1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/readahead.c - address_space-level file readahead. 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 09Apr2002 Andrew Morton 8 * Initial version. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/dax.h> 13 #include <linux/gfp.h> 14 #include <linux/export.h> 15 #include <linux/blkdev.h> 16 #include <linux/backing-dev.h> 17 #include <linux/task_io_accounting_ops.h> 18 #include <linux/pagevec.h> 19 #include <linux/pagemap.h> 20 #include <linux/syscalls.h> 21 #include <linux/file.h> 22 #include <linux/mm_inline.h> 23 #include <linux/blk-cgroup.h> 24 #include <linux/fadvise.h> 25 #include <linux/sched/mm.h> 26 27 #include "internal.h" 28 29 /* 30 * Initialise a struct file's readahead state. Assumes that the caller has 31 * memset *ra to zero. 32 */ 33 void 34 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 35 { 36 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 37 ra->prev_pos = -1; 38 } 39 EXPORT_SYMBOL_GPL(file_ra_state_init); 40 41 /* 42 * see if a page needs releasing upon read_cache_pages() failure 43 * - the caller of read_cache_pages() may have set PG_private or PG_fscache 44 * before calling, such as the NFS fs marking pages that are cached locally 45 * on disk, thus we need to give the fs a chance to clean up in the event of 46 * an error 47 */ 48 static void read_cache_pages_invalidate_page(struct address_space *mapping, 49 struct page *page) 50 { 51 if (page_has_private(page)) { 52 if (!trylock_page(page)) 53 BUG(); 54 page->mapping = mapping; 55 do_invalidatepage(page, 0, PAGE_SIZE); 56 page->mapping = NULL; 57 unlock_page(page); 58 } 59 put_page(page); 60 } 61 62 /* 63 * release a list of pages, invalidating them first if need be 64 */ 65 static void read_cache_pages_invalidate_pages(struct address_space *mapping, 66 struct list_head *pages) 67 { 68 struct page *victim; 69 70 while (!list_empty(pages)) { 71 victim = lru_to_page(pages); 72 list_del(&victim->lru); 73 read_cache_pages_invalidate_page(mapping, victim); 74 } 75 } 76 77 /** 78 * read_cache_pages - populate an address space with some pages & start reads against them 79 * @mapping: the address_space 80 * @pages: The address of a list_head which contains the target pages. These 81 * pages have their ->index populated and are otherwise uninitialised. 82 * @filler: callback routine for filling a single page. 83 * @data: private data for the callback routine. 84 * 85 * Hides the details of the LRU cache etc from the filesystems. 86 * 87 * Returns: %0 on success, error return by @filler otherwise 88 */ 89 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 90 int (*filler)(void *, struct page *), void *data) 91 { 92 struct page *page; 93 int ret = 0; 94 95 while (!list_empty(pages)) { 96 page = lru_to_page(pages); 97 list_del(&page->lru); 98 if (add_to_page_cache_lru(page, mapping, page->index, 99 readahead_gfp_mask(mapping))) { 100 read_cache_pages_invalidate_page(mapping, page); 101 continue; 102 } 103 put_page(page); 104 105 ret = filler(data, page); 106 if (unlikely(ret)) { 107 read_cache_pages_invalidate_pages(mapping, pages); 108 break; 109 } 110 task_io_account_read(PAGE_SIZE); 111 } 112 return ret; 113 } 114 115 EXPORT_SYMBOL(read_cache_pages); 116 117 static void read_pages(struct readahead_control *rac, struct list_head *pages, 118 bool skip_page) 119 { 120 const struct address_space_operations *aops = rac->mapping->a_ops; 121 struct page *page; 122 struct blk_plug plug; 123 124 if (!readahead_count(rac)) 125 goto out; 126 127 blk_start_plug(&plug); 128 129 if (aops->readahead) { 130 aops->readahead(rac); 131 /* Clean up the remaining pages */ 132 while ((page = readahead_page(rac))) { 133 unlock_page(page); 134 put_page(page); 135 } 136 } else if (aops->readpages) { 137 aops->readpages(rac->file, rac->mapping, pages, 138 readahead_count(rac)); 139 /* Clean up the remaining pages */ 140 put_pages_list(pages); 141 rac->_index += rac->_nr_pages; 142 rac->_nr_pages = 0; 143 } else { 144 while ((page = readahead_page(rac))) { 145 aops->readpage(rac->file, page); 146 put_page(page); 147 } 148 } 149 150 blk_finish_plug(&plug); 151 152 BUG_ON(!list_empty(pages)); 153 BUG_ON(readahead_count(rac)); 154 155 out: 156 if (skip_page) 157 rac->_index++; 158 } 159 160 /** 161 * page_cache_ra_unbounded - Start unchecked readahead. 