xref: /openbmc/linux/mm/readahead.c (revision b6dcefde)
1 /*
2  * mm/readahead.c - address_space-level file readahead.
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 09Apr2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/blkdev.h>
15 #include <linux/backing-dev.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/pagevec.h>
18 #include <linux/pagemap.h>
19 
20 /*
21  * Initialise a struct file's readahead state.  Assumes that the caller has
22  * memset *ra to zero.
23  */
24 void
25 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
26 {
27 	ra->ra_pages = mapping->backing_dev_info->ra_pages;
28 	ra->prev_pos = -1;
29 }
30 EXPORT_SYMBOL_GPL(file_ra_state_init);
31 
32 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
33 
34 /*
35  * see if a page needs releasing upon read_cache_pages() failure
36  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
37  *   before calling, such as the NFS fs marking pages that are cached locally
38  *   on disk, thus we need to give the fs a chance to clean up in the event of
39  *   an error
40  */
41 static void read_cache_pages_invalidate_page(struct address_space *mapping,
42 					     struct page *page)
43 {
44 	if (page_has_private(page)) {
45 		if (!trylock_page(page))
46 			BUG();
47 		page->mapping = mapping;
48 		do_invalidatepage(page, 0);
49 		page->mapping = NULL;
50 		unlock_page(page);
51 	}
52 	page_cache_release(page);
53 }
54 
55 /*
56  * release a list of pages, invalidating them first if need be
57  */
58 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
59 					      struct list_head *pages)
60 {
61 	struct page *victim;
62 
63 	while (!list_empty(pages)) {
64 		victim = list_to_page(pages);
65 		list_del(&victim->lru);
66 		read_cache_pages_invalidate_page(mapping, victim);
67 	}
68 }
69 
70 /**
71  * read_cache_pages - populate an address space with some pages & start reads against them
72  * @mapping: the address_space
73  * @pages: The address of a list_head which contains the target pages.  These
74  *   pages have their ->index populated and are otherwise uninitialised.
75  * @filler: callback routine for filling a single page.
76  * @data: private data for the callback routine.
77  *
78  * Hides the details of the LRU cache etc from the filesystems.
79  */
80 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
81 			int (*filler)(void *, struct page *), void *data)
82 {
83 	struct page *page;
84 	int ret = 0;
85 
86 	while (!list_empty(pages)) {
87 		page = list_to_page(pages);
88 		list_del(&page->lru);
89 		if (add_to_page_cache_lru(page, mapping,
90 					page->index, GFP_KERNEL)) {
91 			read_cache_pages_invalidate_page(mapping, page);
92 			continue;
93 		}
94 		page_cache_release(page);
95 
96 		ret = filler(data, page);
97 		if (unlikely(ret)) {
98 			read_cache_pages_invalidate_pages(mapping, pages);
99 			break;
100 		}
101 		task_io_account_read(PAGE_CACHE_SIZE);
102 	}
103 	return ret;
104 }
105 
106 EXPORT_SYMBOL(read_cache_pages);
107 
108 static int read_pages(struct address_space *mapping, struct file *filp,
109 		struct list_head *pages, unsigned nr_pages)
110 {
111 	unsigned page_idx;
112 	int ret;
113 
114 	if (mapping->a_ops->readpages) {
115 		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
116 		/* Clean up the remaining pages */
117 		put_pages_list(pages);
118 		goto out;
119 	}
120 
121 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
122 		struct page *page = list_to_page(pages);
123 		list_del(&page->lru);
124 		if (!add_to_page_cache_lru(page, mapping,
125 					page->index, GFP_KERNEL)) {
126 			mapping->a_ops->readpage(filp, page);
127 		}
128 		page_cache_release(page);
129 	}
130 	ret = 0;
131 out:
132 	return ret;
133 }
134 
135 /*
136  * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
137  * the pages first, then submits them all for I/O. This avoids the very bad
138  * behaviour which would occur if page allocations are causing VM writeback.
139  * We really don't want to intermingle reads and writes like that.
140  *
141  * Returns the number of pages requested, or the maximum amount of I/O allowed.
