xref: /openbmc/linux/mm/readahead.c (revision 9008a676662a77ab98727d05bdffa0e3c38cba53)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/readahead.c - address_space-level file readahead.
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 09Apr2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 /**
12  * DOC: Readahead Overview
13  *
14  * Readahead is used to read content into the page cache before it is
15  * explicitly requested by the application.  Readahead only ever
16  * attempts to read folios that are not yet in the page cache.  If a
17  * folio is present but not up-to-date, readahead will not try to read
18  * it. In that case a simple ->read_folio() will be requested.
19  *
20  * Readahead is triggered when an application read request (whether a
21  * system call or a page fault) finds that the requested folio is not in
22  * the page cache, or that it is in the page cache and has the
23  * readahead flag set.  This flag indicates that the folio was read
24  * as part of a previous readahead request and now that it has been
25  * accessed, it is time for the next readahead.
26  *
27  * Each readahead request is partly synchronous read, and partly async
28  * readahead.  This is reflected in the struct file_ra_state which
29  * contains ->size being the total number of pages, and ->async_size
30  * which is the number of pages in the async section.  The readahead
31  * flag will be set on the first folio in this async section to trigger
32  * a subsequent readahead.  Once a series of sequential reads has been
33  * established, there should be no need for a synchronous component and
34  * all readahead request will be fully asynchronous.
35  *
36  * When either of the triggers causes a readahead, three numbers need
37  * to be determined: the start of the region to read, the size of the
38  * region, and the size of the async tail.
39  *
40  * The start of the region is simply the first page address at or after
41  * the accessed address, which is not currently populated in the page
42  * cache.  This is found with a simple search in the page cache.
43  *
44  * The size of the async tail is determined by subtracting the size that
45  * was explicitly requested from the determined request size, unless
46  * this would be less than zero - then zero is used.  NOTE THIS
47  * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
48  * PAGE.  ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
49  *
50  * The size of the region is normally determined from the size of the
51  * previous readahead which loaded the preceding pages.  This may be
52  * discovered from the struct file_ra_state for simple sequential reads,
53  * or from examining the state of the page cache when multiple
54  * sequential reads are interleaved.  Specifically: where the readahead
55  * was triggered by the readahead flag, the size of the previous
56  * readahead is assumed to be the number of pages from the triggering
57  * page to the start of the new readahead.  In these cases, the size of
58  * the previous readahead is scaled, often doubled, for the new
59  * readahead, though see get_next_ra_size() for details.
60  *
61  * If the size of the previous read cannot be determined, the number of
62  * preceding pages in the page cache is used to estimate the size of
63  * a previous read.  This estimate could easily be misled by random
64  * reads being coincidentally adjacent, so it is ignored unless it is
65  * larger than the current request, and it is not scaled up, unless it
66  * is at the start of file.
67  *
68  * In general readahead is accelerated at the start of the file, as
69  * reads from there are often sequential.  There are other minor
70  * adjustments to the readahead size in various special cases and these
71  * are best discovered by reading the code.
72  *
73  * The above calculation, based on the previous readahead size,
74  * determines the size of the readahead, to which any requested read
75  * size may be added.
76  *
77  * Readahead requests are sent to the filesystem using the ->readahead()
78  * address space operation, for which mpage_readahead() is a canonical
79  * implementation.  ->readahead() should normally initiate reads on all
80  * folios, but may fail to read any or all folios without causing an I/O
81  * error.  The page cache reading code will issue a ->read_folio() request
82  * for any folio which ->readahead() did not read, and only an error
83  * from this will be final.
84  *
85  * ->readahead() will generally call readahead_folio() repeatedly to get
86  * each folio from those prepared for readahead.  It may fail to read a
87  * folio by:
88  *
89  * * not calling readahead_folio() sufficiently many times, effectively
90  *   ignoring some folios, as might be appropriate if the path to
91  *   storage is congested.
92  *
93  * * failing to actually submit a read request for a given folio,
94  *   possibly due to insufficient resources, or
95  *
96  * * getting an error during subsequent processing of a request.
