1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/readahead.c - address_space-level file readahead. 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 09Apr2002 Andrew Morton 8 * Initial version. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/dax.h> 13 #include <linux/gfp.h> 14 #include <linux/export.h> 15 #include <linux/blkdev.h> 16 #include <linux/backing-dev.h> 17 #include <linux/task_io_accounting_ops.h> 18 #include <linux/pagevec.h> 19 #include <linux/pagemap.h> 20 #include <linux/syscalls.h> 21 #include <linux/file.h> 22 #include <linux/mm_inline.h> 23 #include <linux/blk-cgroup.h> 24 #include <linux/fadvise.h> 25 #include <linux/sched/mm.h> 26 27 #include "internal.h" 28 29 /* 30 * Initialise a struct file's readahead state. Assumes that the caller has 31 * memset *ra to zero. 32 */ 33 void 34 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 35 { 36 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 37 ra->prev_pos = -1; 38 } 39 EXPORT_SYMBOL_GPL(file_ra_state_init); 40 41 /* 42 * see if a page needs releasing upon read_cache_pages() failure 43 * - the caller of read_cache_pages() may have set PG_private or PG_fscache 44 * before calling, such as the NFS fs marking pages that are cached locally 45 * on disk, thus we need to give the fs a chance to clean up in the event of 46 * an error 47 */ 48 static void read_cache_pages_invalidate_page(struct address_space *mapping, 49 struct page *page) 50 { 51 if (page_has_private(page)) { 52 if (!trylock_page(page)) 53 BUG(); 54 page->mapping = mapping; 55 do_invalidatepage(page, 0, PAGE_SIZE); 56 page->mapping = NULL; 57 unlock_page(page); 58 } 59 put_page(page); 60 } 61 62 /* 63 * release a list of pages, invalidating them first if need be 64 */ 65 static void read_cache_pages_invalidate_pages(struct address_space *mapping, 66 struct list_head *pages) 67 { 68 struct page *victim; 69 70 while (!list_empty(pages)) { 71 victim = lru_to_page(pages); 72 list_del(&victim->lru); 73 read_cache_pages_invalidate_page(mapping, victim); 74 } 75 } 76 77 /** 78 * read_cache_pages - populate an address space with some pages & start reads against them 79 * @mapping: the address_space 80 * @pages: The address of a list_head which contains the target pages. These 81 * pages have their ->index populated and are otherwise uninitialised. 82 * @filler: callback routine for filling a single page. 83 * @data: private data for the callback routine. 84 * 85 * Hides the details of the LRU cache etc from the filesystems. 86 * 87 * Returns: %0 on success, error return by @filler otherwise 88 */ 89 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 90 int (*filler)(void *, struct page *), void *data) 91 { 92 struct page *page; 93 int ret = 0; 94 95 while (!list_empty(pages)) { 96 page = lru_to_page(pages); 97 list_del(&page->lru); 98 if (add_to_page_cache_lru(page, mapping, page->index, 99 readahead_gfp_mask(mapping))) { 100 read_cache_pages_invalidate_page(mapping, page); 101 continue; 102 } 103 put_page(page); 104 105 ret = filler(data, page); 106 if (unlikely(ret)) { 107 read_cache_pages_invalidate_pages(mapping, pages); 108 break; 109 } 110 task_io_account_read(PAGE_SIZE); 111 } 112 return ret; 113 } 114 115 EXPORT_SYMBOL(read_cache_pages); 116 117 static void read_pages(struct readahead_control *rac, struct list_head *pages, 118 bool skip_page) 119 { 120 const struct address_space_operations *aops = rac->mapping->a_ops; 121 struct page *page; 122 struct blk_plug plug; 123 124 if (!readahead_count(rac)) 125 goto out; 126 127 blk_start_plug(&plug); 128 129 if (aops->readahead) { 130 aops->readahead(rac); 131 /* Clean up the remaining pages */ 132 while ((page = readahead_page(rac))) { 133 unlock_page(page); 134 put_page(page); 135 } 136 } else if (aops->readpages) { 137 aops->readpages(rac->file, rac->mapping, pages, 138 readahead_count(rac)); 139 /* Clean up the remaining pages */ 140 put_pages_list(pages); 141 rac->_index += rac->_nr_pages; 142 rac->_nr_pages = 0; 143 } else { 144 while ((page = readahead_page(rac))) { 145 aops->readpage(rac->file, page); 146 put_page(page); 147 } 148 } 149 150 blk_finish_plug(&plug); 151 152 BUG_ON(!list_empty(pages)); 153 BUG_ON(readahead_count(rac)); 154 155 out: 156 if (skip_page) 157 rac->_index++; 158 } 159 160 /** 161 * page_cache_ra_unbounded - Start unchecked readahead. 