1 /* 2 * mm/readahead.c - address_space-level file readahead. 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 09Apr2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/dax.h> 12 #include <linux/gfp.h> 13 #include <linux/export.h> 14 #include <linux/blkdev.h> 15 #include <linux/backing-dev.h> 16 #include <linux/task_io_accounting_ops.h> 17 #include <linux/pagevec.h> 18 #include <linux/pagemap.h> 19 #include <linux/syscalls.h> 20 #include <linux/file.h> 21 #include <linux/mm_inline.h> 22 #include <linux/blk-cgroup.h> 23 24 #include "internal.h" 25 26 /* 27 * Initialise a struct file's readahead state. Assumes that the caller has 28 * memset *ra to zero. 29 */ 30 void 31 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 32 { 33 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 34 ra->prev_pos = -1; 35 } 36 EXPORT_SYMBOL_GPL(file_ra_state_init); 37 38 /* 39 * see if a page needs releasing upon read_cache_pages() failure 40 * - the caller of read_cache_pages() may have set PG_private or PG_fscache 41 * before calling, such as the NFS fs marking pages that are cached locally 42 * on disk, thus we need to give the fs a chance to clean up in the event of 43 * an error 44 */ 45 static void read_cache_pages_invalidate_page(struct address_space *mapping, 46 struct page *page) 47 { 48 if (page_has_private(page)) { 49 if (!trylock_page(page)) 50 BUG(); 51 page->mapping = mapping; 52 do_invalidatepage(page, 0, PAGE_SIZE); 53 page->mapping = NULL; 54 unlock_page(page); 55 } 56 put_page(page); 57 } 58 59 /* 60 * release a list of pages, invalidating them first if need be 61 */ 62 static void read_cache_pages_invalidate_pages(struct address_space *mapping, 63 struct list_head *pages) 64 { 65 struct page *victim; 66 67 while (!list_empty(pages)) { 68 victim = lru_to_page(pages); 69 list_del(&victim->lru); 70 read_cache_pages_invalidate_page(mapping, victim); 71 } 72 } 73 74 /** 75 * read_cache_pages - populate an address space with some pages & start reads against them 76 * @mapping: the address_space 77 * @pages: The address of a list_head which contains the target pages. These 78 * pages have their ->index populated and are otherwise uninitialised. 79 * @filler: callback routine for filling a single page. 80 * @data: private data for the callback routine. 81 * 82 * Hides the details of the LRU cache etc from the filesystems. 83 */ 84 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 85 int (*filler)(void *, struct page *), void *data) 86 { 87 struct page *page; 88 int ret = 0; 89 90 while (!list_empty(pages)) { 91 page = lru_to_page(pages); 92 list_del(&page->lru); 93 if (add_to_page_cache_lru(page, mapping, page->index, 94 readahead_gfp_mask(mapping))) { 95 read_cache_pages_invalidate_page(mapping, page); 96 continue; 97 } 98 put_page(page); 99 100 ret = filler(data, page); 101 if (unlikely(ret)) { 102 read_cache_pages_invalidate_pages(mapping, pages); 103 break; 104 } 105 task_io_account_read(PAGE_SIZE); 106 } 107 return ret; 108 } 109 110 EXPORT_SYMBOL(read_cache_pages); 111 112 static int read_pages(struct address_space *mapping, struct file *filp, 113 struct list_head *pages, unsigned int nr_pages, gfp_t gfp) 114 { 115 struct blk_plug plug; 116 unsigned page_idx; 117 int ret; 118 119 blk_start_plug(&plug); 120 121 if (mapping->a_ops->readpages) { 122 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages); 123 /* Clean up the remaining pages */ 124 put_pages_list(pages); 125 goto out; 126 } 127 128 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 129 struct page *page = lru_to_page(pages); 130 list_del(&page->lru); 131 if (!add_to_page_cache_lru(page, mapping, page->index, gfp)) 132 mapping->a_ops->readpage(filp, page); 133 put_page(page); 134 } 135 ret = 0; 136 137 out: 138 blk_finish_plug(&plug); 139 140 return ret; 141 } 142 143 /* 144 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates 145 * the pages first, then submits them for I/O. This avoids the very bad 146 * behaviour which would occur if page allocations are causing VM writeback. 147 * We really don't want to intermingle reads and writes like that. 148 * 149 * Returns the number of pages requested, or the maximum amount of I/O allowed. 