97  *
98  * In the last two cases, the folio should be unlocked by the filesystem
99  * to indicate that the read attempt has failed.  In the first case the
100  * folio will be unlocked by the VFS.
101  *
102  * Those folios not in the final ``async_size`` of the request should be
103  * considered to be important and ->readahead() should not fail them due
104  * to congestion or temporary resource unavailability, but should wait
105  * for necessary resources (e.g.  memory or indexing information) to
106  * become available.  Folios in the final ``async_size`` may be
107  * considered less urgent and failure to read them is more acceptable.
108  * In this case it is best to use filemap_remove_folio() to remove the
109  * folios from the page cache as is automatically done for folios that
110  * were not fetched with readahead_folio().  This will allow a
111  * subsequent synchronous readahead request to try them again.  If they
112  * are left in the page cache, then they will be read individually using
113  * ->read_folio() which may be less efficient.
114  */
115 
116 #include <linux/blkdev.h>
117 #include <linux/kernel.h>
118 #include <linux/dax.h>
119 #include <linux/gfp.h>
120 #include <linux/export.h>
121 #include <linux/backing-dev.h>
122 #include <linux/task_io_accounting_ops.h>
123 #include <linux/pagevec.h>
124 #include <linux/pagemap.h>
125 #include <linux/syscalls.h>
126 #include <linux/file.h>
127 #include <linux/mm_inline.h>
128 #include <linux/blk-cgroup.h>
129 #include <linux/fadvise.h>
130 #include <linux/sched/mm.h>
131 
132 #include "internal.h"
133 
134 /*
135  * Initialise a struct file's readahead state.  Assumes that the caller has
136  * memset *ra to zero.
137  */
138 void
139 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
140 {
141 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
142 	ra->prev_pos = -1;
143 }
144 EXPORT_SYMBOL_GPL(file_ra_state_init);
145 
146 static void read_pages(struct readahead_control *rac)
147 {
148 	const struct address_space_operations *aops = rac->mapping->a_ops;
149 	struct folio *folio;
150 	struct blk_plug plug;
151 
152 	if (!readahead_count(rac))
153 		return;
154 
155 	blk_start_plug(&plug);
156 
157 	if (aops->readahead) {
158 		aops->readahead(rac);
159 		/*
160 		 * Clean up the remaining folios.  The sizes in ->ra
161 		 * may be used to size the next readahead, so make sure
162 		 * they accurately reflect what happened.
163 		 */
164 		while ((folio = readahead_folio(rac)) != NULL) {
165 			unsigned long nr = folio_nr_pages(folio);
166 
167 			folio_get(folio);
168 			rac->ra->size -= nr;
169 			if (rac->ra->async_size >= nr) {
170 				rac->ra->async_size -= nr;
171 				filemap_remove_folio(folio);
172 			}
173 			folio_unlock(folio);
174 			folio_put(folio);
175 		}
176 	} else {
177 		while ((folio = readahead_folio(rac)) != NULL)
178 			aops->read_folio(rac->file, folio);
179 	}
180 
181 	blk_finish_plug(&plug);
182 
183 	BUG_ON(readahead_count(rac));
184 }
185 
186 /**
187  * page_cache_ra_unbounded - Start unchecked readahead.
188  * @ractl: Readahead control.
189  * @nr_to_read: The number of pages to read.
190  * @lookahead_size: Where to start the next readahead.
191  *
192  * This function is for filesystems to call when they want to start
193  * readahead beyond a file's stated i_size.  This is almost certainly
194  * not the function you want to call.  Use page_cache_async_readahead()
195  * or page_cache_sync_readahead() instead.
196  *
197  * Context: File is referenced by caller.  Mutexes may be held by caller.
198  * May sleep, but will not reenter filesystem to reclaim memory.
199  */
200 void page_cache_ra_unbounded(struct readahead_control *ractl,
201 		unsigned long nr_to_read, unsigned long lookahead_size)
202 {
203 	struct address_space *mapping = ractl->mapping;
204 	unsigned long index = readahead_index(ractl);
205 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
206 	unsigned long i;
207 
208 	/*
209 	 * Partway through the readahead operation, we will have added
210 	 * locked pages to the page cache, but will not yet have submitted
211 	 * them for I/O.  Adding another page may need to allocate memory,
212 	 * which can trigger memory reclaim.  Telling the VM we're in
213 	 * the middle of a filesystem operation will cause it to not
214 	 * touch file-backed pages, preventing a deadlock.  Most (all?)
