xref: /openbmc/linux/mm/readahead.c (revision 615c36f5)
1 /*
2  * mm/readahead.c - address_space-level file readahead.
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 09Apr2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/fs.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/export.h>
15 #include <linux/blkdev.h>
16 #include <linux/backing-dev.h>
17 #include <linux/task_io_accounting_ops.h>
18 #include <linux/pagevec.h>
19 #include <linux/pagemap.h>
20 
21 /*
22  * Initialise a struct file's readahead state.  Assumes that the caller has
23  * memset *ra to zero.
24  */
25 void
26 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
27 {
28 	ra->ra_pages = mapping->backing_dev_info->ra_pages;
29 	ra->prev_pos = -1;
30 }
31 EXPORT_SYMBOL_GPL(file_ra_state_init);
32 
33 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
34 
35 /*
36  * see if a page needs releasing upon read_cache_pages() failure
37  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
38  *   before calling, such as the NFS fs marking pages that are cached locally
39  *   on disk, thus we need to give the fs a chance to clean up in the event of
40  *   an error
41  */
42 static void read_cache_pages_invalidate_page(struct address_space *mapping,
43 					     struct page *page)
44 {
45 	if (page_has_private(page)) {
46 		if (!trylock_page(page))
47 			BUG();
48 		page->mapping = mapping;
49 		do_invalidatepage(page, 0);
50 		page->mapping = NULL;
51 		unlock_page(page);
52 	}
53 	page_cache_release(page);
54 }
55 
56 /*
57  * release a list of pages, invalidating them first if need be
58  */
59 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
60 					      struct list_head *pages)
61 {
62 	struct page *victim;
63 
64 	while (!list_empty(pages)) {
65 		victim = list_to_page(pages);
66 		list_del(&victim->lru);
67 		read_cache_pages_invalidate_page(mapping, victim);
68 	}
69 }
70 
71 /**
72  * read_cache_pages - populate an address space with some pages & start reads against them
73  * @mapping: the address_space
74  * @pages: The address of a list_head which contains the target pages.  These
75  *   pages have their ->index populated and are otherwise uninitialised.
76  * @filler: callback routine for filling a single page.
77  * @data: private data for the callback routine.
78  *
79  * Hides the details of the LRU cache etc from the filesystems.
80  */
81 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
82 			int (*filler)(void *, struct page *), void *data)
83 {
84 	struct page *page;
85 	int ret = 0;
86 
87 	while (!list_empty(pages)) {
88 		page = list_to_page(pages);
89 		list_del(&page->lru);
90 		if (add_to_page_cache_lru(page, mapping,
91 					page->index, GFP_KERNEL)) {
92 			read_cache_pages_invalidate_page(mapping, page);
93 			continue;
94 		}
95 		page_cache_release(page);
96 
97 		ret = filler(data, page);
98 		if (unlikely(ret)) {
99 			read_cache_pages_invalidate_pages(mapping, pages);
100 			break;
101 		}
102 		task_io_account_read(PAGE_CACHE_SIZE);
103 	}
104 	return ret;
105 }
106 
107 EXPORT_SYMBOL(read_cache_pages);
108 
109 static int read_pages(struct address_space *mapping, struct file *filp,
110 		struct list_head *pages, unsigned nr_pages)
111 {
112 	struct blk_plug plug;
113 	unsigned page_idx;
114 	int ret;
115 
116 	blk_start_plug(&plug);
117 
118 	if (mapping->a_ops->readpages) {
119 		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
120 		/* Clean up the remaining pages */
121 		put_pages_list(pages);
122 		goto out;
123 	}
124 
125 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
126 		struct page *page = list_to_page(pages);
127 		list_del(&page->lru);
128 		if (!add_to_page_cache_lru(page, mapping,
129 					page->index, GFP_KERNEL)) {
130 			mapping->a_ops->readpage(filp, page);
131 		}
132 		page_cache_release(page);
133 	}
134 	ret = 0;
135 
136 out:
137 	blk_finish_plug(&plug);
138 
139 	return ret;
140 }
141 
142 /*
143  * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
144  * the pages first, then submits them all for I/O. This avoids the very bad
145  * behaviour which would occur if page allocations are causing VM writeback.
146  * We really don't want to intermingle reads and writes like that.
147  *
148  * Returns the number of pages requested, or the maximum amount of I/O allowed.