162 * @ractl: Readahead control. 163 * @nr_to_read: The number of pages to read. 164 * @lookahead_size: Where to start the next readahead. 165 * 166 * This function is for filesystems to call when they want to start 167 * readahead beyond a file's stated i_size. This is almost certainly 168 * not the function you want to call. Use page_cache_async_readahead() 169 * or page_cache_sync_readahead() instead. 170 * 171 * Context: File is referenced by caller. Mutexes may be held by caller. 172 * May sleep, but will not reenter filesystem to reclaim memory. 173 */ 174 void page_cache_ra_unbounded(struct readahead_control *ractl, 175 unsigned long nr_to_read, unsigned long lookahead_size) 176 { 177 struct address_space *mapping = ractl->mapping; 178 unsigned long index = readahead_index(ractl); 179 LIST_HEAD(page_pool); 180 gfp_t gfp_mask = readahead_gfp_mask(mapping); 181 unsigned long i; 182 183 /* 184 * Partway through the readahead operation, we will have added 185 * locked pages to the page cache, but will not yet have submitted 186 * them for I/O. Adding another page may need to allocate memory, 187 * which can trigger memory reclaim. Telling the VM we're in 188 * the middle of a filesystem operation will cause it to not 189 * touch file-backed pages, preventing a deadlock. Most (all?) 190 * filesystems already specify __GFP_NOFS in their mapping's 191 * gfp_mask, but let's be explicit here. 192 */ 193 unsigned int nofs = memalloc_nofs_save(); 194 195 filemap_invalidate_lock_shared(mapping); 196 /* 197 * Preallocate as many pages as we will need. 198 */ 199 for (i = 0; i < nr_to_read; i++) { 200 struct page *page = xa_load(&mapping->i_pages, index + i); 201 202 if (page && !xa_is_value(page)) { 203 /* 204 * Page already present? Kick off the current batch 205 * of contiguous pages before continuing with the 206 * next batch. This page may be the one we would 207 * have intended to mark as Readahead, but we don't 208 * have a stable reference to this page, and it's 209 * not worth getting one just for that. 210 */ 211 read_pages(ractl, &page_pool, true); 212 i = ractl->_index + ractl->_nr_pages - index - 1; 213 continue; 214 } 215 216 page = __page_cache_alloc(gfp_mask); 217 if (!page) 218 break; 219 if (mapping->a_ops->readpages) { 220 page->index = index + i; 221 list_add(&page->lru, &page_pool); 222 } else if (add_to_page_cache_lru(page, mapping, index + i, 223 gfp_mask) < 0) { 224 put_page(page); 225 read_pages(ractl, &page_pool, true); 226 i = ractl->_index + ractl->_nr_pages - index - 1; 227 continue; 228 } 229 if (i == nr_to_read - lookahead_size) 230 SetPageReadahead(page); 231 ractl->_nr_pages++; 232 } 233 234 /* 235 * Now start the IO. We ignore I/O errors - if the page is not 236 * uptodate then the caller will launch readpage again, and 237 * will then handle the error. 238 */ 239 read_pages(ractl, &page_pool, false); 240 filemap_invalidate_unlock_shared(mapping); 241 memalloc_nofs_restore(nofs); 242 } 243 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded); 244 245 /* 246 * do_page_cache_ra() actually reads a chunk of disk. It allocates 247 * the pages first, then submits them for I/O. This avoids the very bad 248 * behaviour which would occur if page allocations are causing VM writeback. 249 * We really don't want to intermingle reads and writes like that. 250 */ 251 void do_page_cache_ra(struct readahead_control *ractl, 252 unsigned long nr_to_read, unsigned long lookahead_size) 253 { 254 struct inode *inode = ractl->mapping->host; 255 unsigned long index = readahead_index(ractl); 256 loff_t isize = i_size_read(inode); 257 pgoff_t end_index; /* The last page we want to read */ 258 259 if (isize == 0) 260 return; 261 262 end_index = (isize - 1) >> PAGE_SHIFT; 263 if (index > end_index) 264 return; 265 /* Don't read past the page containing the last byte of the file */ 266 if (nr_to_read > end_index - index) 267 nr_to_read = end_index - index + 1; 268 269 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size); 270 } 271 272 /* 273 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 274 * memory at once. 275 */ 276 void force_page_cache_ra(struct readahead_control *ractl, 277 unsigned long nr_to_read) 278 { 279 struct address_space *mapping = ractl->mapping; 280 struct