215 	 * filesystems already specify __GFP_NOFS in their mapping's
216 	 * gfp_mask, but let's be explicit here.
217 	 */
218 	unsigned int nofs = memalloc_nofs_save();
219 
220 	filemap_invalidate_lock_shared(mapping);
221 	/*
222 	 * Preallocate as many pages as we will need.
223 	 */
224 	for (i = 0; i < nr_to_read; i++) {
225 		struct folio *folio = xa_load(&mapping->i_pages, index + i);
226 
227 		if (folio && !xa_is_value(folio)) {
228 			/*
229 			 * Page already present?  Kick off the current batch
230 			 * of contiguous pages before continuing with the
231 			 * next batch.  This page may be the one we would
232 			 * have intended to mark as Readahead, but we don't
233 			 * have a stable reference to this page, and it's
234 			 * not worth getting one just for that.
235 			 */
236 			read_pages(ractl);
237 			ractl->_index++;
238 			i = ractl->_index + ractl->_nr_pages - index - 1;
239 			continue;
240 		}
241 
242 		folio = filemap_alloc_folio(gfp_mask, 0);
243 		if (!folio)
244 			break;
245 		if (filemap_add_folio(mapping, folio, index + i,
246 					gfp_mask) < 0) {
247 			folio_put(folio);
248 			read_pages(ractl);
249 			ractl->_index++;
250 			i = ractl->_index + ractl->_nr_pages - index - 1;
251 			continue;
252 		}
253 		if (i == nr_to_read - lookahead_size)
254 			folio_set_readahead(folio);
255 		ractl->_nr_pages++;
256 	}
257 
258 	/*
259 	 * Now start the IO.  We ignore I/O errors - if the folio is not
260 	 * uptodate then the caller will launch read_folio again, and
261 	 * will then handle the error.
262 	 */
263 	read_pages(ractl);
264 	filemap_invalidate_unlock_shared(mapping);
265 	memalloc_nofs_restore(nofs);
266 }
267 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
268 
269 /*
270  * do_page_cache_ra() actually reads a chunk of disk.  It allocates
271  * the pages first, then submits them for I/O. This avoids the very bad
272  * behaviour which would occur if page allocations are causing VM writeback.
273  * We really don't want to intermingle reads and writes like that.
274  */
275 static void do_page_cache_ra(struct readahead_control *ractl,
276 		unsigned long nr_to_read, unsigned long lookahead_size)
277 {
278 	struct inode *inode = ractl->mapping->host;
279 	unsigned long index = readahead_index(ractl);
280 	loff_t isize = i_size_read(inode);
281 	pgoff_t end_index;	/* The last page we want to read */
282 
283 	if (isize == 0)
284 		return;
285 
286 	end_index = (isize - 1) >> PAGE_SHIFT;
287 	if (index > end_index)
288 		return;
289 	/* Don't read past the page containing the last byte of the file */
290 	if (nr_to_read > end_index - index)
291 		nr_to_read = end_index - index + 1;
292 
293 	page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
294 }
295 
296 /*
297  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
298  * memory at once.
