset) == 0 448 */ 449 prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 450 if (offset - prev_offset <= 1UL) 451 goto initial_readahead; 452 453 /* 454 * Query the page cache and look for the traces(cached history pages) 455 * that a sequential stream would leave behind. 456 */ 457 if (try_context_readahead(mapping, ra, offset, req_size, max_pages)) 458 goto readit; 459 460 /* 461 * standalone, small random read 462 * Read as is, and do not pollute the readahead state. 463 */ 464 return __do_page_cache_readahead(mapping, filp, offset, req_size, 0); 465 466 initial_readahead: 467 ra->start = offset; 468 ra->size = get_init_ra_size(req_size, max_pages); 469 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 470 471 readit: 472 /* 473 * Will this read hit the readahead marker made by itself? 474 * If so, trigger the readahead marker hit now, and merge 475 * the resulted next readahead window into the current one. 476 * Take care of maximum IO pages as above. 477 */ 478 if (offset == ra->start && ra->size == ra->async_size) { 479 add_pages = get_next_ra_size(ra, max_pages); 480 if (ra->size + add_pages <= max_pages) { 481 ra->async_size = add_pages; 482 ra->size += add_pages; 483 } else { 484 ra->size = max_pages; 485 ra->async_size = max_pages >> 1; 486 } 487 } 488 489 return ra_submit(ra, mapping, filp); 490 } 491 492 /** 493 * page_cache_sync_readahead - generic file readahead 494 * @mapping: address_space which holds the pagecache and I/O vectors 495 * @ra: file_ra_state which holds the readahead state 496 * @filp: passed on to ->readpage() and ->readpages() 497 * @offset: start offset into @mapping, in pagecache page-sized units 498 * @req_size: hint: total size of the read which the caller is performing in 499 * pagecache pages 500 * 501 * page_cache_sync_readahead() should be called when a cache miss happened: 502 * it will submit the read. The readahead logic may decide to piggyback more 503 * pages onto the read request if access patterns suggest it will improve 504 * performance. 505 */ 506 void page_cache_sync_readahead(struct address_space *mapping, 507 struct file_ra_state *ra, struct file *filp, 508 pgoff_t offset, unsigned long req_size) 509 { 510 /* no read-ahead */ 511 if (!ra->ra_pages) 512 return; 513 514 if (blk_cgroup_congested()) 515 return; 516 517 /* be dumb */ 518 if (filp && (filp->f_mode & FMODE_RANDOM)) { 519 force_page_cache_readahead(mapping, filp, offset, req_size); 520 return; 521 } 522 523 /* do read-ahead */ 524 ondemand_readahead(mapping, ra, filp, false, offset, req_size); 525 } 526 EXPORT_SYMBOL_GPL(page_cache_sync_readahead); 527 528 /** 529 * page_cache_async_readahead - file readahead for marked pages 530 * @mapping: address_space which holds the pagecache and I/O vectors 531 * @ra: file_ra_state which holds the readahead state 532 * @filp: passed on to ->readpage() and ->readpages() 533 * @page: the page at @offset which has the PG_readahead flag set 534 * @offset: start offset into @mapping, in pagecache page-sized units 535 * @req_size: hint: total size of the read which the caller is performing in 536 * pagecache pages 537 * 538 * page_cache_async_readahead() should be called when a page is used which 539 * has the PG_readahead flag; this is a marker to suggest that the application 540 * has used up enough of the readahead window that we should start pulling in 541 * more pages. 542 */ 543 void 544 page_cache_async_readahead(struct address_space *mapping, 545 struct file_ra_state *ra, struct file *filp, 546 struct page *page, pgoff_t offset, 547 unsigned long req_size) 548 { 549 /* no read-ahead */ 550 if (!ra->ra_pages) 551 return; 552 553 /* 554 * Same bit is used for PG_readahead and PG_reclaim. 555 */ 556 if (PageWriteback(page)) 557 return; 558 559 ClearPageReadahead(page); 560 561 /* 562 * Defer asynchronous read-ahead on IO congestion. 563 */ 564 if (inode_read_congested(mapping->host)) 565 return; 566 567 if (blk_cgroup_congested()) 568 return; 569 570 /* do read-ahead */ 571 ondemand_readahead(mapping, ra, filp, true, offset, req_size); 572 } 573 EXPORT_SYMBOL_GPL(page_cache_async_readahead); 574 575 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 576 { 577 ssize_t ret; 578 struct fd f; 579 580 ret = -EBADF; 581 f = fdget(fd); 582 if (!f.file || !(f.file->f_mode & FMODE_READ)) 583 goto out; 584 585 /* 586 * The readahead() syscall is intended to run only on files 587 * that can execute readahead. If readahead is not possible 588 * on this file, then we must return -EINVAL. 589 */ 590 ret = -EINVAL; 591 if (!f.file->f_mapping || !f.file->f_mapping->a_ops || 592 !S_ISREG(file_inode(f.file)->i_mode)) 593 goto out; 594 595 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED); 596 out: 597 fdput(f); 598 return ret; 599 } 600 601 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 602 { 603 return ksys_readahead(fd, offset, count); 604 } 605