150 */ 151 unsigned int __do_page_cache_readahead(struct address_space *mapping, 152 struct file *filp, pgoff_t offset, unsigned long nr_to_read, 153 unsigned long lookahead_size) 154 { 155 struct inode *inode = mapping->host; 156 struct page *page; 157 unsigned long end_index; /* The last page we want to read */ 158 LIST_HEAD(page_pool); 159 int page_idx; 160 unsigned int nr_pages = 0; 161 loff_t isize = i_size_read(inode); 162 gfp_t gfp_mask = readahead_gfp_mask(mapping); 163 164 if (isize == 0) 165 goto out; 166 167 end_index = ((isize - 1) >> PAGE_SHIFT); 168 169 /* 170 * Preallocate as many pages as we will need. 171 */ 172 for (page_idx = 0; page_idx < nr_to_read; page_idx++) { 173 pgoff_t page_offset = offset + page_idx; 174 175 if (page_offset > end_index) 176 break; 177 178 rcu_read_lock(); 179 page = radix_tree_lookup(&mapping->i_pages, page_offset); 180 rcu_read_unlock(); 181 if (page && !radix_tree_exceptional_entry(page)) { 182 /* 183 * Page already present? Kick off the current batch of 184 * contiguous pages before continuing with the next 185 * batch. 186 */ 187 if (nr_pages) 188 read_pages(mapping, filp, &page_pool, nr_pages, 189 gfp_mask); 190 nr_pages = 0; 191 continue; 192 } 193 194 page = __page_cache_alloc(gfp_mask); 195 if (!page) 196 break; 197 page->index = page_offset; 198 list_add(&page->lru, &page_pool); 199 if (page_idx == nr_to_read - lookahead_size) 200 SetPageReadahead(page); 201 nr_pages++; 202 } 203 204 /* 205 * Now start the IO. We ignore I/O errors - if the page is not 206 * uptodate then the caller will launch readpage again, and 207 * will then handle the error. 208 */ 209 if (nr_pages) 210 read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask); 211 BUG_ON(!list_empty(&page_pool)); 212 out: 213 return nr_pages; 214 } 215 216 /* 217 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 218 * memory at once. 219 */ 220 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 221 pgoff_t offset, unsigned long nr_to_read) 222 { 223 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 224 struct file_ra_state *ra = &filp->f_ra; 225 unsigned long max_pages; 226 227 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages)) 228 return -EINVAL; 229 230 /* 231 * If the request exceeds the readahead window, allow the read to 232 * be up to the optimal hardware IO size 233 */ 234 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 235 nr_to_read = min(nr_to_read, max_pages); 236 while (nr_to_read) { 237 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 238 239 if (this_chunk > nr_to_read) 240 this_chunk = nr_to_read; 241 __do_page_cache_readahead(mapping, filp, offset, this_chunk, 0); 242 243 offset += this_chunk; 244 nr_to_read -= this_chunk; 245 } 246 return 0; 247 } 248 249 /* 250 * Set the initial window size, round to next power of 2 and square 251 * for small size, x 4 for medium, and x 2 for large 252 * for 128k (32 page) max ra 253 * 1-8 page = 32k initial, > 8 page = 128k initial 254 */ 255 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 256 { 257 unsigned long newsize = roundup_pow_of_two(size); 258 259 if (newsize <= max / 32) 260 newsize = newsize * 4; 261 else if (newsize <= max / 4) 262 newsize = newsize * 2; 263 else 264 newsize = max; 265 266 return newsize; 267 } 268 269 /* 270 * Get the previous window size, ramp it up, and 271 * return it as the new window size. 272 */ 273 static unsigned long get_next_ra_size(struct file_ra_state *ra, 274 unsigned long max) 275 { 276 unsigned long cur = ra->size; 277 unsigned long newsize; 278 279 if (cur < max / 16) 280 newsize = 4 * cur; 281 else 282 newsize = 2 * cur; 283 284 return min(newsize, max); 285 } 286 287 /* 288 * On-demand readahead design. 289 * 290 * The fields in struct file_ra_state represent the most-recently-executed 291 * readahead attempt: 292 * 293 * |<----- async_size ---------| 294 * |------------------- size -------------------->| 295 * |==================#===========================| 296 * ^start ^page marked with PG_readahead 297 * 298 * To overlap application thinking time and disk I/O time, we do 299 * `readahead pipelining': Do not wait until the application consumed all 300 * readahead pages and stalled on the missing page at readahead_index; 301 * Instead, submit an asynchronous readahead I/O as soon as there are 302 * only async_size pages left in the readahead window. Normally async_size 303 * will be equal to size, for maximum pipelining. 304 * 305 * In interleaved sequential reads, concurrent streams on the same fd can 306 * be invalidating each other's readahead state. So we flag the new readahead 307 * page at (start+size-async_size) with PG_readahead, and use it as readahead 308 * indicator. The flag won't be set on already cached pages, to avoid the 309 * readahead-for-nothing fuss, saving pointless page cache lookups. 310 * 311 * prev_pos tracks the last visited byte in the _previous_ read request. 