xref: /openbmc/linux/mm/readahead.c (revision d623f60d)
1 /*
2  * mm/readahead.c - address_space-level file readahead.
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 09Apr2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/dax.h>
12 #include <linux/gfp.h>
13 #include <linux/export.h>
14 #include <linux/blkdev.h>
15 #include <linux/backing-dev.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/pagevec.h>
18 #include <linux/pagemap.h>
19 #include <linux/syscalls.h>
20 #include <linux/file.h>
21 #include <linux/mm_inline.h>
22 
23 #include "internal.h"
24 
25 /*
26  * Initialise a struct file's readahead state.  Assumes that the caller has
27  * memset *ra to zero.
28  */
29 void
30 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
31 {
32 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
33 	ra->prev_pos = -1;
34 }
35 EXPORT_SYMBOL_GPL(file_ra_state_init);
36 
37 /*
38  * see if a page needs releasing upon read_cache_pages() failure
39  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
40  *   before calling, such as the NFS fs marking pages that are cached locally
41  *   on disk, thus we need to give the fs a chance to clean up in the event of
42  *   an error
43  */
44 static void read_cache_pages_invalidate_page(struct address_space *mapping,
45 					     struct page *page)
46 {
47 	if (page_has_private(page)) {
48 		if (!trylock_page(page))
49 			BUG();
50 		page->mapping = mapping;
51 		do_invalidatepage(page, 0, PAGE_SIZE);
52 		page->mapping = NULL;
53 		unlock_page(page);
54 	}
55 	put_page(page);
56 }
57 
58 /*
59  * release a list of pages, invalidating them first if need be
60  */
61 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
62 					      struct list_head *pages)
63 {
64 	struct page *victim;
65 
66 	while (!list_empty(pages)) {
67 		victim = lru_to_page(pages);
68 		list_del(&victim->lru);
69 		read_cache_pages_invalidate_page(mapping, victim);
70 	}
71 }
72 
73 /**
74  * read_cache_pages - populate an address space with some pages & start reads against them
75  * @mapping: the address_space
76  * @pages: The address of a list_head which contains the target pages.  These
77  *   pages have their ->index populated and are otherwise uninitialised.
78  * @filler: callback routine for filling a single page.
79  * @data: private data for the callback routine.
80  *
81  * Hides the details of the LRU cache etc from the filesystems.
82  */
83 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
84 			int (*filler)(void *, struct page *), void *data)
85 {
86 	struct page *page;
87 	int ret = 0;
88 
89 	while (!list_empty(pages)) {
90 		page = lru_to_page(pages);
91 		list_del(&page->lru);
92 		if (add_to_page_cache_lru(page, mapping, page->index,
93 				readahead_gfp_mask(mapping))) {
94 			read_cache_pages_invalidate_page(mapping, page);
95 			continue;
96 		}
97 		put_page(page);
98 
99 		ret = filler(data, page);
100 		if (unlikely(ret)) {
101 			read_cache_pages_invalidate_pages(mapping, pages);
102 			break;
103 		}
104 		task_io_account_read(PAGE_SIZE);
105 	}
106 	return ret;
107 }
108 
109 EXPORT_SYMBOL(read_cache_pages);
110 
111 static int read_pages(struct address_space *mapping, struct file *filp,
112 		struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
113 {
114 	struct blk_plug plug;
115 	unsigned page_idx;
116 	int ret;
117 
118 	blk_start_plug(&plug);
119 
120 	if (mapping->a_ops->readpages) {
121 		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
122 		/* Clean up the remaining pages */
123 		put_pages_list(pages);
124 		goto out;
125 	}
126 
127 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
128 		struct page *page = lru_to_page(pages);
129 		list_del(&page->lru);
130 		if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
131 			mapping->a_ops->readpage(filp, page);
132 		put_page(page);
133 	}
134 	ret = 0;
135 
136 out:
137 	blk_finish_plug(&plug);
138 
139 	return ret;
140 }
141 
142 /*
143  * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates
144  * the pages first, then submits them for I/O. This avoids the very bad
145  * behaviour which would occur if page allocations are causing VM writeback.
146  * We really don't want to intermingle reads and writes like that.
147  *
148  * Returns the number of pages requested, or the maximum amount of I/O allowed.
149  */
150 unsigned int __do_page_cache_readahead(struct address_space *mapping,
151 		struct file *filp, pgoff_t offset, unsigned long nr_to_read,
152 		unsigned long lookahead_size)
153 {
154 	struct inode *inode = mapping->host;
155 	struct page *page;
156 	unsigned long end_index;	/* The last page we want to read */
157 	LIST_HEAD(page_pool);
158 	int page_idx;
159 	unsigned int nr_pages = 0;
160 	loff_t isize = i_size_read(inode);
161 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
162 
163 	if (isize == 0)
164 		goto out;
165 
166 	end_index = ((isize - 1) >> PAGE_SHIFT);
167 
168 	/*
169 	 * Preallocate as many pages as we will need.
