xref: /openbmc/linux/mm/readahead.c (revision 5b25ab29)
1 /*
2  * mm/readahead.c - address_space-level file readahead.
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 09Apr2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/blkdev.h>
15 #include <linux/backing-dev.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/pagevec.h>
18 #include <linux/pagemap.h>
19 
20 /*
21  * Initialise a struct file's readahead state.  Assumes that the caller has
22  * memset *ra to zero.
23  */
24 void
25 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
26 {
27 	ra->ra_pages = mapping->backing_dev_info->ra_pages;
28 	ra->prev_pos = -1;
29 }
30 EXPORT_SYMBOL_GPL(file_ra_state_init);
31 
32 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
33 
34 /*
35  * see if a page needs releasing upon read_cache_pages() failure
36  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
37  *   before calling, such as the NFS fs marking pages that are cached locally
38  *   on disk, thus we need to give the fs a chance to clean up in the event of
39  *   an error
40  */
41 static void read_cache_pages_invalidate_page(struct address_space *mapping,
42 					     struct page *page)
43 {
44 	if (page_has_private(page)) {
45 		if (!trylock_page(page))
46 			BUG();
47 		page->mapping = mapping;
48 		do_invalidatepage(page, 0);
49 		page->mapping = NULL;
50 		unlock_page(page);
51 	}
52 	page_cache_release(page);
53 }
54 
55 /*
56  * release a list of pages, invalidating them first if need be
57  */
58 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
59 					      struct list_head *pages)
60 {
61 	struct page *victim;
62 
63 	while (!list_empty(pages)) {
64 		victim = list_to_page(pages);
65 		list_del(&victim->lru);
66 		read_cache_pages_invalidate_page(mapping, victim);
67 	}
68 }
69 
70 /**
71  * read_cache_pages - populate an address space with some pages & start reads against them
72  * @mapping: the address_space
73  * @pages: The address of a list_head which contains the target pages.  These
74  *   pages have their ->index populated and are otherwise uninitialised.
75  * @filler: callback routine for filling a single page.
76  * @data: private data for the callback routine.
77  *
78  * Hides the details of the LRU cache etc from the filesystems.
79  */
80 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
81 			int (*filler)(void *, struct page *), void *data)
82 {
83 	struct page *page;
84 	int ret = 0;
85 
86 	while (!list_empty(pages)) {
87 		page = list_to_page(pages);
88 		list_del(&page->lru);
89 		if (add_to_page_cache_lru(page, mapping,
90 					page->index, GFP_KERNEL)) {
91 			read_cache_pages_invalidate_page(mapping, page);
92 			continue;
93 		}
94 		page_cache_release(page);
95 
96 		ret = filler(data, page);
97 		if (unlikely(ret)) {
98 			read_cache_pages_invalidate_pages(mapping, pages);
99 			break;
100 		}
101 		task_io_account_read(PAGE_CACHE_SIZE);
102 	}
103 	return ret;
104 }
105 
106 EXPORT_SYMBOL(read_cache_pages);
107 
108 static int read_pages(struct address_space *mapping, struct file *filp,
109 		struct list_head *pages, unsigned nr_pages)
110 {
111 	unsigned page_idx;
112 	int ret;
113 
114 	if (mapping->a_ops->readpages) {
115 		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
116 		/* Clean up the remaining pages */
117 		put_pages_list(pages);
118 		goto out;
119 	}
120 
121 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
122 		struct page *page = list_to_page(pages);
123 		list_del(&page->lru);
124 		if (!add_to_page_cache_lru(page, mapping,
125 					page->index, GFP_KERNEL)) {
126 			mapping->a_ops->readpage(filp, page);
127 		}
128 		page_cache_release(page);
129 	}
130 	ret = 0;
131 out:
132 	return ret;
133 }
134 
135 /*
136  * do_page_cache_readahead actually reads a chunk of disk.  It allocates all
137  * the pages first, then submits them all for I/O. This avoids the very bad
138  * behaviour which would occur if page allocations are causing VM writeback.
139  * We really don't want to intermingle reads and writes like that.
140  *
141  * Returns the number of pages requested, or the maximum amount of I/O allowed.
142  *
143  * do_page_cache_readahead() returns -1 if it encountered request queue
144  * congestion.
145  */
146 static int
147 __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
148 			pgoff_t offset, unsigned long nr_to_read,
149 			unsigned long lookahead_size)
150 {
151 	struct inode *inode = mapping->host;
152 	struct page *page;
153 	unsigned long end_index;	/* The last page we want to read */
154 	LIST_HEAD(page_pool);
155 	int page_idx;
156 	int ret = 0;
157 	loff_t isize = i_size_read(inode);
158 
159 	if (isize == 0)
160 		goto out;
161 
162 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
163 
164 	/*
165 	 * Preallocate as many pages as we will need.