312 * It should be maintained by the caller, and will be used for detecting 313 * small random reads. Note that the readahead algorithm checks loosely 314 * for sequential patterns. Hence interleaved reads might be served as 315 * sequential ones. 316 * 317 * There is a special-case: if the first page which the application tries to 318 * read happens to be the first page of the file, it is assumed that a linear 319 * read is about to happen and the window is immediately set to the initial size 320 * based on I/O request size and the max_readahead. 321 * 322 * The code ramps up the readahead size aggressively at first, but slow down as 323 * it approaches max_readhead. 324 */ 325 326 /* 327 * Count contiguously cached pages from @offset-1 to @offset-@max, 328 * this count is a conservative estimation of 329 * - length of the sequential read sequence, or 330 * - thrashing threshold in memory tight systems 331 */ 332 static pgoff_t count_history_pages(struct address_space *mapping, 333 pgoff_t offset, unsigned long max) 334 { 335 pgoff_t head; 336 337 rcu_read_lock(); 338 head = page_cache_prev_hole(mapping, offset - 1, max); 339 rcu_read_unlock(); 340 341 return offset - 1 - head; 342 } 343 344 /* 345 * page cache context based read-ahead 346 */ 347 static int try_context_readahead(struct address_space *mapping, 348 struct file_ra_state *ra, 349 pgoff_t offset, 350 unsigned long req_size, 351 unsigned long max) 352 { 353 pgoff_t size; 354 355 size = count_history_pages(mapping, offset, max); 356 357 /* 358 * not enough history pages: 359 * it could be a random read 360 */ 361 if (size <= req_size) 362 return 0; 363 364 /* 365 * starts from beginning of file: 366 * it is a strong indication of long-run stream (or whole-file-read) 367 */ 368 if (size >= offset) 369 size *= 2; 370 371 ra->start = offset; 372 ra->size = min(size + req_size, max); 373 ra->async_size = 1; 374 375 return 1; 376 } 377 378 /* 379 * A minimal readahead algorithm for trivial sequential/random reads. 380 */ 381 static unsigned long 382 ondemand_readahead(struct address_space *mapping, 383 struct file_ra_state *ra, struct file *filp, 384 bool hit_readahead_marker, pgoff_t offset, 385 unsigned long req_size) 386 { 387 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 388 unsigned long max_pages = ra->ra_pages; 389 unsigned long add_pages; 390 pgoff_t prev_offset; 391 392 /* 393 * If the request exceeds the readahead window, allow the read to 394 * be up to the optimal hardware IO size 395 */ 396 if (req_size > max_pages && bdi->io_pages > max_pages) 397 max_pages = min(req_size, bdi->io_pages); 398 399 /* 400 * start of file 401 */ 402 if (!offset) 403 goto initial_readahead; 404 405 /* 406 * It's the expected callback offset, assume sequential access. 407 * Ramp up sizes, and push forward the readahead window. 408 */ 409 if ((offset == (ra->start + ra->size - ra->async_size) || 410 offset == (ra->start + ra->size))) { 411 ra->start += ra->size; 412 ra->size = get_next_ra_size(ra, max_pages); 413 ra->async_size = ra->size; 414 goto readit; 415 } 416 417 /* 418 * Hit a marked page without valid readahead state. 419 * E.g. interleaved reads. 420 * Query the pagecache for async_size, which normally equals to 421 * readahead size. Ramp it up and use it as the new readahead size. 422 */ 423 if (hit_readahead_marker) { 424 pgoff_t start; 425 426 rcu_read_lock(); 427 start = page_cache_next_hole(mapping, offset + 1, max_pages); 428 rcu_read_unlock(); 429 430 if (!start || start - offset > max_pages) 431 return 0; 432 433 ra->start = start; 434 ra->size = start - offset; /* old async_size */ 435 ra->size += req_size; 436 ra->size = get_next_ra_size(ra, max_pages); 437 ra->async_size = ra->size; 438 goto readit; 439 } 440 441 /* 442 * oversize read 443 */ 444 if (req_size > max_pages) 445 goto initial_readahead; 446 447 /* 448 * sequential cache miss 449 * trivial case: (offset - prev_offset) == 1 450 * unaligned reads: (offset - prev_offset) == 0 451 */ 452 prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 453 if (offset - prev_offset <= 1UL) 454 goto initial_readahead; 455 456 /* 457 * Query the page cache and look for the traces(cached history pages) 458 * that a sequential stream would leave behind. 459 */ 460 if (try_context_readahead(mapping, ra, offset, req_size, max_pages)) 461 goto readit; 462 463 /* 464 * standalone, small random read 465 * Read as is, and do not pollute the readahead state. 466 */ 467 return __do_page_cache_readahead(mapping, filp, offset, req_size, 0); 468 469 initial_readahead: 470 ra->start = offset; 471 ra->size = get_init_ra_size(req_size, max_pages); 472 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 473 474 readit: 475 /* 476 * Will this read hit the readahead marker made by itself? 