299  */
300 void force_page_cache_ra(struct readahead_control *ractl,
301 		unsigned long nr_to_read)
302 {
303 	struct address_space *mapping = ractl->mapping;
304 	struct file_ra_state *ra = ractl->ra;
305 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
306 	unsigned long max_pages, index;
307 
308 	if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
309 		return;
310 
311 	/*
312 	 * If the request exceeds the readahead window, allow the read to
313 	 * be up to the optimal hardware IO size
314 	 */
315 	index = readahead_index(ractl);
316 	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
317 	nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
318 	while (nr_to_read) {
319 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
320 
321 		if (this_chunk > nr_to_read)
322 			this_chunk = nr_to_read;
323 		ractl->_index = index;
324 		do_page_cache_ra(ractl, this_chunk, 0);
325 
326 		index += this_chunk;
327 		nr_to_read -= this_chunk;
328 	}
329 }
330 
331 /*
332  * Set the initial window size, round to next power of 2 and square
333  * for small size, x 4 for medium, and x 2 for large
334  * for 128k (32 page) max ra
335  * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
336  */
337 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
338 {
339 	unsigned long newsize = roundup_pow_of_two(size);
340 
341 	if (newsize <= max / 32)
342 		newsize = newsize * 4;
343 	else if (newsize <= max / 4)
344 		newsize = newsize * 2;
345 	else
346 		newsize = max;
347 
348 	return newsize;
349 }
350 
351 /*
352  *  Get the previous window size, ramp it up, and
353  *  return it as the new window size.
354  */
355 static unsigned long get_next_ra_size(struct file_ra_state *ra,
356 				      unsigned long max)
357 {
358 	unsigned long cur = ra->size;
359 
360 	if (cur < max / 16)
361 		return 4 * cur;
362 	if (cur <= max / 2)
363 		return 2 * cur;
364 	return max;
365 }
366 
367 /*
368  * On-demand readahead design.
369  *
370  * The fields in struct file_ra_state represent the most-recently-executed
371  * readahead attempt:
372  *
373  *                        |<----- async_size ---------|
374  *     |------------------- size -------------------->|
375  *     |==================#===========================|
376  *     ^start             ^page marked with PG_readahead
377  *
378  * To overlap application thinking time and disk I/O time, we do
379  * `readahead pipelining': Do not wait until the application consumed all
380  * readahead pages and stalled on the missing page at readahead_index;
381  * Instead, submit an asynchronous readahead I/O as soon as there are
382  * only async_size pages left in the readahead window. Normally async_size
383  * will be equal to size, for maximum pipelining.
384  *
385  * In interleaved sequential reads, concurrent streams on the same fd can
386  * be invalidating each other's readahead state. So we flag the new readahead
387  * page at (start+size-async_size) with PG_readahead, and use it as readahead
388  * indicator. The flag won't be set on already cached pages, to avoid the
389  * readahead-for-nothing fuss, saving pointless page cache lookups.
390  *
391  * prev_pos tracks the last visited byte in the _previous_ read request.
392  * It should be maintained by the caller, and will be used for detecting
393  * small random reads. Note that the readahead algorithm checks loosely
394  * for sequential patterns. Hence interleaved reads might be served as
395  * sequential ones.
396  *
397  * There is a special-case: if the first page which the application tries to
398  * read happens to be the first page of the file, it is assumed that a linear
399  * read is about to happen and the window is immediately set to the initial size
400  * based on I/O request size and the max_readahead.
401  *
402  * The code ramps up the readahead size aggressively at first, but slow down as
403  * it approaches max_readhead.
404  */
405 
406 /*
407  * Count contiguously cached pages from @index-1 to @index-@max,
408  * this count is a conservative estimation of
409  * 	- length of the sequential read sequence, or
410  * 	- thrashing threshold in memory tight systems
411  */
412 static pgoff_t count_history_pages(struct address_space *mapping,
413 				   pgoff_t index, unsigned long max)
414 {
415 	pgoff_t head;
416 
417 	rcu_read_lock();
418 	head = page_cache_prev_miss(mapping, index - 1, max);
419 	rcu_read_unlock();
420 
421 	return index - 1 - head;
422 }
423 
424 /*
425  * page cache context based readahead