166 	 */
167 	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
168 		pgoff_t page_offset = offset + page_idx;
169 
170 		if (page_offset > end_index)
171 			break;
172 
173 		rcu_read_lock();
174 		page = radix_tree_lookup(&mapping->page_tree, page_offset);
175 		rcu_read_unlock();
176 		if (page)
177 			continue;
178 
179 		page = page_cache_alloc_cold(mapping);
180 		if (!page)
181 			break;
182 		page->index = page_offset;
183 		list_add(&page->lru, &page_pool);
184 		if (page_idx == nr_to_read - lookahead_size)
185 			SetPageReadahead(page);
186 		ret++;
187 	}
188 
189 	/*
190 	 * Now start the IO.  We ignore I/O errors - if the page is not
191 	 * uptodate then the caller will launch readpage again, and
192 	 * will then handle the error.
193 	 */
194 	if (ret)
195 		read_pages(mapping, filp, &page_pool, ret);
196 	BUG_ON(!list_empty(&page_pool));
197 out:
198 	return ret;
199 }
200 
201 /*
202  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
203  * memory at once.
204  */
205 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
206 		pgoff_t offset, unsigned long nr_to_read)
207 {
208 	int ret = 0;
209 
210 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
211 		return -EINVAL;
212 
213 	while (nr_to_read) {
214 		int err;
215 
216 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
217 
218 		if (this_chunk > nr_to_read)
219 			this_chunk = nr_to_read;
220 		err = __do_page_cache_readahead(mapping, filp,
221 						offset, this_chunk, 0);
222 		if (err < 0) {
223 			ret = err;
224 			break;
225 		}
226 		ret += err;
227 		offset += this_chunk;
228 		nr_to_read -= this_chunk;
229 	}
230 	return ret;
231 }
232 
233 /*
234  * This version skips the IO if the queue is read-congested, and will tell the
235  * block layer to abandon the readahead if request allocation would block.
236  *
237  * force_page_cache_readahead() will ignore queue congestion and will block on
238  * request queues.
239  */
240 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
241 			pgoff_t offset, unsigned long nr_to_read)
242 {
243 	if (bdi_read_congested(mapping->backing_dev_info))
244 		return -1;
245 
246 	return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
247 }
248 
249 /*
250  * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
251  * sensible upper limit.
252  */
253 unsigned long max_sane_readahead(unsigned long nr)
254 {
255 	return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
256 		+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
257 }
258 
259 /*
260  * Submit IO for the read-ahead request in file_ra_state.
261  */
262 static unsigned long ra_submit(struct file_ra_state *ra,
263 		       struct address_space *mapping, struct file *filp)
264 {
265 	int actual;
266 
267 	actual = __do_page_cache_readahead(mapping, filp,
268 					ra->start, ra->size, ra->async_size);
269 
270 	return actual;
271 }
272 
273 /*
274  * Set the initial window size, round to next power of 2 and square
275  * for small size, x 4 for medium, and x 2 for large
276  * for 128k (32 page) max ra
277  * 1-8 page = 32k initial, > 8 page = 128k initial
278  */
279 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
280 {
281 	unsigned long newsize = roundup_pow_of_two(size);
282 
283 	if (newsize <= max / 32)
284 		newsize = newsize * 4;
285 	else if (newsize <= max / 4)
286 		newsize = newsize * 2;
287 	else
288 		newsize = max;
289 
290 	return newsize;
291 }
292 
293 /*
294  *  Get the previous window size, ramp it up, and
295  *  return it as the new window size.
296  */
297 static unsigned long get_next_ra_size(struct file_ra_state *ra,
298 						unsigned long max)
299 {
300 	unsigned long cur = ra->size;
301 	unsigned long newsize;
302 
303 	if (cur < max / 16)
304 		newsize = 4 * cur;
305 	else
306 		newsize = 2 * cur;
307 
308 	return min(newsize, max);
309 }
310 
311 /*
312  * On-demand readahead design.
313  *
314  * The fields in struct file_ra_state represent the most-recently-executed
315  * readahead attempt:
316  *
317  *                        |<----- async_size ---------|
318  *     |------------------- size -------------------->|
319  *     |==================#===========================|
320  *     ^start             ^page marked with PG_readahead
321  *
322  * To overlap application thinking time and disk I/O time, we do
323  * `readahead pipelining': Do not wait until the application consumed all
324  * readahead pages and stalled on the missing page at readahead_index;
325  * Instead, submit an asynchronous readahead I/O as soon as there are
326  * only async_size pages left in the readahead window. Normally async_size
327  * will be equal to size, for maximum pipelining.
328  *
329  * In interleaved sequential reads, concurrent streams on the same fd can
330  * be invalidating each other's readahead state. So we flag the new readahead
331  * page at (start+size-async_size) with PG_readahead, and use it as readahead
332  * indicator. The flag won't be set on already cached pages, to avoid the
333  * readahead-for-nothing fuss, saving pointless page cache lookups.
334  *
335  * prev_pos tracks the last visited byte in the _previous_ read request.
336  * It should be maintained by the caller, and will be used for detecting
337  * small random reads. Note that the readahead algorithm checks loosely
338  * for sequential patterns. Hence interleaved reads might be served as
339  * sequential ones.
340  *
341  * There is a special-case: if the first page which the application tries to
342  * read happens to be the first page of the file, it is assumed that a linear
343  * read is about to happen and the window is immediately set to the initial size
344  * based on I/O request size and the max_readahead.