170 	 */
171 	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
172 		pgoff_t page_offset = offset + page_idx;
173 
174 		if (page_offset > end_index)
175 			break;
176 
177 		rcu_read_lock();
178 		page = radix_tree_lookup(&mapping->i_pages, page_offset);
179 		rcu_read_unlock();
180 		if (page && !radix_tree_exceptional_entry(page)) {
181 			/*
182 			 * Page already present?  Kick off the current batch of
183 			 * contiguous pages before continuing with the next
184 			 * batch.
185 			 */
186 			if (nr_pages)
187 				read_pages(mapping, filp, &page_pool, nr_pages,
188 						gfp_mask);
189 			nr_pages = 0;
190 			continue;
191 		}
192 
193 		page = __page_cache_alloc(gfp_mask);
194 		if (!page)
195 			break;
196 		page->index = page_offset;
197 		list_add(&page->lru, &page_pool);
198 		if (page_idx == nr_to_read - lookahead_size)
199 			SetPageReadahead(page);
200 		nr_pages++;
201 	}
202 
203 	/*
204 	 * Now start the IO.  We ignore I/O errors - if the page is not
205 	 * uptodate then the caller will launch readpage again, and
206 	 * will then handle the error.
207 	 */
208 	if (nr_pages)
209 		read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask);
210 	BUG_ON(!list_empty(&page_pool));
211 out:
212 	return nr_pages;
213 }
214 
215 /*
216  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
217  * memory at once.
218  */
219 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
220 			       pgoff_t offset, unsigned long nr_to_read)
221 {
222 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
223 	struct file_ra_state *ra = &filp->f_ra;
224 	unsigned long max_pages;
225 
226 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
227 		return -EINVAL;
228 
229 	/*
230 	 * If the request exceeds the readahead window, allow the read to
231 	 * be up to the optimal hardware IO size
232 	 */
233 	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
234 	nr_to_read = min(nr_to_read, max_pages);
235 	while (nr_to_read) {
236 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
237 
238 		if (this_chunk > nr_to_read)
239 			this_chunk = nr_to_read;
240 		__do_page_cache_readahead(mapping, filp, offset, this_chunk, 0);
241 
242 		offset += this_chunk;
243 		nr_to_read -= this_chunk;
244 	}
245 	return 0;
246 }
247 
248 /*
249  * Set the initial window size, round to next power of 2 and square
250  * for small size, x 4 for medium, and x 2 for large
251  * for 128k (32 page) max ra
252  * 1-8 page = 32k initial, > 8 page = 128k initial
253  */
254 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
255 {
256 	unsigned long newsize = roundup_pow_of_two(size);
257 
258 	if (newsize <= max / 32)
259 		newsize = newsize * 4;
260 	else if (newsize <= max / 4)
261 		newsize = newsize * 2;
262 	else
263 		newsize = max;
264 
265 	return newsize;
266 }
267 
268 /*
269  *  Get the previous window size, ramp it up, and
270  *  return it as the new window size.
271  */
272 static unsigned long get_next_ra_size(struct file_ra_state *ra,
273 						unsigned long max)
274 {
275 	unsigned long cur = ra->size;
276 	unsigned long newsize;
277 
278 	if (cur < max / 16)
279 		newsize = 4 * cur;
280 	else
281 		newsize = 2 * cur;
282 
283 	return min(newsize, max);
284 }
285 
286 /*
287  * On-demand readahead design.
288  *
289  * The fields in struct file_ra_state represent the most-recently-executed
290  * readahead attempt:
291  *
292  *                        |<----- async_size ---------|
293  *     |------------------- size -------------------->|
294  *     |==================#===========================|
295  *     ^start             ^page marked with PG_readahead
296  *
297  * To overlap application thinking time and disk I/O time, we do
298  * `readahead pipelining': Do not wait until the application consumed all
299  * readahead pages and stalled on the missing page at readahead_index;
300  * Instead, submit an asynchronous readahead I/O as soon as there are
301  * only async_size pages left in the readahead window. Normally async_size
302  * will be equal to size, for maximum pipelining.
303  *
304  * In interleaved sequential reads, concurrent streams on the same fd can
305  * be invalidating each other's readahead state. So we flag the new readahead
306  * page at (start+size-async_size) with PG_readahead, and use it as readahead
307  * indicator. The flag won't be set on already cached pages, to avoid the
308  * readahead-for-nothing fuss, saving pointless page cache lookups.
309  *
310  * prev_pos tracks the last visited byte in the _previous_ read request.