477 * If so, trigger the readahead marker hit now, and merge 478 * the resulted next readahead window into the current one. 479 * Take care of maximum IO pages as above. 480 */ 481 if (offset == ra->start && ra->size == ra->async_size) { 482 add_pages = get_next_ra_size(ra, max_pages); 483 if (ra->size + add_pages <= max_pages) { 484 ra->async_size = add_pages; 485 ra->size += add_pages; 486 } else { 487 ra->size = max_pages; 488 ra->async_size = max_pages >> 1; 489 } 490 } 491 492 return ra_submit(ra, mapping, filp); 493 } 494 495 /** 496 * page_cache_sync_readahead - generic file readahead 497 * @mapping: address_space which holds the pagecache and I/O vectors 498 * @ra: file_ra_state which holds the readahead state 499 * @filp: passed on to ->readpage() and ->readpages() 500 * @offset: start offset into @mapping, in pagecache page-sized units 501 * @req_size: hint: total size of the read which the caller is performing in 502 * pagecache pages 503 * 504 * page_cache_sync_readahead() should be called when a cache miss happened: 505 * it will submit the read. The readahead logic may decide to piggyback more 506 * pages onto the read request if access patterns suggest it will improve 507 * performance. 508 */ 509 void page_cache_sync_readahead(struct address_space *mapping, 510 struct file_ra_state *ra, struct file *filp, 511 pgoff_t offset, unsigned long req_size) 512 { 513 /* no read-ahead */ 514 if (!ra->ra_pages) 515 return; 516 517 if (blk_cgroup_congested()) 518 return; 519 520 /* be dumb */ 521 if (filp && (filp->f_mode & FMODE_RANDOM)) { 522 force_page_cache_readahead(mapping, filp, offset, req_size); 523 return; 524 } 525 526 /* do read-ahead */ 527 ondemand_readahead(mapping, ra, filp, false, offset, req_size); 528 } 529 EXPORT_SYMBOL_GPL(page_cache_sync_readahead); 530 531 /** 532 * page_cache_async_readahead - file readahead for marked pages 533 * @mapping: address_space which holds the pagecache and I/O vectors 534 * @ra: file_ra_state which holds the readahead state 535 * @filp: passed on to ->readpage() and ->readpages() 536 * @page: the page at @offset which has the PG_readahead flag set 537 * @offset: start offset into @mapping, in pagecache page-sized units 538 * @req_size: hint: total size of the read which the caller is performing in 539 * pagecache pages 540 * 541 * page_cache_async_readahead() should be called when a page is used which 542 * has the PG_readahead flag; this is a marker to suggest that the application 543 * has used up enough of the readahead window that we should start pulling in 544 * more pages. 545 */ 546 void 547 page_cache_async_readahead(struct address_space *mapping, 548 struct file_ra_state *ra, struct file *filp, 549 struct page *page, pgoff_t offset, 550 unsigned long req_size) 551 { 552 /* no read-ahead */ 553 if (!ra->ra_pages) 554 return; 555 556 /* 557 * Same bit is used for PG_readahead and PG_reclaim. 558 */ 559 if (PageWriteback(page)) 560 return; 561 562 ClearPageReadahead(page); 563 564 /* 565 * Defer asynchronous read-ahead on IO congestion. 566 */ 567 if (inode_read_congested(mapping->host)) 568 return; 569 570 if (blk_cgroup_congested()) 571 return; 572 573 /* do read-ahead */ 574 ondemand_readahead(mapping, ra, filp, true, offset, req_size); 575 } 576 EXPORT_SYMBOL_GPL(page_cache_async_readahead); 577 578 static ssize_t 579 do_readahead(struct address_space *mapping, struct file *filp, 580 pgoff_t index, unsigned long nr) 581 { 582 if (!mapping || !mapping->a_ops) 583 return -EINVAL; 584 585 /* 586 * Readahead doesn't make sense for DAX inodes, but we don't want it 587 * to report a failure either. Instead, we just return success and 588 * don't do any work. 589 */ 590 if (dax_mapping(mapping)) 591 return 0; 592 593 return force_page_cache_readahead(mapping, filp, index, nr); 594 } 595 596 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 597 { 598 ssize_t ret; 599 struct fd f; 600 601 ret = -EBADF; 602 f = fdget(fd); 603 if (f.file) { 604 if (f.file->f_mode & FMODE_READ) { 605 struct address_space *mapping = f.file->f_mapping; 606 pgoff_t start = offset >> PAGE_SHIFT; 607 pgoff_t end = (offset + count - 1) >> PAGE_SHIFT; 608 unsigned long len = end - start + 1; 609 ret = do_readahead(mapping, f.file, start, len); 610 } 611 fdput(f); 612 } 613 return ret; 614 } 615 616 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 617 { 618 return ksys_readahead(fd, offset, count); 619 } 620