1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/readahead.c - address_space-level file readahead. 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 09Apr2002 Andrew Morton 8 * Initial version. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/dax.h> 13 #include <linux/gfp.h> 14 #include <linux/export.h> 15 #include <linux/blkdev.h> 16 #include <linux/backing-dev.h> 17 #include <linux/task_io_accounting_ops.h> 18 #include <linux/pagevec.h> 19 #include <linux/pagemap.h> 20 #include <linux/syscalls.h> 21 #include <linux/file.h> 22 #include <linux/mm_inline.h> 23 #include <linux/blk-cgroup.h> 24 #include <linux/fadvise.h> 25 26 #include "internal.h" 27 28 /* 29 * Initialise a struct file's readahead state. Assumes that the caller has 30 * memset *ra to zero. 31 */ 32 void 33 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 34 { 35 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 36 ra->prev_pos = -1; 37 } 38 EXPORT_SYMBOL_GPL(file_ra_state_init); 39 40 /* 41 * see if a page needs releasing upon read_cache_pages() failure 42 * - the caller of read_cache_pages() may have set PG_private or PG_fscache 43 * before calling, such as the NFS fs marking pages that are cached locally 44 * on disk, thus we need to give the fs a chance to clean up in the event of 45 * an error 46 */ 47 static void read_cache_pages_invalidate_page(struct address_space *mapping, 48 struct page *page) 49 { 50 if (page_has_private(page)) { 51 if (!trylock_page(page)) 52 BUG(); 53 page->mapping = mapping; 54 do_invalidatepage(page, 0, PAGE_SIZE); 55 page->mapping = NULL; 56 unlock_page(page); 57 } 58 put_page(page); 59 } 60 61 /* 62 * release a list of pages, invalidating them first if need be 63 */ 64 static void read_cache_pages_invalidate_pages(struct address_space *mapping, 65 struct list_head *pages) 66 { 67 struct page *victim; 68 69 while (!list_empty(pages)) { 70 victim = lru_to_page(pages); 71 list_del(&victim->lru); 72 read_cache_pages_invalidate_page(mapping, victim); 73 } 74 } 75 76 /** 77 * read_cache_pages - populate an address space with some pages & start reads against them 78 * @mapping: the address_space 79 * @pages: The address of a list_head which contains the target pages. These 80 * pages have their ->index populated and are otherwise uninitialised. 81 * @filler: callback routine for filling a single page. 82 * @data: private data for the callback routine. 83 * 84 * Hides the details of the LRU cache etc from the filesystems. 85 * 86 * Returns: %0 on success, error return by @filler otherwise 87 */ 88 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 89 int (*filler)(void *, struct page *), void *data) 90 { 91 struct page *page; 92 int ret = 0; 93 94 while (!list_empty(pages)) { 95 page = lru_to_page(pages); 96 list_del(&page->lru); 97 if (add_to_page_cache_lru(page, mapping, page->index, 98 readahead_gfp_mask(mapping))) { 99 read_cache_pages_invalidate_page(mapping, page); 100 continue; 101 } 102 put_page(page); 103 104 ret = filler(data, page); 105 if (unlikely(ret)) { 106 read_cache_pages_invalidate_pages(mapping, pages); 107 break; 108 } 109 task_io_account_read(PAGE_SIZE); 110 } 111 return ret; 112 } 113 114 EXPORT_SYMBOL(read_cache_pages); 115 116 static int read_pages(struct address_space *mapping, struct file *filp, 117 struct list_head *pages, unsigned int nr_pages, gfp_t gfp) 118 { 119 struct blk_plug plug; 120 unsigned page_idx; 121 int ret; 122 123 blk_start_plug(&plug); 124 125 if (mapping->a_ops->readpages) { 126 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages); 127 /* Clean up the remaining pages */ 128 put_pages_list(pages); 129 goto out; 130 } 131 132 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 133 struct page *page = lru_to_page(pages); 134 list_del(&page->lru); 135 if (!add_to_page_cache_lru(page, mapping, page->index, gfp)) 136 mapping->a_ops->readpage(filp, page); 137 put_page(page); 138 } 139 ret = 0; 140 141 out: 142 blk_finish_plug(&plug); 143 144 return ret; 145 } 146 147 /* 148 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates 149 * the pages first, then submits them for I/O. This avoids the very bad 150 * behaviour which would occur if page allocations are causing VM writeback. 151 * We really don't want to intermingle reads and writes like that. 152 * 153 * Returns the number of pages requested, or the maximum amount of I/O allowed. 