162 * @ractl: Readahead control. 163 * @nr_to_read: The number of pages to read. 164 * @lookahead_size: Where to start the next readahead. 165 * 166 * This function is for filesystems to call when they want to start 167 * readahead beyond a file's stated i_size. This is almost certainly 168 * not the function you want to call. Use page_cache_async_readahead() 169 * or page_cache_sync_readahead() instead. 170 * 171 * Context: File is referenced by caller. Mutexes may be held by caller. 172 * May sleep, but will not reenter filesystem to reclaim memory. 173 */ 174 void page_cache_ra_unbounded(struct readahead_control *ractl, 175 unsigned long nr_to_read, unsigned long lookahead_size) 176 { 177 struct address_space *mapping = ractl->mapping; 178 unsigned long index = readahead_index(ractl); 179 LIST_HEAD(page_pool); 180 gfp_t gfp_mask = readahead_gfp_mask(mapping); 181 unsigned long i; 182 183 /* 184 * Partway through the readahead operation, we will have added 185 * locked pages to the page cache, but will not yet have submitted 186 * them for I/O. Adding another page may need to allocate memory, 187 * which can trigger memory reclaim. Telling the VM we're in 188 * the middle of a filesystem operation will cause it to not 189 * touch file-backed pages, preventing a deadlock. Most (all?) 190 * filesystems already specify __GFP_NOFS in their mapping's 191 * gfp_mask, but let's be explicit here. 192 */ 193 unsigned int nofs = memalloc_nofs_save(); 194 195 /* 196 * Preallocate as many pages as we will need. 197 */ 198 for (i = 0; i < nr_to_read; i++) { 199 struct page *page = xa_load(&mapping->i_pages, index + i); 200 201 BUG_ON(index + i != ractl->_index + ractl->_nr_pages); 202 203 if (page && !xa_is_value(page)) { 204 /* 205 * Page already present? Kick off the current batch 206 * of contiguous pages before continuing with the 207 * next batch. This page may be the one we would 208 * have intended to mark as Readahead, but we don't 209 * have a stable reference to this page, and it's 210 * not worth getting one just for that. 211 */ 212 read_pages(ractl, &page_pool, true); 213 continue; 214 } 215 216 page = __page_cache_alloc(gfp_mask); 217 if (!page) 218 break; 219 if (mapping->a_ops->readpages) { 220 page->index = index + i; 221 list_add(&page->lru, &page_pool); 222 } else if (add_to_page_cache_lru(page, mapping, index + i, 223 gfp_mask) < 0) { 224 put_page(page); 225 read_pages(ractl, &page_pool, true); 226 continue; 227 } 228 if (i == nr_to_read - lookahead_size) 229 SetPageReadahead(page); 230 ractl->_nr_pages++; 231 } 232 233 /* 234 * Now start the IO. We ignore I/O errors - if the page is not 235 * uptodate then the caller will launch readpage again, and 236 * will then handle the error. 237 */ 238 read_pages(ractl, &page_pool, false); 239 memalloc_nofs_restore(nofs); 240 } 241 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded); 242 243 /* 244 * do_page_cache_ra() actually reads a chunk of disk. It allocates 245 * the pages first, then submits them for I/O. This avoids the very bad 246 * behaviour which would occur if page allocations are causing VM writeback. 