file_ra_state *ra = ractl->ra; 281 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 282 unsigned long max_pages, index; 283 284 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages && 285 !mapping->a_ops->readahead)) 286 return; 287 288 /* 289 * If the request exceeds the readahead window, allow the read to 290 * be up to the optimal hardware IO size 291 */ 292 index = readahead_index(ractl); 293 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 294 nr_to_read = min_t(unsigned long, nr_to_read, max_pages); 295 while (nr_to_read) { 296 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 297 298 if (this_chunk > nr_to_read) 299 this_chunk = nr_to_read; 300 ractl->_index = index; 301 do_page_cache_ra(ractl, this_chunk, 0); 302 303 index += this_chunk; 304 nr_to_read -= this_chunk; 305 } 306 } 307 308 /* 309 * Set the initial window size, round to next power of 2 and square 310 * for small size, x 4 for medium, and x 2 for large 311 * for 128k (32 page) max ra 312 * 1-8 page = 32k initial, > 8 page = 128k initial 313 */ 314 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 315 { 316 unsigned long newsize = roundup_pow_of_two(size); 317 318 if (newsize <= max / 32) 319 newsize = newsize * 4; 320 else if (newsize <= max / 4) 321 newsize = newsize * 2; 322 else 323 newsize = max; 324 325 return newsize; 326 } 327 328 /* 329 * Get the previous window size, ramp it up, and 330 * return it as the new window size. 331 */ 332 static unsigned long get_next_ra_size(struct file_ra_state *ra, 333 unsigned long max) 334 { 335 unsigned long cur = ra->size; 336 337 if (cur < max / 16) 338 return 4 * cur; 339 if (cur <= max / 2) 340 return 2 * cur; 341 return max; 342 } 343 344 /* 345 * On-demand readahead design. 346 * 347 * The fields in struct file_ra_state represent the most-recently-executed 348 * readahead attempt: 349 * 350 * |<----- async_size ---------| 351 * |------------------- size -------------------->| 352 * |==================#===========================| 353 * ^start ^page marked with PG_readahead 354 * 355 * To overlap application thinking time and disk I/O time, we do 356 * `readahead pipelining': Do not wait until the application consumed all 357 * readahead pages and stalled on the missing page at readahead_index; 358 * Instead, submit an asynchronous readahead I/O as soon as there are 359 * only async_size pages left in the readahead window. Normally async_size 360 * will be equal to size, for maximum pipelining. 361 * 362 * In interleaved sequential reads, concurrent streams on the same fd can 363 * be invalidating each other's readahead state. So we flag the new readahead 364 * page at (start+size-async_size) with PG_readahead, and use it as readahead 365 * indicator. The flag won't be set on already cached pages, to avoid the 366 * readahead-for-nothing fuss, saving pointless page cache lookups. 367 * 368 * prev_pos tracks the last visited byte in the _previous_ read request. 369 * It should be maintained by the caller, and will be used for detecting 370 * small random reads. Note that the readahead algorithm checks loosely 371 * for sequential patterns. Hence interleaved reads might be served as 372 * sequential ones. 373 * 374 * There is a special-case: if the first page which the application tries to 375 * read happens to be the first page of the file, it is assumed that a linear 376 * read is about to happen and the window is immediately set to the initial size 377 * based on I/O request size and the max_readahead. 378 * 379 * The code ramps up the readahead size aggressively at first, but slow down as 380 * it approaches max_readhead. 381 */ 382 383 /* 384 * Count contiguously cached pages from @index-1 to @index-@max, 385 * this count is a conservative estimation of 386 * - length of the sequential read sequence, or 387 * - thrashing threshold in memory tight systems 388 */ 389 static pgoff_t count_history_pages(struct address_space *mapping, 390 pgoff_t index, unsigned long max) 391 { 392 pgoff_t head; 393 394 rcu_read_lock(); 395 head = page_cache_prev_miss(mapping, index - 1, max); 396 rcu_read_unlock(); 397 398 return index - 1 - head; 399 } 400 401 /* 402 * page cache context based read-ahead 403 */ 404 static int try_context_readahead(struct address_space *mapping, 405 struct file_ra_state *ra, 406 pgoff_t index, 407 unsigned long req_size, 408 unsigned long max) 409 { 410 pgoff_t size; 411 412 size = count_history_pages(mapping, index, max); 413 414 /* 415 * not enough history pages: 416 * it could be a random read 417 */ 418 if (size <= req_size) 419 return 0; 420 421 /* 422 * starts from beginning of file: 423 * it is a strong indication of long-run stream (or whole-file-read) 424 */ 425 if (size >= index) 426 size *= 2; 427 428 ra->start = index; 429 ra->size = min(size + req_size, max); 430 ra->async_size = 1; 431 432 return 1; 433 } 434 435 /* 436 * A minimal readahead algorithm for trivial sequential/random reads. 437 */ 438 static void ondemand_readahead(struct readahead_control *ractl, 439 bool hit_readahead_marker, unsigned long req_size) 440 { 441 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host); 442 struct file_ra_state *ra = ractl->ra; 443 unsigned long max_pages = ra->ra_pages; 444 unsigned long add_pages; 445 unsigned long index = readahead_index(ractl); 446 pgoff_t prev_index; 447 448 /* 449 * If the request exceeds the readahead window, allow the read to 450 * be up to the optimal hardware IO size 451 */ 452 if (req_size > max_pages && bdi->io_pages > max_pages) 453 max_pages = min(req_size, bdi->io_pages); 454 455 /* 456 * start of file 457 */ 458 if (!index) 459 goto initial_readahead; 460 461 /* 462 * It's the expected callback index, assume sequential access. 463 * Ramp up sizes, and push forward the readahead window. 464 */ 465 if ((index == (ra->start + ra->size - ra->async_size) || 466 index == (ra->start + ra->size))) { 467 ra->start += ra->size; 468 ra->size = get_next_ra_size(ra, max_pages); 469 ra->async_size = ra->size; 470 goto readit; 471 } 472 473 /* 474 * Hit a marked page without valid readahead state. 475 * E.g. interleaved reads. 476 * Query the pagecache for async_size, which normally equals to 477 * readahead size. Ramp it up and use it as the new readahead size. 478 */ 479 if (hit_readahead_marker) { 480 pgoff_t start; 481 482 rcu_read_lock(); 483 start = page_cache_next_miss(ractl->mapping, index + 1, 484 max_pages); 485 rcu_read_unlock(); 486 487 if (!start || start - index > max_pages) 488 return; 489 490 ra->start = start; 491 ra->size = start - index; /* old async_size */ 492 ra->size += req_size; 493 ra->size = get_next_ra_size(ra, max_pages); 494 ra->async_size = ra->size; 495 goto readit; 496 } 497 498 /* 499 * oversize read 500 */ 501 if (req_size > max_pages) 502 goto initial_readahead; 503 504 /* 505 * sequential cache miss 506 * trivial case: (index - prev_index) == 1 507 * unaligned reads: (index - prev_index) == 0 508 */ 509 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 510 if (index - prev_index <= 1UL) 511 goto initial_readahead; 512 513 /* 514 * Query the page cache and look for the traces(cached history pages) 515 * that a sequential stream would leave behind. 516 */ 517 if (try_context_readahead(ractl->mapping, ra, index, req_size, 518 max_pages)) 519 goto readit; 520 521 /* 522 * standalone, small random read 523 * Read as is, and do not pollute the readahead state. 524 */ 525 do_page_cache_ra(ractl, req_size, 0); 526 return; 527 528 initial_readahead: 529 ra->start = index; 530 ra->size = get_init_ra_size(req_size, max_pages); 531 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 532 533 readit: 534 /* 535 * Will this read hit the readahead marker made by itself? 536 * If so, trigger the readahead marker hit now, and merge 537 * the resulted next readahead window into the current one. 538 * Take care of maximum IO pages as above. 539 */ 540 if (index == ra->start && ra->size == ra->async_size) { 541 add_pages = get_next_ra_size(ra, max_pages); 542 if (ra->size + add_pages <= max_pages) { 543 ra->async_size = add_pages; 544 ra->size += add_pages; 545 } else { 546 ra->size = max_pages; 547 ra->async_size = max_pages >> 1; 548 } 549 } 550 551 ractl->_index = ra->start; 552 do_page_cache_ra(ractl, ra->size, ra->async_size); 553 } 554 555 void page_cache_sync_ra(struct readahead_control *ractl, 556 unsigned long req_count) 557 { 558 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM); 559 560 /* 561 * Even if read-ahead is disabled, issue this request as read-ahead 562 * as we'll need it to satisfy the requested range. The forced 