154 */ 155 unsigned int __do_page_cache_readahead(struct address_space *mapping, 156 struct file *filp, pgoff_t offset, unsigned long nr_to_read, 157 unsigned long lookahead_size) 158 { 159 struct inode *inode = mapping->host; 160 struct page *page; 161 unsigned long end_index; /* The last page we want to read */ 162 LIST_HEAD(page_pool); 163 int page_idx; 164 unsigned int nr_pages = 0; 165 loff_t isize = i_size_read(inode); 166 gfp_t gfp_mask = readahead_gfp_mask(mapping); 167 168 if (isize == 0) 169 goto out; 170 171 end_index = ((isize - 1) >> PAGE_SHIFT); 172 173 /* 174 * Preallocate as many pages as we will need. 175 */ 176 for (page_idx = 0; page_idx < nr_to_read; page_idx++) { 177 pgoff_t page_offset = offset + page_idx; 178 179 if (page_offset > end_index) 180 break; 181 182 page = xa_load(&mapping->i_pages, page_offset); 183 if (page && !xa_is_value(page)) { 184 /* 185 * Page already present? Kick off the current batch of 186 * contiguous pages before continuing with the next 187 * batch. 188 */ 189 if (nr_pages) 190 read_pages(mapping, filp, &page_pool, nr_pages, 191 gfp_mask); 192 nr_pages = 0; 193 continue; 194 } 195 196 page = __page_cache_alloc(gfp_mask); 197 if (!page) 198 break; 199 page->index = page_offset; 200 list_add(&page->lru, &page_pool); 201 if (page_idx == nr_to_read - lookahead_size) 202 SetPageReadahead(page); 203 nr_pages++; 204 } 205 206 /* 207 * Now start the IO. We ignore I/O errors - if the page is not 208 * uptodate then the caller will launch readpage again, and 209 * will then handle the error. 210 */ 211 if (nr_pages) 212 read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask); 213 BUG_ON(!list_empty(&page_pool)); 214 out: 215 return nr_pages; 216 } 217 218 /* 219 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 220 * memory at once. 221 */ 222 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 223 pgoff_t offset, unsigned long nr_to_read) 224 { 225 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 226 struct file_ra_state *ra = &filp->f_ra; 227 unsigned long max_pages; 228 229 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages)) 230 return -EINVAL; 231 232 /* 233 * If the request exceeds the readahead window, allow the read to 234 * be up to the optimal hardware IO size 235 */ 236 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 237 nr_to_read = min(nr_to_read, max_pages); 238 while (nr_to_read) { 239 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 240 241 if (this_chunk > nr_to_read) 242 this_chunk = nr_to_read; 243 __do_page_cache_readahead(mapping, filp, offset, this_chunk, 0); 244 245 offset += this_chunk; 246 nr_to_read -= this_chunk; 247 } 248 return 0; 249 } 250 251 /* 252 * Set the initial window size, round to next power of 2 and square 253 * for small size, x 4 for medium, and x 2 for large 254 * for 128k (32 page) max ra 255 * 1-8 page = 32k initial, > 8 page = 128k initial 256 */ 257 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 258 { 259 unsigned long newsize = roundup_pow_of_two(size); 260 261 if (newsize <= max / 32) 262 newsize = newsize * 4; 263 else if (newsize <= max / 4) 264 newsize = newsize * 2; 265 else 266 newsize = max; 267 268 return newsize; 269 } 270 271 /* 272 * Get the previous window size, ramp it up, and 273 * return it as the new window size. 274 */ 275 static unsigned long get_next_ra_size(struct file_ra_state *ra, 276 unsigned long max) 277 { 278 unsigned long cur = ra->size; 279 280 if (cur < max / 16) 281 return 4 * cur; 282 if (cur <= max / 2) 283 return 2 * cur; 284 return max; 285 } 286 287 /* 288 * On-demand readahead design. 289 * 290 * The fields in struct file_ra_state represent the most-recently-executed 291 * readahead attempt: 292 * 293 * |<----- async_size ---------| 294 * |------------------- size -------------------->| 295 * |==================#===========================| 296 * ^start ^page marked with PG_readahead 297 * 298 * To overlap application thinking time and disk I/O time, we do 299 * `readahead pipelining': Do not wait until the application consumed all 300 * readahead pages and stalled on the missing page at readahead_index; 301 * Instead, submit an asynchronous readahead I/O as soon as there are 302 * only async_size pages left in the readahead window. Normally async_size 303 * will be equal to size, for maximum pipelining. 304 * 305 * In interleaved sequential reads, concurrent streams on the same fd can 306 * be invalidating each other's readahead state. So we flag the new readahead 307 * page at (start+size-async_size) with PG_readahead, and use it as readahead 308 * indicator. The flag won't be set on already cached pages, to avoid the 309 * readahead-for-nothing fuss, saving pointless page cache lookups. 