247 * We really don't want to intermingle reads and writes like that. 248 */ 249 void do_page_cache_ra(struct readahead_control *ractl, 250 unsigned long nr_to_read, unsigned long lookahead_size) 251 { 252 struct inode *inode = ractl->mapping->host; 253 unsigned long index = readahead_index(ractl); 254 loff_t isize = i_size_read(inode); 255 pgoff_t end_index; /* The last page we want to read */ 256 257 if (isize == 0) 258 return; 259 260 end_index = (isize - 1) >> PAGE_SHIFT; 261 if (index > end_index) 262 return; 263 /* Don't read past the page containing the last byte of the file */ 264 if (nr_to_read > end_index - index) 265 nr_to_read = end_index - index + 1; 266 267 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size); 268 } 269 270 /* 271 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 272 * memory at once. 273 */ 274 void force_page_cache_ra(struct readahead_control *ractl, 275 struct file_ra_state *ra, unsigned long nr_to_read) 276 { 277 struct address_space *mapping = ractl->mapping; 278 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 279 unsigned long max_pages, index; 280 281 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages && 282 !mapping->a_ops->readahead)) 283 return; 284 285 /* 286 * If the request exceeds the readahead window, allow the read to 287 * be up to the optimal hardware IO size 288 */ 289 index = readahead_index(ractl); 290 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 291 nr_to_read = min_t(unsigned long, nr_to_read, max_pages); 292 while (nr_to_read) { 293 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 294 295 if (this_chunk > nr_to_read) 296 this_chunk = nr_to_read; 297 ractl->_index = index; 298 do_page_cache_ra(ractl, this_chunk, 0); 299 300 index += this_chunk; 301 nr_to_read -= this_chunk; 302 } 303 } 304 305 /* 306 * Set the initial window size, round to next power of 2 and square 307 * for small size, x 4 for medium, and x 2 for large 308 * for 128k (32 page) max ra 309 * 1-8 page = 32k initial, > 8 page = 128k initial 310 */ 311 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 312 { 313 unsigned long newsize = roundup_pow_of_two(size); 314 315 if (newsize <= max / 32) 316 newsize = newsize * 4; 317 else if (newsize <= max / 4) 318 newsize = newsize * 2; 319 else 320 newsize = max; 321 322 return newsize; 323 } 324 325 /* 326 * Get the previous window size, ramp it up, and 327 * return it as the new window size. 328 */ 329 static unsigned long get_next_ra_size(struct file_ra_state *ra, 330 unsigned long max) 331 { 332 unsigned long cur = ra->size; 333 334 if (cur < max / 16) 335 return 4 * cur; 336 if (cur <= max / 2) 337 return 2 * cur; 338 return max; 339 } 340 341 /* 342 * On-demand readahead design. 343 * 344 * The fields in struct file_ra_state represent the most-recently-executed 345 * readahead attempt: 346 * 347 * |<----- async_size ---------| 348 * |------------------- size -------------------->| 349 * |==================#===========================| 350 * ^start ^page marked with PG_readahead 351 * 352 * To overlap application thinking time and disk I/O time, we do 353 * `readahead pipelining': Do not wait until the application consumed all 354 * readahead pages and stalled on the missing page at readahead_index; 355 * Instead, submit an asynchronous readahead I/O as soon as there are 356 * only async_size pages left in the readahead window. Normally async_size 357 * will be equal to size, for maximum pipelining. 358 * 359 * In interleaved sequential reads, concurrent streams on the same fd can 360 * be invalidating each other's readahead state. So we flag the new readahead 361 * page at (start+size-async_size) with PG_readahead, and use it as readahead 362 * indicator. The flag won't be set on already cached pages, to avoid the 363 * readahead-for-nothing fuss, saving pointless page cache lookups. 364 * 365 * prev_pos tracks the last visited byte in the _previous_ read request. 