345  *
346  * The code ramps up the readahead size aggressively at first, but slow down as
347  * it approaches max_readhead.
348  */
349 
350 /*
351  * A minimal readahead algorithm for trivial sequential/random reads.
352  */
353 static unsigned long
354 ondemand_readahead(struct address_space *mapping,
355 		   struct file_ra_state *ra, struct file *filp,
356 		   bool hit_readahead_marker, pgoff_t offset,
357 		   unsigned long req_size)
358 {
359 	int	max = ra->ra_pages;	/* max readahead pages */
360 	pgoff_t prev_offset;
361 	int	sequential;
362 
363 	/*
364 	 * It's the expected callback offset, assume sequential access.
365 	 * Ramp up sizes, and push forward the readahead window.
366 	 */
367 	if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
368 			offset == (ra->start + ra->size))) {
369 		ra->start += ra->size;
370 		ra->size = get_next_ra_size(ra, max);
371 		ra->async_size = ra->size;
372 		goto readit;
373 	}
374 
375 	prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
376 	sequential = offset - prev_offset <= 1UL || req_size > max;
377 
378 	/*
379 	 * Standalone, small read.
380 	 * Read as is, and do not pollute the readahead state.
381 	 */
382 	if (!hit_readahead_marker && !sequential) {
383 		return __do_page_cache_readahead(mapping, filp,
384 						offset, req_size, 0);
385 	}
386 
387 	/*
388 	 * Hit a marked page without valid readahead state.
389 	 * E.g. interleaved reads.
390 	 * Query the pagecache for async_size, which normally equals to
391 	 * readahead size. Ramp it up and use it as the new readahead size.
392 	 */
393 	if (hit_readahead_marker) {
394 		pgoff_t start;
395 
396 		rcu_read_lock();
397 		start = radix_tree_next_hole(&mapping->page_tree, offset,max+1);
398 		rcu_read_unlock();
399 
400 		if (!start || start - offset > max)
401 			return 0;
402 
403 		ra->start = start;
404 		ra->size = start - offset;	/* old async_size */
405 		ra->size = get_next_ra_size(ra, max);
406 		ra->async_size = ra->size;
407 		goto readit;
408 	}
409 
410 	/*
411 	 * It may be one of
412 	 * 	- first read on start of file
413 	 * 	- sequential cache miss
414 	 * 	- oversize random read
415 	 * Start readahead for it.
416 	 */
417 	ra->start = offset;
418 	ra->size = get_init_ra_size(req_size, max);
419 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
420 
421 readit:
422 	return ra_submit(ra, mapping, filp);
423 }
424 
425 /**
426  * page_cache_sync_readahead - generic file readahead
427  * @mapping: address_space which holds the pagecache and I/O vectors
428  * @ra: file_ra_state which holds the readahead state
429  * @filp: passed on to ->readpage() and ->readpages()
430  * @offset: start offset into @mapping, in pagecache page-sized units
431  * @req_size: hint: total size of the read which the caller is performing in
432  *            pagecache pages
433  *
434  * page_cache_sync_readahead() should be called when a cache miss happened:
435  * it will submit the read.  The readahead logic may decide to piggyback more
436  * pages onto the read request if access patterns suggest it will improve
437  * performance.
438  */
439 void page_cache_sync_readahead(struct address_space *mapping,
440 			       struct file_ra_state *ra, struct file *filp,
441 			       pgoff_t offset, unsigned long req_size)
442 {
443 	/* no read-ahead */
444 	if (!ra->ra_pages)
445 		return;
446 
447 	/* do read-ahead */
448 	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
449 }
450 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
451 
452 /**
453  * page_cache_async_readahead - file readahead for marked pages
454  * @mapping: address_space which holds the pagecache and I/O vectors
455  * @ra: file_ra_state which holds the readahead state
456  * @filp: passed on to ->readpage() and ->readpages()
457  * @page: the page at @offset which has the PG_readahead flag set
458  * @offset: start offset into @mapping, in pagecache page-sized units
459  * @req_size: hint: total size of the read which the caller is performing in
460  *            pagecache pages
461  *
462  * page_cache_async_ondemand() should be called when a page is used which
463  * has the PG_readahead flag; this is a marker to suggest that the application
464  * has used up enough of the readahead window that we should start pulling in
465  * more pages.
466  */
467 void
468 page_cache_async_readahead(struct address_space *mapping,
469 			   struct file_ra_state *ra, struct file *filp,
470 			   struct page *page, pgoff_t offset,
471 			   unsigned long req_size)
472 {
473 	/* no read-ahead */
474 	if (!ra->ra_pages)
475 		return;
476 
477 	/*
478 	 * Same bit is used for PG_readahead and PG_reclaim.
479 	 */
480 	if (PageWriteback(page))
481 		return;
482 
483 	ClearPageReadahead(page);
484 
485 	/*
486 	 * Defer asynchronous read-ahead on IO congestion.
487 	 */
488 	if (bdi_read_congested(mapping->backing_dev_info))
489 		return;
490 
491 	/* do read-ahead */
492 	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
493 }
494 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
495