311  * It should be maintained by the caller, and will be used for detecting
312  * small random reads. Note that the readahead algorithm checks loosely
313  * for sequential patterns. Hence interleaved reads might be served as
314  * sequential ones.
315  *
316  * There is a special-case: if the first page which the application tries to
317  * read happens to be the first page of the file, it is assumed that a linear
318  * read is about to happen and the window is immediately set to the initial size
319  * based on I/O request size and the max_readahead.
320  *
321  * The code ramps up the readahead size aggressively at first, but slow down as
322  * it approaches max_readhead.
323  */
324 
325 /*
326  * Count contiguously cached pages from @offset-1 to @offset-@max,
327  * this count is a conservative estimation of
328  * 	- length of the sequential read sequence, or
329  * 	- thrashing threshold in memory tight systems
330  */
331 static pgoff_t count_history_pages(struct address_space *mapping,
332 				   pgoff_t offset, unsigned long max)
333 {
334 	pgoff_t head;
335 
336 	rcu_read_lock();
337 	head = page_cache_prev_hole(mapping, offset - 1, max);
338 	rcu_read_unlock();
339 
340 	return offset - 1 - head;
341 }
342 
343 /*
344  * page cache context based read-ahead
345  */
346 static int try_context_readahead(struct address_space *mapping,
347 				 struct file_ra_state *ra,
348 				 pgoff_t offset,
349 				 unsigned long req_size,
350 				 unsigned long max)
351 {
352 	pgoff_t size;
353 
354 	size = count_history_pages(mapping, offset, max);
355 
356 	/*
357 	 * not enough history pages:
358 	 * it could be a random read
359 	 */
360 	if (size <= req_size)
361 		return 0;
362 
363 	/*
364 	 * starts from beginning of file:
365 	 * it is a strong indication of long-run stream (or whole-file-read)
366 	 */
367 	if (size >= offset)
368 		size *= 2;
369 
370 	ra->start = offset;
371 	ra->size = min(size + req_size, max);
372 	ra->async_size = 1;
373 
374 	return 1;
375 }
376 
377 /*
378  * A minimal readahead algorithm for trivial sequential/random reads.
379  */
380 static unsigned long
381 ondemand_readahead(struct address_space *mapping,
382 		   struct file_ra_state *ra, struct file *filp,
383 		   bool hit_readahead_marker, pgoff_t offset,
384 		   unsigned long req_size)
385 {
386 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
387 	unsigned long max_pages = ra->ra_pages;
388 	pgoff_t prev_offset;
389 
390 	/*
391 	 * If the request exceeds the readahead window, allow the read to
392 	 * be up to the optimal hardware IO size
393 	 */
394 	if (req_size > max_pages && bdi->io_pages > max_pages)
395 		max_pages = min(req_size, bdi->io_pages);
396 
397 	/*
398 	 * start of file
399 	 */
400 	if (!offset)
401 		goto initial_readahead;
402 
403 	/*
404 	 * It's the expected callback offset, assume sequential access.
405 	 * Ramp up sizes, and push forward the readahead window.
406 	 */
407 	if ((offset == (ra->start + ra->size - ra->async_size) ||
408 	     offset == (ra->start + ra->size))) {
409 		ra->start += ra->size;
410 		ra->size = get_next_ra_size(ra, max_pages);
411 		ra->async_size = ra->size;
412 		goto readit;
413 	}
414 
415 	/*
416 	 * Hit a marked page without valid readahead state.
417 	 * E.g. interleaved reads.
418 	 * Query the pagecache for async_size, which normally equals to
419 	 * readahead size. Ramp it up and use it as the new readahead size.
420 	 */
421 	if (hit_readahead_marker) {
422 		pgoff_t start;
423 
424 		rcu_read_lock();
425 		start = page_cache_next_hole(mapping, offset + 1, max_pages);
426 		rcu_read_unlock();
427 
428 		if (!start || start - offset > max_pages)
429 			return 0;
430 
431 		ra->start = start;
432 		ra->size = start - offset;	/* old async_size */
433 		ra->size += req_size;
434 		ra->size = get_next_ra_size(ra, max_pages);
435 		ra->async_size = ra->size;
436 		goto readit;
437 	}
438 
439 	/*
440 	 * oversize read
441 	 */
442 	if (req_size > max_pages)
443 		goto initial_readahead;
444 
445 	/*
446 	 * sequential cache miss
447 	 * trivial case: (offset - prev_offset) == 1
448 	 * unaligned reads: (offset - prev_offset) == 0
449 	 */
450 	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
451 	if (offset - prev_offset <= 1UL)
452 		goto initial_readahead;
453 
454 	/*
455 	 * Query the page cache and look for the traces(cached history pages)
456 	 * that a sequential stream would leave behind.