426  */
427 static int try_context_readahead(struct address_space *mapping,
428 				 struct file_ra_state *ra,
429 				 pgoff_t index,
430 				 unsigned long req_size,
431 				 unsigned long max)
432 {
433 	pgoff_t size;
434 
435 	size = count_history_pages(mapping, index, max);
436 
437 	/*
438 	 * not enough history pages:
439 	 * it could be a random read
440 	 */
441 	if (size <= req_size)
442 		return 0;
443 
444 	/*
445 	 * starts from beginning of file:
446 	 * it is a strong indication of long-run stream (or whole-file-read)
447 	 */
448 	if (size >= index)
449 		size *= 2;
450 
451 	ra->start = index;
452 	ra->size = min(size + req_size, max);
453 	ra->async_size = 1;
454 
455 	return 1;
456 }
457 
458 /*
459  * There are some parts of the kernel which assume that PMD entries
460  * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
461  * limit the maximum allocation order to PMD size.  I'm not aware of any
462  * assumptions about maximum order if THP are disabled, but 8 seems like
463  * a good order (that's 1MB if you're using 4kB pages)
464  */
465 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
466 #define MAX_PAGECACHE_ORDER	HPAGE_PMD_ORDER
467 #else
468 #define MAX_PAGECACHE_ORDER	8
469 #endif
470 
471 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
472 		pgoff_t mark, unsigned int order, gfp_t gfp)
473 {
474 	int err;
475 	struct folio *folio = filemap_alloc_folio(gfp, order);
476 
477 	if (!folio)
478 		return -ENOMEM;
479 	mark = round_up(mark, 1UL << order);
480 	if (index == mark)
481 		folio_set_readahead(folio);
482 	err = filemap_add_folio(ractl->mapping, folio, index, gfp);
483 	if (err)
484 		folio_put(folio);
485 	else
486 		ractl->_nr_pages += 1UL << order;
487 	return err;
488 }
489 
490 void page_cache_ra_order(struct readahead_control *ractl,
491 		struct file_ra_state *ra, unsigned int new_order)
492 {
493 	struct address_space *mapping = ractl->mapping;
494 	pgoff_t index = readahead_index(ractl);
495 	pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
496 	pgoff_t mark = index + ra->size - ra->async_size;
497 	int err = 0;
498 	gfp_t gfp = readahead_gfp_mask(mapping);
499 
500 	if (!mapping_large_folio_support(mapping) || ra->size < 4)
501 		goto fallback;
502 
503 	limit = min(limit, index + ra->size - 1);
504 
505 	if (new_order < MAX_PAGECACHE_ORDER) {
506 		new_order += 2;
507 		if (new_order > MAX_PAGECACHE_ORDER)
508 			new_order = MAX_PAGECACHE_ORDER;
509 		while ((1 << new_order) > ra->size)
510 			new_order--;
511 	}
512 
513 	filemap_invalidate_lock_shared(mapping);
514 	while (index <= limit) {
515 		unsigned int order = new_order;
516 
517 		/* Align with smaller pages if needed */
518 		if (index & ((1UL << order) - 1)) {
519 			order = __ffs(index);
520 			if (order == 1)
521 				order = 0;
522 		}
523 		/* Don't allocate pages past EOF */
524 		while (index + (1UL << order) - 1 > limit) {
525 			if (--order == 1)
526 				order = 0;
527 		}
528 		err = ra_alloc_folio(ractl, index, mark, order, gfp);
529 		if (err)
530 			break;
531 		index += 1UL << order;
532 	}
533 
534 	if (index > limit) {
535 		ra->size += index - limit - 1;
536 		ra->async_size += index - limit - 1;
537 	}
538 
539 	read_pages(ractl);
540 	filemap_invalidate_unlock_shared(mapping);
541 
542 	/*
543 	 * If there were already pages in the page cache, then we may have
544 	 * left some gaps.  Let the regular readahead code take care of this
545 	 * situation.
546 	 */
547 	if (!err)
548 		return;
549 fallback:
550 	do_page_cache_ra(ractl, ra->size, ra->async_size);
551 }
552 
553 /*
554  * A minimal readahead algorithm for trivial sequential/random reads.
555  */
556 static void ondemand_readahead(struct readahead_control *ractl,
557 		struct folio *folio, unsigned long req_size)
558 {
559 	struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
560 	struct file_ra_state *ra = ractl->ra;
561 	unsigned long max_pages = ra->ra_pages;
562 	unsigned long add_pages;
563 	pgoff_t index = readahead_index(ractl);
564 	pgoff_t expected, prev_index;
565 	unsigned int order = folio ? folio_order(folio) : 0;
566 
567 	/*
568 	 * If the request exceeds the readahead window, allow the read to
569 	 * be up to the optimal hardware IO size
570 	 */
571 	if (req_size > max_pages && bdi->io_pages > max_pages)
572 		max_pages = min(req_size, bdi->io_pages);
573 
574 	/*
575 	 * start of file
576 	 */
577 	if (!index)
578 		goto initial_readahead;
579 
580 	/*
581 	 * It's the expected callback index, assume sequential access.