366 * It should be maintained by the caller, and will be used for detecting 367 * small random reads. Note that the readahead algorithm checks loosely 368 * for sequential patterns. Hence interleaved reads might be served as 369 * sequential ones. 370 * 371 * There is a special-case: if the first page which the application tries to 372 * read happens to be the first page of the file, it is assumed that a linear 373 * read is about to happen and the window is immediately set to the initial size 374 * based on I/O request size and the max_readahead. 375 * 376 * The code ramps up the readahead size aggressively at first, but slow down as 377 * it approaches max_readhead. 378 */ 379 380 /* 381 * Count contiguously cached pages from @index-1 to @index-@max, 382 * this count is a conservative estimation of 383 * - length of the sequential read sequence, or 384 * - thrashing threshold in memory tight systems 385 */ 386 static pgoff_t count_history_pages(struct address_space *mapping, 387 pgoff_t index, unsigned long max) 388 { 389 pgoff_t head; 390 391 rcu_read_lock(); 392 head = page_cache_prev_miss(mapping, index - 1, max); 393 rcu_read_unlock(); 394 395 return index - 1 - head; 396 } 397 398 /* 399 * page cache context based read-ahead 400 */ 401 static int try_context_readahead(struct address_space *mapping, 402 struct file_ra_state *ra, 403 pgoff_t index, 404 unsigned long req_size, 405 unsigned long max) 406 { 407 pgoff_t size; 408 409 size = count_history_pages(mapping, index, max); 410 411 /* 412 * not enough history pages: 413 * it could be a random read 414 */ 415 if (size <= req_size) 416 return 0; 417 418 /* 419 * starts from beginning of file: 420 * it is a strong indication of long-run stream (or whole-file-read) 421 */ 422 if (size >= index) 423 size *= 2; 424 425 ra->start = index; 426 ra->size = min(size + req_size, max); 427 ra->async_size = 1; 428 429 return 1; 430 } 431 432 /* 433 * A minimal readahead algorithm for trivial sequential/random reads. 434 */ 435 static void ondemand_readahead(struct readahead_control *ractl, 436 struct file_ra_state *ra, bool hit_readahead_marker, 437 unsigned long req_size) 438 { 439 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host); 440 unsigned long max_pages = ra->ra_pages; 441 unsigned long add_pages; 442 unsigned long index = readahead_index(ractl); 443 pgoff_t prev_index; 444 445 /* 446 * If the request exceeds the readahead window, allow the read to 447 * be up to the optimal hardware IO size 448 */ 449 if (req_size > max_pages && bdi->io_pages > max_pages) 450 max_pages = min(req_size, bdi->io_pages); 451 452 /* 453 * start of file 454 */ 455 if (!index) 456 goto initial_readahead; 457 458 /* 459 * It's the expected callback index, assume sequential access. 460 * Ramp up sizes, and push forward the readahead window. 461 */ 462 if ((index == (ra->start + ra->size - ra->async_size) || 463 index == (ra->start + ra->size))) { 464 ra->start += ra->size; 465 ra->size = get_next_ra_size(ra, max_pages); 466 ra->async_size = ra->size; 467 goto readit; 468 } 469 470 /* 471 * Hit a marked page without valid readahead state. 472 * E.g. interleaved reads. 473 * Query the pagecache for async_size, which normally equals to 474 * readahead size. Ramp it up and use it as the new readahead size. 475 */ 476 if (hit_readahead_marker) { 477 pgoff_t start; 478 479 rcu_read_lock(); 480 start = page_cache_next_miss(ractl->mapping, index + 1, 481 max_pages); 482 rcu_read_unlock(); 483 484 if (!start || start - index > max_pages) 485 return; 486 487 ra->start = start; 488 ra->size = start - index; /* old async_size */ 489 ra->size += req_size; 490 ra->size = get_next_ra_size(ra, max_pages); 491 ra->async_size = ra->size; 492 goto readit; 493 } 494 495 /* 496 * oversize read 497 */ 498 if (req_size > max_pages) 499 goto initial_readahead; 500 501 /* 502 * sequential cache miss 503 * trivial case: (index - prev_index) == 1 504 * unaligned reads: (index - prev_index) == 0 505 */ 506 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 507 if (index - prev_index <= 1UL) 508 goto initial_readahead; 509 510 /* 511 * Query the page cache and look for the traces(cached history pages) 512 * that a sequential stream would leave behind. 