xref: /openbmc/linux/mm/readahead.c (revision c494a447)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/readahead.c - address_space-level file readahead.
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 09Apr2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 /**
12  * DOC: Readahead Overview
13  *
14  * Readahead is used to read content into the page cache before it is
15  * explicitly requested by the application.  Readahead only ever
16  * attempts to read folios that are not yet in the page cache.  If a
17  * folio is present but not up-to-date, readahead will not try to read
18  * it. In that case a simple ->read_folio() will be requested.
19  *
20  * Readahead is triggered when an application read request (whether a
21  * system call or a page fault) finds that the requested folio is not in
22  * the page cache, or that it is in the page cache and has the
23  * readahead flag set.  This flag indicates that the folio was read
24  * as part of a previous readahead request and now that it has been
25  * accessed, it is time for the next readahead.
26  *
27  * Each readahead request is partly synchronous read, and partly async
28  * readahead.  This is reflected in the struct file_ra_state which
29  * contains ->size being the total number of pages, and ->async_size
30  * which is the number of pages in the async section.  The readahead
31  * flag will be set on the first folio in this async section to trigger
32  * a subsequent readahead.  Once a series of sequential reads has been
33  * established, there should be no need for a synchronous component and
34  * all readahead request will be fully asynchronous.
35  *
36  * When either of the triggers causes a readahead, three numbers need
37  * to be determined: the start of the region to read, the size of the
38  * region, and the size of the async tail.
39  *
40  * The start of the region is simply the first page address at or after
41  * the accessed address, which is not currently populated in the page
42  * cache.  This is found with a simple search in the page cache.
43  *
44  * The size of the async tail is determined by subtracting the size that
45  * was explicitly requested from the determined request size, unless
46  * this would be less than zero - then zero is used.  NOTE THIS
47  * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
48  * PAGE.  ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
49  *
50  * The size of the region is normally determined from the size of the
51  * previous readahead which loaded the preceding pages.  This may be
52  * discovered from the struct file_ra_state for simple sequential reads,
53  * or from examining the state of the page cache when multiple
54  * sequential reads are interleaved.  Specifically: where the readahead
55  * was triggered by the readahead flag, the size of the previous
56  * readahead is assumed to be the number of pages from the triggering
57  * page to the start of the new readahead.  In these cases, the size of
58  * the previous readahead is scaled, often doubled, for the new
59  * readahead, though see get_next_ra_size() for details.
60  *
61  * If the size of the previous read cannot be determined, the number of
62  * preceding pages in the page cache is used to estimate the size of
63  * a previous read.  This estimate could easily be misled by random
64  * reads being coincidentally adjacent, so it is ignored unless it is
65  * larger than the current request, and it is not scaled up, unless it
66  * is at the start of file.
67  *
68  * In general readahead is accelerated at the start of the file, as
69  * reads from there are often sequential.  There are other minor
70  * adjustments to the readahead size in various special cases and these
71  * are best discovered by reading the code.
72  *
73  * The above calculation, based on the previous readahead size,
74  * determines the size of the readahead, to which any requested read
75  * size may be added.
76  *
77  * Readahead requests are sent to the filesystem using the ->readahead()
78  * address space operation, for which mpage_readahead() is a canonical
79  * implementation.  ->readahead() should normally initiate reads on all
80  * folios, but may fail to read any or all folios without causing an I/O
81  * error.  The page cache reading code will issue a ->read_folio() request
82  * for any folio which ->readahead() did not read, and only an error
83  * from this will be final.
84  *
85  * ->readahead() will generally call readahead_folio() repeatedly to get
86  * each folio from those prepared for readahead.  It may fail to read a
87  * folio by:
88  *
89  * * not calling readahead_folio() sufficiently many times, effectively
90  *   ignoring some folios, as might be appropriate if the path to
91  *   storage is congested.
92  *
93  * * failing to actually submit a read request for a given folio,
94  *   possibly due to insufficient resources, or
95  *
96  * * getting an error during subsequent processing of a request.
