1 /* 2 * mm/readahead.c - address_space-level file readahead. 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 09Apr2002 akpm@zip.com.au 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/blkdev.h> 15 #include <linux/backing-dev.h> 16 #include <linux/task_io_accounting_ops.h> 17 #include <linux/pagevec.h> 18 #include <linux/pagemap.h> 19 20 void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 21 { 22 } 23 EXPORT_SYMBOL(default_unplug_io_fn); 24 25 struct backing_dev_info default_backing_dev_info = { 26 .ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE, 27 .state = 0, 28 .capabilities = BDI_CAP_MAP_COPY, 29 .unplug_io_fn = default_unplug_io_fn, 30 }; 31 EXPORT_SYMBOL_GPL(default_backing_dev_info); 32 33 /* 34 * Initialise a struct file's readahead state. Assumes that the caller has 35 * memset *ra to zero. 36 */ 37 void 38 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 39 { 40 ra->ra_pages = mapping->backing_dev_info->ra_pages; 41 ra->prev_pos = -1; 42 } 43 EXPORT_SYMBOL_GPL(file_ra_state_init); 44 45 #define list_to_page(head) (list_entry((head)->prev, struct page, lru)) 46 47 /** 48 * read_cache_pages - populate an address space with some pages & start reads against them 49 * @mapping: the address_space 50 * @pages: The address of a list_head which contains the target pages. These 51 * pages have their ->index populated and are otherwise uninitialised. 52 * @filler: callback routine for filling a single page. 53 * @data: private data for the callback routine. 54 * 55 * Hides the details of the LRU cache etc from the filesystems. 56 */ 57 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 58 int (*filler)(void *, struct page *), void *data) 59 { 60 struct page *page; 61 int ret = 0; 62 63 while (!list_empty(pages)) { 64 page = list_to_page(pages); 65 list_del(&page->lru); 66 if (add_to_page_cache_lru(page, mapping, 67 page->index, GFP_KERNEL)) { 68 page_cache_release(page); 69 continue; 70 } 71 page_cache_release(page); 72 73 ret = filler(data, page); 74 if (unlikely(ret)) { 75 put_pages_list(pages); 76 break; 77 } 78 task_io_account_read(PAGE_CACHE_SIZE); 79 } 80 return ret; 81 } 82 83 EXPORT_SYMBOL(read_cache_pages); 84 85 static int read_pages(struct address_space *mapping, struct file *filp, 86 struct list_head *pages, unsigned nr_pages) 87 { 88 unsigned page_idx; 89 int ret; 90 91 if (mapping->a_ops->readpages) { 92 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages); 93 /* Clean up the remaining pages */ 94 put_pages_list(pages); 95 goto out; 96 } 97 98 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 99 struct page *page = list_to_page(pages); 100 list_del(&page->lru); 101 if (!add_to_page_cache_lru(page, mapping, 102 page->index, GFP_KERNEL)) { 103 mapping->a_ops->readpage(filp, page); 104 } 105 page_cache_release(page); 106 } 107 ret = 0; 108 out: 109 return ret; 110 } 111 112 /* 113 * do_page_cache_readahead actually reads a chunk of disk. It allocates all 114 * the pages first, then submits them all for I/O. This avoids the very bad 115 * behaviour which would occur if page allocations are causing VM writeback. 116 * We really don't want to intermingle reads and writes like that. 117 * 118 * Returns the number of pages requested, or the maximum amount of I/O allowed. 119 * 120 * do_page_cache_readahead() returns -1 if it encountered request queue 121 * congestion. 122 */ 123 static int 124 __do_page_cache_readahead(struct address_space *mapping, struct file *filp, 125 pgoff_t offset, unsigned long nr_to_read, 126 unsigned long lookahead_size) 127 { 128 struct inode *inode = mapping->host; 129 struct page *page; 130 unsigned long end_index; /* The last page we want to read */ 131 LIST_HEAD(page_pool); 132 int page_idx; 133 int ret = 0; 134 loff_t isize = i_size_read(inode); 135 136 if (isize == 0) 137 goto out; 138 139 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT); 140 141 /* 142 * Preallocate as many pages as we will need. 143 */ 144 for (page_idx = 0; page_idx < nr_to_read; page_idx++) { 145 pgoff_t page_offset = offset + page_idx; 146 147 if (page_offset > end_index) 148 break; 149 150 rcu_read_lock(); 151 page = radix_tree_lookup(&mapping->page_tree, page_offset); 152 rcu_read_unlock(); 153 if (page) 154 continue; 155 156 page = page_cache_alloc_cold(mapping); 157 if (!page) 158 break; 159 page->index = page_offset; 160 list_add(&page->lru, &page_pool); 161 if (page_idx == nr_to_read - lookahead_size) 162 SetPageReadahead(page); 163 ret++; 164 } 165 166 /* 167 * Now start the IO. We ignore I/O errors - if the page is not 168 * uptodate then the caller will launch readpage again, and 169 * will then handle the error. 