149  */
150 static int
151 __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
152 			pgoff_t offset, unsigned long nr_to_read,
153 			unsigned long lookahead_size)
154 {
155 	struct inode *inode = mapping->host;
156 	struct page *page;
157 	unsigned long end_index;	/* The last page we want to read */
158 	LIST_HEAD(page_pool);
159 	int page_idx;
160 	int ret = 0;
161 	loff_t isize = i_size_read(inode);
162 
163 	if (isize == 0)
164 		goto out;
165 
166 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
167 
168 	/*
169 	 * Preallocate as many pages as we will need.
170 	 */
171 	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
172 		pgoff_t page_offset = offset + page_idx;
173 
174 		if (page_offset > end_index)
175 			break;
176 
177 		rcu_read_lock();
178 		page = radix_tree_lookup(&mapping->page_tree, page_offset);
179 		rcu_read_unlock();
180 		if (page)
181 			continue;
182 
183 		page = page_cache_alloc_readahead(mapping);
184 		if (!page)
185 			break;
186 		page->index = page_offset;
187 		list_add(&page->lru, &page_pool);
188 		if (page_idx == nr_to_read - lookahead_size)
189 			SetPageReadahead(page);
190 		ret++;
191 	}
192 
193 	/*
194 	 * Now start the IO.  We ignore I/O errors - if the page is not
195 	 * uptodate then the caller will launch readpage again, and
196 	 * will then handle the error.
197 	 */
198 	if (ret)
199 		read_pages(mapping, filp, &page_pool, ret);
200 	BUG_ON(!list_empty(&page_pool));
201 out:
202 	return ret;
203 }
204 
205 /*
206  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
207  * memory at once.
208  */
209 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
210 		pgoff_t offset, unsigned long nr_to_read)
211 {
212 	int ret = 0;
213 
214 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
215 		return -EINVAL;
216 
217 	nr_to_read = max_sane_readahead(nr_to_read);
218 	while (nr_to_read) {
219 		int err;
220 
221 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
222 
223 		if (this_chunk > nr_to_read)
224 			this_chunk = nr_to_read;
225 		err = __do_page_cache_readahead(mapping, filp,
226 						offset, this_chunk, 0);
227 		if (err < 0) {
228 			ret = err;
229 			break;
230 		}
231 		ret += err;
232 		offset += this_chunk;
233 		nr_to_read -= this_chunk;
234 	}
235 	return ret;
236 }
237 
238 /*
239  * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
240  * sensible upper limit.
241  */
242 unsigned long max_sane_readahead(unsigned long nr)
243 {
244 	return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
245 		+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
246 }
247 
248 /*
249  * Submit IO for the read-ahead request in file_ra_state.
250  */
251 unsigned long ra_submit(struct file_ra_state *ra,
252 		       struct address_space *mapping, struct file *filp)
253 {
254 	int actual;
255 
256 	actual = __do_page_cache_readahead(mapping, filp,
257 					ra->start, ra->size, ra->async_size);
258 
259 	return actual;
260 }
261 
262 /*
263  * Set the initial window size, round to next power of 2 and square
264  * for small size, x 4 for medium, and x 2 for large
265  * for 128k (32 page) max ra
266  * 1-8 page = 32k initial, > 8 page = 128k initial
267  */
268 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
269 {
270 	unsigned long newsize = roundup_pow_of_two(size);
271 
272 	if (newsize <= max / 32)
273 		newsize = newsize * 4;
274 	else if (newsize <= max / 4)
275 		newsize = newsize * 2;
276 	else
277 		newsize = max;
278 
279 	return newsize;
280 }
281 
282 /*
283  *  Get the previous window size, ramp it up, and
284  *  return it as the new window size.
285  */
286 static unsigned long get_next_ra_size(struct file_ra_state *ra,
287 						unsigned long max)
288 {
289 	unsigned long cur = ra->size;
290 	unsigned long newsize;
291 
292 	if (cur < max / 16)
293 		newsize = 4 * cur;
294 	else
295 		newsize = 2 * cur;
296 
297 	return min(newsize, max);
298 }
299 
300 /*
301  * On-demand readahead design.