97  *
98  * In the last two cases, the folio should be unlocked by the filesystem
99  * to indicate that the read attempt has failed.  In the first case the
100  * folio will be unlocked by the VFS.
101  *
102  * Those folios not in the final ``async_size`` of the request should be
103  * considered to be important and ->readahead() should not fail them due
104  * to congestion or temporary resource unavailability, but should wait
105  * for necessary resources (e.g.  memory or indexing information) to
106  * become available.  Folios in the final ``async_size`` may be
107  * considered less urgent and failure to read them is more acceptable.
108  * In this case it is best to use filemap_remove_folio() to remove the
109  * folios from the page cache as is automatically done for folios that
110  * were not fetched with readahead_folio().  This will allow a
111  * subsequent synchronous readahead request to try them again.  If they
112  * are left in the page cache, then they will be read individually using
113  * ->read_folio() which may be less efficient.
114  */
115 
116 #include <linux/blkdev.h>
117 #include <linux/kernel.h>
118 #include <linux/dax.h>
119 #include <linux/gfp.h>
120 #include <linux/export.h>
121 #include <linux/backing-dev.h>
122 #include <linux/task_io_accounting_ops.h>
123 #include <linux/pagevec.h>
124 #include <linux/pagemap.h>
125 #include <linux/syscalls.h>
126 #include <linux/file.h>
127 #include <linux/mm_inline.h>
128 #include <linux/blk-cgroup.h>
129 #include <linux/fadvise.h>
130 #include <linux/sched/mm.h>
131 
132 #include "internal.h"
133 
134 /*
135  * Initialise a struct file's readahead state.  Assumes that the caller has
136  * memset *ra to zero.
137  */
138 void
139 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
140 {
141 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
142 	ra->prev_pos = -1;
143 }
144 EXPORT_SYMBOL_GPL(file_ra_state_init);
145 
146 static void read_pages(struct readahead_control *rac)
147 {
148 	const struct address_space_operations *aops = rac->mapping->a_ops;
149 	struct folio *folio;
150 	struct blk_plug plug;
151 
152 	if (!readahead_count(rac))
153 		return;
154 
155 	blk_start_plug(&plug);
156 
157 	if (aops->readahead) {
158 		aops->readahead(rac);
159 		/*
160 		 * Clean up the remaining folios.  The sizes in ->ra
161 		 * may be used to size the next readahead, so make sure
162 		 * they accurately reflect what happened.
163 		 */
164 		while ((folio = readahead_folio(rac)) != NULL) {
165 			unsigned long nr = folio_nr_pages(folio);
166 
167 			rac->ra->size -= nr;
168 			if (rac->ra->async_size >= nr) {
169 				rac->ra->async_size -= nr;
170 				filemap_remove_folio(folio);
171 			}
172 			folio_unlock(folio);
173 		}
174 	} else {
175 		while ((folio = readahead_folio(rac)) != NULL)
176 			aops->read_folio(rac->file, folio);
177 	}
178 
179 	blk_finish_plug(&plug);
180 
181 	BUG_ON(readahead_count(rac));
182 }
183 
184 /**
185  * page_cache_ra_unbounded - Start unchecked readahead.
186  * @ractl: Readahead control.
187  * @nr_to_read: The number of pages to read.
188  * @lookahead_size: Where to start the next readahead.
189  *
190  * This function is for filesystems to call when they want to start
191  * readahead beyond a file's stated i_size.  This is almost certainly
192  * not the function you want to call.  Use page_cache_async_readahead()
193  * or page_cache_sync_readahead() instead.
194  *
195  * Context: File is referenced by caller.  Mutexes may be held by caller.
196  * May sleep, but will not reenter filesystem to reclaim memory.
197  */
198 void page_cache_ra_unbounded(struct readahead_control *ractl,
199 		unsigned long nr_to_read, unsigned long lookahead_size)
200 {
201 	struct address_space *mapping = ractl->mapping;
202 	unsigned long index = readahead_index(ractl);
203 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
204 	unsigned long i;
205 
206 	/*
207 	 * Partway through the readahead operation, we will have added
208 	 * locked pages to the page cache, but will not yet have submitted
209 	 * them for I/O.  Adding another page may need to allocate memory,
210 	 * which can trigger memory reclaim.  Telling the VM we're in
211 	 * the middle of a filesystem operation will cause it to not
212 	 * touch file-backed pages, preventing a deadlock.  Most (all?)