170 */ 171 if (ret) 172 read_pages(mapping, filp, &page_pool, ret); 173 BUG_ON(!list_empty(&page_pool)); 174 out: 175 return ret; 176 } 177 178 /* 179 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 180 * memory at once. 181 */ 182 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 183 pgoff_t offset, unsigned long nr_to_read) 184 { 185 int ret = 0; 186 187 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages)) 188 return -EINVAL; 189 190 while (nr_to_read) { 191 int err; 192 193 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE; 194 195 if (this_chunk > nr_to_read) 196 this_chunk = nr_to_read; 197 err = __do_page_cache_readahead(mapping, filp, 198 offset, this_chunk, 0); 199 if (err < 0) { 200 ret = err; 201 break; 202 } 203 ret += err; 204 offset += this_chunk; 205 nr_to_read -= this_chunk; 206 } 207 return ret; 208 } 209 210 /* 211 * This version skips the IO if the queue is read-congested, and will tell the 212 * block layer to abandon the readahead if request allocation would block. 213 * 214 * force_page_cache_readahead() will ignore queue congestion and will block on 215 * request queues. 216 */ 217 int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 218 pgoff_t offset, unsigned long nr_to_read) 219 { 220 if (bdi_read_congested(mapping->backing_dev_info)) 221 return -1; 222 223 return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0); 224 } 225 226 /* 227 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a 228 * sensible upper limit. 229 */ 230 unsigned long max_sane_readahead(unsigned long nr) 231 { 232 return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE) 233 + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2); 234 } 235 236 static int __init readahead_init(void) 237 { 238 return bdi_init(&default_backing_dev_info); 239 } 240 subsys_initcall(readahead_init); 241 242 /* 243 * Submit IO for the read-ahead request in file_ra_state. 244 */ 245 static unsigned long ra_submit(struct file_ra_state *ra, 246 struct address_space *mapping, struct file *filp) 247 { 248 int actual; 249 250 actual = __do_page_cache_readahead(mapping, filp, 251 ra->start, ra->size, ra->async_size); 252 253 return actual; 254 } 255 256 /* 257 * Set the initial window size, round to next power of 2 and square 258 * for small size, x 4 for medium, and x 2 for large 259 * for 128k (32 page) max ra 260 * 1-8 page = 32k initial, > 8 page = 128k initial 261 */ 262 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 263 { 264 unsigned long newsize = roundup_pow_of_two(size); 265 266 if (newsize <= max / 32) 267 newsize = newsize * 4; 268 else if (newsize <= max / 4) 269 newsize = newsize * 2; 270 else 271 newsize = max; 272 273 return newsize; 274 } 275 276 /* 277 * Get the previous window size, ramp it up, and 278 * return it as the new window size. 279 */ 280 static unsigned long get_next_ra_size(struct file_ra_state *ra, 281 unsigned long max) 282 { 283 unsigned long cur = ra->size; 284 unsigned long newsize; 285 286 if (cur < max / 16) 287 newsize = 4 * cur; 288 else 289 newsize = 2 * cur; 290 291 return min(newsize, max); 292 } 293 294 /* 295 * On-demand readahead design. 296 * 297 * The fields in struct file_ra_state represent the most-recently-executed 298 * readahead attempt: 299 * 300 * |<----- async_size ---------| 301 * |------------------- size -------------------->| 302 * |==================#===========================| 303 * ^start ^page marked with PG_readahead 304 * 305 * To overlap application thinking time and disk I/O time, we do 306 * `readahead pipelining': Do not wait until the application consumed all 307 * readahead pages and stalled on the missing page at readahead_index; 308 * Instead, submit an asynchronous readahead I/O as soon as there are 309 * only async_size pages left in the readahead window. Normally async_size 310 * will be equal to size, for maximum pipelining. 311 * 312 * In interleaved sequential reads, concurrent streams on the same fd can 313 * be invalidating each other's readahead state. So we flag the new readahead 314 * page at (start+size-async_size) with PG_readahead, and use it as readahead 315 * indicator. The flag won't be set on already cached pages, to avoid the 316 * readahead-for-nothing fuss, saving pointless page cache lookups. 317 * 318 * prev_pos tracks the last visited byte in the _previous_ read request. 319 * It should be maintained by the caller, and will be used for detecting 320 * small random reads. Note that the readahead algorithm checks loosely 321 * for sequential patterns. Hence interleaved reads might be served as 322 * sequential ones. 323 * 324 * There is a special-case: if the first page which the application tries to 325 * read happens to be the first page of the file, it is assumed that a linear 326 * read is about to happen and the window is immediately set to the initial size 327 * based on I/O request size and the max_readahead. 