142  */
143 static int
144 __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
145 			pgoff_t offset, unsigned long nr_to_read,
146 			unsigned long lookahead_size)
147 {
148 	struct inode *inode = mapping->host;
149 	struct page *page;
150 	unsigned long end_index;	/* The last page we want to read */
151 	LIST_HEAD(page_pool);
152 	int page_idx;
153 	int ret = 0;
154 	loff_t isize = i_size_read(inode);
155 
156 	if (isize == 0)
157 		goto out;
158 
159 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
160 
161 	/*
162 	 * Preallocate as many pages as we will need.
163 	 */
164 	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
165 		pgoff_t page_offset = offset + page_idx;
166 
167 		if (page_offset > end_index)
168 			break;
169 
170 		rcu_read_lock();
171 		page = radix_tree_lookup(&mapping->page_tree, page_offset);
172 		rcu_read_unlock();
173 		if (page)
174 			continue;
175 
176 		page = page_cache_alloc_cold(mapping);
177 		if (!page)
178 			break;
179 		page->index = page_offset;
180 		list_add(&page->lru, &page_pool);
181 		if (page_idx == nr_to_read - lookahead_size)
182 			SetPageReadahead(page);
183 		ret++;
184 	}
185 
186 	/*
187 	 * Now start the IO.  We ignore I/O errors - if the page is not
188 	 * uptodate then the caller will launch readpage again, and
189 	 * will then handle the error.
190 	 */
191 	if (ret)
192 		read_pages(mapping, filp, &page_pool, ret);
193 	BUG_ON(!list_empty(&page_pool));
194 out:
195 	return ret;
196 }
197 
198 /*
199  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
200  * memory at once.
201  */
202 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
203 		pgoff_t offset, unsigned long nr_to_read)
204 {
205 	int ret = 0;
206 
207 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
208 		return -EINVAL;
209 
210 	nr_to_read = max_sane_readahead(nr_to_read);
211 	while (nr_to_read) {
212 		int err;
213 
214 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
215 
216 		if (this_chunk > nr_to_read)
217 			this_chunk = nr_to_read;
218 		err = __do_page_cache_readahead(mapping, filp,
219 						offset, this_chunk, 0);
220 		if (err < 0) {
221 			ret = err;
222 			break;
223 		}
224 		ret += err;
225 		offset += this_chunk;
226 		nr_to_read -= this_chunk;
227 	}
228 	return ret;
229 }
230 
231 /*
232  * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
233  * sensible upper limit.
234  */
235 unsigned long max_sane_readahead(unsigned long nr)
236 {
237 	return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
238 		+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
239 }
240 
241 /*
242  * Submit IO for the read-ahead request in file_ra_state.
243  */
244 unsigned long ra_submit(struct file_ra_state *ra,
245 		       struct address_space *mapping, struct file *filp)
246 {
247 	int actual;
248 
249 	actual = __do_page_cache_readahead(mapping, filp,
250 					ra->start, ra->size, ra->async_size);
251 
252 	return actual;
253 }
254 
255 /*
256  * Set the initial window size, round to next power of 2 and square
257  * for small size, x 4 for medium, and x 2 for large
258  * for 128k (32 page) max ra
259  * 1-8 page = 32k initial, > 8 page = 128k initial
260  */
261 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
262 {
263 	unsigned long newsize = roundup_pow_of_two(size);
264 
265 	if (newsize <= max / 32)
266 		newsize = newsize * 4;
267 	else if (newsize <= max / 4)
268 		newsize = newsize * 2;
269 	else
270 		newsize = max;
271 
272 	return newsize;
273 }
274 
275 /*
276  *  Get the previous window size, ramp it up, and
277  *  return it as the new window size.
278  */
279 static unsigned long get_next_ra_size(struct file_ra_state *ra,
280 						unsigned long max)
281 {
282 	unsigned long cur = ra->size;
283 	unsigned long newsize;
284 
285 	if (cur < max / 16)
286 		newsize = 4 * cur;
287 	else
288 		newsize = 2 * cur;
289 
290 	return min(newsize, max);
291 }
292 
293 /*
294  * On-demand readahead design.
295  *
296  * The fields in struct file_ra_state represent the most-recently-executed
297  * readahead attempt:
298  *
299  *                        |<----- async_size ---------|
300  *     |------------------- size -------------------->|
301  *     |==================#===========================|
302  *     ^start             ^page marked with PG_readahead
303  *
304  * To overlap application thinking time and disk I/O time, we do
305  * `readahead pipelining': Do not wait until the application consumed all
306  * readahead pages and stalled on the missing page at readahead_index;
307  * Instead, submit an asynchronous readahead I/O as soon as there are
308  * only async_size pages left in the readahead window. Normally async_size
309  * will be equal to size, for maximum pipelining.