310 * 311 * prev_pos tracks the last visited byte in the _previous_ read request. 312 * It should be maintained by the caller, and will be used for detecting 313 * small random reads. Note that the readahead algorithm checks loosely 314 * for sequential patterns. Hence interleaved reads might be served as 315 * sequential ones. 316 * 317 * There is a special-case: if the first page which the application tries to 318 * read happens to be the first page of the file, it is assumed that a linear 319 * read is about to happen and the window is immediately set to the initial size 320 * based on I/O request size and the max_readahead. 321 * 322 * The code ramps up the readahead size aggressively at first, but slow down as 323 * it approaches max_readhead. 324 */ 325 326 /* 327 * Count contiguously cached pages from @offset-1 to @offset-@max, 328 * this count is a conservative estimation of 329 * - length of the sequential read sequence, or 330 * - thrashing threshold in memory tight systems 331 */ 332 static pgoff_t count_history_pages(struct address_space *mapping, 333 pgoff_t offset, unsigned long max) 334 { 335 pgoff_t head; 336 337 rcu_read_lock(); 338 head = page_cache_prev_miss(mapping, offset - 1, max); 339 rcu_read_unlock(); 340 341 return offset - 1 - head; 342 } 343 344 /* 345 * page cache context based read-ahead 346 */ 347 static int try_context_readahead(struct address_space *mapping, 348 struct file_ra_state *ra, 349 pgoff_t offset, 350 unsigned long req_size, 351 unsigned long max) 352 { 353 pgoff_t size; 354 355 size = count_history_pages(mapping, offset, max); 356 357 /* 358 * not enough history pages: 359 * it could be a random read 360 */ 361 if (size <= req_size) 362 return 0; 363 364 /* 365 * starts from beginning of file: 366 * it is a strong indication of long-run stream (or whole-file-read) 367 */ 368 if (size >= offset) 369 size *= 2; 370 371 ra->start = offset; 372 ra->size = min(size + req_size, max); 373 ra->async_size = 1; 374 375 return 1; 376 } 377 378 /* 379 * A minimal readahead algorithm for trivial sequential/random reads. 380 */ 381 static unsigned long 382 ondemand_readahead(struct address_space *mapping, 383 struct file_ra_state *ra, struct file *filp, 384 bool hit_readahead_marker, pgoff_t offset, 385 unsigned long req_size) 386 { 387 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 388 unsigned long max_pages = ra->ra_pages; 389 unsigned long add_pages; 390 pgoff_t prev_offset; 391 392 /* 393 * If the request exceeds the readahead window, allow the read to 394 * be up to the optimal hardware IO size 395 */ 396 if (req_size > max_pages && bdi->io_pages > max_pages) 397 max_pages = min(req_size, bdi->io_pages); 398 399 /* 400 * start of file 401 */ 402 if (!offset) 403 goto initial_readahead; 404 405 /* 406 * It's the expected callback offset, assume sequential access. 407 * Ramp up sizes, and push forward the readahead window. 408 */ 409 if ((offset == (ra->start + ra->size - ra->async_size) || 410 offset == (ra->start + ra->size))) { 411 ra->start += ra->size; 412 ra->size = get_next_ra_size(ra, max_pages); 413 ra->async_size = ra->size; 414 goto readit; 415 } 416 417 /* 418 * Hit a marked page without valid readahead state. 419 * E.g. interleaved reads. 420 * Query the pagecache for async_size, which normally equals to 421 * readahead size. Ramp it up and use it as the new readahead size. 422 */ 423 if (hit_readahead_marker) { 424 pgoff_t start; 425 426 rcu_read_lock(); 427 start = page_cache_next_miss(mapping, offset + 1, max_pages); 428 rcu_read_unlock(); 429 430 if (!start || start - offset > max_pages) 431 return 0; 432 433 ra->start = start; 434 ra->size = start - offset; /* old async_size */ 435 ra->size += req_size; 436 ra->size = get_next_ra_size(ra, max_pages); 437 ra->async_size = ra->size; 438 goto readit; 439 } 440 441 /* 442 * oversize read 443 */ 444 if (req_size > max_pages) 445 goto initial_readahead; 446 447 /* 448 * sequential cache miss 449 * trivial case: (offset - prev_offset) == 1 450 * unaligned reads: (offset - prev_offset) == 0 451 */ 452 prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 453 if (offset - prev_offset <= 1UL) 454 goto initial_readahead; 455 456 /* 457 * Query the page cache and look for the traces(cached history pages) 458 * that a sequential stream would leave behind. 