302  *
303  * The fields in struct file_ra_state represent the most-recently-executed
304  * readahead attempt:
305  *
306  *                        |<----- async_size ---------|
307  *     |------------------- size -------------------->|
308  *     |==================#===========================|
309  *     ^start             ^page marked with PG_readahead
310  *
311  * To overlap application thinking time and disk I/O time, we do
312  * `readahead pipelining': Do not wait until the application consumed all
313  * readahead pages and stalled on the missing page at readahead_index;
314  * Instead, submit an asynchronous readahead I/O as soon as there are
315  * only async_size pages left in the readahead window. Normally async_size
316  * will be equal to size, for maximum pipelining.
317  *
318  * In interleaved sequential reads, concurrent streams on the same fd can
319  * be invalidating each other's readahead state. So we flag the new readahead
320  * page at (start+size-async_size) with PG_readahead, and use it as readahead
321  * indicator. The flag won't be set on already cached pages, to avoid the
322  * readahead-for-nothing fuss, saving pointless page cache lookups.
323  *
324  * prev_pos tracks the last visited byte in the _previous_ read request.
325  * It should be maintained by the caller, and will be used for detecting
326  * small random reads. Note that the readahead algorithm checks loosely
327  * for sequential patterns. Hence interleaved reads might be served as
328  * sequential ones.
329  *
330  * There is a special-case: if the first page which the application tries to
331  * read happens to be the first page of the file, it is assumed that a linear
332  * read is about to happen and the window is immediately set to the initial size
333  * based on I/O request size and the max_readahead.
334  *
335  * The code ramps up the readahead size aggressively at first, but slow down as
336  * it approaches max_readhead.
337  */
338 
339 /*
340  * Count contiguously cached pages from @offset-1 to @offset-@max,
341  * this count is a conservative estimation of
342  * 	- length of the sequential read sequence, or
343  * 	- thrashing threshold in memory tight systems
344  */
345 static pgoff_t count_history_pages(struct address_space *mapping,
346 				   struct file_ra_state *ra,
347 				   pgoff_t offset, unsigned long max)
348 {
349 	pgoff_t head;
350 
351 	rcu_read_lock();
352 	head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);
353 	rcu_read_unlock();
354 
355 	return offset - 1 - head;
356 }
357 
358 /*
359  * page cache context based read-ahead
360  */
361 static int try_context_readahead(struct address_space *mapping,
362 				 struct file_ra_state *ra,
363 				 pgoff_t offset,
364 				 unsigned long req_size,
365 				 unsigned long max)
366 {
367 	pgoff_t size;
368 
369 	size = count_history_pages(mapping, ra, offset, max);
370 
371 	/*
372 	 * no history pages:
373 	 * it could be a random read
374 	 */
375 	if (!size)
376 		return 0;
377 
378 	/*
379 	 * starts from beginning of file:
380 	 * it is a strong indication of long-run stream (or whole-file-read)
381 	 */
382 	if (size >= offset)
383 		size *= 2;
384 
385 	ra->start = offset;
386 	ra->size = get_init_ra_size(size + req_size, max);
387 	ra->async_size = ra->size;
388 
389 	return 1;
390 }
391 
392 /*
393  * A minimal readahead algorithm for trivial sequential/random reads.
394  */
395 static unsigned long
396 ondemand_readahead(struct address_space *mapping,
397 		   struct file_ra_state *ra, struct file *filp,
398 		   bool hit_readahead_marker, pgoff_t offset,
399 		   unsigned long req_size)
400 {
401 	unsigned long max = max_sane_readahead(ra->ra_pages);
402 
403 	/*
404 	 * start of file
405 	 */
406 	if (!offset)
407 		goto initial_readahead;
408 
409 	/*
410 	 * It's the expected callback offset, assume sequential access.
411 	 * Ramp up sizes, and push forward the readahead window.
412 	 */
413 	if ((offset == (ra->start + ra->size - ra->async_size) ||
414 	     offset == (ra->start + ra->size))) {
415 		ra->start += ra->size;
416 		ra->size = get_next_ra_size(ra, max);
417 		ra->async_size = ra->size;
418 		goto readit;
419 	}
420 
421 	/*
422 	 * Hit a marked page without valid readahead state.
423 	 * E.g. interleaved reads.
424 	 * Query the pagecache for async_size, which normally equals to
425 	 * readahead size. Ramp it up and use it as the new readahead size.