310  *
311  * In interleaved sequential reads, concurrent streams on the same fd can
312  * be invalidating each other's readahead state. So we flag the new readahead
313  * page at (start+size-async_size) with PG_readahead, and use it as readahead
314  * indicator. The flag won't be set on already cached pages, to avoid the
315  * readahead-for-nothing fuss, saving pointless page cache lookups.
316  *
317  * prev_pos tracks the last visited byte in the _previous_ read request.
318  * It should be maintained by the caller, and will be used for detecting
319  * small random reads. Note that the readahead algorithm checks loosely
320  * for sequential patterns. Hence interleaved reads might be served as
321  * sequential ones.
322  *
323  * There is a special-case: if the first page which the application tries to
324  * read happens to be the first page of the file, it is assumed that a linear
325  * read is about to happen and the window is immediately set to the initial size
326  * based on I/O request size and the max_readahead.
327  *
328  * The code ramps up the readahead size aggressively at first, but slow down as
329  * it approaches max_readhead.
330  */
331 
332 /*
333  * Count contiguously cached pages from @offset-1 to @offset-@max,
334  * this count is a conservative estimation of
335  * 	- length of the sequential read sequence, or
336  * 	- thrashing threshold in memory tight systems
337  */
338 static pgoff_t count_history_pages(struct address_space *mapping,
339 				   struct file_ra_state *ra,
340 				   pgoff_t offset, unsigned long max)
341 {
342 	pgoff_t head;
343 
344 	rcu_read_lock();
345 	head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);
346 	rcu_read_unlock();
347 
348 	return offset - 1 - head;
349 }
350 
351 /*
352  * page cache context based read-ahead
353  */
354 static int try_context_readahead(struct address_space *mapping,
355 				 struct file_ra_state *ra,
356 				 pgoff_t offset,
357 				 unsigned long req_size,
358 				 unsigned long max)
359 {
360 	pgoff_t size;
361 
362 	size = count_history_pages(mapping, ra, offset, max);
363 
364 	/*
365 	 * no history pages:
366 	 * it could be a random read
367 	 */
368 	if (!size)
369 		return 0;
370 
371 	/*
372 	 * starts from beginning of file:
373 	 * it is a strong indication of long-run stream (or whole-file-read)
374 	 */
375 	if (size >= offset)
376 		size *= 2;
377 
378 	ra->start = offset;
379 	ra->size = get_init_ra_size(size + req_size, max);
380 	ra->async_size = ra->size;
381 
382 	return 1;
383 }
384 
385 /*
386  * A minimal readahead algorithm for trivial sequential/random reads.
387  */
388 static unsigned long
389 ondemand_readahead(struct address_space *mapping,
390 		   struct file_ra_state *ra, struct file *filp,
391 		   bool hit_readahead_marker, pgoff_t offset,
392 		   unsigned long req_size)
393 {
394 	unsigned long max = max_sane_readahead(ra->ra_pages);
395 
396 	/*
397 	 * start of file
398 	 */
399 	if (!offset)
400 		goto initial_readahead;
401 
402 	/*
403 	 * It's the expected callback offset, assume sequential access.
404 	 * Ramp up sizes, and push forward the readahead window.
405 	 */
406 	if ((offset == (ra->start + ra->size - ra->async_size) ||
407 	     offset == (ra->start + ra->size))) {
408 		ra->start += ra->size;
409 		ra->size = get_next_ra_size(ra, max);
410 		ra->async_size = ra->size;
411 		goto readit;
412 	}
413 
414 	/*
415 	 * Hit a marked page without valid readahead state.
416 	 * E.g. interleaved reads.
417 	 * Query the pagecache for async_size, which normally equals to
418 	 * readahead size. Ramp it up and use it as the new readahead size.