213 	 * filesystems already specify __GFP_NOFS in their mapping's
214 	 * gfp_mask, but let's be explicit here.
215 	 */
216 	unsigned int nofs = memalloc_nofs_save();
217 
218 	filemap_invalidate_lock_shared(mapping);
219 	/*
220 	 * Preallocate as many pages as we will need.
221 	 */
222 	for (i = 0; i < nr_to_read; i++) {
223 		struct folio *folio = xa_load(&mapping->i_pages, index + i);
224 
225 		if (folio && !xa_is_value(folio)) {
226 			/*
227 			 * Page already present?  Kick off the current batch
228 			 * of contiguous pages before continuing with the
229 			 * next batch.  This page may be the one we would
230 			 * have intended to mark as Readahead, but we don't
231 			 * have a stable reference to this page, and it's
232 			 * not worth getting one just for that.
233 			 */
234 			read_pages(ractl);
235 			ractl->_index++;
236 			i = ractl->_index + ractl->_nr_pages - index - 1;
237 			continue;
238 		}
239 
240 		folio = filemap_alloc_folio(gfp_mask, 0);
241 		if (!folio)
242 			break;
243 		if (filemap_add_folio(mapping, folio, index + i,
244 					gfp_mask) < 0) {
245 			folio_put(folio);
246 			read_pages(ractl);
247 			ractl->_index++;
248 			i = ractl->_index + ractl->_nr_pages - index - 1;
249 			continue;
250 		}
251 		if (i == nr_to_read - lookahead_size)
252 			folio_set_readahead(folio);
253 		ractl->_nr_pages++;
254 	}
255 
256 	/*
257 	 * Now start the IO.  We ignore I/O errors - if the folio is not
258 	 * uptodate then the caller will launch read_folio again, and
259 	 * will then handle the error.
260 	 */
261 	read_pages(ractl);
262 	filemap_invalidate_unlock_shared(mapping);
263 	memalloc_nofs_restore(nofs);
264 }
265 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
266 
267 /*
268  * do_page_cache_ra() actually reads a chunk of disk.  It allocates
269  * the pages first, then submits them for I/O. This avoids the very bad
270  * behaviour which would occur if page allocations are causing VM writeback.
271  * We really don't want to intermingle reads and writes like that.
272  */
273 static void do_page_cache_ra(struct readahead_control *ractl,
274 		unsigned long nr_to_read, unsigned long lookahead_size)
275 {
276 	struct inode *inode = ractl->mapping->host;
277 	unsigned long index = readahead_index(ractl);
278 	loff_t isize = i_size_read(inode);
279 	pgoff_t end_index;	/* The last page we want to read */
280 
281 	if (isize == 0)
282 		return;
283 
284 	end_index = (isize - 1) >> PAGE_SHIFT;
285 	if (index > end_index)
286 		return;
287 	/* Don't read past the page containing the last byte of the file */
288 	if (nr_to_read > end_index - index)
289 		nr_to_read = end_index - index + 1;
290 
291 	page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
292 }
293 
294 /*
295  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
296  * memory at once.