513 */ 514 if (try_context_readahead(ractl->mapping, ra, index, req_size, 515 max_pages)) 516 goto readit; 517 518 /* 519 * standalone, small random read 520 * Read as is, and do not pollute the readahead state. 521 */ 522 do_page_cache_ra(ractl, req_size, 0); 523 return; 524 525 initial_readahead: 526 ra->start = index; 527 ra->size = get_init_ra_size(req_size, max_pages); 528 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 529 530 readit: 531 /* 532 * Will this read hit the readahead marker made by itself? 533 * If so, trigger the readahead marker hit now, and merge 534 * the resulted next readahead window into the current one. 535 * Take care of maximum IO pages as above. 536 */ 537 if (index == ra->start && ra->size == ra->async_size) { 538 add_pages = get_next_ra_size(ra, max_pages); 539 if (ra->size + add_pages <= max_pages) { 540 ra->async_size = add_pages; 541 ra->size += add_pages; 542 } else { 543 ra->size = max_pages; 544 ra->async_size = max_pages >> 1; 545 } 546 } 547 548 ractl->_index = ra->start; 549 do_page_cache_ra(ractl, ra->size, ra->async_size); 550 } 551 552 void page_cache_sync_ra(struct readahead_control *ractl, 553 struct file_ra_state *ra, unsigned long req_count) 554 { 555 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM); 556 557 /* 558 * Even if read-ahead is disabled, issue this request as read-ahead 559 * as we'll need it to satisfy the requested range. The forced 560 * read-ahead will do the right thing and limit the read to just the 561 * requested range, which we'll set to 1 page for this case. 562 */ 563 if (!ra->ra_pages || blk_cgroup_congested()) { 564 if (!ractl->file) 565 return; 566 req_count = 1; 567 do_forced_ra = true; 568 } 569 570 /* be dumb */ 571 if (do_forced_ra) { 572 force_page_cache_ra(ractl, ra, req_count); 573 return; 574 } 575 576 /* do read-ahead */ 577 ondemand_readahead(ractl, ra, false, req_count); 578 } 579 EXPORT_SYMBOL_GPL(page_cache_sync_ra); 580 581 void page_cache_async_ra(struct readahead_control *ractl, 582 struct file_ra_state *ra, struct page *page, 583 unsigned long req_count) 584 { 585 /* no read-ahead */ 586 if (!ra->ra_pages) 587 return; 588 589 /* 590 * Same bit is used for PG_readahead and PG_reclaim. 591 */ 592 if (PageWriteback(page)) 593 return; 594 595 ClearPageReadahead(page); 596 597 /* 598 * Defer asynchronous read-ahead on IO congestion. 599 */ 600 if (inode_read_congested(ractl->mapping->host)) 601 return; 602 603 if (blk_cgroup_congested()) 604 return; 605 606 /* do read-ahead */ 607 ondemand_readahead(ractl, ra, true, req_count); 608 } 609 EXPORT_SYMBOL_GPL(page_cache_async_ra); 610 611 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 612 { 613 ssize_t ret; 614 struct fd f; 615 616 ret = -EBADF; 617 f = fdget(fd); 618 if (!f.file || !(f.file->f_mode & FMODE_READ)) 619 goto out; 620 621 /* 622 * The readahead() syscall is intended to run only on files 623 * that can execute readahead. If readahead is not possible 624 * on this file, then we must return -EINVAL. 625 */ 626 ret = -EINVAL; 627 if (!f.file->f_mapping || !f.file->f_mapping->a_ops || 628 !S_ISREG(file_inode(f.file)->i_mode)) 629 goto out; 630 631 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED); 632 out: 633 fdput(f); 634 return ret; 635 } 636 637 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 638 { 639 return ksys_readahead(fd, offset, count); 640 } 641