563 * read-ahead will do the right thing and limit the read to just the 564 * requested range, which we'll set to 1 page for this case. 565 */ 566 if (!ractl->ra->ra_pages || blk_cgroup_congested()) { 567 if (!ractl->file) 568 return; 569 req_count = 1; 570 do_forced_ra = true; 571 } 572 573 /* be dumb */ 574 if (do_forced_ra) { 575 force_page_cache_ra(ractl, req_count); 576 return; 577 } 578 579 /* do read-ahead */ 580 ondemand_readahead(ractl, false, req_count); 581 } 582 EXPORT_SYMBOL_GPL(page_cache_sync_ra); 583 584 void page_cache_async_ra(struct readahead_control *ractl, 585 struct page *page, unsigned long req_count) 586 { 587 /* no read-ahead */ 588 if (!ractl->ra->ra_pages) 589 return; 590 591 /* 592 * Same bit is used for PG_readahead and PG_reclaim. 593 */ 594 if (PageWriteback(page)) 595 return; 596 597 ClearPageReadahead(page); 598 599 /* 600 * Defer asynchronous read-ahead on IO congestion. 601 */ 602 if (inode_read_congested(ractl->mapping->host)) 603 return; 604 605 if (blk_cgroup_congested()) 606 return; 607 608 /* do read-ahead */ 609 ondemand_readahead(ractl, true, req_count); 610 } 611 EXPORT_SYMBOL_GPL(page_cache_async_ra); 612 613 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 614 { 615 ssize_t ret; 616 struct fd f; 617 618 ret = -EBADF; 619 f = fdget(fd); 620 if (!f.file || !(f.file->f_mode & FMODE_READ)) 621 goto out; 622 623 /* 624 * The readahead() syscall is intended to run only on files 625 * that can execute readahead. If readahead is not possible 626 * on this file, then we must return -EINVAL. 627 */ 628 ret = -EINVAL; 629 if (!f.file->f_mapping || !f.file->f_mapping->a_ops || 630 !S_ISREG(file_inode(f.file)->i_mode)) 631 goto out; 632 633 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED); 634 out: 635 fdput(f); 636 return ret; 637 } 638 639 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 640 { 641 return ksys_readahead(fd, offset, count); 642 } 643 644 /** 645 * readahead_expand - Expand a readahead request 646 * @ractl: The request to be expanded 647 * @new_start: The revised start 648 * @new_len: The revised size of the request 649 * 650 * Attempt to expand a readahead request outwards from the current size to the 651 * specified size by inserting locked pages before and after the current window 652 * to increase the size to the new window. This may involve the insertion of 653 * THPs, in which case the window may get expanded even beyond what was 654 * requested. 655 * 656 * The algorithm will stop if it encounters a conflicting page already in the 657 * pagecache and leave a smaller expansion than requested. 658 * 659 * The caller must check for this by examining the revised @ractl object for a 660 * different expansion than was requested. 661 */ 662 void readahead_expand(struct readahead_control *ractl, 663 loff_t new_start, size_t new_len) 664 { 665 struct address_space *mapping = ractl->mapping; 666 struct file_ra_state *ra = ractl->ra; 667 pgoff_t new_index, new_nr_pages; 668 gfp_t gfp_mask = readahead_gfp_mask(mapping); 669 670 new_index = new_start / PAGE_SIZE; 671 672 /* Expand the leading edge downwards */ 673 while (ractl->_index > new_index) { 674 unsigned long index = ractl->_index - 1; 675 struct page *page = xa_load(&mapping->i_pages, index); 676 677 if (page && !xa_is_value(page)) 678 return; /* Page apparently present */ 679 680 page = __page_cache_alloc(gfp_mask); 681 if (!page) 682 return; 683 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) { 684 put_page(page); 685 return; 686 } 687 688 ractl->_nr_pages++; 689 ractl->_index = page->index; 690 } 691 692 new_len += new_start - readahead_pos(ractl); 693 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE); 694 695 /* Expand the trailing edge upwards */ 696 while (ractl->_nr_pages < new_nr_pages) { 697 unsigned long index = ractl->_index + ractl->_nr_pages; 698 struct page *page = xa_load(&mapping->i_pages, index); 699 700 if (page && !xa_is_value(page)) 701 return; /* Page apparently present */ 702 703 page = __page_cache_alloc(gfp_mask); 704 if (!page) 705 return; 706 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) { 707 put_page(page); 708 return; 709 } 710 ractl->_nr_pages++; 711 if (ra) { 712 ra->size++; 713 ra->async_size++; 714 } 715 } 716 } 717 EXPORT_SYMBOL(readahead_expand); 718