419 	 */
420 	if (hit_readahead_marker) {
421 		pgoff_t start;
422 
423 		rcu_read_lock();
424 		start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
425 		rcu_read_unlock();
426 
427 		if (!start || start - offset > max)
428 			return 0;
429 
430 		ra->start = start;
431 		ra->size = start - offset;	/* old async_size */
432 		ra->size += req_size;
433 		ra->size = get_next_ra_size(ra, max);
434 		ra->async_size = ra->size;
435 		goto readit;
436 	}
437 
438 	/*
439 	 * oversize read
440 	 */
441 	if (req_size > max)
442 		goto initial_readahead;
443 
444 	/*
445 	 * sequential cache miss
446 	 */
447 	if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
448 		goto initial_readahead;
449 
450 	/*
451 	 * Query the page cache and look for the traces(cached history pages)
452 	 * that a sequential stream would leave behind.
453 	 */
454 	if (try_context_readahead(mapping, ra, offset, req_size, max))
455 		goto readit;
456 
457 	/*
458 	 * standalone, small random read
459 	 * Read as is, and do not pollute the readahead state.
460 	 */
461 	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
462 
463 initial_readahead:
464 	ra->start = offset;
465 	ra->size = get_init_ra_size(req_size, max);
466 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
467 
468 readit:
469 	/*
470 	 * Will this read hit the readahead marker made by itself?
471 	 * If so, trigger the readahead marker hit now, and merge
472 	 * the resulted next readahead window into the current one.
473 	 */
474 	if (offset == ra->start && ra->size == ra->async_size) {
475 		ra->async_size = get_next_ra_size(ra, max);
476 		ra->size += ra->async_size;
477 	}
478 
479 	return ra_submit(ra, mapping, filp);
480 }
481 
482 /**
483  * page_cache_sync_readahead - generic file readahead
484  * @mapping: address_space which holds the pagecache and I/O vectors
485  * @ra: file_ra_state which holds the readahead state
486  * @filp: passed on to ->readpage() and ->readpages()
487  * @offset: start offset into @mapping, in pagecache page-sized units
488  * @req_size: hint: total size of the read which the caller is performing in
489  *            pagecache pages
490  *
491  * page_cache_sync_readahead() should be called when a cache miss happened:
492  * it will submit the read.  The readahead logic may decide to piggyback more
493  * pages onto the read request if access patterns suggest it will improve
494  * performance.
495  */
496 void page_cache_sync_readahead(struct address_space *mapping,
497 			       struct file_ra_state *ra, struct file *filp,
498 			       pgoff_t offset, unsigned long req_size)
499 {
500 	/* no read-ahead */
501 	if (!ra->ra_pages)
502 		return;
503 
504 	/* do read-ahead */
505 	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
506 }
507 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
508 
509 /**
510  * page_cache_async_readahead - file readahead for marked pages
511  * @mapping: address_space which holds the pagecache and I/O vectors
512  * @ra: file_ra_state which holds the readahead state
513  * @filp: passed on to ->readpage() and ->readpages()
514  * @page: the page at @offset which has the PG_readahead flag set
515  * @offset: start offset into @mapping, in pagecache page-sized units
516  * @req_size: hint: total size of the read which the caller is performing in
517  *            pagecache pages
518  *
519  * page_cache_async_ondemand() should be called when a page is used which
520  * has the PG_readahead flag; this is a marker to suggest that the application
521  * has used up enough of the readahead window that we should start pulling in
522  * more pages.
523  */
524 void
525 page_cache_async_readahead(struct address_space *mapping,
526 			   struct file_ra_state *ra, struct file *filp,
527 			   struct page *page, pgoff_t offset,
528 			   unsigned long req_size)
529 {
530 	/* no read-ahead */
531 	if (!ra->ra_pages)
532 		return;
533 
534 	/*
535 	 * Same bit is used for PG_readahead and PG_reclaim.
536 	 */
537 	if (PageWriteback(page))
538 		return;
539 
540 	ClearPageReadahead(page);
541 
542 	/*
543 	 * Defer asynchronous read-ahead on IO congestion.
544 	 */
545 	if (bdi_read_congested(mapping->backing_dev_info))
546 		return;
547 
548 	/* do read-ahead */
549 	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
550 
551 #ifdef CONFIG_BLOCK
552 	/*
553 	 * Normally the current page is !uptodate and lock_page() will be
554 	 * immediately called to implicitly unplug the device. However this
555 	 * is not always true for RAID conifgurations, where data arrives
556 	 * not strictly in their submission order. In this case we need to
557 	 * explicitly kick off the IO.
558 	 */
559 	if (PageUptodate(page))
560 		blk_run_backing_dev(mapping->backing_dev_info, NULL);
561 #endif
562 }
563 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
564