297  */
298 void force_page_cache_ra(struct readahead_control *ractl,
299 		unsigned long nr_to_read)
300 {
301 	struct address_space *mapping = ractl->mapping;
302 	struct file_ra_state *ra = ractl->ra;
303 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
304 	unsigned long max_pages, index;
305 
306 	if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
307 		return;
308 
309 	/*
310 	 * If the request exceeds the readahead window, allow the read to
311 	 * be up to the optimal hardware IO size
312 	 */
313 	index = readahead_index(ractl);
314 	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
315 	nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
316 	while (nr_to_read) {
317 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
318 
319 		if (this_chunk > nr_to_read)
320 			this_chunk = nr_to_read;
321 		ractl->_index = index;
322 		do_page_cache_ra(ractl, this_chunk, 0);
323 
324 		index += this_chunk;
325 		nr_to_read -= this_chunk;
326 	}
327 }
328 
329 /*
330  * Set the initial window size, round to next power of 2 and square
331  * for small size, x 4 for medium, and x 2 for large
332  * for 128k (32 page) max ra
333  * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
334  */
335 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
336 {
337 	unsigned long newsize = roundup_pow_of_two(size);
338 
339 	if (newsize <= max / 32)
340 		newsize = newsize * 4;
341 	else if (newsize <= max / 4)
342 		newsize = newsize * 2;
343 	else
344 		newsize = max;
345 
346 	return newsize;
347 }
348 
349 /*
350  *  Get the previous window size, ramp it up, and
351  *  return it as the new window size.
352  */
353 static unsigned long get_next_ra_size(struct file_ra_state *ra,
354 				      unsigned long max)
355 {
356 	unsigned long cur = ra->size;
357 
358 	if (cur < max / 16)
359 		return 4 * cur;
360 	if (cur <= max / 2)
361 		return 2 * cur;
362 	return max;
363 }
364 
365 /*
366  * On-demand readahead design.
367  *
368  * The fields in struct file_ra_state represent the most-recently-executed
369  * readahead attempt:
370  *
371  *                        |<----- async_size ---------|
372  *     |------------------- size -------------------->|
373  *     |==================#===========================|
374  *     ^start             ^page marked with PG_readahead
375  *
376  * To overlap application thinking time and disk I/O time, we do
377  * `readahead pipelining': Do not wait until the application consumed all
378  * readahead pages and stalled on the missing page at readahead_index;
379  * Instead, submit an asynchronous readahead I/O as soon as there are
380  * only async_size pages left in the readahead window. Normally async_size
381  * will be equal to size, for maximum pipelining.
382  *
383  * In interleaved sequential reads, concurrent streams on the same fd can
384  * be invalidating each other's readahead state. So we flag the new readahead
385  * page at (start+size-async_size) with PG_readahead, and use it as readahead
386  * indicator. The flag won't be set on already cached pages, to avoid the
387  * readahead-for-nothing fuss, saving pointless page cache lookups.
388  *
389  * prev_pos tracks the last visited byte in the _previous_ read request.
390  * It should be maintained by the caller, and will be used for detecting
391  * small random reads. Note that the readahead algorithm checks loosely
392  * for sequential patterns. Hence interleaved reads might be served as
393  * sequential ones.
394  *
395  * There is a special-case: if the first page which the application tries to
396  * read happens to be the first page of the file, it is assumed that a linear
397  * read is about to happen and the window is immediately set to the initial size
398  * based on I/O request size and the max_readahead.
399  *
400  * The code ramps up the readahead size aggressively at first, but slow down as
401  * it approaches max_readhead.
402  */
403 
404 /*
405  * Count contiguously cached pages from @index-1 to @index-@max,
406  * this count is a conservative estimation of
407  * 	- length of the sequential read sequence, or
408  * 	- thrashing threshold in memory tight systems
409  */
410 static pgoff_t count_history_pages(struct address_space *mapping,
411 				   pgoff_t index, unsigned long max)
412 {
413 	pgoff_t head;
414 
415 	rcu_read_lock();
416 	head = page_cache_prev_miss(mapping, index - 1, max);
417 	rcu_read_unlock();
418 
419 	return index - 1 - head;
420 }
421 