457 	 */
458 	if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
459 		goto readit;
460 
461 	/*
462 	 * standalone, small random read
463 	 * Read as is, and do not pollute the readahead state.
464 	 */
465 	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
466 
467 initial_readahead:
468 	ra->start = offset;
469 	ra->size = get_init_ra_size(req_size, max_pages);
470 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
471 
472 readit:
473 	/*
474 	 * Will this read hit the readahead marker made by itself?
475 	 * If so, trigger the readahead marker hit now, and merge
476 	 * the resulted next readahead window into the current one.
477 	 */
478 	if (offset == ra->start && ra->size == ra->async_size) {
479 		ra->async_size = get_next_ra_size(ra, max_pages);
480 		ra->size += ra->async_size;
481 	}
482 
483 	return ra_submit(ra, mapping, filp);
484 }
485 
486 /**
487  * page_cache_sync_readahead - generic file readahead
488  * @mapping: address_space which holds the pagecache and I/O vectors
489  * @ra: file_ra_state which holds the readahead state
490  * @filp: passed on to ->readpage() and ->readpages()
491  * @offset: start offset into @mapping, in pagecache page-sized units
492  * @req_size: hint: total size of the read which the caller is performing in
493  *            pagecache pages
494  *
495  * page_cache_sync_readahead() should be called when a cache miss happened:
496  * it will submit the read.  The readahead logic may decide to piggyback more
497  * pages onto the read request if access patterns suggest it will improve
498  * performance.
499  */
500 void page_cache_sync_readahead(struct address_space *mapping,
501 			       struct file_ra_state *ra, struct file *filp,
502 			       pgoff_t offset, unsigned long req_size)
503 {
504 	/* no read-ahead */
505 	if (!ra->ra_pages)
506 		return;
507 
508 	/* be dumb */
509 	if (filp && (filp->f_mode & FMODE_RANDOM)) {
510 		force_page_cache_readahead(mapping, filp, offset, req_size);
511 		return;
512 	}
513 
514 	/* do read-ahead */
515 	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
516 }
517 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
518 
519 /**
520  * page_cache_async_readahead - file readahead for marked pages
521  * @mapping: address_space which holds the pagecache and I/O vectors
522  * @ra: file_ra_state which holds the readahead state
523  * @filp: passed on to ->readpage() and ->readpages()
524  * @page: the page at @offset which has the PG_readahead flag set
525  * @offset: start offset into @mapping, in pagecache page-sized units
526  * @req_size: hint: total size of the read which the caller is performing in
527  *            pagecache pages
528  *
529  * page_cache_async_readahead() should be called when a page is used which
530  * has the PG_readahead flag; this is a marker to suggest that the application
531  * has used up enough of the readahead window that we should start pulling in
532  * more pages.
533  */
534 void
535 page_cache_async_readahead(struct address_space *mapping,
536 			   struct file_ra_state *ra, struct file *filp,
537 			   struct page *page, pgoff_t offset,
538 			   unsigned long req_size)
539 {
540 	/* no read-ahead */
541 	if (!ra->ra_pages)
542 		return;
543 
544 	/*
545 	 * Same bit is used for PG_readahead and PG_reclaim.
546 	 */
547 	if (PageWriteback(page))
548 		return;
549 
550 	ClearPageReadahead(page);
551 
552 	/*
553 	 * Defer asynchronous read-ahead on IO congestion.
554 	 */
555 	if (inode_read_congested(mapping->host))
556 		return;
557 
558 	/* do read-ahead */
559 	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
560 }
561 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
562 
563 static ssize_t
564 do_readahead(struct address_space *mapping, struct file *filp,
565 	     pgoff_t index, unsigned long nr)
566 {
567 	if (!mapping || !mapping->a_ops)
568 		return -EINVAL;
569 
570 	/*
571 	 * Readahead doesn't make sense for DAX inodes, but we don't want it
572 	 * to report a failure either.  Instead, we just return success and
573 	 * don't do any work.
574 	 */
575 	if (dax_mapping(mapping))
576 		return 0;
577 
578 	return force_page_cache_readahead(mapping, filp, index, nr);
579 }
580 
581 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
582 {
583 	ssize_t ret;
584 	struct fd f;
585 
586 	ret = -EBADF;
587 	f = fdget(fd);
588 	if (f.file) {
589 		if (f.file->f_mode & FMODE_READ) {
590 			struct address_space *mapping = f.file->f_mapping;
591 			pgoff_t start = offset >> PAGE_SHIFT;
592 			pgoff_t end = (offset + count - 1) >> PAGE_SHIFT;
593 			unsigned long len = end - start + 1;
594 			ret = do_readahead(mapping, f.file, start, len);
595 		}
596 		fdput(f);
597 	}
598 	return ret;
599 }
600 
601 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
602 {
603 	return ksys_readahead(fd, offset, count);
604 }
605