328 * 329 * The code ramps up the readahead size aggressively at first, but slow down as 330 * it approaches max_readhead. 331 */ 332 333 /* 334 * A minimal readahead algorithm for trivial sequential/random reads. 335 */ 336 static unsigned long 337 ondemand_readahead(struct address_space *mapping, 338 struct file_ra_state *ra, struct file *filp, 339 bool hit_readahead_marker, pgoff_t offset, 340 unsigned long req_size) 341 { 342 int max = ra->ra_pages; /* max readahead pages */ 343 pgoff_t prev_offset; 344 int sequential; 345 346 /* 347 * It's the expected callback offset, assume sequential access. 348 * Ramp up sizes, and push forward the readahead window. 349 */ 350 if (offset && (offset == (ra->start + ra->size - ra->async_size) || 351 offset == (ra->start + ra->size))) { 352 ra->start += ra->size; 353 ra->size = get_next_ra_size(ra, max); 354 ra->async_size = ra->size; 355 goto readit; 356 } 357 358 prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT; 359 sequential = offset - prev_offset <= 1UL || req_size > max; 360 361 /* 362 * Standalone, small read. 363 * Read as is, and do not pollute the readahead state. 364 */ 365 if (!hit_readahead_marker && !sequential) { 366 return __do_page_cache_readahead(mapping, filp, 367 offset, req_size, 0); 368 } 369 370 /* 371 * Hit a marked page without valid readahead state. 372 * E.g. interleaved reads. 373 * Query the pagecache for async_size, which normally equals to 374 * readahead size. Ramp it up and use it as the new readahead size. 375 */ 376 if (hit_readahead_marker) { 377 pgoff_t start; 378 379 read_lock_irq(&mapping->tree_lock); 380 start = radix_tree_next_hole(&mapping->page_tree, offset, max+1); 381 read_unlock_irq(&mapping->tree_lock); 382 383 if (!start || start - offset > max) 384 return 0; 385 386 ra->start = start; 387 ra->size = start - offset; /* old async_size */ 388 ra->size = get_next_ra_size(ra, max); 389 ra->async_size = ra->size; 390 goto readit; 391 } 392 393 /* 394 * It may be one of 395 * - first read on start of file 396 * - sequential cache miss 397 * - oversize random read 398 * Start readahead for it. 399 */ 400 ra->start = offset; 401 ra->size = get_init_ra_size(req_size, max); 402 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 403 404 readit: 405 return ra_submit(ra, mapping, filp); 406 } 407 408 /** 409 * page_cache_sync_readahead - generic file readahead 410 * @mapping: address_space which holds the pagecache and I/O vectors 411 * @ra: file_ra_state which holds the readahead state 412 * @filp: passed on to ->readpage() and ->readpages() 413 * @offset: start offset into @mapping, in pagecache page-sized units 414 * @req_size: hint: total size of the read which the caller is performing in 415 * pagecache pages 416 * 417 * page_cache_sync_readahead() should be called when a cache miss happened: 418 * it will submit the read. The readahead logic may decide to piggyback more 419 * pages onto the read request if access patterns suggest it will improve 420 * performance. 421 */ 422 void page_cache_sync_readahead(struct address_space *mapping, 423 struct file_ra_state *ra, struct file *filp, 424 pgoff_t offset, unsigned long req_size) 425 { 426 /* no read-ahead */ 427 if (!ra->ra_pages) 428 return; 429 430 /* do read-ahead */ 431 ondemand_readahead(mapping, ra, filp, false, offset, req_size); 432 } 433 EXPORT_SYMBOL_GPL(page_cache_sync_readahead); 434 435 /** 436 * page_cache_async_readahead - file readahead for marked pages 437 * @mapping: address_space which holds the pagecache and I/O vectors 438 * @ra: file_ra_state which holds the readahead state 439 * @filp: passed on to ->readpage() and ->readpages() 440 * @page: the page at @offset which has the PG_readahead flag set 441 * @offset: start offset into @mapping, in pagecache page-sized units 442 * @req_size: hint: total size of the read which the caller is performing in 443 * pagecache pages 444 * 445 * page_cache_async_ondemand() should be called when a page is used which 446 * has the PG_readahead flag: this is a marker to suggest that the application 447 * has used up enough of the readahead window that we should start pulling in 448 * more pages. */ 449 void 450 page_cache_async_readahead(struct address_space *mapping, 451 struct file_ra_state *ra, struct file *filp, 452 struct page *page, pgoff_t offset, 453 unsigned long req_size) 454 { 455 /* no read-ahead */ 456 if (!ra->ra_pages) 457 return; 458 459 /* 460 * Same bit is used for PG_readahead and PG_reclaim. 461 */ 462 if (PageWriteback(page)) 463 return; 464 465 ClearPageReadahead(page); 466 467 /* 468 * Defer asynchronous read-ahead on IO congestion. 469 */ 470 if (bdi_read_congested(mapping->backing_dev_info)) 471 return; 472 473 /* do read-ahead */ 474 ondemand_readahead(mapping, ra, filp, true, offset, req_size); 475 } 476 EXPORT_SYMBOL_GPL(page_cache_async_readahead); 477