422 /*
423  * page cache context based readahead
424  */
425 static int try_context_readahead(struct address_space *mapping,
426 				 struct file_ra_state *ra,
427 				 pgoff_t index,
428 				 unsigned long req_size,
429 				 unsigned long max)
430 {
431 	pgoff_t size;
432 
433 	size = count_history_pages(mapping, index, max);
434 
435 	/*
436 	 * not enough history pages:
437 	 * it could be a random read
438 	 */
439 	if (size <= req_size)
440 		return 0;
441 
442 	/*
443 	 * starts from beginning of file:
444 	 * it is a strong indication of long-run stream (or whole-file-read)
445 	 */
446 	if (size >= index)
447 		size *= 2;
448 
449 	ra->start = index;
450 	ra->size = min(size + req_size, max);
451 	ra->async_size = 1;
452 
453 	return 1;
454 }
455 
456 /*
457  * There are some parts of the kernel which assume that PMD entries
458  * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
459  * limit the maximum allocation order to PMD size.  I'm not aware of any
460  * assumptions about maximum order if THP are disabled, but 8 seems like
461  * a good order (that's 1MB if you're using 4kB pages)
462  */
463 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
464 #define MAX_PAGECACHE_ORDER	HPAGE_PMD_ORDER
465 #else
466 #define MAX_PAGECACHE_ORDER	8
467 #endif
468 
469 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
470 		pgoff_t mark, unsigned int order, gfp_t gfp)
471 {
472 	int err;
473 	struct folio *folio = filemap_alloc_folio(gfp, order);
474 
475 	if (!folio)
476 		return -ENOMEM;
477 	mark = round_up(mark, 1UL << order);
478 	if (index == mark)
479 		folio_set_readahead(folio);
480 	err = filemap_add_folio(ractl->mapping, folio, index, gfp);
481 	if (err)
482 		folio_put(folio);
483 	else
484 		ractl->_nr_pages += 1UL << order;
485 	return err;
486 }
487 
488 void page_cache_ra_order(struct readahead_control *ractl,
489 		struct file_ra_state *ra, unsigned int new_order)
490 {
491 	struct address_space *mapping = ractl->mapping;
492 	pgoff_t index = readahead_index(ractl);
493 	pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
494 	pgoff_t mark = index + ra->size - ra->async_size;
495 	int err = 0;
496 	gfp_t gfp = readahead_gfp_mask(mapping);
497 
498 	if (!mapping_large_folio_support(mapping) || ra->size < 4)
499 		goto fallback;
500 
501 	limit = min(limit, index + ra->size - 1);
502 
503 	if (new_order < MAX_PAGECACHE_ORDER) {
504 		new_order += 2;
505 		if (new_order > MAX_PAGECACHE_ORDER)
506 			new_order = MAX_PAGECACHE_ORDER;
507 		while ((1 << new_order) > ra->size)
508 			new_order--;
509 	}
510 
511 	while (index <= limit) {
512 		unsigned int order = new_order;
513 
514 		/* Align with smaller pages if needed */
515 		if (index & ((1UL << order) - 1)) {
516 			order = __ffs(index);
517 			if (order == 1)
518 				order = 0;
519 		}
520 		/* Don't allocate pages past EOF */
521 		while (index + (1UL << order) - 1 > limit) {
522 			if (--order == 1)
523 				order = 0;
524 		}
525 		err = ra_alloc_folio(ractl, index, mark, order, gfp);
526 		if (err)
527 			break;
528 		index += 1UL << order;
529 	}
530 
531 	if (index > limit) {
532 		ra->size += index - limit - 1;
533 		ra->async_size += index - limit - 1;
534 	}
535 
536 	read_pages(ractl);
537 
538 	/*
539 	 * If there were already pages in the page cache, then we may have
540 	 * left some gaps.  Let the regular readahead code take care of this
541 	 * situation.
542 	 */
543 	if (!err)
544 		return;
545 fallback:
546 	do_page_cache_ra(ractl, ra->size, ra->async_size);
547 }
548 
549 /*
550  * A minimal readahead algorithm for trivial sequential/random reads.
551  */
552 static void ondemand_readahead(struct readahead_control *ractl,
553 		struct folio *folio, unsigned long req_size)
554 {
555 	struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
556 	struct file_ra_state *ra = ractl->ra;
557 	unsigned long max_pages = ra->ra_pages;
558 	unsigned long add_pages;
559 	pgoff_t index = readahead_index(ractl);
560 	pgoff_t expected, prev_index;
561 	unsigned int order = folio ? folio_order(folio) : 0;
562 
563 	/*
564 	 * If the request exceeds the readahead window, allow the read to
565 	 * be up to the optimal hardware IO size
566 	 */
567 	if (req_size > max_pages && bdi->io_pages > max_pages)
568 		max_pages = min(req_size, bdi->io_pages);
569 
570 	/*
571 	 * start of file
572 	 */
573 	if (!index)
574 		goto initial_readahead;
575 
576 	/*
577 	 * It's the expected callback index, assume sequential access.