459 */ 460 if (try_context_readahead(mapping, ra, offset, req_size, max_pages)) 461 goto readit; 462 463 /* 464 * standalone, small random read 465 * Read as is, and do not pollute the readahead state. 466 */ 467 return __do_page_cache_readahead(mapping, filp, offset, req_size, 0); 468 469 initial_readahead: 470 ra->start = offset; 471 ra->size = get_init_ra_size(req_size, max_pages); 472 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 473 474 readit: 475 /* 476 * Will this read hit the readahead marker made by itself? 477 * If so, trigger the readahead marker hit now, and merge 478 * the resulted next readahead window into the current one. 479 * Take care of maximum IO pages as above. 480 */ 481 if (offset == ra->start && ra->size == ra->async_size) { 482 add_pages = get_next_ra_size(ra, max_pages); 483 if (ra->size + add_pages <= max_pages) { 484 ra->async_size = add_pages; 485 ra->size += add_pages; 486 } else { 487 ra->size = max_pages; 488 ra->async_size = max_pages >> 1; 489 } 490 } 491 492 return ra_submit(ra, mapping, filp); 493 } 494 495 /** 496 * page_cache_sync_readahead - generic file readahead 497 * @mapping: address_space which holds the pagecache and I/O vectors 498 * @ra: file_ra_state which holds the readahead state 499 * @filp: passed on to ->readpage() and ->readpages() 500 * @offset: start offset into @mapping, in pagecache page-sized units 501 * @req_size: hint: total size of the read which the caller is performing in 502 * pagecache pages 503 * 504 * page_cache_sync_readahead() should be called when a cache miss happened: 505 * it will submit the read. The readahead logic may decide to piggyback more 506 * pages onto the read request if access patterns suggest it will improve 507 * performance. 508 */ 509 void page_cache_sync_readahead(struct address_space *mapping, 510 struct file_ra_state *ra, struct file *filp, 511 pgoff_t offset, unsigned long req_size) 512 { 513 /* no read-ahead */ 514 if (!ra->ra_pages) 515 return; 516 517 if (blk_cgroup_congested()) 518 return; 519 520 /* be dumb */ 521 if (filp && (filp->f_mode & FMODE_RANDOM)) { 522 force_page_cache_readahead(mapping, filp, offset, req_size); 523 return; 524 } 525 526 /* do read-ahead */ 527 ondemand_readahead(mapping, ra, filp, false, offset, req_size); 528 } 529 EXPORT_SYMBOL_GPL(page_cache_sync_readahead); 530 531 /** 532 * page_cache_async_readahead - file readahead for marked pages 533 * @mapping: address_space which holds the pagecache and I/O vectors 534 * @ra: file_ra_state which holds the readahead state 535 * @filp: passed on to ->readpage() and ->readpages() 536 * @page: the page at @offset which has the PG_readahead flag set 537 * @offset: start offset into @mapping, in pagecache page-sized units 538 * @req_size: hint: total size of the read which the caller is performing in 539 * pagecache pages 540 * 541 * page_cache_async_readahead() should be called when a page is used which 542 * has the PG_readahead flag; this is a marker to suggest that the application 543 * has used up enough of the readahead window that we should start pulling in 544 * more pages. 545 */ 546 void 547 page_cache_async_readahead(struct address_space *mapping, 548 struct file_ra_state *ra, struct file *filp, 549 struct page *page, pgoff_t offset, 550 unsigned long req_size) 551 { 552 /* no read-ahead */ 553 if (!ra->ra_pages) 554 return; 555 556 /* 557 * Same bit is used for PG_readahead and PG_reclaim. 558 */ 559 if (PageWriteback(page)) 560 return; 561 562 ClearPageReadahead(page); 563 564 /* 565 * Defer asynchronous read-ahead on IO congestion. 566 */ 567 if (inode_read_congested(mapping->host)) 568 return; 569 570 if (blk_cgroup_congested()) 571 return; 572 573 /* do read-ahead */ 574 ondemand_readahead(mapping, ra, filp, true, offset, req_size); 575 } 576 EXPORT_SYMBOL_GPL(page_cache_async_readahead); 577 578 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 579 { 580 ssize_t ret; 581 struct fd f; 582 583 ret = -EBADF; 584 f = fdget(fd); 585 if (!f.file || !(f.file->f_mode & FMODE_READ)) 586 goto out; 587 588 /* 589 * The readahead() syscall is intended to run only on files 590 * that can execute readahead. If readahead is not possible 591 * on this file, then we must return -EINVAL. 592 */ 593 ret = -EINVAL; 594 if (!f.file->f_mapping || !f.file->f_mapping->a_ops || 595 !S_ISREG(file_inode(f.file)->i_mode)) 596 goto out; 597 598 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED); 599 out: 600 fdput(f); 601 return ret; 602 } 603 604 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 605 { 606 return ksys_readahead(fd, offset, count); 607 } 608