582 	 * Ramp up sizes, and push forward the readahead window.
583 	 */
584 	expected = round_up(ra->start + ra->size - ra->async_size,
585 			1UL << order);
586 	if (index == expected || index == (ra->start + ra->size)) {
587 		ra->start += ra->size;
588 		ra->size = get_next_ra_size(ra, max_pages);
589 		ra->async_size = ra->size;
590 		goto readit;
591 	}
592 
593 	/*
594 	 * Hit a marked folio without valid readahead state.
595 	 * E.g. interleaved reads.
596 	 * Query the pagecache for async_size, which normally equals to
597 	 * readahead size. Ramp it up and use it as the new readahead size.
598 	 */
599 	if (folio) {
600 		pgoff_t start;
601 
602 		rcu_read_lock();
603 		start = page_cache_next_miss(ractl->mapping, index + 1,
604 				max_pages);
605 		rcu_read_unlock();
606 
607 		if (!start || start - index > max_pages)
608 			return;
609 
610 		ra->start = start;
611 		ra->size = start - index;	/* old async_size */
612 		ra->size += req_size;
613 		ra->size = get_next_ra_size(ra, max_pages);
614 		ra->async_size = ra->size;
615 		goto readit;
616 	}
617 
618 	/*
619 	 * oversize read
620 	 */
621 	if (req_size > max_pages)
622 		goto initial_readahead;
623 
624 	/*
625 	 * sequential cache miss
626 	 * trivial case: (index - prev_index) == 1
627 	 * unaligned reads: (index - prev_index) == 0
628 	 */
629 	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
630 	if (index - prev_index <= 1UL)
631 		goto initial_readahead;
632 
633 	/*
634 	 * Query the page cache and look for the traces(cached history pages)
635 	 * that a sequential stream would leave behind.
636 	 */
637 	if (try_context_readahead(ractl->mapping, ra, index, req_size,
638 			max_pages))
639 		goto readit;
640 
641 	/*
642 	 * standalone, small random read
643 	 * Read as is, and do not pollute the readahead state.
644 	 */
645 	do_page_cache_ra(ractl, req_size, 0);
646 	return;
647 
648 initial_readahead:
649 	ra->start = index;
650 	ra->size = get_init_ra_size(req_size, max_pages);
651 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
652 
653 readit:
654 	/*
655 	 * Will this read hit the readahead marker made by itself?
656 	 * If so, trigger the readahead marker hit now, and merge
657 	 * the resulted next readahead window into the current one.
658 	 * Take care of maximum IO pages as above.
659 	 */
660 	if (index == ra->start && ra->size == ra->async_size) {
661 		add_pages = get_next_ra_size(ra, max_pages);
662 		if (ra->size + add_pages <= max_pages) {
663 			ra->async_size = add_pages;
664 			ra->size += add_pages;
665 		} else {
666 			ra->size = max_pages;
667 			ra->async_size = max_pages >> 1;
668 		}
669 	}
670 
671 	ractl->_index = ra->start;
672 	page_cache_ra_order(ractl, ra, order);
673 }
674 
675 void page_cache_sync_ra(struct readahead_control *ractl,
676 		unsigned long req_count)
677 {
678 	bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
679 
680 	/*
681 	 * Even if readahead is disabled, issue this request as readahead
682 	 * as we'll need it to satisfy the requested range. The forced
683 	 * readahead will do the right thing and limit the read to just the
684 	 * requested range, which we'll set to 1 page for this case.