578 	 * Ramp up sizes, and push forward the readahead window.
579 	 */
580 	expected = round_up(ra->start + ra->size - ra->async_size,
581 			1UL << order);
582 	if (index == expected || index == (ra->start + ra->size)) {
583 		ra->start += ra->size;
584 		ra->size = get_next_ra_size(ra, max_pages);
585 		ra->async_size = ra->size;
586 		goto readit;
587 	}
588 
589 	/*
590 	 * Hit a marked folio without valid readahead state.
591 	 * E.g. interleaved reads.
592 	 * Query the pagecache for async_size, which normally equals to
593 	 * readahead size. Ramp it up and use it as the new readahead size.
594 	 */
595 	if (folio) {
596 		pgoff_t start;
597 
598 		rcu_read_lock();
599 		start = page_cache_next_miss(ractl->mapping, index + 1,
600 				max_pages);
601 		rcu_read_unlock();
602 
603 		if (!start || start - index > max_pages)
604 			return;
605 
606 		ra->start = start;
607 		ra->size = start - index;	/* old async_size */
608 		ra->size += req_size;
609 		ra->size = get_next_ra_size(ra, max_pages);
610 		ra->async_size = ra->size;
611 		goto readit;
612 	}
613 
614 	/*
615 	 * oversize read
616 	 */
617 	if (req_size > max_pages)
618 		goto initial_readahead;
619 
620 	/*
621 	 * sequential cache miss
622 	 * trivial case: (index - prev_index) == 1
623 	 * unaligned reads: (index - prev_index) == 0
624 	 */
625 	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
626 	if (index - prev_index <= 1UL)
627 		goto initial_readahead;
628 
629 	/*
630 	 * Query the page cache and look for the traces(cached history pages)
631 	 * that a sequential stream would leave behind.
632 	 */
633 	if (try_context_readahead(ractl->mapping, ra, index, req_size,
634 			max_pages))
635 		goto readit;
636 
637 	/*
638 	 * standalone, small random read
639 	 * Read as is, and do not pollute the readahead state.
640 	 */
641 	do_page_cache_ra(ractl, req_size, 0);
642 	return;
643 
644 initial_readahead:
645 	ra->start = index;
646 	ra->size = get_init_ra_size(req_size, max_pages);
647 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
648 
649 readit:
650 	/*
651 	 * Will this read hit the readahead marker made by itself?
652 	 * If so, trigger the readahead marker hit now, and merge
653 	 * the resulted next readahead window into the current one.
654 	 * Take care of maximum IO pages as above.
655 	 */
656 	if (index == ra->start && ra->size == ra->async_size) {
657 		add_pages = get_next_ra_size(ra, max_pages);
658 		if (ra->size + add_pages <= max_pages) {
659 			ra->async_size = add_pages;
660 			ra->size += add_pages;
661 		} else {
662 			ra->size = max_pages;
663 			ra->async_size = max_pages >> 1;
664 		}
665 	}
666 
667 	ractl->_index = ra->start;
668 	page_cache_ra_order(ractl, ra, order);
669 }
670 
671 void page_cache_sync_ra(struct readahead_control *ractl,
672 		unsigned long req_count)
673 {
674 	bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
675 
676 	/*
677 	 * Even if readahead is disabled, issue this request as readahead
678 	 * as we'll need it to satisfy the requested range. The forced
679 	 * readahead will do the right thing and limit the read to just the
680 	 * requested range, which we'll set to 1 page for this case.