426 	 */
427 	if (hit_readahead_marker) {
428 		pgoff_t start;
429 
430 		rcu_read_lock();
431 		start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
432 		rcu_read_unlock();
433 
434 		if (!start || start - offset > max)
435 			return 0;
436 
437 		ra->start = start;
438 		ra->size = start - offset;	/* old async_size */
439 		ra->size += req_size;
440 		ra->size = get_next_ra_size(ra, max);
441 		ra->async_size = ra->size;
442 		goto readit;
443 	}
444 
445 	/*
446 	 * oversize read
447 	 */
448 	if (req_size > max)
449 		goto initial_readahead;
450 
451 	/*
452 	 * sequential cache miss
453 	 */
454 	if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
455 		goto initial_readahead;
456 
457 	/*
458 	 * Query the page cache and look for the traces(cached history pages)
459 	 * that a sequential stream would leave behind.
460 	 */
461 	if (try_context_readahead(mapping, ra, offset, req_size, max))
462 		goto readit;
463 
464 	/*
465 	 * standalone, small random read
466 	 * Read as is, and do not pollute the readahead state.
467 	 */
468 	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
469 
470 initial_readahead:
471 	ra->start = offset;
472 	ra->size = get_init_ra_size(req_size, max);
473 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
474 
475 readit:
476 	/*
477 	 * Will this read hit the readahead marker made by itself?
478 	 * If so, trigger the readahead marker hit now, and merge
479 	 * the resulted next readahead window into the current one.
480 	 */
481 	if (offset == ra->start && ra->size == ra->async_size) {
482 		ra->async_size = get_next_ra_size(ra, max);
483 		ra->size += ra->async_size;
484 	}
485 
486 	return ra_submit(ra, mapping, filp);
487 }
488 
489 /**
490  * page_cache_sync_readahead - generic file readahead
491  * @mapping: address_space which holds the pagecache and I/O vectors
492  * @ra: file_ra_state which holds the readahead state
493  * @filp: passed on to ->readpage() and ->readpages()
494  * @offset: start offset into @mapping, in pagecache page-sized units
495  * @req_size: hint: total size of the read which the caller is performing in
496  *            pagecache pages
497  *
498  * page_cache_sync_readahead() should be called when a cache miss happened:
499  * it will submit the read.  The readahead logic may decide to piggyback more
500  * pages onto the read request if access patterns suggest it will improve
501  * performance.
502  */
503 void page_cache_sync_readahead(struct address_space *mapping,
504 			       struct file_ra_state *ra, struct file *filp,
505 			       pgoff_t offset, unsigned long req_size)
506 {
507 	/* no read-ahead */
508 	if (!ra->ra_pages)
509 		return;
510 
511 	/* be dumb */
512 	if (filp && (filp->f_mode & FMODE_RANDOM)) {
513 		force_page_cache_readahead(mapping, filp, offset, req_size);
514 		return;
515 	}
516 
517 	/* do read-ahead */
518 	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
519 }
520 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
521 
522 /**
523  * page_cache_async_readahead - file readahead for marked pages
524  * @mapping: address_space which holds the pagecache and I/O vectors
525  * @ra: file_ra_state which holds the readahead state
526  * @filp: passed on to ->readpage() and ->readpages()
527  * @page: the page at @offset which has the PG_readahead flag set
528  * @offset: start offset into @mapping, in pagecache page-sized units
529  * @req_size: hint: total size of the read which the caller is performing in
530  *            pagecache pages
531  *
532  * page_cache_async_readahead() should be called when a page is used which
533  * has the PG_readahead flag; this is a marker to suggest that the application
534  * has used up enough of the readahead window that we should start pulling in
535  * more pages.
536  */
537 void
538 page_cache_async_readahead(struct address_space *mapping,
539 			   struct file_ra_state *ra, struct file *filp,
540 			   struct page *page, pgoff_t offset,
541 			   unsigned long req_size)
542 {
543 	/* no read-ahead */
544 	if (!ra->ra_pages)
545 		return;
546 
547 	/*
548 	 * Same bit is used for PG_readahead and PG_reclaim.
549 	 */
550 	if (PageWriteback(page))
551 		return;
552 
553 	ClearPageReadahead(page);
554 
555 	/*
556 	 * Defer asynchronous read-ahead on IO congestion.
557 	 */
558 	if (bdi_read_congested(mapping->backing_dev_info))
559 		return;
560 
561 	/* do read-ahead */
562 	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
563 }
564 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
565