685 	 */
686 	if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
687 		if (!ractl->file)
688 			return;
689 		req_count = 1;
690 		do_forced_ra = true;
691 	}
692 
693 	/* be dumb */
694 	if (do_forced_ra) {
695 		force_page_cache_ra(ractl, req_count);
696 		return;
697 	}
698 
699 	ondemand_readahead(ractl, NULL, req_count);
700 }
701 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
702 
703 void page_cache_async_ra(struct readahead_control *ractl,
704 		struct folio *folio, unsigned long req_count)
705 {
706 	/* no readahead */
707 	if (!ractl->ra->ra_pages)
708 		return;
709 
710 	/*
711 	 * Same bit is used for PG_readahead and PG_reclaim.
712 	 */
713 	if (folio_test_writeback(folio))
714 		return;
715 
716 	folio_clear_readahead(folio);
717 
718 	if (blk_cgroup_congested())
719 		return;
720 
721 	ondemand_readahead(ractl, folio, req_count);
722 }
723 EXPORT_SYMBOL_GPL(page_cache_async_ra);
724 
725 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
726 {
727 	ssize_t ret;
728 	struct fd f;
729 
730 	ret = -EBADF;
731 	f = fdget(fd);
732 	if (!f.file || !(f.file->f_mode & FMODE_READ))
733 		goto out;
734 
735 	/*
736 	 * The readahead() syscall is intended to run only on files
737 	 * that can execute readahead. If readahead is not possible
738 	 * on this file, then we must return -EINVAL.
739 	 */
740 	ret = -EINVAL;
741 	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
742 	    !S_ISREG(file_inode(f.file)->i_mode))
743 		goto out;
744 
745 	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
746 out:
747 	fdput(f);
748 	return ret;
749 }
750 
751 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
752 {
753 	return ksys_readahead(fd, offset, count);
754 }
755 
756 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
757 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
758 {
759 	return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
760 }
761 #endif
762 
763 /**
764  * readahead_expand - Expand a readahead request
765  * @ractl: The request to be expanded
766  * @new_start: The revised start
767  * @new_len: The revised size of the request
768  *
769  * Attempt to expand a readahead request outwards from the current size to the
770  * specified size by inserting locked pages before and after the current window
771  * to increase the size to the new window.  This may involve the insertion of
772  * THPs, in which case the window may get expanded even beyond what was
773  * requested.
774  *
775  * The algorithm will stop if it encounters a conflicting page already in the
776  * pagecache and leave a smaller expansion than requested.
777  *
778  * The caller must check for this by examining the revised @ractl object for a
779  * different expansion than was requested.
780  */
781 void readahead_expand(struct readahead_control *ractl,
782 		      loff_t new_start, size_t new_len)
783 {
784 	struct address_space *mapping = ractl->mapping;
785 	struct file_ra_state *ra = ractl->ra;
786 	pgoff_t new_index, new_nr_pages;
787 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
788 
789 	new_index = new_start / PAGE_SIZE;
790 
791 	/* Expand the leading edge downwards */
792 	while (ractl->_index > new_index) {
793 		unsigned long index = ractl->_index - 1;
794 		struct page *page = xa_load(&mapping->i_pages, index);
795 
796 		if (page && !xa_is_value(page))
797 			return; /* Page apparently present */
798 
799 		page = __page_cache_alloc(gfp_mask);
800 		if (!page)
801 			return;
802 		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
803 			put_page(page);
804 			return;
805 		}
806 
807 		ractl->_nr_pages++;
808 		ractl->_index = page->index;
809 	}
810 
811 	new_len += new_start - readahead_pos(ractl);
812 	new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
813 
814 	/* Expand the trailing edge upwards */
815 	while (ractl->_nr_pages < new_nr_pages) {
816 		unsigned long index = ractl->_index + ractl->_nr_pages;
817 		struct page *page = xa_load(&mapping->i_pages, index);
818 
819 		if (page && !xa_is_value(page))
820 			return; /* Page apparently present */
821 
822 		page = __page_cache_alloc(gfp_mask);
823 		if (!page)
824 			return;
825 		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
826 			put_page(page);
827 			return;
828 		}
829 		ractl->_nr_pages++;
830 		if (ra) {
831 			ra->size++;
832 			ra->async_size++;
833 		}
834 	}
835 }
836 EXPORT_SYMBOL(readahead_expand);
837