681 	 */
682 	if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
683 		if (!ractl->file)
684 			return;
685 		req_count = 1;
686 		do_forced_ra = true;
687 	}
688 
689 	/* be dumb */
690 	if (do_forced_ra) {
691 		force_page_cache_ra(ractl, req_count);
692 		return;
693 	}
694 
695 	ondemand_readahead(ractl, NULL, req_count);
696 }
697 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
698 
699 void page_cache_async_ra(struct readahead_control *ractl,
700 		struct folio *folio, unsigned long req_count)
701 {
702 	/* no readahead */
703 	if (!ractl->ra->ra_pages)
704 		return;
705 
706 	/*
707 	 * Same bit is used for PG_readahead and PG_reclaim.
708 	 */
709 	if (folio_test_writeback(folio))
710 		return;
711 
712 	folio_clear_readahead(folio);
713 
714 	if (blk_cgroup_congested())
715 		return;
716 
717 	ondemand_readahead(ractl, folio, req_count);
718 }
719 EXPORT_SYMBOL_GPL(page_cache_async_ra);
720 
721 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
722 {
723 	ssize_t ret;
724 	struct fd f;
725 
726 	ret = -EBADF;
727 	f = fdget(fd);
728 	if (!f.file || !(f.file->f_mode & FMODE_READ))
729 		goto out;
730 
731 	/*
732 	 * The readahead() syscall is intended to run only on files
733 	 * that can execute readahead. If readahead is not possible
734 	 * on this file, then we must return -EINVAL.
735 	 */
736 	ret = -EINVAL;
737 	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
738 	    !S_ISREG(file_inode(f.file)->i_mode))
739 		goto out;
740 
741 	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
742 out:
743 	fdput(f);
744 	return ret;
745 }
746 
747 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
748 {
749 	return ksys_readahead(fd, offset, count);
750 }
751 
752 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
753 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
754 {
755 	return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
756 }
757 #endif
758 
759 /**
760  * readahead_expand - Expand a readahead request
761  * @ractl: The request to be expanded
762  * @new_start: The revised start
763  * @new_len: The revised size of the request
764  *
765  * Attempt to expand a readahead request outwards from the current size to the
766  * specified size by inserting locked pages before and after the current window
767  * to increase the size to the new window.  This may involve the insertion of
768  * THPs, in which case the window may get expanded even beyond what was
769  * requested.
770  *
771  * The algorithm will stop if it encounters a conflicting page already in the
772  * pagecache and leave a smaller expansion than requested.
773  *
774  * The caller must check for this by examining the revised @ractl object for a
775  * different expansion than was requested.
776  */
777 void readahead_expand(struct readahead_control *ractl,
778 		      loff_t new_start, size_t new_len)
779 {
780 	struct address_space *mapping = ractl->mapping;
781 	struct file_ra_state *ra = ractl->ra;
782 	pgoff_t new_index, new_nr_pages;
783 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
784 
785 	new_index = new_start / PAGE_SIZE;
786 
787 	/* Expand the leading edge downwards */
788 	while (ractl->_index > new_index) {
789 		unsigned long index = ractl->_index - 1;
790 		struct page *page = xa_load(&mapping->i_pages, index);
791 
792 		if (page && !xa_is_value(page))
793 			return; /* Page apparently present */
794 
795 		page = __page_cache_alloc(gfp_mask);
796 		if (!page)
797 			return;
798 		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
799 			put_page(page);
800 			return;
801 		}
802 
803 		ractl->_nr_pages++;
804 		ractl->_index = page->index;
805 	}
806 
807 	new_len += new_start - readahead_pos(ractl);
808 	new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
809 
810 	/* Expand the trailing edge upwards */
811 	while (ractl->_nr_pages < new_nr_pages) {
812 		unsigned long index = ractl->_index + ractl->_nr_pages;
813 		struct page *page = xa_load(&mapping->i_pages, index);
814 
815 		if (page && !xa_is_value(page))
816 			return; /* Page apparently present */
817 
818 		page = __page_cache_alloc(gfp_mask);
819 		if (!page)
820 			return;
821 		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
822 			put_page(page);
823 			return;
824 		}
825 		ractl->_nr_pages++;
826 		if (ra) {
827 			ra->size++;
828 			ra->async_size++;
829 		}
830 	}
831 }
832 EXPORT_SYMBOL(readahead_expand);
833